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Abstract:
This paper studies the identification of players’ preferences and beliefs in discrete choice games using exper-
imental data. The experiment comprises a set of games that differ in their matrices of monetary payoffs. The
researcher is interested in the identification of preferences (utility of money) and beliefs on the opponents’
expected behavior, without imposing equilibrium restrictions or parametric assumptions on utility and belief
functions. We show that the hypothesis of unbiased/rational beliefs is testable as long as the set of games in
the experiment imply variation in monetary payoffs of other players, keeping the own monetary payoff con-
stant. We present conditions for the full identification of utility and belief functions at the individual level –
without restrictions on players’ heterogeneity in preferences or beliefs. We apply our method to data from two
experiments: a matching pennies game, and a public good game.
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1 Introduction

In games of incomplete information, players’ behavior depends on their preferences and on their beliefs about
the uncertain actions of other players. For instance, in a game of a public good provision, a player’s decision
depends on the reduction in utility from the contribution to the public good, but also on her belief about the
probability that the other players contribute. Distinguishing between the influence of preferences and beliefs on
observed behavior is important for our understanding of strategic and social interactions and for counterfactual
predictions. Empirical researchers in different fields in economics are interested in the separate identification
of preferences and beliefs using data from the realizations of games.

This paper studies the identification of players’ preferences and beliefs in discrete choice games using exper-
imental data. We show that – under simple conditions on the design of the experiment and weak assumptions
on the primitives of the model – individuals’ belief and utility functions are nonparametrically identified.

We consider a general model that encompasses most of the specifications in the existing applications in the
experimental literature. Our model is a discrete choice game of incomplete information where a player’s payoff
comprises her utility of money plus an additive private information variable. The utility of money is an increas-
ing function but is nonparametrically specified. A player’s belief function is a probability distribution over the
space of the other players’ actions, and it is unrestricted. Players can be heterogeneous in their utility and be-
lief functions. This heterogeneity is unrestricted. Our framework includes as particular cases, among others,
the Quantal Response Equilibrium (QRE) by Mckelvey and Palfrey (1995), the Cognitive Hierarchy model by
Camerer, Ho, and Chong (2004), and the Level-k rationality model by Costa-Gomes and Crawford (2006) and
Crawford and Iriberri (2007).

In applications of games of incomplete information using field data, a common assumption is that beliefs
are in equilibrium, such that they correspond to the actual probability distribution of the other players’ actions.
This assumption can identify beliefs, but it does not identify players’ preferences. Under equilibrium beliefs,
a common condition for the identification of payoffs is that – for every player – there is a state variable that
affects the payoff of a player but not of the other players (Bajari et al. 2010). Recent papers in this literature
relax the assumption of rational beliefs: see Goldfarb and Xiao (2011), Brown, Camerer, and Lovallo (2013), and

Victor Aguirregabiria is the corresponding author.
© 2020Walter de Gruyter GmbH, Berlin/Boston.

1

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Aguirregabiria and Xie DE GRUYTER

Doraszelski, Lewis, and Pakes (2018), or Aguirregabiria and Magesan (2019), among others. These papers use
different identification approaches.

In the experimental economics literature, researchers design laboratory experiments and generate experi-
mental data to study players’ behavior in games. From the point of view of identification, there are advantages
of having data from a controlled experiment. The design of the experiment determines players’ monetary pay-
offs such that the researcher knows these payoffs. The effect of other players’ actions on a player’s utility takes
place only through monetary payoffs. Therefore, the identification of these effects is not different to the identi-
fication of the utility of money. This facilitates the identification of games using laboratory experiments.

Most of the experimental games literature has exploited this advantage together with three alternative iden-
tification approaches or restrictions. The first approach imposes the restriction that utility is equal to the mone-
tary payment – the linear utility of money assumption. Then, beliefs are identified using choice data. Examples
of this approach include Cheung and Friedman (1997), Nyarko and Schotter (2002), Kline (2018), and Melo,
Pogorelskiy, and Shum (2019).1

A second approach assumes that players form equilibrium beliefs. Under this assumption, a player’s belief
is equal to the actual probability distribution of other players’ actions. Then, the utility function ofmoney can be
identified using the player’s choice data. An example of this approach is Goeree, Holt, and Palfrey (2003) who
estimate each player’s risk preference under the Quantal Response Equilibrium (QRE) framework (Mckelvey
and Palfrey 1995, 1998).

In a third approach, experimental researchers focus on subjects’ beliefs and measure them using an elicita-
tionmechanism. Karni (2009), Offerman et al. (2009), andHossain andOkui (2013) developed differentmethods
to elicit players’ beliefs regardless of their preferences towards risk.2 As far as we know, there are no papers
in the experimental literature that consider the nonparametric identification of both players’ belief and utility
functions without the assumption of equilibrium and without data on elicited beliefs.

Before we describe the main features of our identification approach, we first explain the importance of
relaxing the assumption of equilibrium beliefs, the parametric restrictions on the utility functions, and the
conditions for eliciting beliefs.

There are multiple reasons for players to have biased beliefs. Playing a Bayesian Nash Equilibrium strategy
requires a player to figure out other players’ equilibrium strategies and to integrate them over the distribution
of private information. Human cognition limits – and imperfect knowledge on the distribution of private in-
formation – may prevent the construction of equilibrium beliefs. Multiple equilibria may also generate biased
beliefs. A player may believe that the selected equilibrium is A, while other player may think that it is B. This
strategic uncertainty has been studied by Van Huyck and Beil (1990), Crawford and Haller (1990), and Morris
and Shin (2002, 2004) , and Heinemann, Nagel, and Ockenfels (2009), among others.

The linear utility of money assumption places strong restrictions on subjects’ preferences, which are at odds
with important empirical findings in the experimental literature. Harrison and Rutström (2008) show that risk
aversion is prevalent even for the small scale of monetary payoffs in laboratory experiments. Kahneman and
Tversky (1979) note that individualsmay respond to lossmore than to gains. The linear utility ofmoney assump-
tion also rules out heterogeneity across players in their marginal utility of money. Our framework specifies a
player’s utility as an unrestricted – nonparametric – function of her monetary payoff and can capture both risk
preference and loss aversion. Our nonparametric specification of preferences has potential advantages over
other methods in the experimental literature. Moreover, we allow the form of the utility function to be different
for each subject in the experiment.3

Although there is substantial evidence showing that elicited beliefs are consistent with individuals’ actions,
there are practical issues.4 Perhaps, the most serious problem is that the mechanism for the elicitation of beliefs
can affect players’ behavior in games. Schotter and Trevino (2014) denote this problem as Heisenberg problem
– using an analogy from physics. A partial list of experimental papers illustrating this issue includes Nyarko
and Schotter (2002), Guerra and Zizzo (2004), Rutström and Wilcox (2009), and Palfrey and Wang (2009). Our
method does not need elicitation data and avoid these potential issues.5

Our identification results build on an exclusion restriction that can be generated by the researcher when
she designs the experiment. Suppose that a subject in the experiment plays K different two-player games. The
researcher designs the monetary payoff matrices in these games such that the payoff matrix of the column
player varies across the K games but the payoff matrix of the row player is the same.6 This variation across
games does not affect the payoff matrix of the row player but it can affect her beliefs about the behavior of the
column player.7

Under this exclusion restriction, the variation across the K games in the actions of the row player provides
information about this player’s beliefs. Following an argument similar to Aguirregabiria and Magesan (2019),
we show that this exclusion restriction identifies an object that only depends on beliefs and not on preferences.
This identification result can be used to test different hypotheses on beliefs, such as equilibrium beliefs, or
rationalizability, or the validity of elicited beliefs, among others.
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The complete identification of utility and belief functions requires additional restrictions. These conditions
are substantially weaker than the linear utility assumption or equilibrium constraints. To achieve full identifi-
cation of a two-player binary choice game, the researcher needs to restrict either the belief function or the utility
function at only two values of themonetary payoffs. For instance, the researchermay assume that elicited beliefs
are valid or that beliefs are unbiased at two of the K games. The selection of these two games is an important
decision for the researcher. We discuss how our test on beliefs can inform this choice.

We apply our approach to estimate two types of games that have receivedmuch attention in the experimental
economics literature: the matching pennies game in Goeree and Holt (2001) and the coordination game in
Heinemann, Nagel, and Ockenfels (2009). In the matching pennies game, our estimation results cannot reject
that players correctly predict other players’ behaviors. In the coordination game, at the individual level,we reject
the hypothesis of unbiased beliefs for a majority of subjects. We find substantial individual heterogeneity in
preferences towards risk and a relationship between individuals’ risk loving preferences and biased beliefs. We
also use data on players’ elicited beliefs and test the null hypothesis that individuals best respond to their self-
reported beliefs.When subjects report beliefs on the aggregate behavior of all the other players, we cannot reject
the null hypothesis that individuals best respond to their elicited beliefs. However, we reject this hypothesis
when subjects report their beliefs about a randomly selected player. These empirical results emphasize the
importance of relaxing restrictions of unbiased beliefs, linear utility, and individual homogeneity, as well as the
different properties of alternative methods to elicit beliefs.

Our paper is mostly related to three recent papers in the literature. Aguirregabiria and Magesan (2019) also
study the identification of non-equilibrium beliefs and apply a similar identification approach. However, they
do not consider experimental data and study dynamic games. Melo, Pogorelskiy, and Shum (2019) focus on
testing the Quantal Response Equilibrium model. They consider a nonparametric specification for the distri-
bution of the unobservable but impose the restriction of linear utility of money. Kline (2018) considers games
of complete information, and his approach also imposes the restriction of linear utility.

Section 2 describes the model and its assumptions. In Section 3, we explain the sampling framework, the
experimental design, and the exclusion restriction implied by the design. Section 4 presents our identification
results. In Section 5, we describe estimation and testing methods based on our identification results. Section 6
presents the two experimental data sets thatwe use in the applications and our empirical results.We summarize
and conclude in Section 7.

2 Model

Consider a two players binary choice game.8 Each player has a different role. There is a row player (R) and a
column player (C). Let aR and aC be the actions of the row and the column player, respectively. These actions
belong to the choice set {0, 1}. Given players’ actions, the payoff matrix of the game determines the monetary
payoff for each player. We use 𝑚𝑅(𝑎𝑅, 𝑎𝐶) and 𝑚𝐶(𝑎𝑅, 𝑎𝐶) to represent the monetary payoffs for the row player
and for the column player, respectively, when they take actions (𝑎𝑅, 𝑎𝐶). The complete matrix of monetary
payoffs is m ≡ {m𝑅,m𝐶} ≡ {𝑚𝑅(𝑎𝑅, 𝑎𝐶),𝑚𝐶(𝑎𝑅, 𝑎𝐶) ∶ (𝑎𝑅, 𝑎𝐶) ∈ {0, 1}2}. This payoff matrix and the role of
each player in the game are common knowledge. Players take their actions simultaneously to maximize their
respective expected utilities.

There is a population of individuals or subjects – that we index by 𝑖 ∈ ℐ = {1, 2, ...} – playing this game.
Let 𝑟(𝑖) ∈ {𝑅, 𝐶} be the role assignment that individual i has in the game. Each individual has a utility function
of money: 𝜋𝑖(𝑚) ∶ ℝ → ℝ. We do not restrict the individual heterogeneity in the utility function of money. The
total utility of an individual also includes an additive component that depends on her own action, ai, and on
her role in the game. We represent these additive utility components as 𝜀𝑖,𝑅(𝑎𝑖) and 𝜀𝑖,𝐶(𝑎𝑖). The total utility of
subject i in the game when playing against individual j is:

Π𝑖(𝑎𝑖, 𝑎𝑗) =
⎧{{
⎨{{⎩

𝜋𝑖 (𝑚𝑅(𝑎𝑖, 𝑎𝑗)) + 𝜀𝑖,𝑅(𝑎𝑖) if 𝑟(𝑖) = 𝑅

𝜋𝑖 (𝑚𝐶(𝑎𝑗, 𝑎𝑖)) + 𝜀𝑖,𝐶(𝑎𝑖) if 𝑟(𝑖) = 𝐶
� (1)

Define 𝜀𝑖,𝑅 ≡ 𝜀𝑖,𝑅(0) − 𝜀𝑖,𝑅(1) and 𝜀𝑖,𝐶 ≡ 𝜀𝑖,𝐶(0) − 𝜀𝑖,𝐶(1). We assume that (𝜀𝑖,𝑅, 𝜀𝑖,𝐶) is private information of
individual i, and is independently distributed across subjects. Let Fi,R and Fi,C be the cumulative distribution
functions for εi,R and εi,C, respectively. These distribution functions can be different across individuals. There are
two interpretations, not mutually exclusive, of the additive utilities εi. It can be an idiosyncratic non-pecuniary
component of the utility and the individual can be fully aware of it. These variables can be also interpreted
as optimization errors, along the line of the Quantal Response Equilibrium (QRE) concept proposed by Mckelvey
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and Palfrey (1995, 1998). A relevant difference between the utility of money and the ε components is that – for
a given individual – εi,R and εi,C can vary randomly across different realizations of the game while πi(m) is a
deterministic function of the amount of money.

