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Jesús Carro (Carlos III, Madrid)

PANEL DATA WORKSHOP

NUFFIELD COLLEGE, OXFORD UNIVERSITY

June 6 & 7, 2022

Aguirregabiria & Carro ( PANEL DATA WORKSHOP NUFFIELD COLLEGE, OXFORD UNIVERSITY )AMEs in FE Dyn Logit June 6 & 7, 2022 1 / 31



INTRODUCTION

INTRODUCTION (1/2)

Consider the Fixed Effects (FE) Dynamic Binary Logit model as
described by the transition probability:

P(yit = 1|yi ,t−1, αi ) =
exp{αi + β yi ,t−1}

1+ exp{αi + β yi ,t−1}

where p1(yi1|αi ) and fα(αi ) are unrestricted, i.e., FE model.

Given panel data (yi1, yi2, ..., yiT ) with T ≥ 4, parameter β is
identified (Chamberlain (1985), Honoré & Kyriazidou (2000)):

β = logP(0, 0, 1, 1)− logP(0, 1, 0, 1)

where P(y1, y2, y3, y4) is the probability of history (y1, y2, y3, y4).
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INTRODUCTION

INTRODUCTION (2/2)

In this paper, we are interested in the identification & estimation
of Average Marginal Effects (AMEs).

For instance, for the Binary Choice AR(1) model:

AME = Eα (E [yit |αi , yi ,t−1 = 1]− E [yit |αi , yi ,t−1 = 0])

=
∫ (

exp{αi + β}
1+ exp{αi + β} − exp{αi}

1+ exp{αi}

)
fα(αi ) dαi

Common wisdom: these AMEs are not identified in FE models.

- They depend on the whole distribution fα(αi ), and this distribution
is not identified in FE models.
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INTRODUCTION

CONTRIBUTIONS OF THIS PAPER

1. Everything started with the derivation (almost by chance) of a simple
closed-form expression for the AME in BC-AR(1) in terms of β
and probabilities of choice histories.

2. Inspired by this result, we develop a general method to obtain
AMEs in a broad class of dynamic logit models: binary, multinomial,
ordered, with exogenous regressors, with duration dependence.

- This method is based on the solution of a finite (low-dimension)
system of linear equations.

3. Empirical application: dynamic demand of differentiated products
with brand switching costs.
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INTRODUCTION

RELATED LITERATURE

Related papers studying the identification of AMEs in FE discrete
choice models are:

- Chernozhukov, Fernandez-Val, Hahn, & Newey (ECMA, 2013)
- Davezies, D’Haultfoeuille, & Laage (WP, 2021)
- Pakel & Weidner (WP, 2021)

Some differences between our paper and these papers:

(1) Point identification (us) versus set identification (them).

(2) Logit (us) versus more general discrete choice (them).

(3) Simple closed-form expressions (us) more computationally
intensive methods (them).
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INTRODUCTION

OUTLINE

1. Identification result for AME in BC-AR(1)

2. General identification method

- Application of the general identification method

- Multinomial, Exogenous X, Duration, Ordered Logit.

3. Empirical application
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IDENTIFICATION OF AME IN BC-AR(1) MODEL

————————————————————————————

1. IDENTIFICATION OF AME

IN BC-AR(1) MODEL

————————————————————————————
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IDENTIFICATION OF AME IN BC-AR(1) MODEL

Identification of AME in BC-AR(1) Model (1/3)

Define the individual-level transition probabilities:

π01(αi ) ≡ P (yit = 1|αi , yi ,t−1 = 0) = Λ (αi )
π11(αi ) ≡ P (yit = 1|αi , yi ,t−1 = 1) = Λ (αi + β)

And the corresponding average transition probabilities:

Π01 ≡
∫

π01(αi ) fα(αi ) dαi

Π11 ≡
∫

π11(αi ) fα(αi ) dαi

Define the individual-level marginal effect:

∆(αi ) ≡ π11(αi )− π01(αi )

And the corresponding Average Marginal Effect (AME):

AME ≡
∫

∆(αi ) fα(αi ) dαi = Π11 − Π01
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IDENTIFICATION OF AME IN BC-AR(1) MODEL

Identification of AME in BC-AR(1) Model (2/3)

We show the following: identification results:
Π01 = [1− exp {β}] P1,0,1 + P1,1 + P0,1

Π11 = exp {β} P0,1,0 + P0,1,1 + P1,1

AME = [exp {β} − 1] [P0,1,0 + P1,0,1]

where:

Py1,y2,y3 = empirical probability of (yi1, yi2, yi3) = (y1, y2, y3)

