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1. INTRODUCTION

Since the seminal paper by Hansen and Singleton (1982) the most common approach to estimate dynamic

decision models has been to construct sample counterparts of the orthogonality conditions provided by the

stochastic Euler equations and use them to estimate the parameters of interest by the Generalized Method

of Moments (GMM). The main advantage of this strategy is that it permits to identify and estimate the

structural parameters without having to solve the model. However, this method has several limitations

when the characteristics of the model imply a strictly positive probability of corner solutions. This is the

case in many dynamic models which have gained increasing theoretical and empirical interest during the

last years, e.g., models of irreversible investment, labour demand with fixed hiring and firing costs, (S,s)

inventory and pricing models, or consumption of durable goods, between others.

The standard Euler equations used in Hansen and Singleton approach are the combination of

marginal conditions of optimality at two consecutive periods. Nevertheless, for the class of models that I

consider in this paper, the marginal conditions do not hold with probability one because there are some

periods where corner solutions occur. In this context Hansen and Singleton approach has three main

limitations. First, the selection of the subsample of observations where marginal conditions of optimality

occur at two consecutive periods, say t and t+1, implies conditioning to the event that the solution at t+1

will be interior. Provided that this information is unknown at period t this approach suffers of selection

bias, and in general this bias enters with unknown form. The second problem is that not all the structural

parameters can be identified using only the subsample of interior solutions. For example, the identification

of fixed adjustment cost parameters requires one to exploit the information contained in the corner solution

observations. Finally, another limitation is that, even if we are not interested in the estimation of fixed

adjustment costs, the discrete choice can contain a lot of information about the other parameters of interest.
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Therefore, when the proportion of corner solutions in the sample is relatively large, an estimator based only

on moments from the Euler equations can be very inefficient.

Under some regularity conditions the optimal decision rule in this type of models is unique and it

can be characterized by a function defining the optimal interior solution and a condition defining when it

is optimal to choose an interior solution or the corner solution. In the context of a model of capital

investment Pakes (1994) has defined sufficient conditions to obtain Euler equations when the model has

both continuous and discrete control variables, or when there are binding constraints. Section 2.2 shows

how this approach can be easily extended to the case where corner solutions are the result of discontinuity

or/and not differentiability of the utility function.

The decision of being in a corner solution against being in an interior solution can be represented

as a dynamic discrete choice problem. Hotz and Miller (1993) present a proposition showing that in a

dynamic discrete choice model the expected conditional choice value functions can be written as known

functions of the state variables, discrete choice probabilities, and transition probabilities of the state

variables. Therefore, if choice and transition probabilities can be estimated in a first stage, the structural

parameters of the discrete choice model can be estimated without solving the dynamic programming model

at each iteration in the search for the parameters of interest.   

This paper combines the results of Pakes and Hotz and Miller in the context of dynamic decision

models with corner solutions. Their results are extended in two directions. First, I consider a model where

there are unobserved state variables affecting both the continuous choice (interior solution) and the discrete

choice (interior solution / corner solution). This extension introduces three potential problems: (1)

unobservable state variables may enter in the Euler equations; (2) if unobservable state variables affecting

the continuos choice are correlated with those affecting the discrete choice, one  has to take into account
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the selection bias that arises when selecting the subsample of interior solutions to construct sample

counterparts of the Euler equations; and (3) Hotz and Miller proposition should be extended to this context.

In Section 2 I present sufficient conditions that allow to overcome these three problems. These conditions

refer to the stochastic properties of the unobservable state variables and the form in which they enter in the

utility function.

The second extension that this paper presents is related to the computation of the conditional

discrete choice value functions. When using Hotz and Miller approach the value functions can be a very

complicated function of the choice and transition probabilities and the parameters of interest. This is the

case when the range of variation of the state variables or the time horizon of the problem are relatively

large. Hotz et al (1994) propose a simulation based estimator to overcome this problem. Here I propose an

alternative approach. If observables and structural parameters are multiplicatively separable in the one-

period utility function, the conditional choice value functions can be written as the product of a vector of

functions of the parameters of interest and a vector of functions of the choice and transition probabilities.

Therefore, once choice and transition probabilities have been computed in a first stage, the functions of

these incidental parameters that appear in the conditional value functions become data which do not have

to be re-calculated during the estimation of the parameters of interest.

In Section 2.4 I define a sequential GMM estimator of the structural parameters that exploits the

moment conditions from the Euler equations and from the optimal discrete choice. The computational

simplicity of this method permits the estimation of dynamic structural models with corner solutions and

with a large number of state variables. This is an advantage over methods based on nested solution-

estimation algorithms whose computational burden makes impractical to estimate models with many state

variables.
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I have applied this method to estimate a dynamic decision model of price and inventory decisions

in a supermarket. Sticky prices, cross-section price dispersion, and the propagation of real shocks in the

economy have been explained theoretically using models of price and inventory decisions with lump-sum

adjustment costs. The micro and macroeconomic implications of these models depend on the structure of

ordering costs and price adjustment costs. However, there have been very few empirical work estimating

fixed and variable adjustment costs in structural models of price or inventory decisions. One reason has

been the econometric problems associated to the estimation of dynamic structural models with corner

solutions. Another important reason has been the lack of appropriate datasets with information at the level

of individual firms and individual goods and with high sample frequency.2

Some predictions of the stationary (S,s) pricing model developed by Sheshinski and Weiss (1977,

1983) have been rejected in several empirical studies using micro data sets.  In the dataset used in this3

paper, nominal price reductions are too frequent to be consistent with a simple (S,s) pricing policy during

a period of relative high inflation (around 7% annual rate). In fact, for most of the goods in the sample, the

frequency of reductions in nominal selling prices is around 20 percentage points larger than the frequency

of reductions in nominal cost prices (i.e., price paid to manufacturers). The paper presents reduced form

and structural form evidence of how part of these nominal price reductions are the result of the interaction

of price and inventory decisions.

Section 3 presents a model of joint price and inventory decisions where the firm faces lump-sum

adjustment costs both when placing orders and changing prices. Numerical solutions of the model show

that, if lump-sum ordering costs are larger than fixed costs of changing prices, nominal price reductions

tend to occur when the firm places orders, even if the inflation rate is relatively large. This model is

estimated using a dataset from a supermarket chain. This dataset contains monthly information (at the level
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(1)

of individual goods) about stocks, orders, sales, selling prices and cost prices. The estimation of the

structural model shows that lump-sum ordering costs are much larger than fixed price adjustment costs.

Moreover, the role of price decisions in the reduction of lump-sum ordering costs explains why nominal

price increases tend to occur before orders are placed, and nominal price reductions just when orders are

placed. It can explain more than 60% of the observed nominal price reductions.

2. MOMENT CONDITIONS IN DYNAMIC DECISION MODELS

 WITH CORNER SOLUTIONS.

2.1. A Dynamic Decision Model with Corner Solutions

Consider a sequential decision problem where at each period t an individual chooses a Dx1 vector

of decision variables, d , in order to maximize the expected value of its intertemporal utility. The problemt

at period t is 4

where s  is the vector of state variables at period t; 
(.) is the correspondence of feasible choices; p(.) is thet

transition probability function for the state variables; � is the discount factor; u(.) is the one-period utility

function; and E  is the expected value conditional to the information available at period t. A particulart

decision maker is characterized by the set of primitives {u,�,
,p}. Rust (1992) has proved that these

primitives are nonparametrically unidentified. Therefore, for the moment, I will consider a parametric

specification of the primitives, i.e.,  u(.), 
(.) and p(.) are known functions up to the vector of parameters
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(2)

(3)

� (that includes �).

Consider that the usual framework is extended to allow for discontinuity and non-differentiability

of the utility function. For the sake of simplicity consider that there is only one decision variable. The

function u(.) is discontinuous with respect to the control variable d , at one point, that without loss oft

generality is zero. In addition, u(.) can be asymmetric around the discontinuity point. 

where D  = I(d  = 0),  D  = I(d  < 0), and  D  = I(d  > 0) where I(A) is the indicator for the event A. The0 1 2
t t t t t t

conditional choice utility functions have the following form,

where x  is the vector of state variables observed by the econometrician; and �  = (� ,� , � ) and 7  are statet t t t t t
0 1 2

variables unobserved by the econometrician. This specification allows for unobserved state variables that

affect the marginal utilities, 7 , and unobserved state variables that affect absolute utility but not marginalt

utility. This framework encompasses a large number of dynamic decision models with corner solutions,

e.g., (S,s) inventory and pricing models, labour demand with fixed firing and hiring costs, consumption of

durable goods, or irreversible investment, between others.

In order to guarantee the existence and uniqueness of the solution to this problem I make the

following assumptions.

ASSUMPTION 1: The observed state variables x  have two components: exogenous state variables,t
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(4)

(5)

(6)

(7)

z , and a endogenous state variable, k . The unobserved state variables 7  and �  are weakly exogenous. Thet t t t

conditional choice transition probability of the state variables factors as

p(dx  ,d7  , d�  | x  , 7  , �  , d ) = q (�  | x  )  q (7  | x  ) I{k  = '  k  + d  } q ( z  | z )t+1 t+1 t+1 t t t t � t+1 t+1 7 t+1 t+1 t+1 K t t z t+1 t

where I(.) is the indicator function; |' | is lower than 1 and q (.), q (.), and q (.) are continuouslyK z � 7

differentiable functions.