Suppose, without of loss of generality, that individual i has the role of row player. Individual i does not
know the utility function of money, πj(.), and the value of variable εj,R for her opponent j, since they are private
information. Therefore, even if player i is fully rational, she has uncertainty about the optimal choice of player
j in the game. Each player has beliefs about the action that the other player will take. Let Bi,R represent the
subjective belief that, as row player, individual i has about the probability that the other player chooses action
aj = 1. Then, individual i’s expected utility of action ai is:

Π𝑒
𝑖,𝑅(𝑎𝑖, 𝐵𝑖,𝑅) = [1 − 𝐵𝑖,𝑅] 𝜋𝑖 (𝑚𝑅(𝑎𝑖, 0)) + 𝐵𝑖,𝑅 𝜋𝑖 (𝑚𝑅(𝑎𝑖, 1)) + 𝜀𝑖,𝑅(𝑎𝑖) (2)

Players maximize their expected utility. The best response of individual i is alternative ai = 1 if Π𝑒
𝑖,𝑅(1, 𝐵𝑖,𝑅) ≥

Π𝑒
𝑖,𝑅(0, 𝐵𝑖,𝑅), or equivalently,

[1 − 𝐵𝑖,𝑅] 𝜋𝑖 (𝑚𝑅(1, 0)) + 𝐵𝑖,𝑅 𝜋𝑖 (𝑚𝑅(1, 1)) + 𝜀𝑖,𝑅(1)

≥ [1 − 𝐵𝑖,𝑅] 𝜋𝑖 (𝑚𝑅(0, 0)) + 𝐵𝑖,𝑅𝜋𝑖 (𝑚𝑅(0, 1)) + 𝜀𝑖,𝑅(0)
(3)

Let Pi,R be the probability that individual i, as row player, chooses action ai = 1 given her belief Bi,R, her utility of
money πi, and the matrix of payoffs m. Integrating the best response condition (3) over the private information
εi,R, we obtain individual i’s best response probability function:

𝑃𝑖,𝑅 = 𝐹𝑖,𝑅 [𝛼𝑖.𝑅(m𝑅) + 𝛽𝑖.𝑅(m𝑅) 𝐵𝑖,𝑅] (4)

where 𝛼𝑖.𝑅(m𝑅) ≡ 𝜋𝑖 (𝑚𝑅(1, 0)) − 𝜋𝑖 (𝑚𝑅(0, 0)), and 𝛽𝑖.𝑅(m𝑅) ≡ 𝜋𝑖 (𝑚𝑅(1, 1)) − 𝜋𝑖 (𝑚𝑅(0, 1)) − 𝜋𝑖 (𝑚𝑅(1, 0))
+𝜋𝑖 (𝑚𝑅(0, 0)).

The model is a game and not a single-agent decision problem. This implies that 𝛽𝑖.𝑅(m𝑅) ≠ 0. In the model
presented above, we assume an individual’s utility only depends on her own monetary reward: 𝛼𝑖.𝑅(m𝑅) and
𝛽𝑖,𝑅(m𝑅) depend only on row player’s monetary payoff matrix mR but not on the column player’s mC. At the
end of this Section 2, we present a more general model that allows for other-regarding preferences, e.g. preferences
with altruism or envy. We have identification results for that extended model.

This framework includes as particular cases – or restricted versions – themodelsmost often used in empirical
applications of games. The following examples present common restricted versions of our framework.

Example 1 Quantal Response Equilibrium (QRE) – or Bayesian Nash Equilibrium (BNE) – with homoge-
neous utilities.

Suppose that all the individuals have the same utility function of money, and the same probability distri-
bution for the non-pecuniary component of the utility. That is, we have that 𝜋𝑖 = 𝜋, Fi,R = FR, and Fi,C = FC
for every 𝑖 ∈ ℐ . Suppose also that π, FR, and FC are common knowledge. Then, a BNE in this game can be
represented as a pair of choice probabilities (𝑃𝑅, 𝑃𝐶) that satisfies the following conditions:

𝑃𝑅 = 𝐹𝑅 [𝛼𝑅(m𝑅) + 𝛽𝑅(m𝑅) 𝑃𝐶]

𝑃𝐶 = 𝐹𝐶 [𝛼𝐶(m𝐶) + 𝛽𝐶(m𝐶) 𝑃𝑅]
(5)

where 𝛼𝑅(m𝑅) and 𝛽𝑅(m𝑅) have the same definition as above, but now they do not vary across individuals.
Under BNE, all the individuals in the role of row player (column player) have the same belief about the

choice probability of a column player (row player) and this belief is equal to the actual choice probability of a
columnplayer (rowplayer). That is, Bi,R = PC and Bi,C = PR for any individual i. It is clear that thismodel imposes
substantial restrictions on our framework: homogeneous preferences and beliefs, and equilibrium beliefs.

Examples of empirical applications using experimental data are, among others, Mckelvey and Palfrey (1995)
– using a variety of experimental datasets – and Anderson, Goeree, and Holt (2001) – for a coordination
game.  ■

Example 2 BNE with heterogeneous common knowledge utilities.
Suppose that the population is relatively small such that individuals know each other and they know the

utility function of every subject in the population. Utility functions πi and distribution functions 𝐹𝜀,𝑖,𝑅 and 𝐹𝜀,𝑖,𝐶
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are unrestricted but they are assumed to be common knowledge. Consider the game where individual i is the
row player and individual j is the column player. A BNE in this game can be represented as a pair of choice
probabilities (𝑃𝑖,𝑅, 𝑃𝑗,𝐶) that satisfies the equations:

𝑃𝑖,𝑅 = 𝐹𝑖,𝑅 [𝛼𝑖.𝑅(m𝑅) + 𝛽𝑖.𝑅(m𝑅) 𝑃𝑗,𝐶]

𝑃𝑗,𝐶 = 𝐹𝑗,𝐶 [𝛼𝑗.𝐶(m𝐶) + 𝛽𝑗.𝐶(m𝐶) 𝑃𝑖,𝑅]
(6)

Though thismodel allows for a general formof individual heterogeneity in the utilities, it imposes the restriction
of common knowledge utilities and equilibrium beliefs. That is, Bi,R = Pj,C and Bj,C = Pi,R.

This model has been used in applications of discrete choice games of oligopoly competition using field data.
Some examples are Ellickson and Misra (2008) and Sweeting (2009), or Aguirregabiria and Ho (2012), among
others. See Bajari, Hong, and Nekipelov (2013) for a survey.  ■

Example 3 Heterogeneous QRE.
Consider a similar model as in Example 2, but now the functions {𝜋𝑖, 𝐹𝑖,𝑅, 𝐹𝑖,𝐶} are private information of

each individual. Suppose that there is a finite number of individual types – L – for the form of these functions.
Let ℓ be the index that represents a type; let 𝜆ℓ be the proportion of individuals of type-ℓ; and let {𝜋(ℓ), 𝐹(ℓ)

𝑅 ,
𝐹(ℓ)

𝐶 } represent these functions for type ℓ. The probability distribution 𝜆𝜆𝜆 = {𝜆ℓ ∶ ℓ = 1, 2, …, 𝐿} is common
knowledge. A BNE in this game can be represented as L pairs of choice probabilities (𝑃(ℓ)

𝑅 , 𝑃(ℓ)
𝐶 ) – one for each

type – satisfying the following conditions:

𝑃(ℓ)
𝑅 = 𝐹(ℓ)

𝑅 [𝛼(ℓ)
𝑅 (m𝑅) + 𝛽(ℓ)

𝑅 (m𝑅) ∑𝐿
ℓ′=1 𝜆ℓ′ 𝑃(ℓ′)

𝐶 ]

𝑃(ℓ)
𝐶 = 𝐹(ℓ)

𝐶 [𝛼(ℓ)
𝐶 (m𝐶) + 𝛽(ℓ)

𝐶 (m𝐶) ∑𝐿
ℓ′=1 𝜆ℓ′ 𝑃(ℓ′)

𝑅 ]
(7)

This model imposes several restrictions with respect to our general framework. First, it implies that – in the
population of individuals – there are only L different types of choice probabilities. Second, it imposes the re-
striction that every individual has the same beliefs: for every individual i, Bi,R = BR and Bi,C = BC. Finally, it
imposes the restriction that beliefs are in equilibrium: 𝐵𝑅 = ∑𝐿

ℓ=1 𝜆ℓ 𝑃(ℓ)
𝐶 and 𝐵𝐶 = ∑𝐿

ℓ=1 𝜆ℓ𝑃(ℓ)
𝑅 .

Rogers, Palfrey, and Camerer (2009) introduced this heterogeneous QREmodel and applied it to 17 different
experimental datasets.  ■

Example 4 Cognitive Hierarchy (CH) and Level-k Rationality.9
In these models, players are heterogeneous in their beliefs. There is a finite number of belief types: for

every individual i, (𝐵𝑖,𝑅, 𝐵𝑖,𝐶) ∈ {(𝐵(𝑘)
𝑅 , 𝐵(𝑘)

𝐶 ) ∶ k = 1, 2, …, 𝐾}. These types correspond to different levels of
strategic sophistication. Beliefs have a hierarchical structure. TheCHmodel (Camerer, Ho, andChong 2004) and
the Level-k model (Costa-Gomes and Crawford 2006; Crawford and Iriberri 2007) propose similar hierarchical
structures of beliefs. A type-0 individual has some beliefs (𝐵(0)

𝑅 , 𝐵(0)
𝐶 ). A type-1 individual believes that all the

other individuals are type-0. Therefore, she has beliefs:

𝐵(1)
𝑅 = 𝐹𝐶 [𝛼𝐶(m𝐶) + 𝛽𝐶(m𝐶) 𝐵(0)

𝐶 ]

𝐵(1)
𝐶 = 𝐹𝑅 [𝛼𝑅(m𝑅) + 𝛽𝑅(m𝑅) 𝐵(0)

𝑅 ]
(8)

The CH and the Level-k models differ in the specification of beliefs for types greater than one. In the Level-k
model, a type-k player believes that the other players are type-(k-1). In the CH model, a type-k player believes
that the other players come from a probability distribution over types 0 to (k-1). Therefore, for the CH model,
beliefs are:

𝐵(𝑘)
𝑅 = ∑𝑘−1

𝑘′=0 𝜆(𝑘)
𝑘′ 𝐹𝐶 [𝛼𝐶(m𝐶) + 𝛽𝐶(m𝐶) 𝐵(𝑘′)

𝐶 ]

𝐵(𝑘)
𝐶 = ∑𝑘−1

𝑘′=0 𝜆(𝑘)
𝑘′ 𝐹𝑅 [𝛼𝑅(m𝑅) + 𝛽𝑅(m𝑅) 𝐵(𝑘′)

𝑅 ]
(9)

where – for every value of k – the vector {𝜆(𝑘)
𝑘′ ∶ 𝑘′ = 0, 1, …, 𝑘 − 1} is a probabilitydistribution. Compared to our

general framework, this model imposes important restrictions on individuals’ beliefs. There is a finite number
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K of types. Most importantly, beliefs satisfy the equilibrium hierarchical structure described by equations (8)
and (9).

These models have received much attention in experimental economics, with many applications using data
from lab experiments. There are also applications using field data, such as Goldfarb and Xiao (2011) and Brown,
Camerer, and Lovallo (2013).  ■

Our framework relaxes important restrictions in the models presented in Example 1–Example 4. We do not
restrict beliefs to be in equilibrium or to satisfy a hierarchical structure. The payoff functions πi can differ from
the monetary payoff. We do not restrict the form of the heterogeneity – in preferences or beliefs – between the
subjects in the experiment.

An extension: Other-regarding preferences (e.g. altruism/envy). Thoughmost of the analysis in this paper
focuses on the model presented above, we also present identification results for a more general model. This
extended model allows for a subject’s utility to depend on the amount of money received by the other player.
The utility of subject i in the game depends on her own amount ofmoney and on the amount ofmoney obtained
by the other player, 𝜋𝑖(𝑚𝑖, 𝑚𝑗). That is, if subject i is a row player:

Π𝑖(𝑎𝑖, 𝑎𝑗) = 𝜋𝑖 (𝑚𝑅(𝑎𝑖, 𝑎𝑗), 𝑚𝐶(𝑎𝑖, 𝑎𝑗)) + 𝜀𝑖,𝑅(𝑎𝑖) (10)

where𝜋𝑖(𝑚𝑖, 𝑚𝑗) ∶ ℝ2 → ℝ is a function that is increasing in the ownmonetary payoffmi, and it can be increasing
– under altruism – or decreasing – under envy – in the other player’s payoff, mj.

The general form of the utility function in equation (10) includes – as particular cases – the specifications in
most papers in experimental economics allowing for other-regarding preferences. For instance, in a very influ-
ential paper, Fehr and Schmidt (1999) study preferences for inequality aversion and propose a utility function
𝜋𝑖(𝑚𝑖, 𝑚𝑗) that is equal to 𝑚𝑖 − 𝛼𝑖(𝑚𝑖 − 𝑚𝑗) if mi ≥ mj and to 𝑚𝑖 − 𝛽𝑖 (𝑚𝑗 − 𝑚𝑖) if mj ≥ mi, where αi and βi are
parameters.

3 Experimental Design and Data Generating Process

The experimental researcher has panel data of N individuals where each individual plays the game T different
times or rounds, indexed by 𝑡 ∈ {1, 2, ..., 𝑇}. The dataset has NT observations {𝑑𝑖𝑡, 𝑎𝑖𝑡 ∶ 𝑖 = 1, 2, ..., N; t = 1, 2,
..., 𝑇}, where dit is the treatment received by subject i in her game t, and ait is her action in that game.We describe
below the different treatments and how players are assigned to treatments.

