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CONTEXT AND MOTIVATION

� Multiplicity of equilibria is a prevalent feature in many economic models
[in particular, in static or dynamic discrete games often used in empirical IO].

� From an empirical perspective, there are two (not mutually exclusive) views
on models with multiple equilibria:

(A) An imporant aspect needed to explain some features of data/reality.

(B) A nuisance: "Incompleteness" is a problem for inference/prediction.

� An econometric model with multiple equilibria is an incomplete model
because it does not have a unique reduced form. This raises di¤erent issues in:

(a) Identi�cation (b) Estimation (comput. issues) (c) Counterfactuals



� A substantial recent literature has popularized two-step methods for a class
of games of incomplete information. The �rst step identi�es nonparametrically
the equilibrium, or equilibria, played in the data. In the second step, estimates
of structural parameters are obtained by maximizing a criterion (e.g. a pseudo
likelihood) based on best response or value functions evaluated at the equilib-
rium estimated in the �rst step. Though computationally simple and useful,
two-step best response methods have some limitations.

1. Not statistically e¢ cient, specially in small samples.

2a. Rely on consistent estimators of equilibrium strategies (CCP�s)
in �rst step. These estimators are simple to obtain only when behavior
does not depend on common knowledge variables (payo¤-relevant or
not) unobserved by the econometrician.

2b. In particular, a key maintained assumption in almost every
application: There is only one equilibrium type in the data. This rules
out the possibility that multiplicity of equilibria in the data may explain
features of real economies.



� Another feature of these games is that private information variables are inde-
pendent across players. This implies that, conditional on common knowledge
observable covariates x, the actions of individual players are statistically inde-
pendent. This key implication of the structure of the game is testable and very
likely to be rejected. Rejection has two interpretations: a) Multiple equilibria;
b) Payo¤-relevant unobservables which are common knowledge.



� THIS PAPER deals with identi�cation in empirical games of incomplete/asymmetric
information when there are three sources of unobservables for the re-
searcher:

1: Payo¤-Relevant variables, players�private information (PI);

2: Payo¤-Relevant variables, common knowledge to players (PRU);

3: Multiple equilibria (MEQ) with equilibrium selection which is
common knowlege to players but stochastic ;

� Previous studies have considered: only [PI]; or [PI] and [PRU]; or [PI] and
[MEQ]; but not all three together.



RELATED LITERATURE: Games of incomplete information

� First papers (Aguirregabiria, 2004; Seim, 2006) include only PI unobserv-
ables. Multiple equilibria ("in the model") is not an issue for the identi�cation
of the model.

� Important limitation: ignoring PR unobservables eliminates (by assumption)
any concern on endogeneity when estimating strategic interactions.

� Some papers (Grieco, 2012; Aguirregabiria and Mira, 2007; Arcidiacono and
Miller, 2011) allow for PR unobservables. They still assume that, conditional
on PR variables (observable and unobservable), the same equilibrium is selected;

� Other studies (Sweeting, 2008, De Paula and Tang, 2011; Bajari, Hahn,
Hong and Ridder IER) allow for MEQ, but they assume that there are no PR
unobservables.

� Otsu, Pesendorfer and Takahashi (2014) propose statistical tests for this
assumption.



EXAMPLE (Based on Todd & Wolpin�s "Estimating a Coordination
Game within the Classroom")

� In a class, students and teacher choose their respective levels of e¤ort. Each
student has preferences on her own end-of-the-year knowledge. The teacher
cares about the aggregate end-of-the-year knowledge of all the students.

� A production function determines end-of-the-year knowledge of a student:
it depends on student�s own e¤ort, e¤ort of her peers, teacher�s e¤ort, and
exogenous characteristics.

� PR-U unobs: Class, school, teacher, and student characteristics that are
known by the players but not to the researcher.

� PI unobs: Some student�s and teacher�s skills may be private info.

�MEQ: Coordination game with multiple equilibria. Classes with the same PR
(human capital) characteristics may select di¤erent equilibria.



WHY IS IT IMPORTANT TO ALLOW FOR PR-U and MEQ ?

[1] Ignoring one type of heterogeneity typically implies that we over-estimate
the contribution of the other.

� Example: In Todd and Wolpin, similar schools (in terms of observable
inputs) have di¤erent outcomes mainly because they have di¤erent PR unob-
servables (e.g., cost of e¤ort); or mainly because they have selected a di¤erent
equilibrium.

[2] Counterfactuals: The two types of unobservables (PR and SS) enter dif-
ferently in the model. They can generate very di¤erent counterfactual policy
experiments.



RELATED LITERATURE: Games of complete information

� Bresnahan and Reiss (1990); Tamer (2003); Ciliberto and Tamer (2009);
Bajari, Hong and Ryan (2009)

� Allow for PRU and, implicitly, for MEQ, but they do not try to identify
separately their relative contribution.