Py1,y2 = empirical probability of (yi1, yi2) = (y1, y2)
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IDENTIFICATION OF AME IN BC-AR(1) MODEL

Proof of Identification of AME (3/3)

Key in this proof: following property of Logit model. For any αi :

∆(αi ) = [exp {β} − 1] π01(αi ) π10(αi ) (1)

For any sequence (y1, y2, y3):

Py1,y2,y3 =
∫
p∗(y1|αi ) πy1,y2(αi ) πy2,y3(αi ) fα(αi ) dαi

Applying equation (1) to P0,1,0 and P1,0,1, we have that:
[exp {β} − 1] P0,1,0 =

∫
p∗(0|αi ) ∆(αi ) fα(αi ) dαi

[exp {β} − 1] P1,0,1 =
∫
p∗(1|αi ) ∆(αi ) fα(αi ) dαi

Adding up these two equations:

[exp {β} − 1] [P0,1,0 + P1,0,1] = AME
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IDENTIFICATION OF AME IN BC-AR(1) MODEL

Identification of n-periods forward AME

Using a similar approach, we show the identification of the n-periods
forward AME, for any n ≥ 1:

AME (n) ≡ Eα (E [yi ,t+n|αi , yit = 1]− E [yi ,t+n|αi , yit = 0])

We show that, for T ≥ 2n+ 1:

AME (n) = [exp {β} − 1]n
[
P

0,1̃0
n + P

1̃0
n
,1

]
where 1̃0

n
represents the repetition n times of of sequence 1, 0.
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IDENTIFICATION OF AME IN BC-AR(1) MODEL

Identification of Average Transition Probability in Multinomial Logit

A similar procedure shows identification of average transition
probability Πjj in a dynamic multinomial logit, for j = 1, 2, ..., J:

Πjj ≡
∫

πjj (αi ) fα(αi ) dαi

with
πjj (αi ) ≡ P (yit = j |αi , yi ,t−1 = j)

Logit model implies that for any triple of choice alternatives j , k , ℓ:

exp
{

βkℓ − βkj + βjj − βjℓ

}
=

πkℓ(αi ) πjj (αi )

πkj (αi ) πjℓ(αi )

And using this property, we can show that:

Πjj = Pj ,j + ∑
k ̸=j

[
Pk,j ,j + ∑

ℓ ̸=j

exp
{

βkℓ − βkj + βjj − βjℓ

}
Pk,j ,ℓ

]
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GENERAL IDENTIFICATION METHOD

————————————————————————————

2. GENERAL METHOD TO SHOW

IDENTIFICATION OF AMEs

————————————————————————————
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GENERAL IDENTIFICATION METHOD

General Dynamic Logit Model

Consider a dynamic logit model that allows for multinomial y ,
exogenous regressors (x), and duration (d) dependence.

Let yi ≡ (di1, yi1, yi2, ..., yiT ) ∈ D ×YT be individual i ’s choice, and
let xi ≡ (xi1, xi2, ..., xiT ) ∈ X T

Let Py|x represent the probability P(yi = y|xi = x).

According to the model, probability Py|x has the following structure:

Py|x =
∫

G
(
y{2,T}|d1, y1, x, α; θ

)
p∗(d1, y1|α, x) fα(α|x) dα,

where

G
(
y{2,T}|y1, d1, x, α; θ

)
≡

T

∏
t=2

Λ (yt |yt−1, dt , xt , α; θ)
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GENERAL IDENTIFICATION METHOD

LEMMA 1

Consider a FE dynamic discrete choice model characterized by the
probability function G (y{2,T}|y1, d1, x, α; θ).

Let AME (x) ≡
∫

∆(αi , x, θ)fα(αi |x) dαi be an average marginal
effect of interest.

This AME is point identified if and only if there is a weighting
function w(y, x, θ) that satisfies the following equation:

∑
y{2,T}

w(d1, y1, y
{2,T}, x, θ) G

(
y{2,T}|y1, d1, x, α; θ

)
= ∆(α, x, θ),

for every value (d1, y1) ∈ D ×Y and every α ∈ RJ .

Furthermore, this condition implies that:

AME (x) = ∑
y

w(y, x, θ) Py|x
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GENERAL IDENTIFICATION METHOD

Particular Structure of FE Dynamic Logit

Lemma 1 does not impose any restriction on the form of function G .

In FE Dynamic Logit model the probability of a choice history:

logP (yi |xi , αi , θ) = s(yi , xi )
′ g(αi , xi , θ) + c(yi , xi )

′ θ

where si ≡ s(yi , xi ) and ci ≡ c(yi , xi ) are vectors of statistics.

