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Abstract

Some countries have regulations that impose restrictions on the use of sales
promotions in retail markets. The main motivation of these policies has been the
protection of small retailers. This paper studies empirically the welfare implica-
tions of this type of policies. We present a model of dynamic price competition
among retailers who sell several varieties of a differentiated storable good. In
this model, firms use sales promotions as a mechanism to discriminate intertem-
porally among heterogeneous consumers. The model is estimated using scanner
data from the food retailers of a US town. The estimated model is used to
compute counterfactual equilibria under different restrictions on the use of sales
promotions. We compare consumer surplus and the profitability of small and
large retailers under the factual and the counterfactual equilibria.

KEYWORDS: Sales promotions; Intertemporal price discrimination; Market
power; Estimation of dynamic demand models; Estimation of game theoretic
models.

1 Introduction

While retailers in Britain and US enjoyed of great flexibility in the use of sales pro-

motions, most countries in continental Europe have restrictions on the form, the

frequency and the magnitude of these temporary price discounts. In Germany, for

instance, sales are limited to twelve working days every six months, and cannot start

on the last Mondays in January or in July. In Belgium, non seasonal sales are pro-

hibited, and in France, Italy and Spain a prior authorization is required. In most of

these countries the price discount cannot exceed 20% of the regular price. The main

motivation of these restrictions has been the protection of the centers of towns and

villages, and thereby the livings of small shopkeepers. In fact, the regulation of sales

promotions can be seen as part of a set of legislative constraints that tries to protect
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small retailers and that includes also restrictions on hours of operation and location.

Not surprisingly, small retailers have been the main supporters of the restrictive reg-

ulations. They argue that sales promotions are a form of predatory conduct from

large supermarkets, and that consequently they have negative effects on competi-

tion and welfare.1 Of course, large supermarkets are opposed to this argument and

they consider that consumers benefit very significantly from these temporary price

discounts. The regulation of sales promotions in retail markets has recently become

an important policy issue in Europe, and the European Commission has started a

consultation process aimed to homogenize the regulation on sales promotions in the

European Union.

This paper studies the welfare implications of policies that restrict the use of sales

promotions. The main objective of this paper is to study empirically the contribution

of sales promotions to consumers’ welfare and to the profitability of small and large

retailers in a specific food retail market. The study uses scanner from supermarkets

and stores in Sioux Falls, South Dakota, between 1985 and 1987.

Economists have studied different reasons why retailers use sales promotions.

The one that has received greater attention in the literature is intertemporal price

discrimination (IPD).2 Retailers use temporary price discounts to discriminate among

consumers who are heterogeneous in their valuations of the good (Conslik et al,

1984, and Sobel, 1984) or in their information about prices (Varian, 1980), or both

(Pesendorfer, 2001). The model in this paper builds on these previous studies on sales

promotions and IPD, and it extends them to the context of a differentiated product

market of a storable good. Similar dynamic demand models have been considered

in Erdem, Imai and Keane (2002), Hendel and Nevo (2002), and Keane (2002). In

this paper we present the complete equilibrium model and define the Markov Perfect

equilibrium.

The typical sales promotion in our data occurs once every six weeks, the price

discount is around 20%, and the increase in weekly sales is 500% (see Figure 1). Of

course, part of the large increase in sales associated with these price discounts is the re-

1For instance, it has been argued that the flexibility of the law on sales promotions in Britain is
an important factor to explain why profit margins in UK supermarkets are between two and three
times larger than in continental Europe (see Burt and Spark, 1997, and Seth and Randall, 1999, pp.
214-217).

2Other reasons why retailers use sales promotions are: to avoid waste; to respond to shocks
in consumers’ shopping intensity (Warren and Barsky, 1995, and MacDonald, 2000); to encourage
consumer loyalty (Slade, 1998); or to manage inventories efficiently (Aguirregabiria, 1999).
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sult of consumers’ substitution over brands, over stores and over time. Any approach

that ignores or underestimates these substitution effects will provide an upward bi-

ased estimate of the effect of sales promotions on consumers welfare. Therefore, the

consideration of a model where the good is differentiated (i.e., consumers can substi-

tute over brands and stores) and storable (i.e., consumers hold inventories and can

substitute over time) is crucial for our analysis. One of the main econometric issues

in this paper is the identification of these substitution effects.

Another objective of this paper is to study how the practice of sales promotions

affect firms’ profits and market structure. In particular, the main interest is to test

whether small retailers are affected negatively by this practice. To study empirically

this issue, we use the estimated model to compute a counterfactual equilibrium under

the assumption that stores keep a constant price. Then, we compare firms’ profits

and market structure in the factual and in the counterfactual equilibrium.

The rest of this preliminary and incomplete version of the paper is organized as

follows. Section 2 presents the model. The econometric issues and the estimation

procedure are explained in section 3. Section 4 describes the market and the data.

Finally, section 5 presents the estimation results.