� Tamer (2003): exclusion restrictions can (point) identify payo¤ function.
[Bajari, Hong, Krainer and Nekipelov (2010) extend Tamer�s result in games of
incomplete information.].



CONTRIBUTION OF THE PAPER

� We study identi�cation using cross-sectional choice data when the three
sources of unobservables may be present in a semiparametric framework.
As usual in this literature the distribution of private information is assumed
known. However, the model is nonparametric for payo¤s, equilibrium selection
mechanism, and distribution of PR unobservables.

� Drawing on a statistical literature on �nite mixtures, we �rst consider sequen-
tial identi�cation which is needed for 2-step estimation approaches and their
extensions. Under standard exclusion conditions for the estimation of games,
we study how the payo¤ function, the distributions of PR heterogeneity and
equilibrium selection can be identi�ed.

� We study the relationship between sequential and joint identi�cation. Some
empirical models fail the conditions for sequential identi�cation - when are they
still identi�ed?



OUTLINE OF PAPER

1. Discrete Games of Incomplete Information

2. Identi�cation Results

3. Monte Carlo Experiments (illustrative, in progress)

4. Some comments on Estimation and Counterfactuals.



1. DISCRETE GAMES OF INCOMPLETE INFORMATION

� N players indexed by i. Each player has to choose an action, ai, from a
discrete set A = f0; 1; :::; Jg. to maximize his expected payo¤.

� The payo¤ function of player i is:

�i = �i(ai;a�i;x; !) + "i(ai)

� a�i 2 AN�1 is a vector with choices of players other than i;

� x 2 X and ! 2 
 are exogenous characteristics, common
knowledge for all players. x is observable to the researcher, and ! is
the Payo¤-Relevant (PR) unobservable; X and 
 will be discrete.

� "i = f"i(ai) : ai 2 Ag are private information variables for
player i, and are unobservable to the researcher.



BAYESIAN NASH EQUILIBRIUM

� A Bayesian Nash equilibrium (BNE) is a set of strategy functions f�i(x; !; "i) :
i = 1; 2; :::; Ng such that any player maximizes his expected payo¤ given the
strategies of the others:

�i(x; !; "i) = arg max
ai2A

E"�i ( �i(ai; ��i(x; !; "�i); x; !) ) + "i(ai)

� It will be convenient to represent players�strategies and BNE using Condi-
tional Choice Probability (CCPs) functions:

Pi (ai j x; !) �
Z
1 f�i(x; !; "i) = aig dGi("i)

� Note: (a) The expectation on the RHS of the best response condition depends
on the strategies of the other players only through their CCPs; (b) Equilibria
depend on (x; !) only through the payo¤s �i(ai;a�i;x; !):



� Let �x;! be a vector stacking the payo¤s for all players and outcomes. Like-
wise, let P be a vector of CCPs. It can be shown that equilibrium CCPs at
(x; !) satisfy a �xed-point, best-response condition:

P�(e�(x;!)) = 	 �e�(x;!);P�(e�(x;!))�

� In this class of models, existence of at least a BNE is guaranteed. There may
be multiple equilibria.



MULTIPLE EQUILIBRIA

� For some values of (x; !) the model has multiple equilibria. Let �(x; !) be
the set of equilibria associated with (x; !).

� We assume that �(x; !) is a discrete and �nite set (see Doraszelski and
Escobar, 2010) for regularity conditions that imply this property.

� Each equilibria belongs to a particular "type" such that a marginal pertur-
bation in the payo¤ function implies also a small variation in the equilibrium
probabilities within the same type.

� We index equilibrium types by � 2 f1; 2; :::g



EXAMPLE - COORDINATION GAME WITHIN THE CLASSROOM

� A much simpli�ed version: Each student chooses high e¤ort (ai = 1) or low
e¤ort (ai = 0).

� The teacher�s combination of e¤ort and skills is exogenous and common
knowledge, represented by the scalar variable x:

� The payo¤ for student i is:

�i =

8>>>>><>>>>>:
�0 + �0 x+ 
0 x

�
1

N � 1
X

j 6=i aj
�
+ "i(0) if ai = 0

�1 + �1 x+ 
1 x
�

1

N � 1
X

j 6=i aj
�
+ "i(1) if ai = 1



where �0, �0, 
0, �1, �1 and 
1 are parameters. This speci�cation establishes
that a student�s payo¤ depends on his own e¤ort, the teacher�s e¤ort-skills, the
average e¤ort of the other students, and his own private information cost of
e¤ort (or skills).

� Suppose that "i(0) and "i(1) are normal random variables, independently
distributed across students with zero mean and with V ar("i(1)�"i(0)) = �2.