ASSUMPTION 2: The conditional choice utility functions are bounded and continuously

diffenrentiable in 7, x and d, and strictly increasing in k. And u (.) and u (.) are strictly concave in (k, d).1 2

The model defined by equations (1) and (3) and assumptions 1 and 2 has a unique solution where

the optimal decision rule is

where  (x , 7 ) and  (x , 7 ) are the optimal interior solutions under a negative and a positive adjustment,1 2
t t t t

respectively.

and

where V(x , 7 , � ) is the value function,t t t

and v (x ) are the conditional choice value functions.j
t
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(8)

(9)

In  th is  model  we could est imate � us ing a nested so lut ion-est imat ion a lgor i thm where,  a t  each

i terat ion in  the search for  the parameter  est imates,  the v ( . )  funct ions are obta ined numer ica l ly as f ixedj

points of the contraction mapping provided by the system of functional equations (7) and (8). These nested

solution-estimation algorithms have been successfully implemented in the estimation of dynamic discrete

choice models by Wolpin (1984), Pakes (1986), Rust (1987), Eckstein and Wolpin (1989) or Das (1992)

between others. However, when the number of state variables is greater than two or three this method is

impractical even on the most sophisticated of computing equipment. Alternatively, I propose a method that

does not require one to solve the model at each iteration. This method exploits moment conditions for both

the optimal interior solutions and for the optimal discrete choice corner solution versus interior solution.

2.2. Euler Equations and Moment Conditions for the Continuous Choice

In this Section I follow the same approach that Pakes (1994) to obtain the Euler equation of the

previous problem. Consider that at period t there is an interior solution, say d  =  (s ), and define -  as thet t t
1

number of periods until the next interior solution.

Now, consider a decision rule {d (s  , �  , �) : n � 0 } that is an alternative to the optimal decision rule*
t+n t+n

(.). The starred decision rule is defined as follows,

where
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(10)

(11)

and � is any real value close to zero. Given that u (.),  (.) and v (.) are continuous functions, and  |'  |<1,j j j
K

for � close to zero the path of discrete choices in the starred decision rule will be the same that the discrete

choices in the optimal  decision rule. In addition, it is easy to verify that the path of endogenous state

variables under the starred policy deviates from the path in the optimal decision rule only between t and

t+- . Thus, the decisions generated by the starred rule are the optimal decisions at every period except att

periods t and t+- .t

The difference between the discounted expected stream of utilities under the optimal and the starred

policies should have its maximum at �=0. Given that it is a differentiable function its derivative must be

0at �=0. This marginal condition of optimality is the Euler equation.

Assume, for the moment, that the econometrician observes all the state variables affecting the

continuous choice (i.e., 7  =0 for any t). In that case equation (11) provides a set of orthogonality conditionst

that can be used to construct a GMM estimator of some of the parameters in �. Notice that equation (11)

shows why using the standard Euler equations for the subsample of observations with -  =1 can lead tot

inconsistent estimates. Equation (11) can be written as 

Conditioning to the event "-=1" the left hand side of this expression becomes equal to the left handt
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side in a standard Euler equation (i.e., model without corner solutions). But in a model with corner

solutions this expression is no longer equal to zero. It is equal to (-1/p(-=1| s )) ( p(-=j | s )t t j=2 t t
�

E(4(s ,d ,...,s ,d ) | s ,-=j), that is an unknown function of s . Therefore, the estimation of the parameterst t t+j t+j t t t

of interest using the standard Euler equations for the subsample of interior solutions with -=1 will yieldt

inconsistent estimates. The larger p(->1 | s ) the larger the bias of these estimates.t t

In a longitudinal dataset for the last interior solution of each individual we do not observe the

number of periods until the next interior solution (i.e., -). Therefore, these observations cannot be included

in the estimation. The effect of this censoring on our parameter estimates depends on the type of sample

we have. The effect will be negligible in long panels with frequent interior solutions for each individual.

However, the censoring may bias our estimates when the sample presents a small number of interior

solutions per individual. The most simple approach to deal with this problem is to estimate the model using

only those years for which there are enough subsequent number of periods such that - is observed for any

(i,t) (see Olley and Pakes [1991]).

So far I have considered that there not exist unobserved state variables, 7 . However, there are manyt

applications where unobserved state variables enter not additively in the Euler equations. A possible

solution is to integrate over the unobserved state variables using a specification of q (7 |x ). An alternative
7 t t

approach is to use an additional structural equation that provides a relationship between 7  an a set oft

observable variables. This approach can be useful in many applications. 

ASSUMPTION 3: There is a vector of observed variables y  and a structural equation that relatest

the unobserved state variables with the observables y  , x  and dt t t

7  = 7(x  , y  , d  ; �)t t t t

where 7(.) is known up to the vector of parameters �.
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Example: Consider a dynamic model where a firm decides its demand of several inputs. Output,

that is neither a decision nor a state variable, depends on the amount of inputs but also on some variables

that are unobservable for the econometrician, e.g., a technological shock. In this context, if output is

observable for the econometrician the production function provides the 7(.) function in assumption 3. If

all the parameters of the production function are identified in the Euler equation the orthogonality between

x  and 7  is not required. Otherwise one should assume that some observed state variables are orthogonalt t

to the technological shock. 

In some cases the vectors of parameters � and � can be identified using only the Euler equations.

In  general that will not be the case and we will have to exploit moment conditions from the equation 7(.).

Notice that both y  and d  depend on 7  and therefore they cannot be used as instrumental variables in thet t t

GMM estimation.

2.3 Moment Conditions for the Optimal Discrete Choice

There are two main reasons why it is important to exploit the discrete choice information in a

dynamic decision model with corner solutions. First, there may be some parameters of interest not entering

in the Euler equations. That is the case of lump-sum adjustment costs or any other parameters capturing

discontinuous jumps in the utility function. And second, but not less important, the discrete choice can

contain very much information about all the parameters in the model. In fact, if corner solutions are very

frequent in our dataset the discrete choice will contain a lot of information about most of the parameters.

Therefore, ignoring the information in the discrete choice will imply a significant loss of efficiency in our

estimates. In this section I will obtain an expression for the conditional choice value functions, v (x ), inj
t

terms of observed variables, structural parameters and some incidental parameters. Using this expression

I will construct moment conditions for the optimal discrete choice that will allow to estimate (�,�) using



D jO
t 
1 @ j
argmaxk�{0,1,2} { u k(xt ,7t ,

k
t )��

k
t �v k(xt) }

v j(xt)
M
�

n
1
�n

PM
2

k
0
D kO

t�n uk(xt�n,7t�n,k
t�n)��

k
t�n q

�7
(d�t�n,d7t�n|xt�n) fx(dxt�n|xt ,D

j
t 
1)


M
�

n
1
�n

PM
2

k
0
Pk(xt�n) Euk(xt�n) � E�k(xt�n) fx(dxt�n|xt ,D

j
t 
1)

Pj(xt) � p(DjO
t 
1|xt) 
 P I[ j 
argmaxk�{0,1,2} {u k(xt ,7t ,

k
t )� �

k
t } ] q

�7
(d�t ,d7t |xt)

Euj(xt) 
 E( u j[ xt ,7t ,
j
t ] | xt ,D

j O
t 
1 )

E�j(xt) 
 E( �j
t | xt ,D

j O
t 
1 )

12

(12)

(13)

(14)

(15)

(16)

a two stages procedure.

Let D  be the indicator of the event “alternative j is optimal at period t”. Using equation (4) thejO
t

optimal discrete choice can be written as

where   =  (x , 7 ). By definition, we can write v (x ) as the expected discounted stream of future utilitiesk k j
t t t t

if alternative j were chosen at period t.

where the P (x ) functions are the Conditional Choice Probabilities,j
t

and Eu (x ) and E� (x ) arej j
t t

and

Assume that the observed state variables can be discretized in M cells, i.e., x  � X = {x ,x ,...,x }.t
1 2 M

We can define the following vectors of choice probabilities and matrices of transitions probabilities.
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where

I also define the vectors of conditional expected utilities,

Using this notation we can write expression (13) as

where * is the element-by-element (Hadamard) product. Notice that F, F , and P  contain incidentalj j

parameters that can be estimated using a sample of x  and d . By Hotz and Miller theorem (1993) E� (x )t t t
k

is a function of the conditional choice probabilities. The form of this function depends on the probability

distribution of the �’s. For example, if the �’s are iid distributed with a double exponential distribution,

E� (x ) = c - ln P (x ), where c is the Euler constant.k k
t t

Using assumption 3 the conditional choice utility functions can be writen as

U (x  ,y  ,d  ; � ,�) = u (x  ,7(x   y  ,d  ;�) , d  ;�)  j j
t t t t t t t t

ASSUMPTION 4: The conditional choice utility functions, U (x , y , d ; �, �), are multiplicativelyj
t t t
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(17)

(18)

(19)

(20)

separable in observables and structural parameters. 

 U (x , y , d ; �, �) = h(�,�)‘ g  (x , y , d ) j j
t t t t t t

where h(�,�) and g  (x , y , d ) are Lx1 vectors of known functions.j
t t t

This assumption holds in most currently estimated dynamic decision models. Under assumption

4 we have that:

where E(g  [x , y , d ] | x  , D  = 1) depends on x , and on moments of y  and d  conditional to x . Therefore,j j
t t t t t t t t t

under assumption 4 the conditional choice value functions are

where µ is the set of incidental parameters 

$  and $  have the following expressionsj j
g �

and G  is the MxL matrix { E(g  [x , y , d ] | x  = x  , D  = 1) : m=1,...,M}. k k m k
t t t t t

Finally, we can write the optimal discrete decision as, 



E[ W1(xt) m(xt ,dt ,yt , ... ,xt�-t
,dt�-t

,yt�-t
; � ,�) ] 
 0 for dtg0

E[ W2(xt) 7(xt ,dt ,yt ; �) ] 
 0 for any t

E[ W3(xt) (Dt 	 P(xt ,yt ; � ,� ,µ) ] 
 0 for any t

E[ W4(x ) 1(D ,x ; µ) ] 
 0 for any t
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Given a fixed value of � and reduced form estimates of the incidental parameters in µ, the $  functionsj

become data that will not change during the estimation of � and �. Therefore, equation (20) provides a

simple expression to estimate � and �.