The researcher chooses M different matrices of monetary payoffs. Let ℳ be the set of monetary payoff ma-
trices in the experiment; and m = (m𝑅, m𝐶) ∈ ℳ is an element in this set. A treatment in this experiment is
a pair (m,𝑟), where m is a payoff matrix in the set ℳ and 𝑟 ∈ {𝑅, 𝐶} is the subject’s role in that game – either
row or column player. Therefore, there are 2M possible treatments. At each round t, the researcher randomly
assigns each of the N subjects to one of the 2M treatments. The random allocation of players to treatments is
anonymous: each subject does not have any information about who is the other subject she is playing against.
Once subjects have been allocated to treatments, they play their respective games. We use the categorical vari-
able 𝑑𝑖𝑡 ∈ ℳ × {𝑅, 𝐶} to represent subject i’ treatment at round t. The binary variable 𝑎𝑖𝑡 ∈ {0, 1} represents the
subject’s actual choice in the game.

Assumption 1 establishes that – for every individual – the utility function of money and the probability
distribution of non-pecuniary payoffs are invariant over the T rounds of the experiment.

Assumption 1
An individual’s utility function of money, πi, and the distribution functions Fi,R and Fi,C are invariant over the T

rounds that an individual plays the game.  ■

Though the conditions in Assumption 1 are standard, there may be applications of experimental economics
that violate this assumption.

For instance, suppose that a subject maximizes the expected utility of the sum of monetary rewards over
the T rounds – instead of maximizing her expected utility in each of the T games. This subject has an incen-
tive to hedge her payoff across rounds. Moreover, her utility function could change over the T rounds as she
accumulates monetary reward due to – for instance – endowment effects. This behavior violates Assumption
1. Experimental economists have been well aware of this problem (e.g. Schotter and Trevino 2014). One way to
avoid this issue is to design the experiment such that the reward that a subject receives is determined – ex post –
by randomly selecting her realized payoff in one of the T rounds. This design eliminates hedging incentives and
endowment effects, such that we can treat each round as an independent decision. The experimental designs in
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the applications we present in this paper incorporate this feature to avoid hedging incentives and endowment
effects.

Another departure from Assumption 1 occurs when individuals have other-regarding preferences but the
specification of the utility function does not take them into account. In that case, variables (𝜀𝑖𝑡,𝑅, 𝜀𝑖𝑡,𝐶) include
individual i’s preference for the monetary payoff of the other player. Since these monetary payoffs vary over
treatments, the distribution functions of (𝜀𝑖𝑡,𝑅, 𝜀𝑖𝑡,𝐶) do as well. To deal with this potential problem, we also
present results on the identification of beliefs that apply to the model with other-regarding preferences of the
general form 𝜋𝑖(𝑚𝑖, 𝑚𝑗).

Assumption 2
The treatment variable 𝑑𝑖𝑡 and the non-pecuniary utility components (𝜀𝑖𝑡,𝑅, 𝜀𝑖𝑡,𝐶) are independently distributed.  ■

Given the random allocation of individuals to treatments and the non-pecuniary nature of the variables
(𝜀𝑖𝑡,𝑅, 𝜀𝑖𝑡,𝐶), Assumption 2 seems plausible.

Assumption 3 establishes that the beliefs function is invariant over rounds/games with the same matrix of
monetary payoffs – with the same treatment.

Assumption 3
An individual’s belief in round t depends on her treatment (m,𝑟) in that round, but conditional on the same treatment

it is invariant over rounds: 𝐵𝑖𝑡,𝑟(m) = 𝐵𝑖𝑡′,𝑟′(m′) for every two rounds t and t′ with (m,𝑟) = (m′,𝑟′).  ■

Assumption 3 imposes the restriction that subjects do not learn over the T rounds. Such an assumption is
more plausible if subjects do not receive any information on the outcome of the game after each round. The
experimental designs in the applications that we present in this paper satisfy this condition to avoid learning.

Most of our main identification results use the assumption that the researcher knows the distribution of
non-pecuniary components (𝜀𝑖𝑡,𝑅, 𝜀𝑖𝑡,𝐶) – up to location and scale parameters that are individual-specific. This
is our Assumption 4, and it is common in applications of discrete choice games.

Assumption 4
For 𝑟 ∈ {𝑅, 𝐶}, define 𝜇𝑖,𝑟 ≡ 𝔼(𝜀𝑖𝑡,𝑟) and 𝜎2

𝑖,𝑟 ≡ 𝕍 (𝜀𝑖𝑡,𝑟). (A) The standardized variable (𝜀𝑖𝑡,𝑟 − 𝜇𝑖,𝑟)/𝜎𝑖,𝑟 has CDF
F(.) that is the same for every individual and is strictly increasing over the real line. (B) The distribution function F(.) is
known to the researcher.  ■

Assumption 4 does not restrict the location and scale parameters μi,r and σi,r which are unknown to the
researcher and can vary over subjects unrestrictedly.

The location parameter μi,r deserves some explanation. This parameter represents individual i’s non-
pecuniary preference for action 0 compared to action 1. For instance, in a public good game, this parameter
represents an individual’s taste to contribute to the public good for non-pecuniary reasons. Many experimen-
tal studies under the QRE framework assume that this parameter is zero, e.g. Mckelvey and Palfrey (1995),
Goeree, Holt, and Palfrey (2005), and Melo, Pogorelskiy, and Shum (2019), among others. The work of Nyarko
and Schotter (2002) is one of the few experimental studies that estimates this parameter – under the assump-
tion of linear utility of money. Our identification of beliefs and our tests do not impose any restriction on the
parameter μi,r.

Assumption 5 establishes a condition on the set ℳ of monetary payoff matrices in the experiment. This
condition plays a fundamental role in our identification results. For notational simplicity, we present this as-
sumption focusing on the identification of beliefs for the row player, R. However, we can consider a symmetric
version of the assumption that applies to the identification of beliefs for the column player, C.

Assumption 5
The set ℳ of monetary payoff matrices in the experiment contains at least two matrices, say m1 and m2, such that:

(A) the matrix for the row player does not vary over the two treatments – m1
𝑅 = m2

𝑅 – but the matrix for the column
player varies – m1

𝐶 ≠ m2
𝐶; (B) for an individual i, her conditional choice probability as a row player varies across the two

treatments – that is, 𝑃𝑖,𝑅(m1) ≠ 𝑃𝑖,𝑅(m2). ■

UnderAssumption 5(A), the experimental design generates a particular variation inmonetary payoffs across
treatments: the payoffmatrix of the column player C varies while the payoffmatrix of the row player R remains
constant. More than assumption, 5(A) is a condition that experimental design should satisfy. We show below
that this condition provides an exclusion restriction that identifies the beliefs of individual i as a row player, Bi,R.

Assumption 5(B) is a rank condition for identification. In the next section, we establish that the conditional
choice probabilities 𝑃𝑖,𝑅(m1) and 𝑃𝑖,𝑅(m2) are identified from the data under mild conditions (see Section 4.1
below). Therefore, Assumption 5(B) is testable from the data. This assumption can be also interpreted as an

7

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Aguirregabiria and Xie DE GRUYTER

implication of condition 5(A) under Rationalizability. That is, player R knows that player C maximizes expected
utility given beliefs. Since player C’s payoff matrix varies across treatments d1 and d2, then player R’s beliefs
about player C’s behavior also vary between these two treatments. Given that player R’s own monetary payoff
matrix did not change, her actual behaviors should be different as long as her behavior depends on her beliefs.

Though the focus of the paper is on the model where an individual’s utility depends only on her own
monetary payoff,we also present identification results for themodelwith altruism/envy thatwe have described
at the end of Section 2. For the identification of beliefs in thismodel we need additional conditions on the design
of the experiment. Assumption 5* presents these conditions.

Assumption 5*

The set ℳ of monetary payoff matrices in the experiment contains at least two matrices, say
m1$𝑎𝑛𝑑m2, 𝑡ℎ𝑎𝑡𝑠𝑎𝑡𝑖𝑠𝑓 𝑦𝑡ℎ𝑒𝑓 𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∶ (𝐴)𝑓 𝑜𝑟𝑡 = 1, 2,m𝑡

𝑅(0, 0) = 𝑚𝑡
𝑅(1, 0) and 𝑚𝑡

𝐶(0, 0) = 𝑚𝑡
𝐶(1, 0);

(B) 𝑚𝑡
𝑅(0, 1), 𝑚𝑡

𝑅(1, 1), 𝑚𝑡
𝐶(0, 1), and 𝑚𝑡

𝐶(1, 1) do not vary over t = 1,2; (C) for an individual i, her conditional choice
probability as a row player varies across the two treatments – that is, 𝑃𝑖,𝑅(m1) ≠ 𝑃𝑖,𝑅(m2). ■

Example 5
The following matrices provide an example that satisfies Assumption 5*.

Matrix m1

Player C

aC = 0 aC = 1
Player R aR = 0 [3, 6] [2, 8]

aR = 1 [3, 6] [4, 7]

Matrix m2

Player C

aC = 0 aC = 1
Player R aR = 0 [5, 9] [2, 8]

aR = 1 [5, 9] [4, 7]

This example shows that Assumption 5* still allows for variation in the matrices across treatments that can
generate substantial changes in players’ behavior. For instance, outcome (𝑎𝑅, 𝑎𝐶) = (1, 1) is a pure strategyNash
equilibrium in the game with matrix m1 but it is not a Nash equilibrium in the game with matrix m2. ■

For the asymptotic distribution of the estimators and tests thatwe propose,we consider panel datawhere the
number of rounds T is large. This sampling framework corresponds to most empirical applications of discrete
choice games of oligopoly competition in empirical IO (Berry and Tamer 2006). In that setting, N is the number
of firms in an industry, and T is the number of geographic markets where these firms compete. This sampling
framework is not uncommon in empirical applications in experimental economics. In many experiments, T can
be larger than 50 and some recent experiments have T about 200, for instance, Selten and Chmura (2008) and
Chmura, Goerg, and Selten (2012). Furthermore, in many of these experiments, subjects do not receive any
feedback after each treatment to avoid learning.

Assumption 6
(A) The experiment is such T is large – e.g. larger than 20 – and each subject i is observed many times playing at least

two treatments, i.e. choice probabilities can be estimated consistently for each subject i. (B) After each treatment, players
do not receive any information on the outcome of the game. ■

4 Identification

Under Assumptions 1–5, we show the identification of each individual’s beliefs. This identification result can
be used to test different belief restrictions, such as equilibrium beliefs or the validity of elicited beliefs. Then,
we present additional conditions for the full nonparametric identification of preferences and beliefs.

Suppose that the treatment of individual i at round t is 𝑑𝑖𝑡 = (m,𝑟). Given this treatment, her belief proba-
bility is 𝐵𝑖,𝑟(m) and her best response Conditional Choice Probability (CCP) function is:

𝑃𝑖,𝑟(m) = 𝐹 [𝛼𝑖.𝑟(m𝑟) + 𝛽𝑖.𝑟(m𝑟) 𝐵𝑖,𝑟(m)] (11)
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where 𝛼𝑖,𝑟(m𝑟) ≡ [𝜋𝑖 (𝑚𝑟(1, 0)) − 𝜋𝑖 (𝑚𝑟(0, 0)) − 𝜇𝑖,𝑟]/𝜎𝑖,𝑟 and 𝛽𝑖,𝑟(m𝑟) ≡ [𝜋𝑖 (𝑚𝑅(1, 1)) − 𝜋𝑖 (𝑚𝑅(0, 1))
− 𝜋𝑖 (𝑚𝑅(1, 0)) + 𝜋𝑖 (𝑚𝑅(0, 0))]/𝜎𝑖,𝑟. Let 𝐹−1(⋅) be the inverse function of 𝐹(⋅). This inverse function exists be-
cause the strict monotonicity of CDF, as stated in Assumption 4. Consequently, the inversion of equation (11)
is written as:

𝐹−1[𝑃𝑖,𝑟(m)] = 𝛼𝑖,𝑟(m𝑟) + 𝛽𝑖,𝑟(m𝑟) 𝐵𝑖,𝑟(m) (12)

Equation (12) is the key restriction of the model that we use to identify and estimate individuals’ utility and
belief functions. As implied by Assumption 4, 𝐹−1 is known to the researcher. Moreover, 𝑃𝑖,𝑟(m) can be consis-
tently estimated using data from the experiment. Therefore, the left hand side of equation (12) is known to the
researcher.

Let 𝝅i be the vector of utility parameters for individual i in the experiment, that is, 𝜋𝜋𝜋𝑖 ≡
{𝛼𝑖,𝑟(𝑚𝑟(𝑎𝑅, 𝑎𝐶)), 𝛽𝑖,𝑟(𝑚𝑟(𝑎𝑅, 𝑎𝐶)) ∶ (𝑎𝑅, 𝑎𝐶) ∈ {0, 1}2 and (m,𝑟) ∈ ℳ × {𝑅, 𝐶}}. Similarly, let Bi be the vec-
tor of beliefs for individual i, that is, B𝑖 ≡ {𝐵𝑖,𝑟(m) ∶ (m,𝑟) ∈ ℳ × {𝑅, 𝐶}}. The researcher is interested in using
the experimental data to identify 𝝅i and Bi for each of the N individuals in the sample.