� The normalized payo¤ e�i(1;a�i; x; !)+e"i(1) is such that e�i(1;a�i; x; !) =
�+� x+' !+
 x

�
1

N�1
P
j 6=i aj

�
, with � � (�1��0)=�, � � (�1��0)=�,

' � ('1 � '0)=�, 
 � (
1 � 
0)=�, and e"i(1) � ("i(1)� "i(0))=�.



� Suppose that students are identical except for their private information vari-
ables and each student perceives the other student as identical and believes that
all students have the same probability of high e¤ort P (x; !), i.e., we assume
that the equilibrium is symmetric. Then, the best response probability function
of each student in this model is:

	(1je�(x;!); P ) = � (�+ � x+ 
 x P (x; !))
� Suppose that x > 0 and 
 > 0 such that there positive synergies between the
teacher�s e¤ort/skills and students�e¤ort. Then, the model is a Coordination
Game.

� Figures 1 and 2 come from this example when the parameter values are � =
2:0, � = �7:31, and 
 = 6:75, and the variable x that represents teacher�s
e¤ort-skills is an index in the interval [0; 1]. Figure 1 presents the equilibrium
mapping when teacher�s e¤ort is x = 0:52. For this level of teacher�s e¤ort
the model has three equilibria with low, middle, and high probability of high
students�e¤ort.



Figure 1: Coordination Game. Three Types of Equilibria

Best response function: Ψ( ) = Φ(20− 732 + 675   )

Teacher’s effort:  = 052

Set of Equilibria: Υ( = 052) = {0054, 0521, 0937}
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Figure 2: Coordination Game. Equilibrium Types

Best response function: Ψ( ) = Φ(20− 732 + 675   )

(A)  = 047. Equilibrium: 0.938 (B)  = 050. Equilibria: 0.086; 0.462; 0.932

(C)  = 055. Equilibria: 0.028; 0.643; 0.917 (D)  = 066. Equilibrium: 0.001
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2. DATA, DGP, AND IDENTIFICATION

� The researcher observes M realizations of the game; e.g., M classes or
markets.

Data = f a1m; a2m; :::; aNm, xm : m = 1; 2; :::;M g

� DGP.

(A) (xm; !m) � i:i:d: draws from CDF Fx;!. Support of !m is
discrete (�nite mixture);

(B) The equilibrium type selected in observation m, �m, is a
random draw from a probability distribution �(� jxm; !m);

(C) am � (a1m; a2m; :::; aNm) is a random draw from a multino-
mial distribution such that:

Pram j xm; !m; �m) =
NQ
i=1

Pi(aim j xm; !m; �m)



2.1. IDENTIFICATION PROBLEM

� The researcher knows Gi("i); the probability distribution of private informa-
tion.

� Let Q(ajx) be the probability distribution of observed players�actions con-
ditional on observed exogenous variables: Q(ajx) � Pr(am = a j xm = x).

� Under mild regularity conditions, Q(:j:) is identi�ed from our data.

� According to the model and DGP:

Q(ajx) = P
!2


P
�2�(x;!)

F!(!jx) �(� jx; !)
"
NQ
i=1

Pi(ai j x; !; � ;�)
#
(1)

� DEFINITION: The model is (point) identi�ed if given Q there is a unique
value f�, F!, �g that solves the system of equations (1).



IDENTIFICATION QUESTIONS

� We focus on three main identi�cation questions:

1: Su¢ cient conditions for the identi�cation f�, F!, �g;

2: Test of the null hypothesis of No PR unobservables;

3: Test of the null hypothesis of No MEQ;

� De Paula and Tang (2011) show how multiple equilibria in the data can
identify strategic interactions. We would lime to know ex-ante if that inference
is justi�ed.

� Even with a rich nonparametric speci�cation of PR unobservables, is it possi-
ble to reject the hypothesis of "No MEQ" and conclude that we need "multiple
equilibria" to explain the data?



2.2. SEQUENTIAL (THREE-STEP) IDENTIFICATION APPROACH

� Most of our identi�cation results are based on a three-step approach.

� Let � � g(!; �) be a scalar discrete random variable that represents all the
unobserved heterogeneity, both PR and SS. � does not distinguish the source
of this heterogeneity.

� Let H(�jx) be the PDF of � (given F!(!jx) �(� jx; !)),

H(�jx) = 1f� = g(!; �)g F!(!jx) �(� jx; !)



STEP 1. NP identi�cation of H(�jx) and CCPs Pi(aijx; �) that satisfy
restrictions:

Q(a1,a2,:::,aN j x) =
X
�
H(�jx)

"
NQ
i=1

Pi(ai j x; �)
#



STEP 2. Given the CCPs fPi(aijx; �)g and the distribution of "i, it is
possible to obtain the di¤erential-expected-payo¤ function e�Pi (ai;x; �). This
follows from well known invertibility properties of a broad class of discrete-choice
econometric models. [see Lemma 2 based on McFadden, Hotz-Miller].

