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(victor.aguirregabiria@utoronto.ca)

In this article we study the identification of structural pa-
rameters in dynamic games when we replace the assumption
of Markov perfect equilibrium (MPE) with weaker conditions,
such as rational behavior and rationalizability. The identifica-
tion of players’ time discount factors is of especial interest.
Identification results are presented for a simple two-period/two-
player dynamic game of market entry-exit. Under the assump-
tion of level-2 rationality (i.e., players are rational and know
that they are rational), a exclusion restriction and a large-
support condition on one of the exogenous explanatory vari-
ables are sufficient for point identification of all structural para-
meters.

1. INTRODUCTION

Structural econometric models of individual or firm behavior
typically assume that agents are rational in the sense that they
maximize expected payoffs given their subjective beliefs about
uncertain events. Empirical applications of game-theoretic
models have used stronger assumptions than rationality. Most
of these studies apply the Nash equilibrium (NE) solution,
or some of its refinements, to explain agents’ strategic be-
havior. The NE concept is based on assumptions on play-

ers’ knowledge and beliefs that are more restrictive than ra-
tionality. Although there is no set of necessary conditions
for generating the NE outcome, the set of sufficient condi-
tions typically includes the assumption that players’ actions
are common knowledge. For instance, Aumann and Branden-
burger (1995) showed that mutual knowledge of payoff func-
tions and of rationality, along with common knowledge of
the conjectures (actions), imply that the conjectures form a
NE. But this assumption on players’ knowledge and beliefs
may be unrealistic in some applications; therefore, it is rel-
evant to study whether the principle of revealed preference
can identify the parameters in players’ payoffs under weaker
conditions than NE. For instance, we would like to know
whether rationality is sufficient for identification. It is also rel-
evant to study the identification power of other assumptions
that are stronger than rationality but weaker than NE, such
as common knowledge rationality (e.g., everybody knows that
players are rational; everybody knows that everybody knows
that players are rational). Common knowledge rationality is
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closely related to the solution concepts iterated strict domi-
nance and rationalizability (see Fudenberg and Tirole 1991,
chap. 2).

The article by Aradillas-Lopez and Tamer (2008) is the
first study that deals with these interesting identification is-
sues. The authors study the identification power of rational
behavior and rationalizability in three classes of static games
that have received significant attention in empirical applica-
tions: binary choice games with complete and incomplete in-
formation, and auction games with independent private val-
ues. Their article contributes to the literature on identifica-
tion of incomplete econometric models, those models that
do not provide unique predictions on the distribution of en-
dogenous variables (see also Tamer 2003; Haile and Tamer
2003). Aradillas-Lopez and Tamer show that standard exclu-
sion restrictions and large-support conditions are sufficient to
identify structural parameters despite the nonuniqueness of
the model predictions. Although structural parameters can be
point identified, the researcher still faces an identification is-
sue when using the estimated model to perform counterfac-
tual experiments. Players’ behavior under the counterfactual
scenario is not point identified. This problem also appears in
models with multiple equilibria. However, a nice feature of
Aradillas-Lopez and Tamer’s approach is that, at least for the
class of models that they consider, it is quite simple to obtain
bounds of the model predictions under the counterfactual sce-
nario.

The main purpose of this article is to study the identifica-
tion power of rational behavior and rationalizability in a class
of empirical games that was not analyzed in Aradillas-Lopez
and Tamer’s article: dynamic discrete games. Dynamic discrete
games are of interest in economic applications where agents in-
teract over several periods and make decisions that affect their
future payoffs. In static games of incomplete information, play-
ers form beliefs on the probability distribution of their oppo-
nents’ actions. In dynamic games, players also should form
beliefs on the probability distribution of players’ future ac-
tions, including their own future actions, and also on the dis-
tribution of future exogenous state variables. The most com-
mon equilibrium concept in applications of dynamic games
is Markov perfect equilibrium (MPE). As in the case of NE,
the concept of MPE is based on strong assumptions of play-
ers’ knowledge and beliefs. MPE assumes that players maxi-
mize expected intertemporal payoffs and have rational expec-
tations, and that players’ strategies are common knowledge. In
this article, we maintain the assumption that every player knows
his own strategy function and has rational expectations on his
own future actions; however, we relax the assumption that play-
ers’ strategies are common knowledge. We study the identifica-
tion of structural parameters, including players’ time discount
factors, when we replace the assumption of common knowl-
edge strategies with weaker conditions, such as rational behav-
ior.