2 Model

Consider a retail market with S stores, each one selling B brands of a storable good.

Time is discrete and indexed by t, and we index stores by s and brands by b. Stores

are price-takers in their relationship with wholesalers, but they have market power in

the retail market. Every week, stores decide prices simultaneously. Consumers hold

inventories of the good, consume from these inventories and decide, every week, how

many units to purchase, which brand to purchase and at which store.

2.1 Consumer behavior

Let Ut(kt, ct, bt, st) be a consumer utility function, where kt is consumption of the

storable good, ct is consumption of the rest of the goods (i.e., composite good), and

bt and st represent brand and store choices, respectively. We omit the consumer

subindex in this section. For a given week, all the units of the good that a consumer

purchases belong to the same store and brand.3 I adopt a multi-stage budgeting ap-
3This is the case for practically all (99.8%) households’ purchases of ketchup and canned tuna in

the data used in this paper.
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proach to model consumers’ quantity, store and brand choices.4 Under the following

assumptions on preferences, the conditions for multi-stage budgeting (Gorman, 1971)

apply to this dynamic model.

Assumption 1: The one-period utility is additively separable:

Ut(kt, ct, bt, st) = u
K
t (kt) + u

C
t (ct) + u

B
t (bt) + u

S
t (st) (1)

where uKt (.), u
C
t (.), u

B
t (.), and u

S
t (.) are functions.

Notice that this assumption implies that utility from consumption of the storable

good does not depend on the brand or the store where it was purchased. Brand and

store choices affect utility at the moment of purchase but not at subsequent periods.

This assumption simplifies substantially the model. Also, we ignore brand and store

switching costs.5

Assumption 2: Consumer preferences for brands and stores have the following form.

For b ∈ {1, 2, ..., B} and any s ∈ {1, 2, ..., S},

uBt (b) = ξ̄(b) + ξt(b) ; uSt (s) = η̄(s) + ηt(s) (2)

where {ξ̄(b) : b = 1, 2, ..., B} and {η̄(s) : s = 1, 2, .., S} represent the consumer’s
time-invariant or average taste for the different brands and stores; and {ξt(b) : b =
1, 2, ..., B} and {ηt(s) : s = 1, 2, ..., S} are idiosyncratic shocks in tastes, which are
independently distributed over consumers, time, brands and stores with extreme value

distribution.

Assumption 3: Consumers spent all their disposable income. Therefore ct = y −
pbtstt qt, where y is the consumer weekly income, pbst is the price of brand b at store

s, and qt ∈ {0, 1, 2, ...Q} is the number of units of the storable good that the con-
sumer purchases at week t. The specification of the utility from consumption of the

composite good is:

uCt (ct) = αC1 c
αC2
t (3)

where αC1 and αC2 are parameters.

4See Hausman, Leonard and Zona (1994), and Hausman, Leonard and McFadden (1995) for this
approach in static models, and Hendel and Nevo (2001) for a dynamic demand model similar to the
one in this paper.

5 In our model, all the persistence in consumers’ brand and store choices is explained by time-
invariant heterogeneity in tastes.
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Assumption 4: We do not model explicitly the optimal consumption for the storable

good. Instead, we assume that consumption of the storable good is proportional to

the inventories of the good: kt = λ(it + qt), where λ ∈ (0, 1) is a parameter, and it is
the level of inventories at the beginning of the period. Utility from consumption of

the storable good is:

uKt (kt) = αK1 k
αK2
t + εt(qt) (4)

where αK1 and α
K
2 are parameters, and {εt(0), εt(1), ..., εt(Q)} are idiosyncratic shocks

which are independently and identically distributed over consumers, over time and

over q with extreme value distribution.

Under these assumptions, the indirect utility of buying q units of brand b at store s

is:

Ut = αK1 [λ (it + q)]
αK2 + αC1

³
y − pbst q

´αC2
+ εt(q) + ξ̄(b) + ξt(b) + η̄(s) + ηt(s) (5)

Finally, to complete the demand part of the model we should incorporate an

assumption about consumers’ beliefs of future prices. We assume that consumers

have rational expectations and know the true transition probability of prices. Let pt

be the vector of prices for all brands and stores at period t. For the moment we only

consider that {pt} has discrete support and follows a Markov process with transition
probability Fp(pt+1|pt).