� e�Pi (ai;x; �) is the expected value for player i of choosing alternative ai
minus the expected value of choosing alternative 0 when players�strategies are
P: By de�nition:

e�Pi (ai;x; �) �X
a�i

 Q
j 6=i

Pj(ajjx; �)
!
[�i(ai;a�i;x; !)� �i(0;a�i;x; !)]

� Given this equation and the identi�ed e�Pi and fPjg, we study the identi�ca-
tion of the payo¤ �i.

� As is usual, we make the normalization �i(0;a�i;x; !) = 0 and we usee�i(ai;a�i;x; !) for ai > 0 to denote normalized payo¤s.



STEP 3. Given the identi�ed payo¤s �i and the distribution H(�jx), we
study the identi�cation of the distributions F!(!jx) and �(� jx; !).

� Hypothesis like "No PR heterogeneity" or "No MEQ" can be expressed in
terms of the rank of a matrix of payo¤s. But this requires step 2 and exclusion
restrictions!

� This three-step approach does not come without some loss of generality.
Su¢ cient conditions of identi�cation in step 1 can be �too demanding�. We
have examples of NP identi�ed models that do not satisfy identi�cation in step
1.



IDENTIFICATION IN STEP 1

� Point-wise identi�cation (for every value x) of the NP �nite mixture
model:

Q(a1,a2,:::,aN j x) =
X
�
H(�jx)

"
NQ
i=1

Pi(ai j x; �)
#

� Identi�cation is based on the independence between players�actions once we
condition on (x; �).

� We exploit results by Hall and Zhou (2003), Hall, Neeman, Pakyari, and
Elmore (2005), Allman et al (2009) and Kasahara and Shimotsu (2014).



IDENTIFICATION IN STEP 1 (II)

� Let L� be the number of "branches" (di¤erent values of �) that we can
identify in this NP �nite mixture.

� A lower bound on the number L� is identi�ed as long as N � 2. It might
be a tight bound.

� The number of players N and choice alternatives J + 1 establish an upper
bound on L�.

1: For L� � 2, we need at least 3 players;

2: With N � 3, we have that L� � (J + 1)int[(N�1)=2]



IDENTIFYING THE NUMBER OF COMPONENTS - Detail:

Consider a partition of the set of players into two groups with N1 and N2
players, N1+N2 = N: Let S1 and S2 be two random variables which summa-
rize the outcome of one realization of our game for each subgroup of players
given actions fai : i = 1; : : : ; Ng. By construction, S1 and S2 are discrete
and independent conditional on (x; �): Let C(S1;S2) be a matrix describing
the (population) joint distribution of (S1; S2): Then the rank of C(S1;S2) is
a lower bound of the true number of mixture components L�. Furthermore,
let eJ1 and eJ2 be the number of rows and columns of matrix C(S1;S2): Clearly,
rank (C(S1;S2)) � min[ eJ1; eJ2]. Then, the bound is tight and the number of
components is exactly identi�ed if the strict version of this inequality is satis�ed.



� EXAMPLES:

(1) In an entry game with 3 players, the model is step 1 identi�ed if the DGP
has two mixture components, but no more.
We would set S1 = (a1; a2) and S2 = a3 so matrix C(S1;S2) would be 4� 2;
its rank would be 2 and we would be able to tell that the number of components
is at least 2.

(2) An entry game with 5 players is identi�ed in step 1 with up to 4 mixture
components, e.g., there might be a binary payo¤-relevant unobservable with
two di¤erent equilibria being played at each of the two values of the payo¤-
relevant unobservable.
In this case we might set S1 = (a1; a2; a3); S2 = (a4; a5) and C(S1;S2) would
be 8� 4: With 4 mixture components in the DGP its rank would be 4 and the
researcher would obtain this as a lower bound on the unknown true number of
components.



(3) Consider a game with N = 5; J + 1 = 3. The maximum number of
components that can be identi�ed is 9: If we set
S1 = (1(a1 � 1); 1(a2 � 1); 1(a3 � 1)); S2 = (a3; a4)
thenC(S1;S2) is 8�9: If the DGP had 6 components the rank ofC(S1;S2) would
be 6 which is smaller than min[9; 9] so the bound is tight and the researcher
would know this to be the exact number of components.



IDENTIFICATION IN STEP 1 (III)

� So there are limits to the number of �branches�L� we can identify using this
sequential approach.

� A parametric speci�cation for H(�jx), or exclusion restrictions on it, or
independence between � and x can allow for identi�cation of unobserved het-
erogeneity with more points of support. But it may not be easy to justify such
assumptions ...