We present identification results for a simple two-period/two-
player dynamic game of market entry-exit. Under the as-
sumption of level-2 rationalizability (i.e., players are ratio-
nal and they know that they are rational), a exclusion restric-
tion and a large-support condition on one of the exogenous
explanatory variables are sufficient for point identification of
all of the structural parameters, including time discount fac-
tors.

2. DYNAMIC DISCRETE GAMES

2.1 Model and Basic Assumptions

Assume that two firms decide whether to operate or not in a
market. We use the index i ∈ {1,2} to represent a firm and the
index j ∈ {1,2} to represent its opponent. Time is discrete an
indexed by t ∈ {1,2, . . . ,T}, where T is the time horizon. Let
Yit ∈ {0,1} be the indicator of the event “firm i is active in the
market at period t.” Every period t the two firms decide simulta-
neously whether or not to be active in the market. A firm makes
this decision to maximize its expected and discounted profits
Et(

∑T−t
s=0 δs

i �i,t+s), where δi ∈ (0,1) is the firm’s discount fac-
tor and �it is its profit at period t. The decision to be active in
the market has implications not only on a firm’s current profits,
but also on its expected future profits. More specifically, there is
an entry cost that should be paid only if a currently active firm
was not active at previous period. Therefore, a firm’s incumbent
status (or lagged entry decision) affects current profits. The one-
period profit function is

�it =
{

Ziηit + γitYi,t−1 + αitYjt − εit if Yit = 1

0 if Yit = 0,
(1)

where Yjt represents the opponent’s entry decision, Zi is a vec-
tor of time-invariant exogenous market and firm characteristics
that affect firm i’s profits, and ηit, γit, and αit are parameters.
The parameter γit ≥ 0 represents firm i’s entry cost at period t.
The parameter αit ≤ 0 captures the competitive effect. At period
t, firms know the variables {Y1,t−1,Y2,t−1,Z1,Z2} and the pa-
rameters {η1t,η2t, γ1t, γ2t, α1t, α2t}. For the sake of simplicity,
we also assume that firms know future values of the parameters
{η, γ,α} without any uncertainty. The vector θ represents the
whole sequence of parameters form period 1 to T . The variable
εit is private information of firm i at period t. A firm has un-
certainty on the current value of his opponent’s ε and also on
future values of both his own and his opponent’s ε’s. The vari-
ables ε1t and ε2t are independent of (Z1,Z2), independent of
each other, and independently and identically distributed over
time. Their distribution functions, H1 and H2, are absolutely
continuous and strictly increasing with respect to the Lebesgue
measure on R.

2.2 Rational Forward-Looking Behavior

The literature on estimation of dynamic discrete games has
applied the concept of MPE. This equilibrium concept assumes
that (a) players’ strategy functions depend only on payoff-
relevant state variables; (b) players are forward-looking, max-
imize expected intertemporal payoffs, have rational expecta-
tions, and know their own strategy functions; and (c) players’
strategy functions are common knowledge. The concept of ra-
tional behavior that we consider here maintains assumptions (a)
and (b) but relaxes condition (c).

Let Xt be the vector with all of the payoff-relevant and com-
mon knowledge state variables at period t: Xt ≡ (Yi,t−1,Yj,t−1,

Zi,Zj). The information set of player i is {Xt, εit}. Let σit(Xt,

εit) be a strategy function for player i at period t. This is a func-
tion from the support of (Xt, εit) into the binary set {0,1}. As-
sociated with any strategy function σit, we can define a proba-
bility function Pit(Xt) that represents the probability of Yit = 1
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conditional on Xt and on player i following strategy σit; that is,
Pit(Xt) ≡ ∫

I{σit(Xt, εit) = 1}dHi(εit), where I{·} is the indica-
tor function. It will be convenient to represent players’ behav-
ior and beliefs using these conditional choice probability (CCP)
functions. The CCP function Pjt(Xt) represents firm i’s beliefs
on the probability that firm j will be active in the market at pe-
riod t if current state is Xt. Here Pj represents the sequence of
CCPs {Pjt(·) : t = 1,2, . . . ,T}. Therefore, Pj contains firm i’s
beliefs on his opponent’s current and future behavior.