4.1 Identification of Beliefs and Tests

Let d1 and d2 be the two treatments in Assumption 5. Let 𝒟𝑑1 be the subset of treatments d where the row
player has the same payoff matrix as in treatment d1: 𝒟𝑑1 ≡ {𝑑 = (m𝑑, 𝑅) ∶ m𝑑

𝑅 = m1
𝑅}. By Assumption 5(A),

𝑑1, 𝑑2 ∈ 𝒟𝑑1 such that this set contains at least two elements. For any treatment 𝑑 ∈ 𝒟𝑑1 , we have that 𝛼𝑖,𝑅(m𝑑
𝑅) =

𝛼𝑖,𝑅(m1
𝑅) and 𝛽𝑖,𝑅(m𝑑

𝑅) = 𝛽𝑖,𝑅(m1
𝑅). This implies that, for any 𝑑 ∈ 𝒟𝑑1 ,

𝐹−1[𝑃𝑖,𝑅(m𝑑)] − 𝐹−1[𝑃𝑖,𝑅(m1)] = 𝛽𝑖,𝑅(m1
𝑅) [𝐵𝑖,𝑅(m𝑑) − 𝐵𝑖,𝑅(m1)] (13)

Intuitively, individual i faces the samemonetary payoffmatrix in d1 and d; therefore, the variation of her choice
probabilities provides information on her adjustment of beliefs, as represented by 𝐵𝑖,𝑅(m𝑑) − 𝐵𝑖,𝑅(m1).

Assumption 5(B) and the strict monotonicity of F imply that 𝐹−1[𝑃𝑖,𝑅(m2)] − 𝐹−1[𝑃𝑖,𝑅(m1)] is different to
zero. Therefore, for any treatment 𝑑 ∈ 𝒟𝑑1 we have:

𝐹−1[𝑃𝑖,𝑅(m𝑑)] − 𝐹−1[𝑃𝑖,𝑅(m1)]
𝐹−1[𝑃𝑖,𝑅(m2)] − 𝐹−1[𝑃𝑖,𝑅(m1)] =

𝐵𝑖,𝑅(m𝑑) − 𝐵𝑖,𝑅(m1)
𝐵𝑖,𝑅(m2) − 𝐵𝑖,𝑅(m1) (14)

All the terms in the left hand side of equation (14) are known to the researcher. This expression shows
that, under Assumptions 1–5, the observed behavior of subject i identifies her beliefs ratio [𝐵𝑖,𝑅(m𝑑) −
𝐵𝑖,𝑅(m1)]/[𝐵𝑖,𝑅(m2) − 𝐵𝑖,𝑅(m1)] for any treatment 𝑑 ∈ 𝒟𝑑1 . Observed behavior identifies an object that de-
pends only on beliefs and not on preferences. It also implies that different hypotheses on beliefs are testable.

Proposition 1
Suppose that Assumption 1–Assumption 5 hold. (A) Equation (14) characterizes the identified set of individual i’s

beliefs in treatments 𝑑 ∈ 𝒟𝑑1 . (B) Consider the hypothesis that 𝐵𝑖,𝑅(m𝑑) = 𝐵∗(m𝑑) for 𝑑 ∈ 𝒟𝑑1 , where the values
𝐵∗(m𝑑) are known to the researcher. If the set 𝒟𝑑1 contains at least three treatments, this hypothesis can be tested by
testing the following restrictions:

𝐹−1[𝑃𝑖,𝑅(m𝑑)] − 𝐹−1[𝑃𝑖,𝑅(m1)]
𝐹−1[𝑃𝑖,𝑅(m2)] − 𝐹−1[𝑃𝑖,𝑅(m1)] = 𝐵∗(m𝑑) − 𝐵∗(m1)

𝐵∗(m2) − 𝐵∗(m1) for 𝑑 ∈ 𝒟𝑑1 . ■ (15)

The testable implications in equation (15) have power. There exist invalid beliefs – i.e. with 𝐵𝑖,𝑅(m) ≠ 𝐵∗(m)
– that can satisfy the restrictions in equation (15). However, within the space of possible beliefs, the set of beliefs
𝐵𝑖,𝑅(m) ≠ 𝐵∗(m) that satisfy equation (15) has measure zero. Importantly, this set shrinks when the number of
treatment in 𝒟𝑑1 increases.10

Researchers can be interested in testing the null hypothesis of equilibrium beliefs. Under BNE and the con-
dition that the opponent’s identity is anonymous, individual i’s beliefs – as a row player – are in equilibrium if
𝐵𝑖,𝑅(m) = 𝔼𝜋𝑗

(𝑃𝑗,𝐶(m)) where the expectation 𝔼𝜋𝑗
(.) is taken over the distribution of subjects’ preferences πj.
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Subject j’s choice probabilities Pj,C are identified, and the expectation 𝔼𝜋𝑗
(𝑃𝑗,𝐶(m)) can be estimated consis-

tently using (1/N − 1) ∑𝑗≠𝑖 𝑃𝑗,𝐶(m). Therefore, we can test the null hypothesis of equilibrium beliefs for subject
i by testing the restrictions:

𝐹−1[𝑃𝑖,𝑅(m𝑑)] − 𝐹−1[𝑃𝑖,𝑅(m1)]
𝐹−1[𝑃𝑖,𝑅(m2)] − 𝐹−1[𝑃𝑖,𝑅(m1)] =

∑𝑗≠𝑖 𝑃𝑗,𝐶(m𝑑) − 𝑃𝑗,𝐶(m1)
∑𝑗≠𝑖 𝑃𝑗,𝐶(m2) − 𝑃𝑗,𝐶(m1) (16)

A researcher may be also interested in testing the validity of the beliefs {𝐵(𝑘)
𝑅 ∶ 𝑘 = 0, 1, ..., 𝐾} obtained after the

estimation of the Cognitive Hierarchy (CH) or the Level-k Rationality models presented in Example 4 above.
There are two null hypothesis that the researcher may test. A first null hypothesis is individual i is type k.
This corresponds to test the restrictions in equation (15) with 𝐵∗(m) = 𝐵(𝑘)

𝑅 (m). A second null hypothesis is
that individual i’s beliefs function belongs to one of the K types – 𝐵𝑖,𝑅(m) ∈ {𝐵(𝑘)

𝑅 (m) ∶ 𝑘 = 0, 1, ..., 𝐾}. This is
equivalent to testing whether CH (or Level-K) is a valid model to represent the beliefs of individual i.

In this context, it is important to note that Level-1 rationality may not be testable. Under Level-1, a player
has arbitrary beliefs that may not depend on the payoff matrix of the other players. This implies that the (rank)
identification condition in Assumption 5(B) may not hold. That is, under Level-1, a player’s conditional choice
probability may not vary across the two treatments such that 𝑃𝑖,𝑅(m1) = 𝑃𝑖,𝑅(m2).

The researcher can also test the validity of elicited beliefs. In that case, 𝐵∗(m) is the subject’s reported belief.
The tests based on equation (15) require that the set 𝒟𝑑1 has at least three treatments. A particular structure

of the monetary payoff matrix – that we find in some experiments – implies testable restrictions on beliefs even
with only two treatments in𝒟𝑑1 . Suppose that thematrix ofmonetary payoffs of the rowplayer is symmetric and
diagonal-constant – a Toeplitz matrix. That is, 𝑚𝑅(0, 0) = 𝑚𝑅(1, 1) and 𝑚𝑅(0, 1) = 𝑚𝑅(1, 0). For instance, this
is form of the payoff matrix in a matching pennies game. Under this condition, and the additional restriction
𝜇𝑖,𝑅 = 0, we have that 𝛽𝑖,𝑅 (m𝑅) = −2 𝛼𝑖,𝑅 (m𝑅) and equation (12) becomes 𝐹−1[𝑃𝑖,𝑅(m)] = 𝛼𝑖,𝑅(m𝑅)[1 − 2
𝐵𝑖,𝑅(m)]. Under Assumption 5, for any treatment d in 𝒟𝑑1 we have that:

𝐹−1[𝑃𝑖,𝑅(m𝑑)]
𝐹−1[𝑃𝑖,𝑅(m1)] =

1 − 2 𝐵𝑖,𝑅(m𝑑)
1 − 2 𝐵𝑖,𝑅(m1) (17)

provided that 𝐹−1[𝑃𝑖,𝑅(m1)] ≠ 0. This condition characterizes the identified set and testable restrictions of
beliefs for Toeplitz monetary payoff matrix. It is summarized by Proposition 2.

Proposition 2
Suppose that Assumption 1–Assumption 5 hold and: (i) the matrix of monetary payoffs of the row player is symmetric

and diagonal-constant (Toeplitz matrix); and (ii) 𝜇𝑖,𝑅 = 0. (A) Equation (17) characterizes the identified set of individual
i’s beliefs in treatments 𝑑 ∈ 𝒟𝑑1 . (B) Let 𝐵∗(.) be a beliefs function, and consider the hypothesis represented by the
restrictions 𝐵𝑖,𝑅(m𝑑) = 𝐵∗(m𝑑) for 𝑑 ∈ 𝒟𝑑1 . If the set 𝒟𝑑1 contains at least two treatments, this hypothesis can be tested
by testing the following restrictions:

𝐹−1[𝑃𝑖,𝑅(m𝑑)]
𝐹−1[𝑃𝑖,𝑅(m1)] = 1 − 2 𝐵∗(m𝑑)

1 − 2 𝐵∗(m1) for 𝑑 ∈ 𝒟𝑑1 . ■ (18)

Proposition 2 requires the additional restriction 𝜇𝑖,𝑅 = 0. This restriction is not innocuous. In some exper-
iments, individuals can have a non-pecuniary preference to choose a particular action – i.e. μi,R is different to
zero. While the identification result in Proposition 1 is robust to these non-pecuniary biases, this is not the case
for Proposition 2.

4.2 Identification of Beliefs: Extensions

In this section, we present two extensions of the previous identification result. First, we show the identification
of beliefs in a model when subjects may have preferences with altruism/envy. Second, we establish the iden-
tification of beliefs in a model with more than two players that corresponds to the game in our public good
application.
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4.2.1 Identification of Beliefs when Preferences have Altruism/Envy

The identification results in Proposition 1 and Proposition 2 rely on the variation in a subject’s behavior when
the payoff matrix of the other player changes. A concern with this approach is that the observed variation in
the subject’s behavior could capture not only changes in her beliefs but also in her utility if this depends on the
monetary payoff of the other player, i.e. utility with altruism or envy.

Consider the model where the utility function for the subject i as a row player is 𝜋𝑖(𝑚𝑅(𝑎𝑖, 𝑎𝑗), 𝑚𝐶(𝑎𝑖, 𝑎𝑗)).
Under Assumptions 1–4, the best response of subject i in the model implies the equation:

𝐹−1[𝑃𝑖,𝑅(m)] = 𝛼𝑖,𝑅(m) + 𝛽𝑖,𝑅(m) 𝐵𝑖,𝑅(m) (19)

But now we have that, 𝛼𝑖,𝑅(m) ≡ 𝜋𝑖(𝑚𝑅(1, 0), 𝑚𝐶(1, 0)) − 𝜋𝑖(𝑚𝑅(0, 0), 𝑚𝐶(0, 0)), and 𝛽𝑖,𝑅(m) ≡ 𝜋𝑖(𝑚𝑅(1, 1),
𝑚𝐶(1, 1)) − 𝜋𝑖(𝑚𝑅(0, 1), 𝑚𝐶(0, 1)) − 𝜋𝑖(𝑚𝑅(1, 0), 𝑚𝐶(1, 0)) + 𝜋𝑖(𝑚𝑅(0, 0), 𝑚𝐶(0, 0)). Under Assumptions 1–5,
for any treatment d in 𝒟𝑑1 we have that:

𝐹−1[𝑃𝑖,𝑅(m𝑑)] − 𝐹−1[𝑃𝑖,𝑅(m1)]
𝐹−1[𝑃𝑖,𝑅(m2)] − 𝐹−1[𝑃𝑖,𝑅(m1)] =

𝛼𝑖,𝑅(m𝑑) + 𝛽𝑖,𝑅(m𝑑)𝐵𝑖,𝑅(m𝑑) − 𝛼𝑖,𝑅(m1) − 𝛽𝑖,𝑅(m1)𝐵𝑖,𝑅(m1)
𝛼𝑖,𝑅(m2) + 𝛽𝑖,𝑅(m2)𝐵𝑖,𝑅(m2) − 𝛼𝑖,𝑅(m1) − 𝛽𝑖,𝑅(m1)𝐵𝑖,𝑅(m1) (20)

Without further restrictions, 𝛼𝑖,𝑅(m𝑑) ≠ 𝛼𝑖,𝑅(m1) and 𝛽𝑖,𝑅(m𝑑) ≠ 𝛽𝑖,𝑅(m1) such that this equation does not
identify beliefs. More specifically,

𝛼𝑖,𝑅(m𝑑) − 𝛼𝑖,𝑅(m1) = [𝜋𝑖(𝑚𝑑
𝑅(1, 0), 𝑚𝑑

𝐶(1, 0)) − 𝜋𝑖(𝑚𝑑
𝑅(0, 0), 𝑚𝑑

𝐶(0, 0))]
− [𝜋𝑖(𝑚1

𝑅(1, 0), 𝑚1
𝐶(1, 0)) − 𝜋𝑖(𝑚𝑅

1(0, 0), 𝑚1
𝐶(0, 0))] (21)

and

𝛽𝑖,𝑅(m𝑑) − 𝛽𝑖,𝑅(m1) = [𝜋𝑖(𝑚𝑑
𝑅(1, 1), 𝑚𝑑

𝐶(1, 1)) − 𝜋𝑖(𝑚𝑑
𝑅(0, 1), 𝑚𝑑

𝐶(0, 1))]
− [𝜋𝑖(𝑚1

𝑅(1, 1), 𝑚1
𝐶(1, 1)) − 𝜋𝑖(𝑚1

𝑅(0, 1), 𝑚1
𝐶(0, 1))]

− [𝛼𝑖,𝑅(m𝑑) − 𝛼𝑖,𝑅(m1)]
(22)

Assumption 5* establishes conditions on the payoff matrix that imply 𝛼𝑖,𝑅(m𝑑) = 𝛼𝑖,𝑅(m1) and 𝛽𝑖,𝑅(m𝑑) =
𝛽𝑖,𝑅(m1) but they still allow for variation in the subject’s behavior that provides identification of beliefs.