IDENTIFICATION IN STEP 2

� We need to recover the normalized payo¤ function e� from the system of
equations:

e�Pi (ai;x) = P
a�i

Q�i(a�ijx) e�i(ai;a�i;x)
where Q�i(a�ijx) �

Q
j 6=iPj(ajjx) and e�Pi (ai;x) is known by inversion.

� To lighten the notation a bit, I am using x as shorthand for (x; �):

� If di¤erent values of � correspond to multiple equilibria, then the payo¤ on
the RHS would not vary with � but the researcher does not know this ex-ante
so we need to consider the "worst-case scenario" where di¤erent values of �
correspond to di¤erent values of !.



� Because of strategic interactions there are multiple payo¤ values e�i(ai;a�i;x)
for every e�Pi (ai;x) that is identi�ed from the data and Lemma 2, so a dis-
crete game is potentially severely underidenti�ed relative to a standard discrete
choice - random utility model.

� Exclusion restrictions on payo¤s are needed to restore identi�cation. This is
true even in the standard model with only PI "0s, with no PRU and no MEQ.

� Suppose (for simplicity) that x has a discrete and �nite support. We assume
that x has the following structure:

x = (xc, z1, z2, :::, zN)

such that:

(i) zi 2 Z and the support Z has at least J + 1 points;

(ii) Exclusion restriction: �i(ai;a�i;x) = �i(ai;a�i;xc, zi);



IDENTIFICATION IN STEP 2 with exclusion restrictions

� Then equations above can be written in matrix form as

e�Pi (ai; xc; zi) = Q�i(xc; zi)e�i(ai; xc; zi)
where the matrix Q�i(xc; zi), with dimension jZjN�1�(J+1)N�1 is de�ned
as

266666664
Q�i(a

(1)
�i j xc; zi; z

(1)
�i ) Q�i(a

(2)
�i j xc; zi; z

(1)
�i ) ::: Q�i(a

((J+1)N�1)
�i j xc; zi; z

(1)
�i )

Q�i(a
(1)
�i j xc; zi; z

(2)
�i ) Q�i(a

(2)
�i j xc; zi; z

(2)
�i ) ::: Q�i(a

((J+1)N�1)
�i j xc; zi; z

(2)
�i )... ... ...

Q�i(a
(1)
�i j xc; zi; z

(jZjN�1)
�i ) Q�i(a

(2)
�i j xc; zi; z

(jZjN�1)
�i ) ::: Q�i(a

((J+1)N�1)
�i j xc; zi; z

(jZjN�1)
�i )

377777775 ;

We can recover the vector of payo¤s e�i(ai; xc; zi) as long as matrixQ�i(xc; zi)
has full column rank.



IDENTIFICATION IN STEP 2: A matching problem

� In Step 1, identi�cation of the distribution H and of CCPs Pi�s is up to
label swapping, and "pointwise" or separately for each subpopulation de�ned
by observables x.

� In order to implement Step 2, the researcher needs to be able to "match"
mixture components which correspond to the same value of ! across di¤erent
subpopulations of observables.

� If we use "unmatchable" assignments which (incorrectly) match mixture com-
ponents corresponding to di¤erent values of ! then the system of equations
which exploits exclusion restrictions is not satis�ed at the true payo¤s.

� Step 2 identi�cation now requires distinguishing between unmatchable and
matchable assignments and using one of the latter.



IDENTIFICATION IN STEP 2: Dealing with the matching problem

� Given an arbitrary label swap, let fQ�i(xc; zi; �) be the Q�i(xc; zi; �) matrix
augmented with column vector �Pi (ai; x

c; zi) of expected payo¤s.

LEMMA 3. Under exclusion restrictions, a matchable label assignment is iden-
ti�ed in step 2 i¤:

(a) Matrix Q�i(xc; zi; �) has full column rank for all i in any matchable label
swap; and

(b) For every unmatchable label swap, there is at least one player i for which
the rank of augmented matrix fQ�i(xc; zi; �) is larger than the rank of matrix
Q�i(xc; zi; �).



� The number of label swaps is �nite.

� If the researcher considers an unmatchable label assignment, then the system
of equations �Pi (ai;x

c; zi; �) = Q�i(xc; zi; �) �(ai;xc; zi; �) will not have
a solution.

� If a label swap leads to a system which has a unique solution, then that label
assignment is matchable and the solution is the true vector of payo¤s.



PROPOSITION 3. Assume the exclusion restriction, x = fxc; zi : i 2 Ig
where zi 2 Z and the set Z is discrete with at least J + 1 points, and
�i(ai;a�i;x; �) depends on (xc; zi; �) but not on fzj : j 6= ig: Then:

(A) The payo¤ functions are identi�ed i¤ conditions (a) and (b) of Lemma 3
are satis�ed.