A strategy function σit(Xt, εit) is rational if for every pos-
sible value of (Xt, εit), the action σit(Xt, εit) maximizes player
i’s expected and discounted sum of current and future payoffs,
given his beliefs on the opponent’s strategies.

For the rest of the article, we concentrate on a two-period
version of this game: T = 2. Let Pj ≡ {Pj1(·),Pj2(·)} be firm i’s
beliefs on the probabilities that firm j will be active at periods
1 and 2. In the final period, firms play a static game, and the
definition of a rational strategy is the same as in a static game.
Therefore, σi2(X2, εi2) is a rational strategy function for firm i

at period 2 if σi2(X2, εi2) = I{εi2 ≤ �
Pj
i2 (X2)}, where the thresh-

old function �
Pj
i2 (X2) is the difference between the expected

payoff of being in the market and the payoff of not being in the
market at period 2, that is,

�
Pj
i2 (X2) ≡ Ziηi2 + γi2Yi1 + αi2Pj2(X2). (2)

Now consider the game at period 1. The strategy function

σi1(X1, εi1) is rational if σi1(X1, εi1) = I{εi1 ≤ �
Pj
i1 (X1)},

where the threshold function �
Pj
i1 (X1) represents the difference

between the expected value of firm i if active at period 1 minus
its value if not active, given that firm i behaves optimally in the
future and that he believes that his opponent’s CCP function is
Pj, that is,

�
Pj
i1 (X1) ≡ Ziηi1 + γi1Yi0 + αi1Pj1(X1)

+ δiPj1(X1)[VPj
i2 (1,1) − V

Pj
i2 (0,1)]

+ δi(1 − Pj1(X1))[VPj
i2 (1,0) − V

Pj
i2 (0,0)], (3)

where V
Pj
i2 (X2) is firm i’s value function at period 2 aver-

aged over εi2, that is, V
Pj
i2 (X2) ≡ ∫

max{0;Ziηi2 + γi2Yi1 +
αi2Pj2(X2) − εi2}dHi(εi2). According to this definition of ra-
tional strategy function, we say that the CCP functions Pi1(·)
and Pi2(·) are rational for firm i if, given beliefs Pj, we have
that

Pit(Xt) = Hi(�
Pj
it (Xt)) for t = 1,2. (4)

In the final period, the game is static and has the same
structure as that of Aradillas-Lopez and Tamer (2008); there-
fore, the derivation of rationalizability bounds on Pi2(X2) and
the conditions for set and point identification of {ηi2, γi2, αi2}
are the same as in that article. Section 2.3 discusses two im-
portant properties of the threshold functions �

Pj
it (Xt). Sec-

tion 2.4 derives rationalizability bounds on Pi1(X1). Section 3
shows how these bounds can be used to identify the parameters
{δi,ηi1, γi1, αi1}.

2.3 Two Important Properties of the
Threshold Functions

The assumption of rationality (or of level-k rationality) im-
plies informative bounds on players’ behavior only if the effect

of beliefs Pj on the threshold function �
Pj
i1 (X1) is bounded with

probability 1. Otherwise, the best-response probability of an ar-
bitrarily pessimistic (optimistic) rational player would be 0 (1)
with probability 1. In Aradillas-Lopez and Tamer’s static game,
this condition holds if the parameters take finite values. In our
finite-horizon dynamic model, this condition also is necessary
and sufficient. If the parameters {δi,ηi1,ηi2, γi1, γi2, αi1, αi2}
take finite values, then there are two finite constants, clow

i and

chigh
i , such that for any belief Pj and any finite value of X1,

the threshold function �
Pj
i1 (X1) is bounded by the constants

�
Pj
i1 (X1) ∈ [clow

i , chigh
i ]. For an infinite-horizon dynamic game

(i.e., T = ∞), we also need the discount factor δi to be smaller
than 1.