This equation implies that:

(1) si is a sufficient statistic for αi .

(2) Given θ, the distribution of si contains all the information in the
data about the distribution of αi , and therefore, about AMEs.

(3) The form of Ps|x is:

Ps|x = ∑
y: s(y,x)=s

[∫
exp{s(y, x)′ g(α, x, θ) + c(y, x)′ θ} fα(α|x) dα

]
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GENERAL IDENTIFICATION METHOD

LEMMA 2

Consider a FE Dynamic Logit model.

Let AME (x) ≡
∫

∆(αi , x, θ)fα(αi |x) dαi be an AME of interest.

This AME is point identified if and only if there is a weighting
function m(s, x, θ) that satisfies the following equation:

∑
s̃∈S̃

m(d1, y1, s̃, x, θ) exp{(d1, y1, s̃)′ g(α, x, θ)} = ∆(α, x, θ),

for every value (d1, y1) and every α ∈ RJ .

Furthermore, this condition implies that:

AME (x) = ∑
s∈S

m(s, x, θ)

∑y: s(y,x)=s exp{c(y, x)′θ}
Ps|x
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GENERAL IDENTIFICATION METHOD

System with Infinite Restrictions and Finite Unknowns (1/2)

The identification condition in Lemma 2 defines an infinite system of
equations – as many as values of αi .

The researcher knows functions g(α, x, θ) and ∆(α, x, θ).

The unknowns are the weights m(s, x, θ).

Without some structure, this system with infinite restrictions and
finite unknowns would not have a solution.
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GENERAL IDENTIFICATION METHOD

System with Infinite Restrictions and Finite Unknowns (2/2)

Lemma 3 shows that, in the FE dynamic logit model, the structure of
functions g(α, x, θ) and ∆(α, x, θ) is such that the identification
condition can be represented as a finite order polynomial in the
variables exp{αi (j)} for j = 1, 2, ..., J.

Since these variables are always strictly positive, there is a solution to
the system if and only if the coefficients multiplying every
monomial term in this polynomial are all equal to zero.

This property transforms the infinite system of equations into a finite
system with finite unknowns.

Furthermore, if a solution exists, this solution implies a closed-form
expression for the weights m(s, x, θ), and therefore, for AME .
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GENERAL IDENTIFICATION METHOD

LEMMA 3

Consider the FE dynamic logit model.

The identification condition in Lemma 2 can be represented as a finite
order polynomial in the variables exp{αi (j)} for j = 1, 2, ..., J.

This implies a finite system of linear equations with unknowns the
finite number of weights m(s, x, θ) for every s ∈ S .
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GENERAL IDENTIFICATION METHOD

EXAMPLE: AME in BC-AR(1) (1/2)

s = (y1, yT , n1) with n1 = ∑T
t=2 yt ; c = ∑T

t=2 yt−1yt , and:
∆(αi ) =

eαi (eβ − 1)

(1+ eαi+β)(1+ eαi )

es
′ g(α) =

(
1

1+ eα

)T−1 (1+ eα+β

1+ eα

)yT−y1 (eα(1+ eα)

1+ eα+β

)n1

Therefore, the identification condition is:

∑
yT ,n1

m(y1, yT , n1)

(
1

1+ eα

)T−1 (1+ eα+β

1+ eα

)yT−y1 (eα (1+ eα)

1+ eα+β

)n1

=
eα(eβ − 1)

(1+ eα+β)(1+ eα)
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GENERAL IDENTIFICATION METHOD

EXAMPLE: AME in BC-AR(1) (2/2)

∑
yT ,n1

m(y1, yT , n1)

(
1

1+ eα

)T−1 (1+ eα+β

1+ eα

)yT−y1 (eα (1+ eα)

1+ eα+β

)n1

− eα(eβ − 1)

(1+ eα+β)(1+ eα)
= 0

Multiplying this equation times (1+ eα+β)(1+ eα) to eliminate
denominators, we obtain a polynomial of order 2T − 2 in eα.

Since eα > 0, this equation holds for every value of α iff the
coefficients multiplying each of the 2T − 2 monomials are zero.

These coefficients are linear in the weights my1,yT ,n1 , and this defines
a system of 2T − 2 linear equations with 2T − 2 unknowns.
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GENERAL IDENTIFICATION METHOD

Application of the general identification method

We apply this general approach to show identifcation of diffetent
AMEs in different versions of the FE dynamic logit model.

1. Π11, Π00, and AME (n) in BC-AR(1).