2.4 Joint Estimation of the Model

The estimation of the model can be represented in terms of four sets of moment conditions.

The first set of moment conditions comes from the Euler equations and they hold only for the subsample

of interior solutions. The second set of conditions come from the structural equation 7(.). In the third set

we have the moment conditions from the optimal discrete choice. Finally, the last set represents the

moment conditions for the estimation of the incidental parameters. Notice that the model has a sequential

structure that permits to estimate the structural parameters using a two stage procedure. First, we can

estimate � and µ using the second and fourth sets of moment conditions. In a second stage � is estimated

using the first and third set of moment conditions and the previous estimates of � and µ. When � and µ are

just-identified in the first stage the expression of asymptotic covariance-matrix of the estimate of � is

straightforward using the approach proposed by Newey (1984 and 1994).

3. A MODEL OF PRICE AND INVENTORY DECISIONS

 WITH FIXED ADJUSTMENT COSTS

3.1 Profit Function and Transition Probabilities
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(22)

Consider a retailer that sells N different goods. At each period t the policy-maker decides the

vectors of selling prices, (p ,..., p ), and new orders, (q , ..., q ), to maximize the discounted stream of1t Nt 1t Nt

expected current and future real profits. The one-period real profit, u , is the sum of the profits associatedt

with each good, i.e., u = (  u . The real profit that the firm obtains from selling any good i is equal to thet i=1 it
N

real value of sales, minus ordering costs, storage costs and price adjustment costs.

where % is the aggregate inflation rate (assumed constant); E y  are expected sales of good i at period t (int it

physical units) conditional to the information set at period t; c  is the nominal cost price that supermarketit

pays to the manufacturer of good i; �  is a lump-sum ordering cost; SC(.) is the storage cost function that(1)
it

depends on the stock level at the beginning of the period, s , and on the vector of parameters �; AC(.) areit

variable price adjustment costs where 1 is a vector of parameters; �  is a lump-sum price adjustment cost,(2)
it

and �p =p -p .it it i,t-1

Sales at period t are equal to demand only if the stock during the period is larger than demand.

Therefore, one of the reasons for holding inventories in this model is to avoid stockouts. The data set used

to estimate this model contains information on whether there has been an excess demand during the month.5

This information allows to identify the dependence of sales with respect to the stock level and the

importance of the stockout avoidance motive of holding stocks. The sales equation is

where I  is the indicator of the event "stockout of good i at period t"; y  is the demand of good i at periodit it
*

t; and � is the parameter that measures the proportion of demand that is lost when a stockout occurs. The
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demand of good depends on the real price of the good at this firm and at other firms selling good i.

where (� , � , � ) are parameters associated to the demand of good i; m  is the average markup of good0i 1i 2i it

i at period t in other stores; �  is an "aggregate" shock affecting the demand of all the goods in this0t

supermarket; and a  is a good-specific demand shock that is unobservable to the firm at  period t.it

Given the previous specification of the profit function we can write the problem for good i in terms

of the decision variables (p /c  , q ) and the vector of state variables (s , p /c , c , m , � , � ). All theseit it it it i,t-1 it it it it it
(1) (2)

state variables are observed by the firm at the beginning of period t. From the point of view of the

econometrician the vector x  = (s , p /c , c ) represents observed state variables, and (m , � , � ) areit it i,t-1 it it it it it
(1) (2)

unobservables. The variable sales and the stockout indicator are observables but they are not state variables

(they are the variables y  in Assumption 3 of Section 2).t

The transition law for the stock is: s = s  + q  - y . Although the firm  in our dataset is not a price-i,t+1 it it it

taker in its relationship with manufacturers the characteristics of the negotiation about cost prices make

realistic to consider cost prices as exogenous state variables. Every year (around June) the supermarket

bargains with each supplier the conditions that will hold during the next twelve months: cost price,

discounts, trade promotions, possibility of returns, etc. Although in the final contract a cost price is fixed,

the manufacturer keeps the right to change it if variations in manufacturing costs or in competition occur

during the year. These changes usually occur in our dataset. Therefore, once the contract has been singned

by the two parts (in some cases the negotiation does not end in an agreement) its conditions become

predetermined or exogenous for the monthly or weekly decisions about orders and prices during the next

twelve months. In addition, I assume that these decisions do not affect the cost price for the next year. This
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(24)

(25)

(26)

additional assumption seems also realistic for our dataset. Conversations with managers of the firm  show

that the taugher part of the negotiation is on the percentage of trade promotions that will be paid by the

manufacturer, and on the form of payment (1 month, 2 months or 3 months after delivery), but not on cost

prices that tend to be the same for all the large supermarkets chains in the area. Therefore, I assume cost

prices are strictly exogenous state variables following a Markovian stochastic process.

The markup of good i in other supermarkets is, m  = m  �  where �  depends on aggregate shocksit i it it

in the demand of good i, and therefore it is exogenous from the point of view of an individual firm. Thus,

the demand of good i can be written as

where �  = �  + �  ln(m ) and 7  = a  + �  ln(� ). *
0i 0i 2i i it it 2i it

Finally, lump-sum adjustment costs are

where �  is a time and good specific component of the lump-sum cost j, that is independently distributed(j)
it

over (i,t) with zero mean. Thus, the conditional transition probability function of the state variables is

3.2 Numerical Solution of the Model

In order to obtain a better understanding of the model and its empirical implications I have solved

it numerically. For the sake of computational simplicity the model has been solved under the following

assumptions: (1) Aggregate inflation and cost price inflation are identical and deterministic, i.e.,
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c =(1+%)c ; (2) the demand is linear and has the form y  = �  + �  (p  / c ) + 7 , where 7  is iid N(0, ) );t+1 t t 0 1 t t t t 7

* 2

and (3) lump-sum costs are (1+%)  � = �  for any t. Under these assumptions the decision variables are-t (j) (j)
t

(q  , p /c ) and the state variables are (s  , p /c ). In this simplified version of the model uncertainty comest t t t t-1 t-1

from the unknown future demand shocks. Storage costs are quadratic in the stock level and variable price

adjustment costs have not been considered. Thus, the one period profit function is

where �  and �  are the parameters of the storage cost function.1 2

The following parameters have been fixed in all the numerical solutions: �  = 10, �  = -5, )  = 1,0 1 7

2

�=1, % = 0.10, � = 0.99, and �  = 0.2. The dynamic programming problem has been solved by the method1

of successive approximations to the value function using the Bellman’s equation. The markup p/c has been

discretized in 101 cells between 1.00 and 2.00, and stock and orders in 101 cells between 0 and 10. Figures

1 to 5 present the optimal supply and markup decisions as functions of the state variables in three different

models: (1) �  >0 and �  =0; (2) �  =0 and �  >0; and (3) �  > 0 and �  > 0.(1) (2) (1) (2) (1) (2)

Figures 1 and 2 present the optimal supply (orders plus stock) and markup decision rules when there

are lump-sum ordering costs but not price adjustment costs. The parameter �   has been fixed at 1.0, that(1)

is approximately the average real value of sales in one period. The model has been solved both with linear

and quadratic storage costs. The optimal ordering decision is (S,s) where the lower threshold is 1.2 and the

upper threshold 4.6. The optimal markup decision is more interesting. For values of the stock associated

to positive orders (i.e., s <1.2) the optimal markup is 1.45, and it is invariant with the stock level at the

beginning of the period. However, for values of the stock larger than the lower threshold the optimal

markup is a decreasing function of the stock. Therefore, the markup is reduced when orders are placed and
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it increases during the period between two orders. This result holds both for �  = 0 and  �  > 0. The2 2

explanation of this result is that price decision plays and important role in the reduction of lump-sum

ordering costs. When the stock level approaches to the lower threshold it is optimal to increase the markup

in order to reduce the probability of positive orders at the next period. Simulations of the decision and state

variables from the previous numerical solution show an ordering frequency of 0.28, and a frequency of

nominal price adjustemnts equal to one, where 79% are positive nominal price adjustments and 21%

negative adjustments. The average change in markup is asymmetric: 0.18 for positive adjustments and -0.06

for negative ones. Therefore, even with an inflation rate of 10%, nominal prices are reduced in 21% of the

periods.

Figure 3 and 4 present the optimal supply, (s+q),  and markup as functions of the markup at the

previous period when �  = 0 and �  = 1. Now, the stock at the beginning of the month is not a state(1) (2)

variable (the one-period real profit can be writen in terms of s +q , p /c  and p /c ). The optimal markupt t t t t-1 t-1

follows an (S,s) decision rule. When markup at the previous period is above the lower threshold the optimal

supply depends with negative sign on that markup. This effect operates through the negative effect of p /ct-1 t-

 on the expected sales at period t. Simulations from this solution show that the frequency of nominal price1

changes is now 0.75, and all price adjustments are postive. The average change in markup when there is

a nominal price change is now 0.41.