Under these assumptions, a consumer’s decisions can be represented in terms of

three sets of choice probabilities. First, the brand choice probabilities are:

PB(b | qt, st, pt) ≡ Pr(bt = b | qt, st, pt) =
exp

½
αC1

³
y − pbstt qt

´αC2
+ ξ̄(b)

¾
XB

j=1
exp

½
αC1

³
y − pjstt qt

´αC2
+ ξ̄(j)

¾
(6)

Second, store choice probabilities:

PS(s | qt, pt) ≡ Pr(st = b | qt, pt) = exp {m(s, qt, pt) + η̄(s)}XS

j=1
exp { m(j, qt, pt) + η̄(j)}

(7)

where m(s, qt, pt) ≡ (1/ση) ln

·XB

b=1
exp

½
αC1

³
y − pbst qt

´αC2
+ ξ̄(b)

¾¸
. And third,

the quantity choice probabilities:

PQ(q | it, pt) = Pr(qt = q | it, pt) = exp {v(q, it, pt) / σε}XQ

j=0
exp {v(j, it, pt) / σε}

(8)
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where {v(q, it, pt)} are the conditional choice value functions, i.e., the expected present
value of current and future utility if the consumer buys q units of the good when the

current state is (it, pt). These value functions are implicitly defined by the Bellman

equations:

v(q, it, pt) ≡ αK1 [λ (it + q)]
αK2 +M(q, pt)+βσε

X
pt+1

Fp(pt+1|pt) ln
 QX
j=0

exp {v(j, it, pt+1) /σε}


(9)

with M(q, pt) ≡ ση ln

·XS

s=1
exp {m(s, q, pt) + η̄(s)}

¸
.

In this model, brand and store choice probabilities are used to aggregate prices

of different stores and brands. That is, these probabilities are used to obtain a single

price index for each household,M(., pt), that captures the way in which the household

perceives different brands and stores as substitutes of each other.

The aggregate demand of brand b at store s and period t is:

Dbst (pt) =
QX
q=1

"X
i

PQ(q|i, pt) Gt(i)
#
PS(s|q, pt) PB(b|q, s, pt) (10)

where Gt(i) is the distribution of consumer inventories at period t. Consumers, or

households, are heterogeneous in their tastes. In particular, there are N groups

of consumers according to the values of the parameters {ξ̄(b)}, {η̄(s)}, αK1 and λ.

Therefore, we have a different distribution of inventories and a different demand for

each consumer type. The market demand Dbst (pt) is just the result of aggregating

the demands from each consumer type.

2.2 Store pricing decisions

Let pst = {pbst : b = 1, 2, ..., B} be the vector of prices at store s, and let p−st represent

prices at all the stores except store s. The set of feasible prices is discrete: pst ∈
{p1, p2, ..., pJ}. Current profits have four components: revenue, purchasing costs,
price adjustment costs (i.e., the so called menu costs), and a profitability shock that

is private information of the store. That is, profits of store s at period t are:

Rst (pt, p
s
t−1,ω

s
t ) =

BX
b=1

(pbst − wb) Dbst (pt)−AC
Ã
BX
b=1

1(pbst 6= pbst−1)
!
+ ωst (p

s
t ) (11)

where wb is the unit cost of brand b; AC(.) represents price adjustment costs, which

depend on the number of price changes; 1(.) is the indicator function; and ωst (p
s
t )
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is a component of profitability that is private information of store s and may de-

pend on prices at this store. We assume that these private information shocks are

independently and identically distributed over time and over stores.

Every week, stores decide prices simultaneously. When taking this decision, stores

know the demand functions Dbst (.), previous prices at every store, pt−1, and their own

shocks {ωst}, but they have uncertainty about the shocks ω at other stores. Therefore,
they have uncertainty about current prices at other stores.

The game has a Markov structure, and we assume that firms play Markov strate-

gies. That is, if {pt−1,ωst} = {pt+j−1,ωst+j} then the prices that store s chooses at
periods t and t+j are the same. Let π = {πs(pt−1,ωst )} be a set of strategy functions
or decision rules. Associated with a set of strategy functions π we can define a set of

conditional choice probabilities Fπ = {F sπ(pst |pt−1)} such that,

F sπ(p
j |pt−1) ≡ Pr

h
πs(pt−1,ωst ) = p

j | pt−1
i
=

Z
I
n
πs(pt−1,ωst ) = p

j
o
g(ωst ) dω

s
t

(12)

where I{.} is the indicator function. The probabilities {F sπ(pj |pt−1) : j = 1, 2, ..., J}
represent the expected pricing behavior of store s from the point of view of the rest

of the firms when firm i follows its strategy in π.

Following Milgrom and Weber (1985) we can represent a Markov Perfect equilib-

rium (MPE) in probability space. Let π∗ be a set of MPE pricing strategies, and

let F ∗ be the set of conditional choice probabilities associated with these strategies.

Then, F ∗ solves a fixed point mapping in probability space: F ∗ = Ψ(F ∗). See Aguir-

regabiria and Mira (2002b). In this reformulation of the equilibrium, price transition

probabilities represent stores’ strategies. An equilibrium is a fixed point of a suitably

modified best response function Ψ().