Let 𝒟𝑑1 be the set of treatments that satisfy the conditions in Assumption 5*. Assumption 5*(A) establishes
that for any treatment d in 𝒟𝑑1 , we have that 𝑚𝑑

𝑅(0, 0) = 𝑚𝑑
𝑅(1, 0) and 𝑚𝑑

𝐶(0, 0) = 𝑚𝑑
𝐶(1, 0). Looking at equation

(21) we can see that this condition implies that 𝛼𝑖,𝑅(m𝑑) − 𝛼𝑖,𝑅(m1) = 0. Assumption 5*(B) establishes that
the monetary payoffs 𝑚𝑑

𝑅(0, 1), 𝑚𝑑
𝑅(1, 1), 𝑚𝑑

𝐶(0, 1), and 𝑚𝑑
𝐶(1, 1) do not vary over the treatments d in 𝒟𝑑1 . Using

equation (22), we can see that this restriction implies that 𝛽𝑖,𝑅(m𝑑) − 𝛽𝑖,𝑅(m1) = −[𝛼𝑖,𝑅(m𝑑) − 𝛼𝑖,𝑅(m1)], from
Assumption 5*(A) this is equal to zero.

As shown in Example 5 above, Assumption 5* allows for variation in the matrices across treatments that can
generate enough variation in players’ behavior.

Proposition 3
Consider the model that allows for preferences with altruism/envy. Suppose that Assumption 1–Assumption 4 and

Assumption 5* hold. Then, the identification results Proposition 1(A) and Proposition 1(B) apply. ■

4.2.2 Identification of Beliefs in a Public Good Game

So far, our identification of beliefs is based on exogenous variation in the payoff matrices. In games with more
than two players, there are other possibilities to generate exogenous variation that can identify beliefs. We
illustrate this in the context of public good binary choice game.

There are G players. The game is symmetric in the sense that every player has the same role. The binary
choice consists in contributing to the public good (ai = 1) or not (ai = 0). Each individual has a utility function
of money, 𝜋𝑖(𝑚𝑖), and the total utility is 𝜋𝑖 (𝑚) + 𝜀𝑖(𝑎𝑖). The monetary payoff that player i receives depends on
the other players’ actions according to the following rule:

11

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Aguirregabiria and Xie DE GRUYTER

𝑚𝑖 (𝑎𝑖, ∑
𝐺
𝑗=1,𝑗≠𝑖𝑎𝑗) =

⎧{{
⎨{{⎩

𝑚𝑠 if 𝑎𝑖 = 0
𝑚𝑠 − 𝑐 if 𝑎𝑖 = 1 and ∑𝐺

𝑗=1,𝑗≠𝑖 𝑎𝑗 < 𝜙(𝐺 − 1)
𝑚𝑠 + 𝑔 if 𝑎𝑖 = 1 and ∑𝐺

𝑗=1,𝑗≠𝑖 𝑎𝑗 ≥ 𝜙(𝐺 − 1)
� (23)

If player i does not contribute to the funding of the public good (𝑎𝑖 = 0), she receives a safe amount of money
ms regardless the choices of the other players. If she contributes to the public good (ai = 0), she has to pay
a contribution c > 0, and her total monetary payoff depends on the fraction of other players that decide to
contribute: (𝐺−1)−1 ∑𝐺

𝑗=1,𝑗≠𝑖 𝑎𝑗. If this fraction is smaller than constant ϕ, then the public good project fails and
player i receives a monetary payoff ms − c. If this fraction is greater or equal than ϕ, then the project generates
a net return g > 0 per contributor such that the monetary payoff of player i is ms + g. We describe parameter ϕ
as the coordination difficulty.

In this game, the exogenous characteristics that define players’ monetary payoffs are m ≡ (𝑚𝑠, c, g, ϕ, 𝐺).
Player i needs to form beliefs about the probability of the event ∑𝐺

𝑗=1,𝑗≠𝑖 𝑎𝑗 ≥ 𝜙(𝐺 − 1). Let 𝐵𝑖(m) be the
probability that represents the belief of subject i. Our notation emphasizes that players’ beliefs may depend
on the parameters that characterize the monetary payoffs: (𝑚𝑠, 𝜙, 𝐺). For instance, one would expect 𝐵𝑖(m) to
decline with ϕ. The best response of individual i is to choose alternative ai = 1 if

[1 − 𝐵𝑖(m)] 𝜋𝑖 (𝑚𝑠 − 𝑐) + 𝐵𝑖(m) 𝜋𝑖 (𝑚𝑠 + 𝑔) + 𝜀𝑖(1) ≥ 𝜋𝑖 (𝑚𝑠) + 𝜀𝑖(0) (24)

And the best response choice probability is:

𝑃𝑖(m) = 𝐹 [𝛼𝑖(𝑚𝑠, 𝑐, 𝑔) + 𝛽𝑖(𝑚𝑠, 𝑐, 𝑔) 𝐵𝑖(m)] (25)

where 𝛼𝑖(𝑚𝑠, 𝑐, 𝑔) and 𝛽𝑖(𝑚𝑠, 𝑐, 𝑔) have the following definitions: 𝛼𝑖(𝑚𝑠, 𝑐, 𝑔) ≡ [𝜋𝑖 (𝑚𝑠 − 𝑐) − 𝜋𝑖 (𝑚𝑠) − 𝜇𝑖]/𝜎𝑖;
and 𝛽𝑖(𝑚𝑠, 𝑐, 𝑔) ≡ [𝜋𝑖 (𝑚𝑠 + 𝑔) − 𝜋𝑖 (𝑚𝑠 − 𝑐)]/𝜎𝑖.

Equation (25) shows that the model has exclusion restrictions: the number of players G and the coordination
difficulty ϕ can affect players’ beliefs but they are not arguments in the functions 𝛼𝑖(𝑚𝑠, 𝑐, 𝑔) and 𝛽𝑖(𝑚𝑠, 𝑐, 𝑔).
These exclusion restrictions can be used to design an experiment that identifies players’ beliefs. If the experi-
ment includes treatments with the same value of (𝑚𝑠, 𝑐, 𝑔) but different values of (G, ϕ), the variation in players’
behavior between these treatments identifies players’ beliefs. Proposition 4 formalizes this result.

Proposition 4
Suppose that Assumption 1–Assumption 4 hold and that the experiment contains at least two treatments m1 =

(𝑚1
𝑠, 𝑐1, 𝑔1, 𝜙1, 𝐺1)$𝑎𝑛𝑑m2 = (𝑚2

𝑠, 𝑐2, 𝑔2, 𝜙2, 𝐺2) such that: (i) (𝑚1
𝑠, 𝑐1, 𝑔1) = (𝑚2

𝑠, 𝑐2, 𝑔2); (ii) (𝜙1, 𝐺1) ≠ (𝜙2, 𝐺2); and
(iii) 𝑃𝑖(m1) ≠ 𝑃𝑖(m2). Let 𝒟𝑑1 the set of treatments that satisfy conditions (i) to (iii). Then: (A) The following equation
characterizes the identified set of individual i’s beliefs in treatments 𝑑 ∈ 𝒟𝑑1 :

𝐹−1[𝑃𝑖(m𝑑)] − 𝐹−1[𝑃𝑖(m1)]
𝐹−1[𝑃𝑖(m2)] − 𝐹−1[𝑃𝑖(m1)] = 𝐵𝑖(m𝑑) − 𝐵𝑖(m1)

𝐵𝑖(m2) − 𝐵𝑖(m1) for 𝑑 ∈ 𝒟𝑑1 . ■ (26)

(B) Let 𝐵∗(.) be a beliefs function, and consider the hypothesis represented by the restrictions 𝐵𝑖(m𝑑) = 𝐵∗(m𝑑) for
𝑑 ∈ 𝒟𝑑1 . If the set 𝒟𝑑1 contains at least three treatments, this hypothesis can be tested by testing the restrictions implied
by equation (26) with 𝐵𝑖(m𝑑) = 𝐵∗

𝑖 (m𝑑) for 𝑑 ∈ 𝒟𝑑1 . ■

4.3 Complete Identification of Utility and Beliefs

We now consider the full identification of the model. More precisely, we consider the identification of utility
parameters 𝛼𝑖,𝑅 (m𝑅) and 𝛽𝑖,𝑅 (m𝑅) and belief parameters 𝐵𝑖,𝑅(m𝑅,m𝑑

𝐶) for every treatment d in the set 𝒟𝑑1 .
The focus on the set 𝒟𝑑1 is without loss of generality: we can consider treatments d1 with different values of mR
such that functions 𝛼𝑖,𝑅(.), 𝛽𝑖,𝑅 (.), and 𝐵𝑖,𝑅(.) are identified everywhere.

Proposition 1 shows that, for an individual i, we can identify beliefs 𝐵𝑖,𝑅(m𝑑) for every treatment d in 𝒟𝑑1

up to location and up to scale. That is, given beliefs at points 𝐵𝑖,𝑅(m1) and 𝐵𝑖,𝑅(m2), equation (14) provides the
value of 𝐵𝑖,𝑅(m𝑑) at every treatment d in 𝒟𝑑1 . Therefore, if we impose two restrictions in the beliefs function
𝐵𝑖,𝑅(.), the model can be fully identified.
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Suppose that the researcher is willing to restrict the value of subject i’s beliefs in treatments d1 and d2 such
that 𝐵𝑖,𝑅(m1) and 𝐵𝑖,𝑅(m2) are known to the researcher. For instance, the researcher could be willing to impose
the restriction of rational beliefs in these treatments – 𝐵𝑖,𝑅(m𝑑) = (𝑁 − 1)−1 ∑𝑗≠𝑖 𝑃𝑗,𝐶(m𝑑) for 𝑑 = 𝑑1, 𝑑2 – or
use information on elicited beliefs. Under these restrictions, we can use (12) evaluated at m1 and m2 to identify
𝛼𝑖,𝑅(m𝑅) and 𝛽𝑖,𝑅 (m𝑅). That is,

𝛽𝑖,𝑅(m𝑅) =
𝐹−1[𝑃𝑖,𝑅(m2)] − 𝐹−1[𝑃𝑖,𝑅(m1)]

𝐵𝑖,𝑅(m2) − 𝐵𝑖,𝑅(m1) (27)

And,

𝛼𝑖,𝑅(m𝑅) =
𝐵𝑖,𝑅(m2) 𝐹−1[𝑃𝑖,𝑅(m1)] − 𝐵𝑖,𝑅(m1) 𝐹−1[𝑃𝑖,𝑅(m2)]

𝐵𝑖,𝑅(m2) − 𝐵𝑖,𝑅(m1) (28)

Then, given 𝛼𝑖,𝑅(m𝑅) and 𝛽𝑖,𝑅(m𝑅), we can use equation (12) to obtain beliefs at any treatment 𝑑 ∈ 𝒟𝑑1 :

𝐵𝑖,𝑅(m𝑑) =
𝐹−1[𝑃𝑖,𝑅(m𝑑)] − 𝛼𝑖,𝑅(m𝑅)

𝛽𝑖,𝑅(m𝑅) (29)

Proposition 5
Suppose that Assumption 1–Assumption 5 hold and that 𝐵𝑖,𝑅(m1) and 𝐵𝑖,𝑅(m2) are known to the researcher. Then,

𝛼𝑖,𝑅(m𝑅), 𝛽𝑖,𝑅(m𝑅), and {𝐵𝑖,𝑅(m𝑑) ∶ 𝑑 ∈ 𝒟𝑑1} are point identified.   ■

Proposition 5 requires that subject i’s beliefs at d1 and d2 are observed to the researcher. This condition holds
true if the researcher has access to data of credible elicited belief at these two treatments. It also holds if the
researcher is willing to assume subject i has unbiased belief of her opponents’ behaviors at d1 and d2 so that
subject i’s beliefs can be identified from choice probabilities of the other subjects’ as column players.

If the researcher is willing to assume equilibrium beliefs – or some other beliefs – in more than two treat-
ments, then the model is over-identified and a test of over-identifying restrictions can be used to evaluate in-
ternal consistency of the model. For instance, in our empirical application to a coordination game, this test is
implicit in Table 4 where we show that estimated beliefs all appear to be within confidence bands regardless of
the over-identifying restrictions.

The selection of the two treatments where to impose the unbiased beliefs assumption is an important deci-
sion. The selection, if misspecified, can generate bias estimates on both preferences and beliefs. However, this
condition is substantially weaker than those imposed by the models presented in Example 1–Example 4 which
are commonly used in empirical applications. The identification result in Proposition 1 can provide a guidance
on the selection of treatments.