The third version of the model is probably the most interesting. Now there are lump-sum adjustment

costs both for placing orders and for changing nominal prices. The solution of this model depends crucially

on the relative magnitudes of the two types of lump-sum costs and on the degree of economies of scale in

these two costs (i.e., to what extent the lump-sum cost of adjusting the two variables is lower than the sum

of the two individual lump-sum costs). Figure 5 explains the optimal decision rules when �  = 1.0,(1)
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� =0.3, and there are not economies of scale in adjusting the two variables. The selection of this case has(2)

been made in order to show how the interaction of the two decisions can make nominal price reductions

optimal even under high inflation and important fixed price adjustment costs.

In Figure 5 the point (s , m ) represents the optimal supply and markup when orders are placed and* *

prices are changed simultaneously. It is also the optimal decision in a model without lump-sum costs. The

curve m(s) represents the optimal markup when only nominal prices are adjusted (no orders). Around the

point (s , m ), m(s) is a decreasing function. The frontier of the ovale A represents the combination of stock* *

levels and markups that provide the same intertemporal profit that the profit derived from (s , m ) given* *

that there has been an adjustment in the two variables, i.e., Fr(A) = { (s,m): V(s,m) = V(s , m ) - �  - �* * (1) (2)

}. Points inside A imply an intertemporal profit larger than  V(s , m ) - �  - � , and points outside A the* * (1) (2)

opposite. The frontier of ovale B is, Fr(B) = { (s,m): V(s,m) = V(s , m ) - �  }.  The arrows show the* * (2)

dynamics of stocks and markup in this model. If orders are not placed and nominal price does not change,

stock and markup decrease overtime. When these variables are inside ovale B the optimal decision is doing

nothing. But when these variables are outside B but inside A it may become optimal to change the nominal

price, but not placing orders. If that is the case, optimal markup will be larger than m . Finally, when the*

two variables arrive to a point outside the ovale A the optimal decision will be to make supply and markup

equal to (s , m ). In some cases this dynamics will imply reductions in nominal price.* *

Simulations of this version of the model show that nominal price reductions can be optimal in this

context. In particular, the frequency of positive nominal price adjustments is 0.76 and the frequency for

negative ones is 0.11. Ordering frequency is 0.26. When nominal price reductions occur these are always

associated to positive orders. These nominal reductions become optimal because markup increases "too

much" during the period between two orders. As the stock level drops down, markup increases in order to
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(27)

(28)

decrease the probability of placing orders (i.e., to decrease expected ordering costs).

3.3 Euler Equations and Optimal Discrete Choice

In this section I will present the equations that will be used in the estimation of the structural

parameters of this model: Euler equations and optimal discrete choice. Consider that at period t orders for

good i have been placed and define -  as the number of periods until the next order of good i. Analogouslyq
it

consider that at period t there has been a change in the nominal price of good i and define -  as the numberp
it

of periods until the next change in the price of good i. Applying expression (11) to this model we can obtain

the following Euler equation for orders

and the Euler equation for the price decision is 

The discrete choice problem can be defined in terms of two indicator variables:: D =I(q >0) andq

D =I(�p>0) - I(�p<0). Based on two indicators we can define the six possible discrete choice alternatives:�p

{ (j,k) : j = 0,1 and k=-1,0,1 }. The optimal discrete choice can be written as in equation (20) where now

and
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where quadratic specifications for the storage costs and variable price adjustment costs functions have been

considered. Using these g  vectors the $  vector has also 8 componentsj,k j,k
g

4. DATA AND PRELIMINARY EVIDENCE

The model in Section 3.1 has been estimated using a data set from the central store of a supermarket

chain operating in northern Spain. Some characteristics of this supermarket chain are described in

Appendix 1. In this section I will describe the data set. The estimation has been performed using a

subsample of 534 goods that have been sold in the supermarket chain at each month during the period

January-1990 to May-1992 (29 months).

The data set contains the following information for each good and month: name and description,

weight of an item, cost price (i.e., price paid to the manufacturer), selling price (i.e., price to which outlets

sell the good), trade promotions, sales or shipments from the central store to the outlets, orders from the

central store to manufacturers, stock in the central store at the beginning of the month, and orders from

outlets to central store which were not attended due to a stockout in the central store. All prices are

measured in pesetas per item, and they are monthly averages. Quantities are measured in number of items.

4.1 Descriptive Analysis of Price and Inventory Decisions

In this sample the average monthly rate of inflation in cost prices is 0.46%, that implies a 5.15%

annual inflation rate. The annual aggregate inflation rate during this period was 7.3% in 1990, 6.9% in

1991, and 6.1% in 1992 (Retail Price Index). The classification of the goods in products and groups of

products has followed the criterium used by the firm in its database. Goods are classified in 77 products

(groups of goods that differ only in their brands, sizes and/or qualities), and these in 7 large groups. 

Table 1 presents some descriptive statistics obtained for all the 534 goods and for each of the seven
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groups. Table 2 shows the same statistics but for the 77 products. Columns 2 to 4 present statistics related

to the inventory policy, and the statistics in columns 5 to 10 refer to the price decision. Column 2 presents

the average number of months between two consecutive orders. For the whole sample, orders are placed

every 1.377 months. Column 3 presents the ratio between the stock level when orders are placed and

average sales. This statistic is a proxy for the lower threshold in a (S,s) inventory model. Another statistic

related to this lower threshold is the frequency of stockouts, in column 4. This probability is relatively large

for most of the goods, but it is important to keep in mind that a stockout in the central store will not always

imply stockouts in the outlets of the supermarket chain.

In column 5 the average markup for the whole sample is 16.6%, that shows the low price-cost

margins in this industry. Column 6 presents the average number of months between two consecutive price

changes. For each group this statistic is lower than the average number of months between two orders

(column 2). This evidence holds when we look at each of the 534 goods, and it is an important preliminary

evidence in favour of lump-sum ordering costs larger than lump-sum price adjustment costs. We have

shown in Section 3.2 how in that context the interplay of inventory and pricing policies can explain

nominal price reductions even with relatively large rates of inflation.

Columns 7 and 8 split the frequency of price changes in positive and negative ones. It is remarkable

that the frequency of negative price changes is relatively large in a period of positive inflation. Part of these

nominal price reductions can be the result of decreasing cost prices. For that reason columns 9 and 10

present the frequency of increases and reductions in cost prices, respectively. Comparing columns 8 and

10 we can see that for each of the seven groups (and for almost evey product in Table 2) there is a diffrence

of around 20 percentage points between the frequency of selling price reductions and that for cost prices.

In other words, 60% of all the reductions in nominal selling prices cannot be expalined by decreasing cost
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prices.

It is plausible to think that at least part of these "cuts" in selling prices are the result of changes in

the degree of competition in the market. However, there are at least three reasons to suspect that war of

prices cannot explain all (even most) of these nominal price reductions. First, these reductions are

homogenously distributed over time. For 26 of the 28 months for which changes in prices can be obtained,

the proportion of goods with nominal reductions in selling prices is between one standard deviation around

the mean (i.e., between 0.301 and 0.423). Second, looking at each of the 77 products, there is not evidence

of synchronization in price reductions for goods within the same product. In particular, for most of the

products (even for those where competition between supermarkets tends to be taugher: milk, olive oil,

detergents or carbonated soft drinks) the  proportion of goods with price reductions is between 10% and

50% at almost each month. It means that, for price wars to be explaining nominal price reductions, the

supermarket should decide to decrease its markup only for particular brands, and the selection of these

brands is not always the same.

A third reason against an explanation of the nominal reductions based on changing competition is

the evidence about the state dependence of price reductions with respect to the stock level. Table 3 presents

evidence about this state dependence. The average markup for the whole sample is 0.166 but it is the result

of different markups for different stock levels. When the stock level decreases between two orders, the

markup increases. This increment is always around 3 percentage points, whatever the number of periods

between the two consecutive orders. When orders are placed selling price tend to be reduced and the cycle

starts again. This is exactly the path of real prices that our theoretical model predicts when lump-sum

ordering costs are larger than lump-sum price adjustment costs.

4.2 State Dependence of Price and Inventory Decisions
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Table 3 presents more evidence about the state dependence of price and inventory decisions.

Discrete and continuous decision variables are regressed on the state variables ln(s ), ln(p /c ), and ln(c ).it i,t-1 it it

In order to control for spurious state dependence due to unobserved heterogeneity I have included

individual good-dummies both in the Probit models and in the linear selection equations. Given that the

number of observations per good is relatively large (i.e., 28) and the number of goods is not very large (i.e.,

534), this method yields accurate estimates and the incental parameters bias should be small.

Estimates in columns 1 and 2 present a state dependence of the orders decision that is completely

consistent with an (S ,s ) inventory policy where the lower threshold depends on current cost price, and S -st t t t

depends on current cost price and markup at the beginning of the month. In the price adjustment probit

models (columns 3 and 5) the markup at the beginning of the month is the state variable with larger

explanatory power and it has the expected effect. The larger p /c  the lower the probability of a positivet-1 t

price adjustment and the larger the probability of a negative one. The stock level has a significant effect

on the probability of both types of nominal price adjustments. When the stock is large (just after an order)

the firm reduces the selling price. But when the stock starts to decrease price increases become more likely.

Again, this evidence is consistent with the version of our theoretical model where there are lump-sum

adjustment costs in placing orders and changing nominal prices, but the first type of costs are quantitatively

more important than the second.

Columns 4 and 6 present the regression equations for markup when there are positive and negative

price adjustments, respectively. I have controlled for selection bias ala Heckman. The markup at the

beginning of the month has a positive and significant effect on the optimal markup during the month, both

under positive and negative price adjustments. Given that we have controlled for unobserved heterogeneity,

the significant effect of markup at the beginning of the month might be the result of variable price
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adjustment costs. The stock level has a negative and significant effect on the optimal markup when there

is a positive adjustment, but not when price adjustment is negative. This result can also be explained by

the theoretical model. Price increases tend to occur between two orders. At these periods the stock level

determines the supply during the month and affects the optimal markup. Price reductions tend to occur

when orders are placed. In that case the stock at the beginning of the month has a negligible effect on the

supply during the month, and so it does not affect the optimal markup.