(B) Payo¤ functions �i are identi�ed if: (c) (rank condition) and
(d) H(�jx) depends on xc but not on fzi : i 2 Ig, and H(�jxc) 6= H(�0jxc)
for any two values � and �0 in the support of H(:jxc).



IDENTIFICATION IN STEP 3

� Suppose that the researcher has identi�ed the distribution H(�jx) and the
payo¤ functions e�i. We want to identify the probability distributions F!(!jx)
and �(� j(�(x;!)). There are two sets of restrictions that we can exploit: (1)
the payo¤ �i depends on ! but not on � ; and (2) by de�nition, H(�jx) =X
!;�
1f� = g(!; �)g F!(!jx) �(� j�(x;!)).

� Let�i(x) be the matrix with dimension J(J+1)N�1 � L�(x) that contains
all payo¤s fe�i(ai;a�i;x; �)g for a given value of x. More speci�cally, each
column corresponds to a value of � and it contains the payo¤s �i(ai;a�i;x; �)
for every value of (ai;a�i) with ai > 0. If two values of � represent the same
of value of !, then the corresponding columns in the matrix �i(x) should be
equal. Therefore, we can identify the number of mixture components L!(x)
as:

L!(x) = rank ( �i(x) )



� The matrix �i(x) not only identi�es the number of points in the support of
the PR unobservables, but also the points of support themselves and, together
with the set of restrictions (2), the distributions of these unobservables. Once
we identify the columns of �i(x) that are di¤erent and the ones that are the
same, we can label each column (i.e., each value of �) with two values, one for
! and other for � .



TESTING FOR "NO PR-U" OR "NO MEQ"

� At the end of step 1, before we recover payo¤s, the hypothesis that there
is no PR unobserved heterogeneity can tested as follows. Consider matrices
Q�i(xc; zi) and fQ�i(xc; zi) obtained when we stack vertically, for all �; ma-
trices Q�i(xc; zi; �) and fQ�i(xc; zi; �): Under the null these matrices have
the same rank which is the number of columns of Q�i(xc; zi; �):

If we use the payo¤s identi�ed in step 2:

� Taking into account that L!(x) = rank(�i(x)) and that L�(x) = cols(�i(x)),
we have that testing for the null hypothesis of "no MEQ" is equivalent to testing
for:

H0 : For every value of x the matrix �i(x) has full column rank.



� If there is not PR unobserved heterogeneity, then for any value of x in the
sample the number of points in the support of ! should be equal to the 1.
Therefore testing for the null hypothesis of "no PR unobserved heterogeneity"
is equivalent to testing for:

H0 : For every value of x the matrix �i(x) has rank equal to 1.

� Therefore tests for these null hypotheses can be described in terms of tests
of the rank of a matrix of statistics. This type of tests have been proposed
and developed by Cragg and Donald (1993, 1996, 1997) and Robin and Smith
(2000)



SEQUENTIAL IDENTIFICATION VS. JOINT IDENTIFICATION

� What if N = 2 or N � 3 but L� > (J + 1)(N�1)=2 ?

LEMMA 3: (A) Sequential identi�cation implies joint identi�cation. (B) The
converse is not true in general. In particular, joint identi�cation implies step
2 identi�cation but it does not imply step 1 identi�cation. (C) Sequential and
joint identi�cation are equivalent i¤ the Step 2 systems () are just identi�ed.

� Equilibrium restrictions per se are insu¢ cient to deliver identi�cation. Models
which are not amenable to the sequential approach can still be identi�ed and
estimated when exclusion restrictions are su¢ ciently overidentifying.



� The exclusion restriction makes the number of payo¤ parameters linear in the
number of players N whereas the number of restrictions on the data remains
exponential in N: An analysis of the order condition for joint identi�cation
shows that excluded variables with su¢ ciently large support should provide
identi�cation as long as (J + 1)N > L�.

� The 2x2 game is the worst-case scenario: A 2-player binary game with both
PR-unobserved heterogeneity and multiple equilibria is not identi�ed unless we
impose restrictions on the equilibrium selection.

� With PR-U only, the 2x2 game is identi�ed for L! = 2 and jZj � 4, and for
L! = 3 and jZj � 12.



� DEFINITIONS: Let fe�; Hg be the structural parameters of the model and
P � fPi(aijx; �) : ai 2 A � f0g; all (x; �)g the vector of true equilibrium
CCP�s.