3 Estimation of structural parameters

Our data set is a long panel with information on consumers’ purchasing histories

and demographic characteristics, and stores’ prices and sales for all brands in several

product lines. It also reports total expenditure of individual consumers at every store

visit. The parameters of the model are: (1) tastes for brands and stores, {ξ̄(b)} and
{η̄(s)}; (2) parameters in the utility functions, αC1 , αC2 , αK1 , αK2 ; (3) consumption
rate for the storable good, λ; (4) dispersion parameters ση and σε; (5) marginal costs,

{wb}; and (6) menu costs, AC(.). We estimate these parameters following a sequential
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procedure.

In this section we explain our sequential procedure for the estimation of these

parameters. But before we describe our measure of consumers’ inventories.

Let τgt ∈ {1, 2, ...} be the variable “time since last purchase of good g”, and let
ñgt represent the number of units the consumer bought in his last purchase (i.e.,

ñgt = ng,t−τgt). The transition rule of inventories implies that:

ln(kgt) = τgt ln(1− λg) + ln(ñgt)

Based on this expression we can use τgt and ñgt as state variables, and treat λg as

an unknown parameter to be estimated. Notice that we do not observe initial values

for ñgt and τgt. However, given that these variables are observable we can use their

sample means (for each type consumer type) as initial conditions. Also notice that

τgt and ñgt are discrete variables, and we do not have to make any discretization of

the state space to estimate consumers’ dynamic programming problem.

3.1 Estimation of demand parameters

(A). Brand choices: Given prices, a consumer most preferred brand does not depend

on the store, or on whether he has high or low shopping costs. It is also independent

of the quantity chosen, and of whether this quantity is positive or zero. The most

preferred brand only depends of the values of {ūb + εbt − pbt} for different brands.
Therefore, we can estimate preferences {ūb} using the histories of brand choices for
all households in the sample. The model is a static multinomial logit. We specify

preference parameters {ūb} as linear functions of a vector of household characteristics
xi (i.e., household income, family size, education and working status of the head(s)

of the household). More specifically, for household i, ūbi = x0iγb where γb is a vector

of parameters. We allow the dispersion parameter σε to depend on household in-

come. We also allow for aggregate shocks in brand preferences (e.g., promotions and

advertisement from manufacturers) by including time dummies for each brand.

(C). Store choices: Using information on choice of store for the subsample of observa-

tions with HSC we can estimate (up to scale) the values {W s
i } using the probabilities

in (??). Although we have a long panel (i.e., 93 weeks for each household), there are

some households which have HSC for only very few weeks. Therefore, we specify the

values W s
i as parametric functions of household characteristics.
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For the subsample of observations with LSC we use the probabilities in (??) to

estimate preference parameters {ūs}. First, we use our estimates of brand preferences
to obtain estimates for msi (p

s
t ) ≡ ln [

P
b exp {(ūbi − psbt)/σε}]. Then, use solve these

estimates in the probabilities PLs(pt) and estimate the parameters {ūs}. Again, we
specify {ūs} as linear functions of a vector of household characteristics: ūsi = x0iγs

where γs is a vector of parameters.

(D). Quantity choices: The function c(.), the consumption rate λ, and the discount

factor are estimated from the quantity choice probabilities. These probabilities result

from a discrete choice dynamic programming model with observable state variables

τgt and ñgt. This model has a similar structure to the one studied by Rust (1994),

with the particular feature that it is and ordered discrete choice model. In principle,

the NFXP algorithm in Rust (1994) or the NPL algorithm in Aguirregabiria and

Mira (2001) can be used to obtain maximum likelihood estimates. The space of the

observable state variable (τgt, ñgt) is relatively small (i.e., approx. 200 cells), but

given that we allow for heterogeneity in c and λ the computational cost of NFXP is

significantly larger than NPL, and therefore we use the later algorithm.

Our specification of the consumption rate is, λi = exp{λ0 + λ1hsizei}, where
λ0 and λ1 are parameters and membersi is the number of members in household i.

The specification of function c(.) is: c(kit;xi) = (x0iδ) ln(kit), where δ is a vector of

parameters.

3.2 Estimation of supply parameters

There are two main econometric and computational issues in the estimation of the

supply parameters: (1) the dimension of the state space in a store decision problem

is very large; and (2) the model has multiple equilibria, what creates an indetermi-

nacy problem and makes maximum likelihood estimation unfeasible. To deal with

the first problem we use the randomization techniques proposed by Rust (1997). For

the second problem, we use a sequential estimation procedure proposed in Aguirre-

gabiria and Mira (2002b) to deal with multiple equilibria in the estimation of dynamic

discrete choice games. The main assumption behind this method is that there are

not sunspots associated with the multiple equilibria. That is, for given structural

parameters, players (or nature) always select the same equilibrium and they do not

jump between different equilibria. We describe below in more detail our econometric
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approach.

(A) First stage: Expected demands: To obtain expected demands we should estimate

the distribution of consumers’ inventories conditional on the state variables (pt−1, xt).