5. ESTIMATION OF THE DYNAMIC DECISION MODEL

This section presents estimates of the optimal discrete choice in the structural model. Section 5.1

and Appendix 2 describes the estimation of the incidental parameters, and Section 5.2 presents estimates

for structural parameters. Finally, Section 5.3 shows some measures of the goodness of fit of the model.

5.1 Estimation of the Incidental Parameters

To estimate the econometric model derived from the optimal discrete choice, using the method

described in Section 2, one has to obtain estimates for the vectors $  and $ . These vectors depend onj,k j,k
g �

the incidental parameters µ, that is, conditional choice and transition probabilities and conditional

expectations for orders, selling prices and sales. 

The range of variation of sales, stocks, orders and prices is different for the different goods in the

sample. However, it is straightforward to write the model in terms of the state variables (s /s , p /c , c /c )it i i,t-1 it it i0

and the decision variables (q /s  , p /c ), where s  is the average stock for good i, and c  is the initial valueit i it it i i0

for the cost price (see Appendix 2). All these variables have very similar empirical distributions for the

different goods.

Incidental parameter estimates have been obtained using a Kernel method. The reason for using this
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type of nonparametric estimator is that a simple cell frequency estimator provides inefficient estimates in

those cells of the state space where there are few observations. Hotz et al (1994) have shown that the finite

sample properties of the CCP and CCS estimators are clearly improved when using Kernel estimates of the

incidental parameters. These estimates have been obtained at percentiles 10, 30, 50, 70 and 90 of each of

the state variables, what implies a space of 125 cells for the observed state variables (i.e., 5x5x5).

Notice that without imposing any of the restrictions that the structural model implies the number

of transition probabilities to be estimated is 74,400 (i.e., 124x125x4). However, as most structural models,

the model in Section 3 imposes a large number of restrictions on the transitions probabilities.

 (a)  Cost prices are strictly exogenous.

 p(x  | x , D = j ; D =k) = p(s p /c  |x , D = j ; D =k) p(c  |c )i,t+1 it it it i,t+1, it it it it it i,t+1 it
q �p q �p

 It reduces the number of probabilities to 14,425.

(b) We can write p(s p /c  | x , D = j ; D =k) as the product of two transition probabilities:i,t+1, it it it it it
q �p

p(s  | p /c , s ,  D = j ) p( p /c  | s , p /c , c , D = j ; D =k )i,t+1 it it it it it it it i,t-1 i,t-1 it it it
q q �p

When there are not orders, the first transition probability (stocks) is a block upper-triangular matrix. In

addition, it depends on whether orders are placed or not, but conditional to p/c it does not depend on

whether prices are changed. The second transition probability (markup) is known for D =0 (no change�p
it

in prices).

Taking into account (a) and (b) the total number of transition probabilities to be estimated is 1,175.

It is a feasible problem given the 15486 good-month observations in the sample. Details about the

estimation of the incidental parameters are described in Appendix 2.

Table 5 presents descriptive statistics for the estimated $ values entering in the intertemporal profit

function. These values have been obtained for different values of �, 0.985, 0.990, 0.995 and 0.999.
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Although the values of $ g  and $ �  change very much for different values of �, the differences ($ g -j,k j,k j,k
it it it

$ g ) and ($ � - $ � ) and the structural parameter estimates are very robust to changes in �. Table 500 j,k 00
it it it

shows how the differences in profits associated to each choice alternative do not only arise from differences

in the current profits. There are important intertemporal effects. Thus, the difference between the expected

values of future variable ordering costs when orders are placed and when they are not is between US$600

and US$900, when the stock level is at percentile 10 (see the fourth panel). The fifth panel shows the

expected value of current and future sales minus current and future variable ordering cost. If they

represented all the relevant costs and revenues, placing orders and changing prices would be the optimal

choice for values of the stock even above percentile 50. If that were the case, the estimates in this panel

would predict that D =1 and Dg0 would have a sample frequency equal to 72.6%. However, thisq p

alternative represents 53.17% of the observed choices in the sample. Therefore, there may be other costs

associated to placing orders or/and changing prices. Using the estimates in this panel we can also obtain

that for almost 5% of the observations the optimal choice would be not placing orders. Thus, even if there

were not lump-sum adjustment costs,  the "irreversibility" of the inventory investment would explain

around one fourth of the observed infrequency in placing orders.

The last two panels in Table 5 show the expected and discounted value of the number of times

orders will be placed (panel six) and prices will be changed (panel seven) in the future. They also show

important intertemporal effects of the current decisions. Thus, for example, placing orders when the stock

is lower than percentile 30 implies a saving in future ordering costs (variable and fixed) approximatelly

equal to 25% of the average ordering costs of one month. 

5.2 Estimation of the Discrete Choice

Table 6 presents 3-stage GMM estimates of the structural parameters based on the moment
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conditions for the optimal discrete choice. There are five sets of moment conditions, one for each choice

alternative (except one that is redundant). In the second and third stages estimates are obtained using as

weighting matrix the inverse of the estimated disturbance covariance matrix. The assumptions for the

estimation of this covariance matrix are: (1) no correlation across choice alternatives; (2) no correlation

across different goods; (3) homoscedasticity over time; and (4) autocorrelation up to second order. I allow

for conditional between-goods heteroscedasticity, and different covariance matrices for each choice

alternative. The instrumental variables are the three state variables at t and t-1, and their square and cubic

powers.

Notice that, without exploiting the continuous information from the Euler equations, it is possible

to obtain accurate estimates for most of the structural parameters. In fact, this empirical application is an

example of how the discrete choice can contain more behavioural information than the continuous choice.

In this case the reason for that result is that, conditional to the discrete choice, orders and markup do not

have very much time variability. Results from the estimation of the Euler equations can be found in

Aguirregabiria (1995).

The specification for the storage cost function is  �  (s  / s ) + �  (s  / s ) , and for variable price1 it i 2 it i
2

adjustment costs, 1  |�lnp  | + 1  |�lnp  | . The overidentifying restrictions cannot be rejected with a 30%1 it 2 it
2

significance level. The quadratic term in the storage cost function is clearly not significant. The estimate

of �  says that when the stock increases in an amount equivalent to 100% of its mean value, storage costs1

increase in US$ 31.86. The linear term in the variable price adjustment costs is significant but

quantitatively not very important. The quadratic term is not significant.

Probably the most interesting estimates are those of the lump-sum adjustment costs. Notice that

these parameters are identified not just as the constant terms associated to the intertemporal profit of each
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alternative. They are also associated to the values $  and $ . Lump-sum ordering costs are significantj,k j,k
Dq Dp

and quantitatively very important. They are around US$ 290, that amounts 4% of the mean value of

monthly sales of a good in the sample. Fixed price adjustment costs are also significant but quantitatively

not very important (US$ 54, that is 0.8% of the mean value of monthly sales). The estimation allows for

economies of scale, that is, it does not impose �  = �  + � . Although point estimates show that �  is(3) (1) (2) (3)

lower than �  + � , the null hypothesis �  = �  + �  cannot be rejected even with large significance(1) (2) (3) (1) (2)

levels.

5.3 Goodness of Fit of the Model

The test of overidentifying restrictions gives a too general idea about the fit of the model. A better

picture of its goodness of fit is given by the percentage of correct out-of-sample predictions. Table 7

presents the relative frequencies at each of the cells that result from crossing actual choices and predicted

choices. I also compare the fit of the structural model with that from the Kernel estimates of the conditional

choice probabilities. The two models have been estimated using the 534 goods during the first 20 months

of the sample. The predicted choices have been obtained for the sample of 534 goods during the last 7

months  of the sample.

First, both the reduced form and the structural model provide very good accurate predictions for the

decision of placing orders. However, the goodness of fit is not very good for the decision about prices,

specially for the reduced form model. In particular, the reduced form tends to underpredict the decision of

not changing prices. This is also true for the structural model, but the improvement with respect to the

reduced form is important.

Finally, predictions of the structural model has been obtained fixing lump-sum ordering costs to

zero. In that case the model only predicts a 5% of observations where orders are not placed. Therefore, even
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without lump-sum ordering costs, the irreversibility of inventory investment explains 25% of the no

adjustments. The remaining 75% is the result of lump-sum ordering costs.

6. CONCLUSIONS

In this paper I have presented a method to estimate dynamic structural models with corner solutions.

The main advantage of this method is that alternative specifications of the structural model can be

estimated with a very small additional computational cost. The method has been applied to estimate a

model of joint price and inventory decisions with fixed adjustment costs. Lump-sum costs associated to

placing orders and changing prices are significant, but the first one is quantitatively more important. In this

context, the theoretical model predicts that nominal price reductions can be optimal even when the inflation

rate is high. This result explains why in our dataset nominal price reductions are so frequent, and they tend

to be associated to positive orders. The large lump-sum ordering costs make optimal increasing markup

when the stock is low, in order to reduce ordering frequency and orderng costs. When orders are placed it

becomes optimal to reduce the markup and, in some cases, it implies a nominal reduction. Finally, the

irreversibility of the inventory investment (i.e., q�0) can explain 25% of the infrequency in placing orders.

The remaining 75% is the result of lump-sum ordering costs.
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APPENDIX 1.