(1) fe�; Hg are jointly identi�ed i¤, given the population Q(ajx); there is a
unique pair fe�; Hg which satis�es the conditions:

Q(ajx) =
X
�
H(�jx)

"
NQ
i=1

Pi(aije�(x;!); �)
#

subject to P(e�(x;!); �) = 	(e�(x;!);P(e�(x;!); �))
(2) f�; Hg are sequentially identi�ed i¤: (Step 1 identi�cation) given the
population Q(ajx) there is a unique pair fH;Pg (up to label swapping) that
satis�es conditions ()(a); and (Step 2 identi�cation) given the true CCP�s P
and the expected payo¤s �P obtained from them by Lemma 2, consider every
possible label swap and the associated system of equations ()(b); then the
system either has no solution, or else has the vector of payo¤s � as its unique
solution.



� (More detail) The potential for exclusion restrictions to help with joint iden-
ti�cation can also be seen in general order condition:

h
(J + 1)N � 1

i
� jZjN � L! �N � jZj � (J + 1)N�1 � J + (L� � 1) � jZjN

where the left-hand-side counts the number of equations or probabilities in
the Q(ajz1; : : : ; zn) and the RHS is the sum of the number of payo¤s and
the number of mixing weights. We can ignore the existence of non-excluded
regressors xc without loss of generality because introducing them would just
multiply each of the 3 terms of the order condition by the same factor, i.e.,
the cardinality of xc: The exclusion restriction makes the number of payo¤
parameters linear in the number of playersN whereas the number of restrictions
on the data remains exponential in N: Excluded variables with su¢ ciently large
support should provide identi�cation as long as (J + 1)N > L�.



Table 1
Summary of DGPs in Monte Carlo Experiments

Common features in the two experiments

Payo¤ function: �i= �i+�i zim+!m+�i
P
j 6=i ajm

Distribution zim: i.i.d. Uniform
h

0
jZj�1 ;

1
jZj�1 ; :::

jZj�1
jZj�1

i
Distribution !m: Support f�0:75;+0:75g

FA! (z) = f0 + f1 N
�1
�PN

i=1 zi

�
# equilibria in data: 1

# markets (M ): 50 and 200 for each possible value of z
# MC replications: 1,000

Experiment SEQ Experiment NONSEQ

N = 4 N = 2
jZj = 3 jZj = 5

�1= �1:00; �2= �0:80; �3= �0:60; �4= �0:40 �1= �1:00; �2= �0:40
�1= �2= �3= �4= 3:0 �1= �2= 3:0
�1= �2= �3= �4 = �0:5 �1= �2= �0:5
f0 = 0:20 and f1 = 0:25 f0 = 0:20 and f1 = 0:25

1



Table 2. Experiment SEQ
Sample Sizes: 50 and 200 markets per value of z. Monte Carlo Simulations = 1; 000

Panel A. Test of rank of C(S1;S2) and empirical distribution of cL�(z)
% of cases Estimate of cL�(z)

Tests 50 obs per z 200 obs per z 50 obs per z 200 obs per z

Reject det 4 = 0 1.62% 0.35% 4 4

Accept det 4 = 0 & reject det 3 = 0 5.62% 2.72% 3 3

Accept det 4 = det 3 = 0 & reject det 2 = 0 90.20% 95.70% 2 2

Accept det 4 = det 3 =det 2 = 0 2.58% 1.23% 1 1

Panel B. Step 1: Estimation of H(�jz) and CCPs
Bias (% true) RMSE (% true)

Parameter 50 obs per z 200 obs per z 50 obs per z 200 obs per z

H(�Ajz = [0; 0; 0; 0]) 0.0042 (2.1%) 0.0000 (0.0%) 0.1282 (64.0%) 0.0607 (30.3%)

PA1 (z = [0; 0; 0; 0]) 0.0003 (2.9%) -0.0001 (-1.0%) 0.0070 (65.4%) 0.0034 (31.5%)

PB1 (z = [0; 0; 0; 0]) 0.0006 (0.4%) -0.0011 (-0.8%) 0.0523 (40.6%) 0.0258 (20.1%)

H(�Ajz = [1; 1; 1; 1]) -0.0041 (-0.9%) 0.0015 (0.3%) 0.1126 (25.0%) 0.0591 (13.1%)

PA1 (z = [1; 1; 1; 1]) 0.0069 (1.6%) 0.0004 (0.1%) 0.0837 (19.5%) 0.0405 (9.4%)

PB1 (z = [1; 1; 1; 1]) 0.0005 (0.1%) -0.0027 (0.0%) 0.0522 (6.4%) 0.0276 (3.3%)

Panel C. Step 2: Estimation of players�payo¤s
Bias (% true) RMSE (% true)

Parameter 50 obs per z 200 obs per z 50 obs per z 200 obs per z

�A1 (a�1 = [0; 0; 0]; z1 = 0:5) -0.0235 (-3.1%) -0.0022 (-0.3%) 0.1438 (19.1%) 0.0717 (9.5%)