We run regressions for ln(τ it) and for ln(ñit) on these state variables and a vector

household characteristics. Then we combine our estimates of demands dsb(pt, kt|i)
with conditional distribution of τ it and ñit that results from the previous regressions

to obtain the expected demands Dsb(pt, pt−1, xt).

(B) Second stage: reduced form estimation of price transition probabilities: Given

that private information shocks {ωst} are iid over stores, it is clear that Pr(pt|pt−1, xt) =QS
s=1 Pr(p

s
t |pt−1, xt), and therefore we can estimate price transition probabilities sep-

arately for each store. Furthermore, our parametric assumption on the distribution

of {ωst} provides useful information that can be exploited in the reduced form estima-
tion of these probabilities. In particular, if {ωst (a)} are iid extreme value we have that
Pr(pst = pa|pt−1,mt) = exp(h

s
a(pt−1, xt)

hPA
j=1 exp(h

s
j(pt−1, xt)

i
. We use polynomials

in (pt−1, xt) for the functions hsa(.). We use P̂ s(pst |pt−1, xt) to denote these estimated
reduced form probabilities.

(C) Third stage: estimation of structural parameters: Let ŷsbt(a) represent (estimated)

expected sales of brand b at store s when this store chooses the vector of prices pa

and the other stores behave according to P̂−s. That is,

ŷsbt(a) ≡
X
p−s
P̂−s(p−s|pt−1, xt) Dsb(pa, p−s, pt−1, xt)

Define also, ŷs0t(a) ≡
P
b pbaŷ

s
bt(a), which is the estimated expected revenue for store

s at period t if it chooses prices pa. For the sake of presentation, we first consider the

myopic case, i.e., β = 0. Under the assumption that {ωst (a)} are iid extreme value
distributed, the probability that store s chooses prices pa at period t is:

P s(pa|pt−1, xt) =
exp

(
1

σω

"
ŷs0t(a)−

X
b

cb ŷ
s
bt(a)− ηs ist (a)

#)
AX
j=1

exp

(
1

σω

"
ŷs0t(j)−

X
b

cb ŷ
s
bt(j)− ηs ist (j)

#)

where ηs is a menu cost parameter, and ist (a) =
P
b 1(p

s
ba 6= psb,t−1). It is clear that the

parameters {cb} and {ηs} are theoretically identified. Given estimates of structural
parameters we can obtain more informed estimates of the variables ysbt(a) and y

s
0t(a)

and apply again the same procedure.

10



When stores are forward looking, i.e., β > 0, the expression for price transition

probabilities is more complicated:

P s(pa|pt−1, xt) =
exp

(
1

σω

"
ŷs0t(a)−

X
b

cbŷ
s
bt(a)− ηsist (a) + β

Ã
Ŷ s0t(a)−

X
b

cbŶ
s
bt(a)− ηsÎst (a)

!#)
AX
j=1

exp

(
1

σω

"
ŷs0t(j)−

X
b

cbŷ
s
bt(j)− ηsist (j) + β

Ã
Ŷ s0t(j)−

X
b

cbŶ
s
bt(j)− ηsÎst (j)

!#)

where {Ŷ s0t(a)}, {Ŷ abt(a)} and {Îst (a)} are functions of price transition probabilities
and market demands. These functions are more complicated than their static coun-

terparts, but they can be obtained solving a system of linear equations with dimension

the one of the space of observable state variables (pt, xt). Given these variables, the

model is just a multinomial logit with nonlinear restrictions among the parameters,

and the estimation is very standard.

The main computational cost of this procedure appears in the computation of

the values ŷsbt(a), and specially in the computation of {Ŷ s0t(a)}, {Ŷ abt(a)} and {Îst (a)}.
It is in these computations where we exploit the randomization techniques in Rust

(1997).

4 Market, data and preliminary evidence

The data in this paper comes from the ERIM database collected by A. C. Nielsen

between 1985 and 1988 in Sioux Falls, South Dakota.6 In 1985, Sioux Falls had

a population of 81,340 people. More than 2,500 households were issued magnetic

ID cards to be presented at the checkout counter when shopping at participating

stores. Purchases were scanned and sent along with the panelist ID number to a

central computer. Table 2 presents descriptive statistics of household demographics

and shopping behavior.

The number of participating stores was 19. According to A.C. Nielsen, these

stores represent 80% of the grocery and drug retail sales in Sioux Falls. Thirteen

stores belong to four regional supermarket chains, and six are independent stores.

Table 3 presents market shares for the ten products in our data set. Chains A and

Bare the leaders in terms of market shares, and they account for approximately two

6Nielsen selected this location because it was representative of the US population in terms of
household income, size and age.

11



thirds of the market in each of the product lines. Average market shares are very

similar for the different product lines.

Figures 1 and 2 present the time series of prices and sales for the leading brands of

ketchup and canned tuna in three supermarkets chains. Several features of these series

are shared by most brands and products in our data. While supermarkets A and B

tend to have sales promotions quite frequently, chain D rarely has sales promotions.