The Supermarket Chain

The supermarket chain operates only in the basque region of Spain and consists of around 60

outlets. Some of these outlets are owned and others are franchises. These outlets have very different sizes;

most of them are small groceries but there are also big supermarkets. The supermarket industry in this area

is characterized by the existence of a clear leader who captures more than fifty percent of the market. Our

firm is one of the five most important supermarket chains in the region in terms of market share. This firm

has always been characterized by its specialization in low and average income customers. 

The central store is also the headquarters of the firm: it orders new deliveries from suppliers, stores

the goods, sends to the outlets the orders that they have made, and decides upon selling prices. The

relationship between the central store and the outlets is the following. At the beginning of each week the

central store sends to every outlet a list of available goods and their respective selling prices. In order to

ask for new deliveries an outlet has to communicate with the central store by modem. If the goods are

available the orders will be delivered to the outlet within the next twenty-four hours. If the central store

runs out of some good which an outlet has ordered the situation is communicated to the outlet. 

The Data Set

The firm has maintained a data base since January 1990. Some information is recorded daily but
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after one month only monthly data are kept. I consider the period from January 1990 to May 1992 (29

months). During this period 8742 goods were sold by the supermarket chain and the raw data set contains

information for all these individual goods. However, many of these goods are not stored by the firm. For

these goods, the central store makes orders to the manufacturers and they (using their own trucks) deliver

the orders to the different outlets of the supermarket chain. From the whole set of goods 4966 are stored

by the central store.

Each good has been sold by the central store for a particular period of time. Some goods have been

sold for the whole sample period (29 months), but most of them have been sold for shorter periods (even

just one month). When the policy maker decides that a good will not be sold in the future there will not be

orders for that good. Thus, after placing last order, the decision of not placing an order is not the result of

an optimal inventory policy, but the result of the decision that the good will not be sold in the future.

Therefore, only observations between the first and the last order can be considered. This restriction implies

that the information from many goods which were ordered just in one period cannot be used. Finally, in

order to have enough number of observations per good, only those goods which have been sold during the

whole sample period are used (534 goods). It implies a total of 15,486 good-month observations.

APPENDIX 2

Estimation of the Incidental Parameters

The one-period profit function of the model in Section 3.1 can be wtitten as,
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where s  is the average stock of good i, and c  is the cost price of good i at the initial period. Therefore, thei i0

model can be defined in terms of the state variables, x  = (s /s , p /c , c /c ), and the decision variablesit it i i,t-1 it it i0

(p /c , q /s ). In our sample these variables have very similar empirical distributions for the different goods.it i it i

All the incidental parameters have been estimated using Kernel methods. Thus, the estimators for

the three components of the transition probabilities are,

where K (.; b) is the pdf of the q-variate normal distribution, where the q variables are not correlated andq

they have standard deviation equals to b. The conditional choice probabilities are obtained using the same

type of estimator. For the conditional expectations E(p/c y/s | x, D)  and E(q/s | x, D) the estimator is the

Nadaraya-Watson Kernel estimator. The bandwith parameter has been chosen to maximize a criterium of

"out of sample" goodness of fit. In particular, conditional choice probabilities have been estimated using

observations for the first 20 months, and the goodness of fit has been evaluated using the last 10 months.

The bandwith that maximizes the number of correct predictions was 0.03.

Computing the $'s values requires to have a discrete range of variation for the state variables. For
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that reason the previous estimators have been evaluated at 125 different values for the vector of state

variables x. These 125 cells correspond to 5 cells for each stae variable, i.e., percentiles 10, 30 50, 70 and

90.
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TABLE 1

BASIC STATISTICS
Means January 1990 to May 1992

 7 Groups
_______________________________________________________________________________________________

    (1)     (2)     (3)  (4)    (5)    (6)  (7)  (8) (9) (10)
Number Average   Ratio Freq. Markup Average Freq. Freq. Freq. Freq.

of goods     - E(s|q>0)  I=1     - � p>0 � p<0 �c > 0 �c < 0
 q  p

over E(x)

_______________________________________________________________________________________________

All goods 534 1.377 0.599 0.293 0.166 1.294 0.441 0.362 0.209 0.138
_______________________________________________________________________________________________

1. Health & Beauty 48 1.428 0.728 0.270 0.242 1.301 0.443 0.339 0.198 0.086

2. Cleaning 69 1.307 0.589 0.313 0.168 1.288 0.449 0.351 0.228 0.131

3. Pharmacy 9 2.083 0.953 0.260 0.278 1.299 0.472 0.353 0.195 0.061

4. Others (Not Food) 13 1.352 0.556 0.312 0.279 1.187 0.447 0.403 0.186 0.103

5. Soft Drinks 29 1.173 0.397 0.370 0.184 1.282 0.423 0.379 0.213 0.218

6. Food 277 1.336 0.577 0.302 0.162 1.326 0.432 0.360 0.211 0.147

7. Alcoholic Drinks 89 1.531 0.642 0.237 0.104 1.215 0.466 0.380 0.191 0.130
_______________________________________________________________________________________________
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TABLE 2
DESCRIPTIVE STATISTICS FOR THE 77 PRODUCTS

Means January 1990 to May 1992
______________________________________________________________________________________

    (1)     (2)     (3)  (4)   (5)    (6)  (7)  (8) (9) (10)
Number Average   Ratio Freq. Markup Average Freq. F r e q .

Freq. Freq.
of goods     - E(s|q>0)  I=1     - � p>0 � p<0 �c > 0 q  p

�c < 0
over E(x)

______________________________________________________________________________________
All goods 534 1.377 0.599 0.293 0.166 1.294 0.441 0.362 0.209 0.138
______________________________________________________________________________________
1. Health & Beauty 48 1.428 0.728 0.270 0.242 1.301 0.443 0.339 0.198 0.086
  101. Eau Cologne 2 2.000 0.661 0.172 0.277 1.288 0.410 0.375 0.155 0.103
  102. Deodorant 2 1.386 1.112 0.137 0.190 1.110 0.446 0.446 0.207 0.086
  103. Soap & Shampoo 1 1.484 0.803 0.282 0.216 1.309 0.439 0.371 0.193 0.103
  104. Hair spray 6 1.339 0.545 0.287 0.270 1.275 0.482 0.315 0.235 0.097
  105. Beauty creams 9 1.407 0.644 0.310 0.233 1.241 0.472 0.333 0.238 0.100
  106. Tooth-paste 3 1.201 0.585 0.367 0.174 1.182 0.547 0.309 0.287 0.138
  107. Shaving creams 3 1.254 0.525 0.264 0.236 1.459 0.404 0.285 0.138 0.046
  108. Shaving blades 8 1.193 0.622 0.314 0.227 1.381 0.383 0.330 0.168 0.065
  109. Bath sponges 5 1.867 1.197 0.124 0.355 1.352 0.421 0.321 0.138 0.034
______________________________________________________________________________________
2. Cleaning 69 1.307 0.589 0.313 0.168 1.288 0.449 0.351 0.228 0.131
  201. Detergent 12 1.423 0.752 0.201 0.103 1.190 0.455 0.404 0.216 0.158
  202. Bleach 12 1.062 0.377 0.428 0.243 1.390 0.428 0.297 0.244 0.135
  203. Softeners 7 1.204 0.369 0.369 0.066 1.128 0.474 0.418 0.305 0.217
  204. Dishwashers 5 1.376 0.465 0.351 0.079 1.150 0.528 0.357 0.241 0.165
  205. Cleaning sprays 15 1.251 0.561 0.331 0.163 1.278 0.466 0.347 0.230 0.131
  206. Floor Polish 7 1.311 0.632 0.231 0.212 1.580 0.403 0.285 0.202 0.064
  207. Scourers 4 1.160 0.525 0.379 0.217 1.324 0.428 0.321 0.215 0.112
  208. Dishcloths 2 1.636 1.711 0.206 0.267 1.250 0.410 0.410 0.172 0.069
  209. Brooms 1 1.037 0.751 0.241 0.215 1.190 0.500 0.285 0.103 0.000
  210. Insecticides 3 2.200 0.881 0.183 0.288 1.275 0.380 0.392 0.184 0.011
  211. Kitchen paper 1 1.529 0.452 0.448 0.197 1.227 0.464 0.357 0.138 0.138
______________________________________________________________________________________
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3. Pharmacy 9 2.083 0.953 0.260 0.278 1.299 0.472 0.353 0.195 0.061
  301. Bandages 4 3.050 1.414 0.146 0.289 1.199 0.508 0.330 0.181 0.043
  302. Sanitary napkins 2 1.361 0.458 0.431 0.356 1.182 0.464 0.392 0.224 0.138
  303. Diapers 3 1.276 0.667 0.298 0.213 1.511 0.428 0.357 0.195 0.034
______________________________________________________________________________________
4. Others (Not Food) 13 1.352 0.556 0.312 0.279 1.187 0.447 0.403 0.186 0.103
  401. Aluminium paper 6 1.528 0.615 0.241 0.241 1.131 0.452 0.434 0.167 0.126
  402. Plastic objects 2 1.303 0.394 0.413 0.368 1.273 0.357 0.446 0.224 0.103
  403. Batteries 4 1.190 0.528 0.293 0.280 1.253 0.455 0.348 0.190 0.076
  404. Stick gum 1 1.037 0.633 0.620 0.332 1.080 0.571 0.357 0.207 0.069
______________________________________________________________________________________
5. Soft Drinks 29 1.173 0.397 0.370 0.184 1.282 0.423 0.379 0.213 0.218
  501. Fruit Juices 10 1.086 0.411 0.320 0.199 1.374 0.417 0.357 0 . 1 9 0