�A1 (a�1 = [1; 1; 1]; z1 = 0:5) -0.1824 (-8.1%) -0.0376 (-1.6%) 1.1030 (49.0%) 0.5074 (22.5%)

�B1 (a�1 = [0; 0; 0]; z1 = 0:5) 0.0153 (2.0%) 0.0047 (0.6%) 0.3518 (46.9%) 0.1684 (22.4%)

�B1 (a�1 = [1; 1; 1]; z1 = 0:5) -0.0157 (-2.0%) -0.0049 (-0.6%) 0.2006 (26.7%) 0.1005 (13.4%)
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Table 3. Experiment NONSEQ
Sample Sizes: 50 and 200 markets per value of z. Monte Carlo Simulations = 1; 000

Bias (% true) RMSE (% true)
Parameter 50 obs per z 200 obs per z 50 obs per z 200 obs per z

FA! (z = [0; 0]) -0.0014 (0.7%) 0.0008 (0.4%) 0.0720 (36.0%) 0.0267 (13.3%)

FA! (z = [0; 1]) 0.0015 (0.4%) 0.0006 (0.1%) 0.1010 (31.0%) 0.0554 (17.0%)

FA! (z = [1; 0]) -0.0087 (-2.6%) 0.0015 (0.4%) 0.1546 (49.1%) 0.0662 (20.3%)

FA! (z = [1; 1]) 0.0020 (0.6%) -0.0005 (-0.1%) 0.0639 (14.2%) 0.0270 (6.0%)

�A1 (a2 = 0; z1 = 0:4) -0.0115 (-2.1%) 0.0038 (0.7%) 0.1705 (31.0%) 0.0808 (14.7%)

�A1 (a2 = 1; z1 = 0:4) 0.0514 (4.9%) -0.0199 (-1.9%) 0.2426 (23.1%) 0.1071 (10.2%)

�B1 (a2 = 0; z1 = 0:4) 0.0294 (3.1%) 0.0085 (0.9%) 0.3743 (39.4%) 0.1197 (12.6%)

�B1 (a2 = 1; z1 = 0:4) -0.0099 (-2.2%) -0.0031 (-0.7%) 0.0936 (20.8%) 0.0414 (9.2%)
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SOME THOUGHTS ON COUNTERFACTUALS

� A counterfactual scenario is described by x�; F!(!jx�); e��x�.
� Of course, the interesting case is when there are multiple equilibria.

� There is tension between �agnosticism� about the ESM and the desire to
perform counterfactuals.

� Some additional assumptions are useful to make predictions. A "bottom-up"
approach is possible if we can identify and estimate the ESM [i.e., test some
additional assumptions?].



� Suppose that we obtain: a) All the equilibria associated with (e��x�); b) The
subsample of observations in the data fxmg which have the same "type" of
equilibria as e��x� given � for some !. Let X(e��x�) be this subsample.
� Suppose we assume (and test?) that �(:jx;!) is a smooth function of payo¤s
within the set of x; ! that have equilibria of the same type as e��x� Then we
may be able to estimate �0(:jx�t ). Under standard regularity conditions on the
bandwidth bM and the kernel function K(:), the following kernel estimator is
a consistent estimator of the counterfactual distribution �(:j��(x�;!)) :

b�(� j��(x�;!)) =

MP
m=1

1
�
xm 2 X (��(x�;!))

�
�(� j�0(xm;!)) K

0@�0(xm;!) � ��(x�;!)
bM

1A
MP
m=1

1
�
xm 2 X (��(x�;!))

�
K

0@�0(xm;!) � ��(x�;!)
bM

1A
(2)



MORE ON MULTIPLE EQUILIBRIA VS. PAYOFF-RELEVANT HET-
EROGENEITY

� The �nite mixture model is the natural model in one case, in the other case
it is an approximation ...

� Under reasonable assumptions (smoothness, support) payo¤-relevant com-
mon knowledge unobservables would NOT lead to discontinuities in the dis-
tribution of outcomes e�0(x) or in the number of components of the mixture,
whereas multiple equilibria might.

� Additional data on payo¤s would also should help ...



CONCLUSIONS

�We present new identi�cation results for semiparametric games of incomplete
information with two sources of common knowledge unobservables: PR-U and
MEQ.

� If the number of action pro�les in the game is su¢ ciently large relative
to the number of mixture components then we can identify payo¤s and the
distributions of the two sources of unobservables under "standard" exclusion
restrictions used to identify models without unobserved heterogeneity.

� However, implementation of a sequential identi�cation/estimation approach
requires that the researcher be able to match mixture components across games
with di¤erent values of the excluded variables.

� Without using exclusion restrictions to identify payo¤s in all mixture compo-
nents it does not seem possible to distinguish ex-ante between PR-U and MEQ
as explanations of the data.