Although sales promotions are common practice by many retailers, not all stores

follow this pricing strategy, or at least not with the same intensity. For instance,

supermarkets that advertise themselves as “everyday low price” keep prices constant

for longer periods than their competitors, and they rarely apply sales promotions.

In our data set, we find this type of heterogeneity between supermarkets’ pricing

strategies: some supermarket chains practice sales promotions very intensively while

others tend to keep constant prices. In particular, firms with larger market shares are

the ones who practice sales promotions, and they tend to charge significantly higher

regular prices than those firms that charge constant prices. Interestingly, once we

obtained average prices weighted by sales, these price differentials disappear.

5 Estimation results

We estimated a preliminary version of the model. Results will be presented in the

seminar.

12



REFERENCES:

Aguirregabiria, V. (1999): ”The dynamics of markups and inventories in retailing

firms,” The Review of Economic Studies, 66, 275-308.

Aguirregabiria, V., and P. Mira (2002a): ”Swapping the nested fixed point algorithm:

A class of estimators for Markov decision models”, Econometrica, forthcoming.

Aguirregabiria, V. and P. Mira (2002b): ”Simulated Pseudo Maximum Likelihood

Estimation of Dynamic Discrete Games,” manuscript, Department of Economics,

Boston University.

Anderson, S., A. de Palma, and J.-F. Thisse (1992): ”Discrete choice theory of

product differentiation”, Cambridge, MA. MIT Press.

Berry, S. (1994): ”Estimating discrete choice models of product differentiation”,

RAND Journal of Economics, 25, 242-262.

Berry, S., J. Levinshon and A. Pakes (1996): ”Automobile prices in market equilib-

rium”, Econometrica, 64, 841-890.

Burt, S., and L. Sparks (1997): “Performance in food retailing: A cross national

consideration and comparison of retail margins,” British Journal of Management, 8,

133-150.

Chevalier, J. (1995): ”Capital structure and product-market competition: Empirical

evidence from the supermarket industry”, American Economic Review, 85(2), 415-

435.

Chesher, A., and J. Santos-Silva (2002): “Taste variation in discrete choice models”,

Review of Economic Studies, 69, 147-168.

Coase, R. (1972): ”Durability and monopoly”, Journal of Labor and Economics, 15,

143-149.

Conslik, J., E. Gertsner and J. Sobel (1984): ”Cyclic pricing by a durable good

monopolist”, Quarterly Journal of Economics, 99, 489-505.

Cotterill, R. (1986): ”Market power in the retail food industry: Evidence from Ver-

mont”, Review of Economics and Statistics, 68(3), 379-386.

Cotterill, R, and L. Haller (1992): ”Barrier and queue effects: A study of leading US

supermarket chain entry patterns”, Journal of Industrial Economics, 40(4), 427-440.

Ericson, R., and A. Pakes (1995): ”Markov-Perfect industry dynamics: A framework

for empirical work”, Review of Economic Studies, 62, 53-82.

13



Erdem, T., S. Imai and M. Keane (2002): “Consumer Price and Promotion Expec-

tations: Capturing Consumer Brand and Quantity Choice Dynamics under Price

Uncertainty,” manuscript, University of California Berkeley.

Hausman, J., G. Leonard, and D. McFadden (1995): “A utility-consistent, combined

discrete choice and count data model: Assesing recreational use losses due to natural

resource damage,” Journal of Public Economics, 56, 1-30.

Hausman, J., G. Leonard, and J. Zona (1994): “Competitive Analysis with Differen-

tiated Products,” Annales de Economie et de Statistique, 34, 159-80.

Hendel, I. and A. Nevo (2002a): “Sales and Consumer Stokpiling,” manuscript, Uni-

versity of California at Berkeley.

Hendel, I. and A. Nevo (2002b): “Measuring the Implications of Sales and Consumer

Stockpiling Behavior,” manuscript, University of California at Berkeley.

Holton, R. (1957): ”Price discrmination at retail: the supermarkets case”, Journal

of Industrial Economics, 6(1), 13-32.

Keane, M. (2002): “Brand and Quantity Choice Dynamics under Price Uncertainty,”

manuscript. Yale University.

MacDonald, J. (2000): “Demand, Information and Competition: Why Do Food

Prices Fall at Seasonal Demand Peaks?,” Journal of Industrial Economics, 48, 27-45.

Pakes, A. and P. McGuire (1994): ”Computing Markov-Perfect Nash equilibria: Nu-

merical implications of a dynamic differentiated product model, Rand Journal of

Economics, 555-589.

Pesendorfer, M. (2000): ”Retail Prices: A Study of Price Behavior in Supermarkets”,

Journal of Business, Forthcoming.

Rust, J. (1994): ”Estimation of dynamic structural models, problems and prospects:

discrete decision processes”, in C. Sims (ed.) Advances in Econometrics. Sixth World

Congress, Cambridge University Press.