0.186
  502. Water 3 1.041 0.363 0.471 0.172 1.280 0.404 0.357 0.241 0.161
  503. Carb. drink( 2 L) 5 1.181 0.316 0.455 0.172 1.215 0.414 0.407 0.207 0.275
  504. Carb. drink  (small) 11 1.285 0.430 0.351 0.180 1.230 0.438 0.392 0 . 2 2 9

0.238
______________________________________________________________________________________

TABLE 2 (Cont.)
______________________________________________________________________________________

# Goods     -(q)    s/x     I Markup   -(p) �p>0 �p<0 � c > 0
�c<0

______________________________________________________________________________________

6. Food 277 1.336 0.577 0.302 0.162 1.326 0.432 0.360 0.211 0.147

  601. Sugar 4 1.217 0.546 0.327 0.119 1.414 0.366 0.366 0.138 0.026
  602. Coffee 12 1.140 0.431 0.327 0.103 1.751 0.345 0.386 0.178 0.212
  603. Instant Coffee 10 1.471 0.597 0.234 0.164 1.152 0.442 0.428 0.203 0.203
  604. Malta 6 1.072 0.504 0.241 0.196 1.566 0.386 0.285 0.132 0.029
  605. Tea 2 1.563 1.174 0.137 0.204 1.132 0.428 0.464 0.103 0.069
  606. Olive Oil 7 1.337 0.513 0.413 0.036 1.113 0.500 0.382 0.281 0.207
  607. Sunflower Oil 4 1.249 0.373 0.474 0.052 1.140 0.428 0.455 0.233 0.310
  608. Canned fish 11 1.415 0.486 0.376 0.142 1.183 0.448 0.415 0.185 0.172
  609. Dry cod 3 1.239 0.649 0.275 0.157 1.387 0.511 0.226 0.161 0.011
  610. Canned veget. 8 1.383 0.566 0.362 0.148 1.122 0.486 0.410 0.198 0.151
  611. Marmalade 9 1.334 0.488 0.295 0.184 1.152 0.456 0.424 0 . 2 0 7

0.153
  612. Beans &Lentils 9 1.095 0.423 0.448 0.156 1.313 0.472 0.353 0.234 0.123
  613. Rice 4 1.677 0.713 0.189 0.071 1.360 0.410 0.357 0.198 0.172
  614. Olives 6 1.207 0.574 0.281 0.156 1.357 0.404 0.333 0.167 0.161
  615. Pickles 4 1.181 0.478 0.336 0.272 1.434 0.339 0.348 0.172 0.129
  616. Biscuits 23 1.277 0.455 0.295 0.161 1.210 0.468 0.371 0.220 0.162
  617. Cakes 5 1.088 0.269 0.462 0.191 1.436 0.400 0.321 0.186 0.117
  618. Candies 11 1.373 0.782 0.257 0.249 1.351 0.435 0.321 0.188 0.081
  619. Chocolate 30 1.333 0.550 0.259 0.162 1.398 0.409 0.346 0.190 0.132
  620. Toasted Bread 6 1.198 0.434 0.379 0.204 1.263 0.452 0.369 0.190 0.103
  621. Flour 2 1.633 0.506 0.120 0.221 1.385 0.357 0.375 0.138 0.034
  622. Pasta 14 1.743 1.252 0.179 0.150 1.186 0.548 0.298 0.300 0.110
  623. Instant soups 11 1.875 0.612 0.203 0.119 1.151 0.525 0.350 0.329 0.135
  624. Instant Rice 5 1.505 0.642 0.200 0.164 1.811 0.328 0.228 0.193 0.138
  625. Dried fruits 6 1.315 0.877 0.160 0.211 1.181 0.488 0.345 0 . 2 7 0

0.109
  626. Pets food 15 1.564 0.821 0.197 0.234 1.717 0.340 0.273 0.138 0.094
  627. Salt 3 1.412 0.546 0.229 0.239 2.071 0.285 0.190 0.092 0.022
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  628. Mayonnaise 9 1.176 0.426 0.371 0.171 1.082 0.460 0.464 0.238 0.210
  629. Vinager 2 1.120 0.545 0.413 0.222 1.554 0.375 0.285 0.207 0.138
  630. Eggs 3 1.000 0.148 0.712 0.143 1.272 0.345 0.440 0.218 0.184
  631. Butter, Margar. 6 1.012 0.401 0.362 0.146 1.196 0.434 0.398 0.264 0.207
  632. Cheese 11 1.211 0.488 0.322 0.152 1.152 0.451 0.425 0.263 0.225
  633. Milk 6 1.025 0.302 0.574 0.093 1.240 0.380 0.428 0.241 0.293
  634. Powder Milk 5 1.295 0.674 0.255 0.143 1.555 0.428 0.264 0.234 0.089
  635. Sausages 3 1.013 0.491 0.402 0.195 1.221 0.369 0.440 0.230 0.241
  636. Foie-gras 2 1.275 0.453 0.413 0.221 1.337 0.446 0.285 0.275 0.138
______________________________________________________________________________________
7. Alcoholic Drinks 89 1.531 0.642 0.237 0.104 1.215 0.466 0.380 0.191 0.130

  701. Cognac 10 1.655 0.588 0.255 0.051 1.096 0.546 0.378 0.210 0.083
  702. Whisky 4 1.286 0.465 0.336 0.046 1.040 0.544 0.419 0.267 0.129
  703. Other Spirits 12 1.497 0.717 0.189 0.069 1.113 0.482 0.422 0.204 0.138
  704. Sherry 5 1.354 0.661 0.179 0.129 1.524 0.400 0.285 0.145 0.062
  705. Champagne 9 1.652 0.569 0.218 0.071 1.078 0.517 0.386 0.207 0.098
  706. Vermouth 4 1.202 0.367 0.318 0.089 1.155 0.473 0.401 0.250 0.138
  707. Sidra 3 1.144 0.279 0.252 0.125 1.280 0.428 0.345 0.184 0.057
  708. Beer 12 1.244 0.493 0.318 0.149 1.365 0.419 0.324 0.193 0.169
  709. Wine (Regular) 15 1.196 0.457 0.324 0.129 1.135 0.504 0.383 0.209 0.204
  710. Wine (Quality) 18 2.154 1.055 0.113 0.122 1.319 0.400 0.402 0.134 0.103
______________________________________________________________________________________

TABLE 3

THE BEHAVIOUR OF MARKUPS BETWEEN TWO ORDERS

___________________________________________________________________________

Subsample of observations with - = 1 (# Observations = 9365)q
it

___________________________________________________________________________

Mean Markup Std. Deviation

Period 0 (when orders are placed)       0.1656 0.1059

1 month after (next orders)       0.1641 0.1053
___________________________________________________________________________

Subsample of observations with - = 2 (# Observations = 1322)q
it

___________________________________________________________________________

Mean Markup Std. Deviation

Period 0 (when orders are placed)        0.1517 0.1053

1 month after        0.1838 0.1024

2 months after (next orders)        0.1595 0.1054

___________________________________________________________________________

Subsample of observations with - = 3 (# Observations = 383)q
it

___________________________________________________________________________

Mean Markup Std. Deviation

Period 0 (when orders are placed)         0.1480 0.1202

1 month after         0.1724 0.1260
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2 months after         0.1810 0.1125

3 months after (next orders)         0.1511 0.1125

___________________________________________________________________________

Subsample of observations with - = 4 (# Observations = 155)q
it

___________________________________________________________________________

Mean Markup Std. Deviation

Period 0 (when orders are placed)           0.1367 0.1147

1 month after           0.1727 0.1516

2 months after           0.1825 0.0940

3 months after           0.1814 0.0944

4 months after (next orders)           0.1523 0.1139

___________________________________________________________________________

TABLE 4

STATE DEPENDENCE OF DECISION VARIABLES

Fixed Effects Models  (a)

_______________________________________________________________________________________

  (1)         (2)   (3)     (4)   (5)  ( 6 )

Probit     Regression Probit Regression Probit Regression
 q >0    E(lnq |q >0)   �p >0       E(ln(p /c )|� p >0) �p <0      E(ln(p /c )|�p <0)t t t t t t t t t t t

_______________________________________________________________________________________

ln S -1.1844 -0.0763 -0.0462 -0.0006 0.0450 -0.0001t
(0.0252) (0.0062) (0.0082) (0.0001) (0.0084) (0.0001)

ln(P /C ) -1.1164 2.8622 -64.417 0.2229 54.154 0.3630t-1 t
(0.8638) (0.4213) (1.1886) (0.0127) (1.1399) (0.0203)

ln C -1.2969 -2.6220 -1.0751 -0.0334 -0.5364 0.0165t
(0.2126) (0.1128) (0.1758) (0.0018) (0.1750) (0.0027)

Heckman's lambda 0.0859 0.0099    -0.0066
(0.0336) (0.0005) (0.0008)

_______________________________________________________________________________________

# observ. 12544 9107 14952 6608 14952 5421(b)
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LRI 0.3429 0.2465 0.2157(c)

R 0.7705 0.8037 0.65992

Within-Goods R 0.1048 0.3786 0.27422

_______________________________________________________________________________________
Standard errors in parentheses
(a) All the estimations contain good-specific dummies (fixed effects).
(b) Estimations in columns 1 and 2 were performed excluding 86 goods for which orders are placed at each period
or at each period minus 1.
(c) LRI is the Likelihood Ratio Index, 1 - (ln L(� ) - ln L(� )), where �  is the vector of estimates and L(�  ) is the* 0 * 0

likelihood when all the parameters except the constant term are zero.