When the game is such that the matrix of monetary payoffs for the row player has a Toeplitz structure – as
in Proposition 2 – subject i’s preferences and beliefs are identified under only one restriction on beliefs.

Proposition 6
Suppose that Assumption 1–Assumption 5 hold and: (i) the matrix of monetary payoffs of the row player is symmetric

and diagonal-constant (Toeplitz matrix); (ii) 𝜇𝑖,𝑅 = 0; and (iii) 𝐵𝑖,𝑅(m1) is known to the researcher. Then, 𝛼𝑖,𝑅(m𝑅),
𝛽𝑖,𝑅(m𝑅), and {𝐵𝑖,𝑅(m𝑑) ∶ 𝑑 ∈ 𝒟𝑑1} are point identified.   ■

5 Estimation and Inference

In this section, we describe a constrained maximum likelihood approach to estimate the parameters of the
model and to test different types of restrictions on beliefs and/or preference.

Consider an experiment as described in Section 3 with K treatments where each treatment d is an element
of the set 𝒟 ≡ ℳ × {𝑅, 𝐶}. The unconstrained log-likelihood for this model and data has the following form:

ℓ (P) =
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

∑
𝑑∈𝒟

1 {𝑑𝑖𝑡 = 𝑑} (𝑎𝑖𝑡 log [𝑃𝑖,𝑟𝑑
(m𝑑)] + (1 − 𝑎𝑖𝑡) log [1 − 𝑃𝑖,𝑟𝑑

(m𝑑)]) (30)
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where P is the vector with all the conditional choice probabilities (CCPs): P = {𝑃𝑖,𝑟𝑑
(m𝑑) ∶ 𝑑 ∈ 𝒟 ; 𝑖 ∈ ℐ }.

This is the log-likelihood function of a nonparametric multinomial model. As it is well-known, the uncon-
strained maximum likelihood estimator (MLE) of P is the frequency estimator: �̂�𝑖,𝑟𝑑

(m𝑑) = [∑𝑇
𝑡=1 1{𝑑𝑖𝑡 = 𝑑}𝑎𝑖𝑡]

/[∑𝑇
𝑡=1 1{𝑑𝑖𝑡 = 𝑑}]. Let P̂𝑈 be this unconstrained MLE.
Proposition 1 establishes that – under assumptions 1–5 and the condition of unbiased beliefs for subject i as

row player – the vector of CCPs P should satisfy the following restrictions. For every treatment 𝑑 ∈ 𝒟(𝑑1, 𝑑2):

𝐹−1[𝑃𝑖,𝑅(m𝑑)] − 𝐹−1[𝑃𝑖,𝑅(m1)]
𝐹−1[𝑃𝑖,𝑅(m2)] − 𝐹−1[𝑃𝑖,𝑅(m1)] −

∑𝑗≠𝑖 𝑃𝑗,𝐶(m𝑑) − 𝑃𝑗,𝐶(m1)
∑𝑗≠𝑖 𝑃𝑗,𝐶(m2) − 𝑃𝑗,𝐶(m1) = 0, (31)

where 𝒟(𝑑1, 𝑑2) is the subset of treatments where the row player has the same payoffmatrix as in treatments d1
and d2. We can represent these restrictions using the system of equation f(P) = 0. With some abuse of notation,
this system can represent the restrictions of unbiased beliefs for only one subject, or for a subset of subjects, or
for all the subjects in the experiment. We can define a constrained MLE of CCPs that imposes the restrictions
f(P) = 0. This constrained MLE is:

P̂𝑐𝑜𝑛𝑠𝑡 = arg max
P

ℓ (P) subject to: f(P) = 0 (32)

Using this nonparametric maximum likelihood setting, we can test the null hypothesis f(P) = 0 using a likeli-
hood ratio test, a Wald test, or a Lagrange multiplier test. For instance, the likelihood ratio test is based on the
statistic:

2 [ℓ (P̂𝑈) − ℓ (P̂𝑐𝑜𝑛𝑠𝑡)] that under null →𝑑 𝜒2
𝑞 (33)

where q is the number of restrictions in the vector f(P). The Wald test is based on the statistic:

f (P̂𝑈)′ ⎡⎢
⎣

𝜕f(P̂𝑈)
𝜕P′ 𝑉𝑎𝑟 (P̂𝑈)

𝜕f(P̂𝑈)′

𝜕P
⎤⎥
⎦

−1
f (P̂𝑈) that under null →𝑑 𝜒2

𝑞 (34)

The MLEs and tests described above consider only estimation of CCPs and tests of unbiased beliefs. The re-
searcher may be interested in the estimation of the full model. Let B, α, and β be the vectors with beliefs and
preference parameters 𝛼𝑖𝑟(m𝑟) and 𝛽𝑖𝑟(m𝑟), respectively. We can distinguish two sets of restrictions: the best re-
sponse equations, 𝐹−1[𝑃𝑖,𝑟(m)]−𝛼𝑖,𝑟(m𝑟)−𝛽𝑖,𝑟(m𝑟) 𝐵𝑖,𝑟(m) = 0; and additional restrictions that we need to just
identify or to over-identify the full model. We represent all the restrictions as c(P,B, 𝛼, 𝛽) = 0. The constrained
MLE is:

(P̂𝑐𝑜𝑛𝑠𝑡, B̂, ̂𝛼, ̂𝛽) = arg max
P,B,𝛼,𝛽

ℓ (P) subject to: c(P,B, 𝛼, 𝛽) = 0 (35)

We can test the overidentifying restrictions involved in this constrained MLE using likelihood ratio test, Wald
test, or Lagrange multiplier test.

6 Empirical Applications

In this section, we illustrate our identification results and tests using data from two laboratory experiments.
These experiments incorporate the exclusion restriction in Assumption 5. Section 6.1 presents the matching
pennies game studied byGoeree andHolt (2001). Section 6.2 dealswith the public good game fromHeinemann,
Nagel, and Ockenfels (2008).

6.1 Matching Pennies

6.1.1 Experiment

Two players simultaneously choose between two possible actions: 0 or 1. Table 1 presents the monetary payoff
matrices. The pair of numbers between brackets, [mR, mC], represents the monetary payoffs of the row and
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the column player, respectively, measured in cents. The experiment contains three games or monetary payoff
matrices. The only difference across games is in the monetary payoff of the column player under action profile
(𝑎𝑅, 𝑎𝐶) = (0, 0). It is clear that this experimental design satisfies the exclusion restriction in Assumption 5.

Table 1: Matching pennies experiment (Goeree and Holt 2001).

Player C

aC = 0 aC = 1

Monetary payoff matrix m1

Player R aR = 0 [40, 320] [80, 40]
aR = 1 [80, 40] [40, 80]

Monetary payoff matrix m2

Player R aR = 0 [40, 80] [80, 40]
aR = 1 [80, 40] [40, 80]

Monetary payoff matrix m3

Player R aR = 0 [40, 44] [80, 40]
aR = 1 [80, 40] [40, 80]

The experiment includes 50 subjects (N = 50) who – at themoment of the experiment –were undergraduates
in an economic class at the University of Virginia. Subjects were randomly matched and assigned as row or
column player. Every subject played the three games once, and his/her role as either row or column player was
fixed. The order of the three games – the three payoff matrices – was also randomly alternated.11

In this experiment, we have that T = 3 such that each subject is observed only once in each treatment. There-
fore, it is impossible to estimate utility and beliefs at the individual level. In this application, we impose the
restriction that subjects have the same utility function of money. Under this restriction, the data can be seen as
coming from a single subject making 25 independent decisions for each treatment (m, r).

6.1.2 Empirical Results

(i) Unconstrained estimation of CCPs.
Table 2 presents frequency estimates of players’ choice probabilities from this experiment and the corre-

sponding standard errors. These estimates correspond to the unconstrained MLE defined in equation (30). The
behaviors of both players vary across the three treatments. Though the monetary payoff matrix of the row
player is the same in the three treatments, the behavior of this player varies substantially. According to the
model, the change in the row player’s behavior should be attributed to the change in this player’s beliefs about
the column player’s choices. We exploit this source of variation in the experiment to test unbiased beliefs of the
row player and to identify beliefs and utilities for this player. Since the experiment does not provide the same
source of variation for the column player, we cannot identify beliefs and preferences for this player.

Table 2: Matching pennies game experiment empirical choice probabilities: N = 50 (standard errors in parentheses).

Player R – �̂̂��̂�𝑃𝑅(m) Player C – �̂̂��̂�𝑃𝐶(m)
Payoff matrix m1 0.84 (0.073) 0.04 (0.039)
Payoff matrix m2 0.52 (0.100) 0.52 (0.100)
Payoff matrix m3 0.20 (0.080) 0.92 (0.054)

For player r, �̂�𝑟(m) = [∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝑎𝑖𝑡,𝑟𝟙{𝑑𝑖𝑡 = (m, 𝑟)}]/[∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝟙{𝑑𝑖𝑡 = (m, 𝑟)}].

Themonetary payment for playerC in outcome (0, 0) declinesmonotonicallywhenwe go frompayoffmatrix
m1 to m2, and from m2 to m3. Therefore, alternative aC = 0 becomes less attractive to the column player when
we go down along the sequence of games m1 → m2 → m3. This shows in the estimated choice probability of
the column player. The probability of choosing alternative 1 increases: �̂�𝐶(m1)[= 0.04] < �̂�𝐶(m2)[= 0.52] <
�̂�𝐶(m3)[= 0.92], and these inequalities are statistically significant.

If player R had rational beliefs, she would predict that player C chooses aC = 0 with higher probability when
we move through the sequence of games m1 → m2 → m3. The best response to such a belief is to choose aR
= 1 less frequently. The estimated choice probabilities in Table 2 are consistent with this argument: �̂�𝑅(m1)[=
0.84] > �̂�𝑅(m2)[= 0.52] > �̂�𝑅(m3)[= 0.20], and these inequalities are statistically significant.
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However, this argument is qualitative and fails to consider the effect of preferences. Specifically, the above
inequalities only imply that, when moving from m1 to m3, player R correctly predicts that player C will choose
action 1 less frequently. However, these inequalities are not informative about the magnitude of player R’s
beliefs. This player may still have a biased belief on the magnitude of the change of player C’s choices even
though she correctly predicts the direction of the change. Furthermore,without knowing howmuchdoes player
R prefer 80 cents than 40 cents, it is impossible to test whether she has an unbiased belief on the magnitude.
The method studied in this paper takes preferences into account and is suitable to test unbiased belief.

(ii) Wald test of unbiased beliefs of row players.
Table 3 presents Wald tests of the null hypothesis of unbiased beliefs as described in equation (34) above. In

this experiment, the matrices of monetary payoffs are Toeplitz. Therefore, the restrictions of unbiased beliefs
have the form in Proposition 2 and equation (18). The vector of restrictions f(P) = 0 includes two restrictions:
𝑓1𝑑(P) = 0 for d = 2,3, where:

𝑓1𝑑(P) ≡ 𝐹−1[𝑃𝑅(m𝑑)] (1 − 2 𝑃𝐶(m1)) − 𝐹−1[𝑃𝑅(m1)] (1 − 2 𝑃𝐶(m𝑑)) (36)

Table 3: Wald tests of unbiased beliefs matching pennies.

Probit Logit Exponential Double Exp.

𝐻0 ∶ 𝑓12(P) = 0
𝑓12(P̂) [s.e] −0.0859 [0.3242] −0.1400 [0.5402] 0.2114 [0.3041] 0.0935 [0.4033]
(p-value) (0.7932) (0.7926) (0.4338) (0.8146)
𝐻0 ∶ 𝑓13(P) = 0
𝑓13(P̂) [s.e] 0.0758 [0.2886] 0.1277 [0.4760] −0.1924 [0.2442] −0.0859 [0.3416]
(p-value) (0.7876) (0.7868) (0.4142) (0.8014)
𝐻0 ∶ 𝑓12(P) = 𝑓13(P) =
0
Chi-square 0.1392 0.1336 0.6621 0.0633
(p-value) (0.9328) (0.9354) (0.7327) (0.9688)

Table 3 presents Wald tests for three different null hypotheses: (1) 𝑓12(P) = 0; (2) 𝑓13(P) = 0; and (3) the
joint restriction, 𝑓12(P) = 0 and 𝑓13(P) = 0. We report our tests under four specifications for the distribution
of the unobservables: Probit, Logit, Exponential and Double Exponential. All the tests are consistent with the
hypothesis that the row player has unbiased beliefs in the three treatments. All the p-values are greater than
0.4 and highly insignificant.

(iii) Full estimation of preferences and beliefs.
Table 4 presents estimates of utility and belief parameters using the constrained maximum likelihood es-

timator defined in equation (35). In addition to the restrictions from best response equations, we further im-
pose the restriction that the row player has unbiased beliefs in one of the three games. Given the Toeplitz
matrix of monetary payoff we have that 𝛽𝑅(m𝑅) = −2𝛼𝑅(m𝑅). And given that the payoff matrix of the row
player is constant over the three treatments, the likelihood function depends only on one utility parameter:
𝛼𝑅(m𝑅) = 𝜋(80) − 𝜋(40). We present only estimates for the Logit model, but the results are qualitatively the
same under the other distributions.

Table 4: Full ML estimation of preferences and beliefs(a) matching pennies.