Seth, A., and G. Randall (1999): “The Grocers: The Rise and Rise of the Supermar-

ket Chains,” Kogan Page Limited. London.

Slade, M. (1998): ”Optimal Pricing with Costly Adjustment: Evidence from Retail

Grocery Stores”, Review of Economic Studies, 65, 87-108.

Smith, H. (2001): ”Supermarket choice and supermarket competition in market equi-

librium”, mimeo University of Oxford.

14



Sobel, J. (1984): ”The timing of sales”, Review of Economic Studies, 51, 353-368.

Sobel, J. (1991): ”Durable good monopoly with entry of new consumers”, Economet-

rica, 59, 1455-1485.

Stokey, N. (1981): ”Rational expectations and durable goods pricing”, Bell Journal

of Economics, 12, 112-128.

Tirole, J. (1988): ”The theory of industrial organization”, MIT Press, Cambridge,

Massachusetts.

Varian (1980): ”A Model of Sales”, American Economic Review, 70, 651-659.

Warner, E., and R. Barsky (1995): “The Timing and Magnitude of Retail Store

Markdowns: Evidence from Weekends and Holidays,” The Quarterly Journal of Eco-

nomics, 110, 321-352.

15



Table 1
The food supermarket industry in the US economy∗

Employment Revenue
Rank NAICS Industry Million Rank NAICS Industry Sales

workers Billion $
1 4521 Dept. stores 2.5 1 5241 Insurance 996
2 44511 Food supers. 2.5 2 336 Transp. equip. 572
3 5221 Banks 2.0 3 4411 Auto dealers 554
4 336 Transp. equip. 1.8 4 5221 Banks 533
5 334 Computers 1.7 5 334 Computers 438
6 5241 Insurance 1.6 6 311 Food manuf. 424
7 311 Food manuf. 1.5 7 325 Chemicals 420
8 333 Machinery 1.4 8 44511 Food supers. 351
9 4411 Auto. dealers 1.1 9 333 Machinery 270
10 325 Chemicals 0.9 10 4521 Dept. stores 220
∗Source: 1997 US Economic Census

Table 2
Household demographics and shopping behavior

Sioux Falls (South Dakota): Year 1985
Demographics Shopping behavior

Variable Avg (std) Variable Avg (std)
Family members 3.34 (1.36) Expenditure (in $ per week) 58.6 (59.1)

Annual income (in $) 28,998 (15.477) Expenditure per capita (in $ per week) 19.3 (20.5)

Female and male heads 86.5 % Number of store visits per week 2.8 (1.9)

Only female head 12.2 %

Only male head 1.3 %

Male working 83.8 %

Female working 71.2 %

Male high school graduate 88.9 %

Female high school graduate 91.1 %

Male college graduate 28.6 %

Female college graduate 23.3 %
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Table 3
Store Market shares (in %)

Sioux Falls. From 1985 (week 35) to 1987 (week 23)
Chain A Chain B Chain C Chain D
(3 stores) (6 stores) (2 stores) (2 stores)

Ketchup 35.8 27.9 8.6 19.4
Sugar 35.4 28.6 6.7 19.8
Tuna 35.9 30.6 10.5 13.9

Brownies 33.1 36.7 9.0 14.7
Dry detergent 36.3 30.8 11.5 15.2
Margarine 35.8 31.6 7.7 18.2

Peanut butter 36.2 30.3 8.3 17.2
Soups 33.7 32.0 10.5 16.4

Tissue paper 33.7 30.1 11.0 15.7
Yoghurt 39.5 27.6 14.4 10.1

Market shares are based on sales in physical units.

Table 4
Chain market shares for different brands of ketchup and tuna

Sioux Falls. Period 1985-1987
Ketchup

Chain A Chain B Chain C Chain D
Heintz (32 oz) 34.7 26.7 7.8 23.8
Hunt’s (32 oz) 41.4 29.0 12.2 10.1

Del Monte (32 oz) 46.9 32.1 1.9 14.7

Tuna
Chain A Chain B Chain C Chain D

Star-Kist in water (6.5 oz) 34.3 33.0 13.9 10.6
Chicken of sea in water (6.5 oz) 42.0 30.6 6.5 14.3

Star-Kist in oil (6.5 oz) 34.1 34.3 12.2 12.5
Chicken of sea in oil (6.5 oz) 41.9 29.8 5.0 16.9
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Table 5
Relative average prices (Chain A = 100)