TABLE 5
Nonparametric Estimates for Some Components

of the Intertemporal Profit Function

(Differences with respect the mean for choice alternattive: D  = 0 &  D  = 0)q p
� = 0.985

Variable Percentile Choice Alternative Percentile Choice Alternative
for s for p/c

 D  = 1  D  = 0  D  = 1  D  = 0  D  = 0  D  = 1q
 D  = 0  D  g 0  D  g 0  D  = 0  D  g 0  D  g 0p

q

p

q

p

q

p

q

p

q

p

E(py|x,D)

US$0,000

10 1.81 -0.16 1.98 10 0.92 0.01 1.48

30 1.45 -0.11 1.81 30 0.94 0.02 1.43

50 1.09 -0.09 1.46 50 1.01 -0.06 1.22

70 0.57 -0.01 0.91 70 1.05 -0.13 1.05

90 0.06 0.00 0.41 90 1.06 -0.21 1.39

E(cq|x,D)

US$0,000

10 2.44 0.00 2.70 10 1.83 0.00 2.05

30 2.01 0.00 2.32 30 1.89 0.00 2.08

50 1.91 0.00 2.07 50 1.93 0.00 2.11

70 1.75 0.00 1.84 70 2.07 0.00 2.17

90 1.74 0.00 1.70 90 2.13 0.00 2.22
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� $jk
py

US$0,000

10 0.27 -0.15 0.13 10 0.14 -0.16 0.12

30 0.29 -0.12 0.18 30 0.25 -0.12 0.12

50 0.21 0.02 0.12 50 0.16 0.02 0.13

70 0.13 0.01 0.11 70 0.23 0.01 0.12

90 0.02 0.00 0.05 90 0.14 0.01 0.10

� $jk
cq

US$0,000

10 -0.67 -0.10 -0.92 10 -0.38 0.00 -0.44

30 -0.58 -0.25 -0.67 30 -0.37 0.00 -0.44

50 -0.42 0.01 -0.55 50 -0.35 -0.11 -0.45

70 -0.13 0.02 -0.16 70 -0.33 -0.10 -0.46

90 0.04 0.00 0.05 90 -0.34 -0.11 -0.46

TABLE 5
Nonparametric Estimates for Some Components

of the Intertemporal Profit Function

(Continued)

Variable Percentile Choice Alternative Percentile Choice Alternative
for s for p/c

 D  = 1  D  = 0  D  = 1  D  = 0  D  = 0  D  = 1q
 D  = 0  D  g 0  D  g 0  D  = 0  D  g 0  D  g 0p

q

p

q

p

q

p

q

p

q

p

E(py|x,D) 10 0.31 -0.34 0.33 10 -0.39 -0.15 -0.01
-

E(cq|x,D)

+
� $jk

px

-
� $jk

cq

30 0.31 0.02 0.34 30 -0.33 -0.10 -0.09

50 -0.19 -0.08 0.06 50 -0.41 0.07 -0.48

70 -0.92 -0.03 -0.66 70 -0.46 -0.02 -0.54

90 -1.70 0.00 -1.29 90 -0.59 -0.09 -0.28

� $jk
Dq

10 -0.27 0.00 -0.29 10 -0.14 0.00 -0.15

30 -0.23 0.00 -0.25 30 -0.16 -0.01 -0.16

50 -0.20 -0.08 -0.21 50 -0.16 -0.03 -0.16

70 -0.05 -0.03 -0.06 70 -0.14 -0.04 -0.17

90 0.00 0.00 0.00 90 -0.15 -0.03 -0.17
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� $jk
| Dp |

10 0.00 0.00 0.00 10 0.00 0.00 0.01

30 0.00 0.01 0.00 30 0.00 -0.01 0.02

50 0.00 0.01 0.02 50 0.00 0.00 0.03

70 0.00 -0.01 0.04 70 0.00 0.01 0.03

90 0.01 -0.02 0.05 90 0.01 0.00 0.02

TABLE 6

GMM Estimates of the Structural Parameters
using Moment Conditions from the 

Optimal Discrte Choice

� = 0.985

# observations = 14418

Estimate Asymp. s.e

�1 31.858 5.979

�2 0.003 0.040

11 2.401 0.610

12 0.098 0.070

�1 288.585 21.688

�2 54.350 10.917

�3 323.681 24.001

Test of Overidentifying Restrictions

32 = 112.06  ;  d.o.f = 105  ;  p-value =  0.3007
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Instrumental Variables

(s /s ) ; (s /s ) ; (c /c ) ; (c /c ) ; (c /c ) ;it i i,t-1 i it i0 i,t-1 i0 i,t-2 i0

(p /c ) ; (p /c ), and their square and cubics i,t-1 it i,t-2 i,t-1

All the structural parameters are measured in 1990 US$

TABLE 7
Out of Sample Goodness of Fit

Estimations with 534 goods and 20 month
Predictions with 534 goods and 7 months

% Reduced Form Structural Model
(Kernel) Model Total 

Actual
Choices

Orders
Predicted Choice Predicted Choice

q = 0 q > 0 q = 0 q > 0

Actual q = 0 14.64 12.30 18.82 8.12 26.94
Choice

q > 0 5.37 67.69 5.93 67.13 73.06

Total Pred. Choices 20.01 79.99 24.75 75.25 100.00

% Correct Preds. 82.33 85.95

Change in Price Actual
given Orders=0 Choice

Predicted Choice Predicted Choice Total

�p<0 �p=0 �p>0 �p<0 �p=0 �p>0



s

4.6

1.2

45(

q(s)+s

s1.2

1.42

1.76

p / c
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Figure 1
Optimal Supply as 

a Function of the Stock

Figure 2
Optimal Markup 

as a Function of the Stock

Actual �p< 0 9.73 1.59 14.00 8.93 3.51 9.89 25.33

Choice �p= 0 9.83 2.18 10.43 2.39 8.84 11.21 22.44

�p>0 10.02 1.79 40.42 11.11 3.74 40.38 52.23

Total Pred. Choices 29.58 5.56 64.85 22.43 16.09 61.48 100.00

% Correct Preds. 52.34 58.15

Change in Price Predicted Choice Predicted Choice Total
given Orders>0 Actual

Choice
�p<0 �p=0 �p>0 �p<0 �p=0 �p>0

Actual

Choice

�p< 0 22.64 1.90 12.08 23.09 3.58 9.95 36.62

�p= 0 11.86 1.76 8.60 9.46 6.85 5.91 22.22

�p>0 12.63 1.06 27.47 12.11 2.69 26.36 41.16

Total Pred. Choices 47.13 4.72 48.15 44.66 13.12 42.22 100.00

% Correct Preds. 51.87 56.30

MODEL WITH LUMP-SUM ORDERING COSTS BUT WITHOUT LUMP-SUM PRICE
ADJUSTMENT COSTS

��  = 10 ; ��  = -5 ; ))   = 1.0 ; ��  = 0.2 ; ��  = 0.0 ; %% = 0.10 ; �� = 0.99/(1+%%) ; 0 1 a 1 2
2

��  = 1.0 ;  ��  = 0.0(1) (2)

MODEL WITH LUMP-SUM PRICE ADJUSTMENT COSTS



q(s)+s

1.36 p(-1) / c(-1)

p / c

1.56

1.21 p(-1)/c(-1)

1/(1+%)
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Figure 3
Optimal Supply

 as a Function of Markup
at the previous period

Figure 4
Optimal Markup 

as a Function of Markup
at the previous period

BUT WITHOUT ORDERING COSTS

��  = 10 ; ��  = -5 ; ))   = 1.0 ; ��  = 0.2 ; ��  = 0.0 ; %% = 0.10 ; �� = 0.99/(1+%%) ; 0 1 a 1 2
2

��  = 0.0 ;  ��  = 1.0(1) (2)

MODEL WITH LUMP-SUM ORDERING COSTS 
AND LUMP-SUM PRICE ADJUSTMENT COSTS

��  = 10 ; ��  = -5 ; ))   = 1.0 ; ��  = 0.2 ; ��  = 0.0 ; %% = 0.10 ; �� = 0.99/(1+%%) ; 0 1 a 1 2
2

��  = 1.0 ;  ��  = 0.3(1) (2)

Figure 5
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Footnotes

1. This paper is a revised version of Chapter 3 of my Ph.D dissertation. I am grateful to Bob

Miller, Cesar Alonso-Borrego, Tim Bresnahan, Andreas Hornstein, Angelo Melino, Albert Marcet

and Costas Meghir for their comments. I also wish to acknowledge my thesis advisor Manuel
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Arellano for many helpful suggestions and discussions. I would like to thank the firm Sebastian de

la Fuente S.A. for providing the dataset used in this study. Financial support and facilities provided

by CEMFI are gratefully acknowledged.

2. Up to the best of my knowledge Slade (1994) is the only empirical work that has previously

estimated the structure of price adjustment costs in individual firms.

3.  In the stationary (S,s) model the real price erosion between two price changes (i.e., S-s)

increases with the inflation rate. However, Cecchetti (1986) and Lach and Tsiddon (1992) observe

that when inflation raises the frequency of price changes increases "too fast", such that it is only

compatible with almost no change in S-s. Kashyap (1991) has found that small price increases are

commonly observed within inflationary periods, which is inconsistent with the stationary (S,s)

pricing model.

4. Problem (1) might seem restrictive because it is Markovian, with time-separable preferences

and infinite horizon. However, it is always possible to write any non-stationary, time non-separable

and finite horizon problem using expression (1) if we redefine the set of state variables (see Rust

[1994]). For example, one could include time as a state variable.

5.
This data set, described in Section 4 and Appendix 1, comes from the central store of a

supermarket chain. In this dataset a stockout is defined as the situation when an outlet asks to the

central store for a good that is out of stock in the central store.