Parameter Under unbiased beliefs in
game 1

Under unbiased beliefs in
game 3

Under unbiased beliefs in
games 1, 2, 3

π(80) − π(40) 1.8024∗∗∗ (0.6129) 1.6504∗∗∗ (0.6325) 1.7309∗∗∗ (0.4413)
𝐵𝑅(m1) 0.04 (0.039) [con](b) −0.0024 (0.2538)(c) 0.04 (0.039) [con](b)
𝐵𝑅(m2) 0.4778∗∗∗ (0.1113) 0.4757∗∗∗ (0.1216) 0.52 (0.100) [con](b)
𝐵𝑅(m3) 0.8846∗∗∗ (0.1907) 0.92 (0.054) [con](b) 0.92 (0.054) [con](b)
log-likelihood −69.2870 −69.2870 −69.3417
LR test – unbiased beliefs 0.1093
(p-value) (0.9468)
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(a) Standard errors are in parenthesis; ∗∗∗, ∗∗, ∗ represent significance at 10%, 5% and 1%, respectively.
(b) The estimated belief parameter under the unbiased restriction is the MLE of PC(m1).
(c) The estimate of BR(m1) is negative because we do not impose the restriction 0 ≤ BR(m1) ≤ 1.
Restricting BR(m1) to be zero implies an almost identical value for the log-likelihood.

Table 4 presents our estimation results. The first two columns show the estimates when we impose player R
has unbiased belief in games 1 and 3, respectively.12 As shown by Proposition 6, each of these two restrictions
just identifies the model. Therefore, by construction, they yield the same value for the log-likelihood function.
The last column shows the estimates of preferences when we impose the restriction of unbiased beliefs in the
three games. In all these specifications, the estimates of the utility parameter 𝛼𝑅 = 𝜋(80)−𝜋(40) are significantly
positive and of very similarmagnitude. The last row shows the likelihood ratio test of unbiased belief hypothesis
in all treatments. The test statistic has a high p-value of 0.9468. This is also reflected by the closeness between
the unconstrained and constrained estimates of beliefs.

Goeree and Holt (2001) conclude that player R tends to correctly predict player C’s behaviors, based on
the observations of choice probabilities. In this paper, we confirm their qualitative observation in a game with
incomplete information and a nonparametric specification of the utility function.

6.2 Coordination Game

Heinemann, Nagel, and Ockenfels (2009, henceforth HNO) study and measure the strategic uncertainty that
appears in games with multiple equilibria when players have non-coordinated beliefs about the selected equi-
librium. To study this phenomenon, they design and implement a randomized experiment using a set of coor-
dination games with different group sizes, monetary payoffs and coordination difficulty. Unlike the matching
pennies in previous subsection, HNO experiment contains: (a) many experiments for each subject – large T –
such that we can allow preferences and beliefs to vary freely over subjects; and (b) a rich variation of monetary
payoffs such that we can estimate a non-linear utility function of money.

6.2.1 Experiment

Heinemann, Nagel, and Ockenfels (2009) study a coordination game of G players with binary choice. The game
is a particular case of the public good game that we have presented in Section 4.2.2 under the restrictions c =
ms – the contribution to the public good is equal to the safe amount of money – and 𝑔 = 15− 𝑚𝑠. Consequently,
the identification results in Proposition 4 and Proposition 5 apply.

In this coordination game, the matrix of players’ monetary payoffs is determined by m ≡ (𝑚𝑠, 𝜙, 𝐺). In
addition, 𝐵𝑖(m) represents individual i’s belief on other players’ aggregate behavior, instead of beliefs about
the choice of a single player. It is the belief probability that at least a fraction ϕ of the other (G − 1) players will
choose action 1. We use 𝑃𝑐𝑜

−𝑖(m) to denote the actual probability of this event, i.e. 𝑃𝑐𝑜
−𝑖(m) = 𝑃𝑟𝑜𝑏[∑𝐺

𝑗=1,𝑗≠𝑖 𝑎𝑗 ≥
𝜙(𝐺 − 1)]. Therefore, subject i has unbiased beliefs in game m if 𝐵𝑖(m) = 𝑃𝑐𝑜

−𝑖(m). As shown in Section 4.2.2, the
coordination difficulty ϕ and the group size G can affect a subject’s beliefs but not her own monetary payoff,
such that they can be used as exclusion restrictions to identify beliefs.

The experiment was conducted in different locations: Frankfurt, Barcelona, Bonn and Cologne. Heinemann,
Nagel, andOckenfels (2009) report that there are differences among subject pools. Our empirical analysismainly
focuses on the observations from Frankfurt since this pool containsmost of subjects.We also report results from
Bonn where data on elicited beliefs is available such that we can test the validity of elicitation process.13

The experiment includes 90 treatments or games according to all the possible values of the parameters
m = (𝑚𝑠, 𝜙, 𝐺) with 𝐺 ∈ {4, 7, 10}, 𝜙 ∈ {1/3, 2/3, 1}, and 10 values of ms between 1.5 Euros and 15 Euros with
an incremental unit of 1.5 Euros. As this coordination game has symmetric monetary payoffs, the role of player
is indistinguishable and it is not a treatment variable in this section. Subjects were randomly assigned into a
group G. Then, given the selection of group size G, a subject participates in all the treatments for every value of
ϕ and ms. Therefore, each subject participates in 30 treatments. There are 64, 42, 40 subjects assigned to group
size G = 4,7,10, respectively.

In addition to this coordination game, each subject also makes 10 binary lottery choices. Action 0 is a safe
choice that pays ms Euros (same set of 10 values of ms as coordination game) and action 1 is risky that rewards
15 Euros with probability 2/3. From the point of view of expected utility maximization, in absence of altruism
and/or envy, this lottery choice is equivalent to a coordination problem such that the coordination probability
is exogenously and objectively fixed at 2/3. We include these 10 lottery choices in the estimation as it is natural
to impose unbiased belief assumption and facilitate the estimation of individual’s preferences.
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To prevent learning, Heinemann, Nagel, and Ockenfels (2009) give no feedback across treatments. At the
end of a session, only one treatment is randomly selected to determine subject’s earning. This avoids potential
hedging and each decision situation can be treated as independent. The duration of a session is about 40–60
min with an average earning of 16.68 Euros per subject.

6.2.2 Empirical Results

(i) Pooled estimates of CCPs and of the true probability if successful coordination
Figure 1 plots the empirical choice probabilities pooling all the subjects in the same treatment. Each of the

three panels corresponds to a value for group size G. The horizontal axis represents the safe action’s monetary
rewardms.We report the estimatedCCPs for𝜙 = 1/3 (i.e. blue line) andϕ= 1 (i.e. red line). It is clear that subjects
are more reluctant to choose the risky action when they have a better safe choice. Coordination difficulty ϕ
significantly affects subjects’ choice probabilities, especially when the safe action’s monetary payoff is in the
medium range.

Figure 1: Empirical choice probabilities.

Figure 2 plots the empirical probability of successful coordination pooled over all the subjects in the same
treatment: 𝑃𝑐𝑜

−𝑖(m) = Pr[∑𝐺
𝑗=1,𝑗≠𝑖 𝑎𝑗 ≥ 𝜙(𝐺 − 1)]. We calculate this probability by drawing all possible combi-

nations of (G − 1) individuals from the N subjects in the experiment. Since N is relative large, each subject i
faces the same actual coordination probability: 𝑃𝑐𝑜

−𝑖(m) = 𝑃𝑐𝑜(m). Moreover, since the number of combinations
is very large, the sampling error in the estimation of 𝑃𝑐𝑜(m) is negligible. We see that 𝑃𝑐𝑜(m) declines with ms
and with ϕ. In particular, 𝑃𝑐𝑜(m) is practically equal to one for treatments with 𝜙 = 1/3 and ms ≤ 10, and it is
equal to zero when ϕ = 1 and ms > 10.

Figure 2: Actual coordination probabilities.

(ii) Specification assumptions
In this experiment, we aim to estimate preferences and test unbiased belief assumption at the individual

level. Since a subject only participates in a single group size G, we rely on the variation of ϕ to identify the
model.

We apply the constrained MLE as described in equation (35). To fully identify the preferences and beliefs of
an individual, we impose the restriction that she has unbiased beliefs when 𝜙 = 1/3. Together with the data on
lottery choice, this restriction just identifies the preference and subject i’s belief when 𝜙 = 2/3 and when or ϕ =
1.

18

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Aguirregabiria and Xie

We apply the likelihood ratio test of unbiased beliefs separately for each subject. In the implementation of
this test, the constrained MLE imposes the restriction that individual i has unbiased beliefs at every treatment.

We select 𝜙 = 1/3 as treatment with unbiased beliefs because coordination is relatively easy to maintain in
this game. As shown in Figure 2, successful coordination is achieved with probability very close to 1 for most
values of ms. This observation suggests that strategic uncertainty is small when 𝜙 = 1/3, and it is relatively
easy for subjects to form unbiased beliefs. In contrast, when 𝜙 = 2/3, the probability of successful coordination
varies substantially as ms increases. Such a drastic change in 𝑃𝑐𝑜(m) may imply substantial strategic uncertainty
and prevent correct beliefs.

There are T = 40 observations per subject: 10 lottery choices and 30 coordination games. Using a fully non-
parametric specification of preferences and beliefs, themodel has 30 unknown parameters per subject: 10 utility
parameters 𝜋𝑖(𝑚𝑠) − 𝜋𝑖(0) for 10 values of ms, and 20 belief parameters. The estimates of these 30 parameters
with 40 observations is quite imprecise. Therefore, we impose some parametric restrictions.

We assume a CRRA utility function: 𝜋𝑖(𝑚) = 𝑚𝜌𝑖 , where ρi is a subject-specific parameter and 1 − 𝜌𝑖 repre-
sents the subjects’ relative risk aversion. That is, 0 < 𝜌𝑖 < 1 implies risk aversion, and ρi > 1 implies risk loving
preferences.

For the beliefs function, we consider the following specification:

𝐵𝑖(m) = exp {ln (𝑃𝑐𝑜(m)) − ln (1 − 𝑃𝑐𝑜(m)) + 𝛾𝑖(m)}
1 + exp {ln (𝑃𝑐𝑜(m)) − ln (1 − 𝑃𝑐𝑜(m)) + 𝛾𝑖(m)} (37)

Function 𝛾𝑖(m) captures the bias in the beliefs of subject i in treatment m such that 𝛾𝑖(m) = [ln (𝐵𝑖(m)) −
ln (1 − 𝐵𝑖(m))]− [ln (𝑃𝑐𝑜(m)) − ln (1 − 𝑃𝑐𝑜(m))]. If function 𝛾𝑖(m)were unrestricted, our specification of beliefs
would be completely nonparametric. We impose the restriction that 𝛾𝑖(m) = 𝛾𝑖(𝜙) for anym = (𝑚𝑠, 𝐺, 𝜙). That
is, we restrict γi to vary only with ϕ. This restriction is motivated by the need of a parsimonious specification
due to the relatively small T. Importantly, we allow all parameters to vary across subjects.

Our identification results require that the exclusion restriction exogenously affects players’ choice proba-
bilities; therefore, we exclude the subjects who always make the same decision when ϕ or ms vary. We further
eliminate 5 subjects whose behaviors are anomalies.14 This reduces our sample from 146 subjects to 95 individ-
uals.

(iii) LR test of unbiased beliefs
We have implemented the LR test of unbiased beliefs separately for each of the 95 subjects, and obtained

the corresponding p-values. Figure 3 plots the inverse of the empirical CDF of these p-values. The horizontal
axis indexes the subject rank, rather than the cumulative probability. The blue line represents our benchmark
model with utility function 𝜋𝑖(𝑚) = 𝑚𝜌𝑖 and the black line plots the result under the restriction of linear
utility, 𝜋𝑖(𝑚) = 𝑚. At the individual level, the hypothesis of unbiased beliefs is rejected at 5% significance
level for a majority of the subjects: 75 out of 96. Cautiously, since we perform unbiased belief test separately for
each individual, this result should not be interpreted as claiming that 75 subjects have biased beliefs, because
that null hypothesis involves multiple testing. To shed light on beliefs at aggregate level, we further test the
null hypothesis that all individuals have unbiased beliefs using Bonferroni’s correction. More specifically, to
obtain a significance level α for the joint test for N individuals, we apply a significance level 𝛼/𝑁 for each of the
individual tests. With this Bonferroni correction, the null hypothesis that all individuals have unbiased beliefs
is rejected at 1% significance level.

A comparison between the blue and black lines shows an interesting result. Intuitively, if a subject is not risk
neutral, imposing the restriction of a linear utility function biases the estimate of the belief functions. Therefore,
the estimated beliefs may spuriously generate over-rejection of the null hypothesis of unbiased beliefs. Our
results confirm this intuition, as reflected by a black curve that is below the blue curve. On average, the p-value
under the linear utility function is 0.035 lower than the one under the CRRA utility.
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Figure 3: Inverse CDF of p-value of unbiased belief test.

(iv) Estimation of beliefs 𝛾𝑖(𝜙)
In the experiment, most of individuals correctly predict that the actual coordination probability decreases

with the coordination difficulty ϕ: they choose the risky action less frequently as ϕ increases. However, our test
suggests that even though most subjects respond in the right direction, they fail to respond in the right mag-
nitude. As shown in Figure 2, the actual probability of successful coordination decreases very sharply when ϕ
increases. In contrast, Figure 1 shows that players’ choice probability of risk action only decreases moderately
as ϕ increases. This moderate change in players’ actions imply that subjects underestimate the drop of coor-
dination probability when coordination is more difficult. More specifically, 64 out of 95 subjects have positive
estimates of both 𝛾𝑖(𝜙 = 2/3) and 𝛾𝑖(𝜙 = 1). These individuals over-predict the probability of coordination
when 𝜙 = 2/3 or 1, and therefore, they under-estimate the decrease in the actual probability of coordination.