Sioux Falls. Period 1985-1987
Chain B Chain C Chain D

Ketchup Not weighted 101.5 109.5 101.5
Weighted 98.8 104.4 100.0

Sugar Not weighted 98.2 96.7 72.3
Weighted 98.0 96.8 73.5

Tuna Not weighted 107.3 103.6 96.0
Weighted 103.3 95.6 100.2

Brownies Not weighted 97.1 92.5 92.3
Weighted 98.2 91.4 96.0

Dry detergent Not weighted 99.0 97.4 97.6
Weighted 98.4 99.1 98.7

Margarine Not weighted 96.3 98.3 91.4
Weighted 93.6 90.4 96.6

Peanut butter Not weighted 103.3 99.8 97.4
Weighted 100.0 100.0 96.9

Soups Not weighted 100.8 94.4 92.5
Weighted 98.9 92.7 93.2

Tissue paper Not weighted 102.8 99.0 93.1
Weighted 99.6 93.5 95.1

Yoghurt Not weighted 91.5 94.2 96.2
Weighted 90.4 93.4 97.0

10 products Not weighted 99.8 98.5 93.0
Weighted 97.4 95.7 95.1

(1) Not weighted relative price between chain s and chain A is:P
b(p̄sb/p̄Ab)wb, where p̄sb is the average price (not weighted by sales)

of brand b at chain s, and wb is the market share of brand b.
(2) Weighted relative price between chain s and chain A is:P
b(p̂sb/p̂Ab)wb, where p̂sb the average price (weighted by sales)

of brand b at chain s.
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Table 6
Conditional Logit for Brand Choice

Product: Ketchup. Market: Sioux Falls (1985-1987)

Without taste heterogeneity
Linear Utility Nonlinear utility

Parameter Estimate Std. error Estimate Std. error
Brand 1 ( ξ̄1) 2.0730 (0.0438) 2.0459 (0.0441)
Brand 2 ( ξ̄2) 1.1738 (0.0467) 1.1508 (0.0470)
Brand 3 ( ξ̄3) 0.9818 (0.0483) 0.9503 (0.0486)
Brand 4 ( ξ̄4) 1.1191 (0.0472) 1.1294 (0.0473)
Brand 5 ( ξ̄5) 0.1621 (0.0573) 0.1872 (0.0575)
Brand 6 ( ξ̄6) 0.4397 (0.0522) 0.4097 (0.0526)

αC1 1.8293 (0.1483) 6.7728 (1.2430)
αC2 1.0 - 0.8658 (0.2528)
αC3 0.0 - 0.1374 (0.0541)
# obs. 13,496 13,496
Log likel. -22,657.4 -22,629.8

Like. Ratio Index 0.0034 0.0047

With taste heterogeneity
Linear Utility Nonlinear Utility

Parameter Estimate Std. error Estimate Std. error
Brand 1 ( ξ̄1) 1.9465 (0.0479) 1.9185 (0.0484)
Brand 2 ( ξ̄2) 0.8782 (0.0516) 0.8552 (0.0520)
Brand 3 ( ξ̄3) 0.7263 (0.0526) 0.6918 (0.0534)
Brand 4 ( ξ̄4) 0.9591 (0.0518) 0.9664 (0.0519)
Brand 5 ( ξ̄5) 0.0671 (0.0624) 0.0953 (0.0629)
Brand 6 ( ξ̄6) 0.2265 (0.0572) 0.1930 (0.0580)

αC1 2.6231 (0.1745) 2.7068 (1.4024)
αC2 1.0 - 0.9244 (0.3052)
αC3 0.0 - 0.5516 (0.3491)

Cov. matrix {ξ̄bi} Ωξ =



0.42

-0.06 0.29

-0.01 0.08 0.23

-0.01 0.04 0.05 0.23

0.02 0.04 0.04 0.04 0.11

0.02 0.07 0.09 0.04 0.04 0.16


Score test: H 0 : Ωξ = 0 p− value = 0.0000

# obs. 13,496 13,496
Log likel. -15,934.0 -15,920.6

Like. Ratio Index 0.2991 0.2998
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Table 7
Conditional Logit for Store Choice

Product: Ketchup. Market: Sioux Falls (1985-1987)

Without taste heterogeneity With taste heterogeneity
Parameter Estimate Std. error Estimate Std. error
Store 1 ( η̄1) 1.8359 (0.0363) 1.6570 (0.0434)
Store 2 ( η̄2) 1.6570 (0.0369) 1.4000 (0.0454)
Store 3 ( η̄3) 0.6433 (0.0435) 0.2303 (0.0536)
Store 4 ( η̄4) 0.0012 (0.0477) -0.0658 (0.0540)

σξ 0.5359 (0.1846) 0.6323 (0.1354)

Cov. matrix {η̄si} Ωη =


0.68

-0.20 0.74

0.00 0.05 0.38

0.08 0.07 0.09 0.16


Score test: H 0 : Ωη = 0 p− value = 0.0000

# obs. 13,496 13,496
Log likel. -18,103.9 -9,484.8

Like. Ratio Index 0.0002 0.4762
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FIGURE 1

Time series of prices and sales for the two leading brands of Tuna

Brand: Star-Kist. Water
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FIGURE 2

Time series of prices and sales for the leading brand of Ketchup

Brand: Heinz (32 ounzes)
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