2. Average transition probability Πjj in multinomial and ordered logit.

3. AME of change in duration.

4. All these AMEs in model with exogenous x.
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EMPIRICAL APPLICATION

————————————————————————————

3. EMPIRICAL APPLICATION

————————————————————————————
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EMPIRICAL APPLICATION

PRELIMINARIES

Demand of differentiated product / state dependence in consumer
brand choice.

Data (Nielsen scanner panel data) from Erdem, Imai, and Keane,
2003 (EIK), and similar model.

The main goal is to determine the relative contribution of unobserved
heterogeneity and state dependence to explain the observed time
persistence of consumer brand choices.

All previous studies estimate Random Effects models.
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EMPIRICAL APPLICATION

DATA

Product: Ketchup.

Same working sample as EIK. 996 households; 123 weeks.

For our analysis, a time period is a household purchase occasion.

Number observation purchase occasions = ∑N
i=1 Ti = 9, 562

Table 3
Distribution of number of purchase occasions (Ti)

Minimum 5% 25% Median 75% 95% Maximum

3 4 5 8 12 21 52
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EMPIRICAL APPLICATION

BRAND CHOICE PERSISTENCE

Table 4
Matrix of Transition Probabilities of Brand Choices

(percentage points)
Brand choice at t + 1 Total

Brand choice at t Heinz Hunts Del Monte Store
(j = 0) (j = 1) (j = 2) (j = 3)

Heinz (j = 0) 78.95 10.67 6.98 3.40 100.00
Hunts (j = 1) 45.16 32.30 15.76 6.78 100.00

Del Monte (j = 2) 41.11 18.98 34.07 5.83 100.00
Store (j = 3) 42.32 17.11 13.38 27.19 100.00

Market share (Pj) 66.65 15.63 12.19 5.53 100.00
Persistence (Pj |j − Pj) 12.30 16.67 21.88 21.66
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EMPIRICAL APPLICATION

MODEL

We consider the following dynamic structural model:

yit = arg max
j∈{0,1,2,3}

{ αi (j) + ε it(j) + βjj 1{yi ,t−1 = j}+ vi (j , yi ,t−1) }

βjj represents habits in the purchase/consumption of brand j :
additional utility from buying the same brand as in last purchase.

To illustrate our method using a short panel, we split the purchasing
histories in the original sample into subs-histories of length T , where
T is small.

We present results for T = 6 and T = 8.
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EMPIRICAL APPLICATION

ESTIMATION OF BETA PARAMETERS

Table 5
Conditional Maximum Likelihood Estimates

of Brand Habit (βjj) Parameters
Parameter T = 6 sub-histories T = 8 sub-histories

βjj Estimate (s.e.)(1) Estimate (s.e.)(1)

Heinz 0.00 (.) 0.00 (.)
Hunts 0.2312 (0.0590) 0.2566 (0.0570)

Del Monte 0.1155 (0.0718) 0.1191 (0.0722)
Store 0.3245 (0.1166) 0.4675 (0.1106)

# histories of length T 4, 764 3, 396

(1) Standard errors (s.e) are obtained using a boostrap method. We generate

1,000 resamples (independent, with replacement, and with N = 996) from the

996 purchasing histories in the original dataset. Then, we split each history

of the bootstrap sample into all the possible sub-histories of length T .

Aguirregabiria & Carro ( PANEL DATA WORKSHOP NUFFIELD COLLEGE, OXFORD UNIVERSITY )AMEs in FE Dyn Logit June 6 & 7, 2022 29 / 31



EMPIRICAL APPLICATION

STATE DEPENDENCE vs UH, USING AME

Table 6
FE Estimates of ATPs and AMEs

T = 8 sub-histories
Pers ATP ATE UHet
( s.e.) (s.e.) ( s.e.) (s.e.)

Heinz 0.1230 0.6708 0.0043 0.1187
(0.0033) (0.0062) (0.0067) (0.0069)

Hunts 0.1667 0.1788 0.0225 0.1442
(0.0077) (0.0072) (0.0106) (0.0109)

Del Monte 0.2188 0.1345 0.0126 0.2062
(0.0090) (0.0062) (0.0110) (0.0113)

Store 0.2166 0.0805 0.0252 0.1914
(0.0062) (0.0072) (0.0094) (0.0099)
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CONCLUSIONS

CONCLUSIONS

AME are useful parameters to represent causal effects.

In FE nonlinear panel data models with short panels, the distribution
of the UH, and this problem has been associated with the common
belief that AMEs are not identified.

In the context of dynamic logit models, we prove the identification of
AMEs associated with changes in lagged dependent variables and in
duration variables.

Our proofs provide simple closed-form expressions for the AMEs in
terms of frequencies of choice histories.

We illustrate our identification results using consumer scanner data in
dynamic demand model with state dependence.
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