(v) Estimation of risk preferences
Figure 4 plots the histogram of the estimated risk parameters ρi. This histogram shows that for approx-

imately two-thirds of the individuals the estimate of ̂𝜎𝑖 implies risk aversion (i.e. ̂𝜎𝑖 < 1). Interestingly, for
around one-third of the subjects, the estimates of ̂𝜎𝑖 implies risk loving preferences (i.e. ̂𝜎𝑖 > 1). However, this
figure does not provide any information for the statistical significance of the estimates.

Figure 5 presents the scatter plot of the estimate of ̂𝜎𝑖 and the corresponding t-statistic for the null hypothesis
of risk neutrality, i.e. ρi = 1. The horizontal red lines represent the 5% critical values of one-sided tests. Therefore,
dots in the top right region correspond to subjects for which we reject the null hypothesis of risk neutrality in
favor of the alternative hypothesis of risk loving preferences. Similarly, dots in the bottom left area correspond
to subjects for which we reject the null hypothesis of risk neutrality in favor of the alternative hypothesis of risk
aversion. This figure shows that 67 subjects have an estimate ̂𝜌𝑖 < 1 and for 49 of them it is significantly lower
than 1 at the 5% level. Also, we find that ̂𝜌𝑖 > 1 for 28 individuals, for 5 of them we find that significant risk
loving preferences at 5% significance level.
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Figure 4: Histogram of risk parameter ̂𝜌i.

Figure 5: Point estimates of ̂𝜌 and t-statistic.

(vi) Relationship between risk aversion and beliefs
We investigate the relationship between risk preferences and beliefs. A potential source of biased beliefs is

that a subject may over-estimate the similarity between his preferences towards risk and those of other subjects.
For instance, a risk loving individual may believe other subjects are also willing to take high risk, and this can
generate an over-estimate of the coordination probability. To investigate this hypothesis, we first calculate the
belief bias �̂�𝑖(m) − 𝑃𝑐𝑜(m) for each subject i and treatment m, and then we average them at the subject level
using the 30 treatments / observations per subject. This statistic (�̂�𝑖 − 𝑃𝑐𝑜) measures how much individual i’s
beliefs depart from unbiased beliefs. Figure 6 plots the scatter of these average belief biases and the estimated
risk preference ̂𝜌i. Most subjects tend to over-predict the probability of coordination, as reflected by a positive
average belief bias. Interestingly, the magnitude of the over-prediction is positively correlated with the indi-
vidual’s risk preference. This correlation is equal to 0.5137 and is significant at the 1% significance level. This
evidence is consistent with the interpretation that an individual who prefers risk tends to over-estimate other
individuals’ risk preference and consequently over-estimates the coordination probability.
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Figure 6: Average belief bias and risk parameter ̂𝜌i.

(vii) Testing the validity of elicited beliefs
Heinemann, Nagel, and Ockenfels (2009) also conducted a follow-up experiment with the same design but

added an additional belief elicitation process that directly asked subjects to report their beliefs.15 This follow-
up experiment was done in Bonn and 40 subjects participated. We apply our method to these data to test the
validity of elicited beliefs: that is, to test whether subjects best respond to their reported beliefs.

Heinemann, Nagel and Ockenfels studied two sessions of elicitation methods with 20 subjects in each ses-
sion. In the “global” session, each subject reports her/his subjective probability that the sum of the other play-
ers who coordinate is greater or equal to the corresponding threshold. In the “individual” session, a sub-
ject reports his/her subjective probability that a randomly chosen individual will choose the risky action.
Since this reported belief on individual behavior does not correspond to the definition of 𝐵𝑖(m), we need
to calculate each subject’s belief on aggregate behavior. We assume that each subject views other individu-
als as independent and identical draws from their reported belief. Under these conditions, 𝐵𝑖(m) is equal to
1 − 𝐵𝐼𝑁[𝜙(𝐺 − 1) − 1, (𝐺 − 1), 1 − 𝑏𝑖], where 𝐵𝐼𝑁(⋅) is the CDF of binomial distribution, and bi is subject i’s
reported belief on individual behavior. As explained above, we exclude subjects whose actions are fixed when
ϕ or ms vary. This gives us 16 and 13 subjects in the “global” and the “individual” sessions.

Figure 7: Inverse CDF of p-value of belief elicitation test.

For each subject, we apply a likelihood ratio test for the null hypothesis that the subject’s belief is equal to
the self-reported belief. Figure 7 plots the inverse CDF of the p-values of these individual tests. The blue and
black lines show the results in “global” and “individual” sessions, respectively. We find that most of subjects
respond to their reported beliefs. In the “global” session, only 3 out of 16 subjects have a p-value less than
0.05. With Bonferroni correction, the hypothesis that all individuals best respond to elicited belief cannot be
rejected at 1%. This is consistent with belief elicitation literature that shows elicited beliefs are consistent with
individuals’ actions. See Schotter and Trevino (2014) and Schlag, Tremewan, and Van Der Weele (2015).

In contrast, “individual” elicited beliefs explain the data substantially worse than “global” elicited beliefs.
This is reflected by a lower black line than the blue one in Figure 7. In the “individual” session, 9 out of 13
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subjects have a p-value less than 0.05. With Bonferroni correction, the hypothesis that all subjects best respond
to elicited belief is rejected at 1% significance level.

There are at least two explanations for the rejection of elicited belief on individual behavior. First, subjects
may believe that individuals are heterogeneous and/or their actions are correlated. If that were the case, our
construction of 𝐵𝑖(m) using the Binomial distribution would be incorrect. A second possible explanation is
that subjects may make mistakes when calculating 𝐵𝑖(m). This seems plausible as the Binomial distribution is
cumbersome to evaluate, especially in an experimental environment where a calculator is not provided.

(viii) Other-regarding preferences
The existence of other-regarding preferences seems a very relevant concern in this application. An individ-

ual may get utility from her contribution to the public good because it has a positive effect on other individuals’
utilities. Our identification result in Proposition 3 requires asymmetry in the matrix of monetary payoffs of the
players, and therefore, it does not apply to the coordination game in this empirical application because mone-
tary payoffs are symmetric in this game. Nevertheless, we think that other-regarding preferences is a potential
issue in this empirical application and we have addressed it as follows.

The experiment in the coordination game includes treatments where subjects participate in a single-agent
decision problem – a choice between two lotteries – with very similar structure as the coordination game –
a safe choice and a risky choice – but where the probability distribution in the lottery for the risky choice –
that corresponds to the probability of successful coordination in the game – is exogenous and known to the
subjects. In these single-agent treatments, subjects’ decisions do not depend on other-regarding preferences,
simply because there are not “others” playing the game and receiving payoffs. Therefore, if a subject has a
positive preference for the amount of money received by other players, then the probability that this subject
chooses the risky alternative should be largerwhen playing the actual game thanwhen playing the single-agent
problem, provide they have the same lottery for the risky choice. Interestingly, for every subject in this experi-
ment we find that either there is not significant difference between these choice probabilities or the difference
goes in the opposite direction: subjects are more likely to take the risky alternative in the single-agent model
than in the game even when the true probability of “successful coordination” in the game is higher than in
the single-agent treatment. Note also that this is despite we find that most subjects have over-optimistic beliefs
about the probability of successful coordination in the actual game

Based on this result, we think that our empirical results in the coordination game seem to be robust to
potential other-regarding preferences.

7 Conclusion

This paper studies the non-parametric identification of players’ preferences and beliefs using experimental
data. With an exclusion restriction that affects a player’s belief but has no impact on her preference, we show a
function of beliefs is identified. This function can be used to test different belief restrictions, such as unbiased
belief assumption and the validity of elicited beliefs. In addition, if the researcher imposes one of above belief re-
strictions in only two treatments, players’ beliefs in all other treatments and preferences are non-parametrically
identified. These identification results are obtained at individual level. The exclusion restriction required for
identification can be either the variation of a single player’s monetary payoff matrix or a change of payoff allo-
cation rule in a coordination game.

These exclusion restrictions can be easily generated by experimental data. Therefore, our identification re-
sults provide a guidance on the design of the experiment if the researcher is interested in estimating subjects’
preferences and beliefs. The experiment should include at least three treatments where the monetary payoffs
of a player remain constant while the payoffs of other players vary.

We apply our test and identification results to experimental data from amatching pennies game (Goeree and
Holt 2001) and a coordination game (Heinemann, Nagel, and Ockenfels 2009). In the matching pennies game,
subjects tend to correctly predict other players’ behaviors when other players’ monetary payoffs vary. In the
coordination game, the null hypothesis of unbiased belief is rejected for a majority of subjects. Moreover, there
is substantial individual heterogeneity among subjects’ preferences. A majority of individuals are risk averse
while some are risk loving. Finally, incorrectly imposing the linear utility assumption leads an over-rejection of
the unbiased belief test.
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Notes
1 Cheung and Friedman (1997) estimate a belief learning process in a repeated game. Nyarko and Schotter (2002) compare the estimated
beliefswith elicited beliefs. Kline (2018) estimates the solution/equilibrium concept.Melo, Pogorelskiy, and Shum (2019) test the restrictions
of the Quantal Response Equilibrium (QRE) by Mckelvey and Palfrey (1995, 1998).
2 Karni (2009) and Grether (1992) – following Smith (1961) – propose elicitation mechanisms based on randomized payments. See Schotter
and Trevino (2014) and Schlag, Tremewan, and Van Der Weele (2015) for recent reviews of elicitation methods and their practical issues.
3 In an influential study, Roth and Malouf (1979) proposed to linearize the utility function by assigning the payoff as the probability
of winning a fixed reward. Feltovich (2000) and Ochs (1995), among others, applied this mechanism. Selten, Sadrieh, and Abbink (1999)
and Goeree, Holt, and Palfrey (2003) raised concerns about the validity of this mechanism. Another common method elicits players’ risk
preferences using a lottery choice with a known probability distribution. Heinemann, Nagel, and Ockenfels (2009) use this method. A
third approach comprises estimating a parametric function for the utility of money, e.g. a CRRA utility function. This is the approach
used by Goeree, Holt, and Palfrey (2003). Misspecification of the parametric utility function can generate biases in beliefs. For instance, the
researcher may spuriously conclude that players’ beliefs are biased.
4 To the best of our knowledge, the only paper that shows a contradictory evidence is Costa-Gomes and Weizsacker (2008) who found
significant discrepancy between elicited beliefs and beliefs inferred from players’ actions.
5 See Table 2 in Schlag, Tremewan, and Van Der Weele (2015) for a comprehensive list of empirical evidence on this issue. Other practical
issues related to eliciting beliefs include the hedging problem and the complexity of the methods. The empirical evidence on hedging is
mixed. See Section 3 in Schotter and Trevino (2014) or Section 4 in Schlag, Tremewan, and Van Der Weele (2015) for more details.
6 We find this experimental design of monetary payoffs in important studies such as Ochs (1995), Goeree and Holt (2001), and Mckelvey,
Palfrey, and Weber (2000), among others.
7 There are other experimental designs that can generate this type of exclusion restriction – variation in opponents’ behavior without
changing a player’s payoff matrix. For instance, in a public good provision game, variation in the number of players can change the belief
about the probability of successful coordination, but it has no direct impact on a player’s payoffmatrix.Wefind such a design inHeinemann,
Nagel, and Ockenfels (2009).
8 Our model and identification results can be generalized to games with multiple players and multiple actions.
9 Here we present a version of Level-K and CH models where individuals have homogeneous preferences. It is possible to extend these
models to allow for preferences that are heterogeneous (see Rogers, Palfrey, and Camerer (2009)). For a survey of papers in this field, see
Crawford, Costa-Gomes, and Iriberri (2013).
10 Aguirregabiria and Magesan (2019) present a Monte Carlo study that shows the power of a similar test as ours, in context of dynamic
games.
11 For more details on this experiment, visit http://www.people.virginia.edu/~cah2k/trdatatr.pdf. In addition to this matching pennies
game, subjects played other nine types of games which are not the focus of our paper. Every subject was paid $6 for showing up. The
average earnings of a subject over all the 10 games – during a two-hour session – was about $35 ranging between $15 and $60.
12 We omit the specification that assumes player R has unbiased belief in game 2. This is because player C’s choice probability is very close
to 50%, with Toeplitz monetary payoff matrix, player R’s expected utility of two actions will be very close, regardless of the utility function
she has. Therefore, the utility function is imprecisely estimated.
13 The experiment in Frankfurt was done at a computer laboratory in the Economics Department of the University of Frankfurt between
May and July 2003. Most of subjects were undergraduates in business and economics. For details about this experiment, see Section 3 in
Heinemann, Nagel, and Ockenfels (2009). The experimental instructions are available on the supplements page of the Review of Economic
Studies website at http://www.restud.org.
14 For instance, they may randomly choose each action or choose coordination with higher probability when safe action pays more mon-
etary reward. These anomalies yield a utility function that is decreasing in monetary payoff.
15 The authors offered incentives to report true beliefs by rewarding subjects through a quadratic scoring rule. See Heinemann, Nagel,
and Ockenfels (2009) for more details.
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