The recursive derivation of rationality bounds in Aradillas-
Lopez and Tamer’s static game is particularly simple because
the expected payoff function is strictly monotonic in beliefs Pj.
This monotonicity condition is not really needed for identifica-
tion, but it simplifies the analysis and also likely the estimation

procedure. In our two-period game, �
Pj
i2 (X2) is a nonincreasing

function of Pj2(Xt) if and only if αi2 ≤ 0. But the monotonic-

ity of �
Pj
i1 (X1) with respect to Pj1(X1) does not follow simply

from the restrictions αi1 ≤ 0 and αi2 ≤ 0. Restrictions on other
parameters, or on beliefs, are needed to satisfy this monotonic-
ity condition. At period 1, we have that

∂�
Pj
i1 (X1)

∂Pj1(X1)
= αi1 + δi

(
V

Pj
i2 (1,1) − V

Pj
i2 (0,1)

− V
Pj
i2 (1,0) + V

Pj
i2 (0,0)

)
. (5)

Clearly, αi1 ≤ 0 is not sufficient for �
Pj
i1 to be a nonincreas-

ing function of Pj1(X1). We also need the value function

V
Pj
i2 (Yi1,Yj1) to be not too supermodular; that is, V

Pj
i2 (1,1) −

V
Pj
i2 (0,1)− V

Pj
i2 (1,0)+ V

Pj
i2 (0,0) should be either negative (i.e.,

V
Pj
i2 is submodular) or positive but not larger than −αi1/δi

(i.e., V
Pj
i2 is supermodular, but not too much). To derive suf-

ficient conditions, it is important to take into account that

V
Pj
i2 (X2) ≡ Gi(Ziηi2 + γi2Yi1 + αi2 Pj2(X2)), where the func-

tion Gi(a) is Eεi(max{0;a − εi}). This function has the fol-
lowing properties: it is continuously differentiable, its first
derivative is Hi(a) ∈ (0,1), it is convex, lima→−∞ Gi(a) = 0,
lima→+∞ Gi(a) − a = 0, and for any positive constant b, we
have that Gi(a + b)− Gi(a) < b. There are different sets of suf-

ficient conditions for ∂�
Pj
i1 (X1)/∂Pj1(X1) ≤ 0, for instance, a

simple set of conditions is αi1 ≤ 0, αi2 ≤ 0, and αi1 − 2δiαi2 ≤
0. Another set of conditions is αi1 ≤ 0 and αi2 ≤ 0; here firm
i believes that, ceteris paribus, it is more likely that the oppo-
nent’s will be active at period 2 if it was active at period 1 [i.e.,
Pj2(Yi1,1) ≥ Pj2(Yi1,0) for Yi1 = 0,1], and (αi1 − δi/αi2) ≤ 0.

For the rest of the article, we assume that �
Pj
i1 (X1) is nonin-

creasing in Pj1(X1).
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2.4 Bounds With Forward-Looking Rationality

Let k ∈ {0,1,2, . . .} be the index of the level of rationality
of both players. We define PL,k

it (Xt) and PU,k
it (Xt) as the lower

and upper bounds for player i’s CCP at period t under level-k
rationality. Level-0 rationality does not impose any restriction,
and thus PL,0

it (Xt) = 0 and PU,0
it (Xt) = 1 for any state Xt. For

the last period, t = 2, the derivation of the probability bounds is
exactly the same as in the static model; therefore, for k ≥ 1,

PL,k
i2 (X2) = Hi

(
Ziηi2 + γi2Yi1 + αi2PU,k−1

j2 (X2)
)
,

(6)
PU,k

i2 (X2) = Hi
(
Ziηi2 + γi2Yi1 + αi2PL,k−1

j2 (X2)
)
.

The rest of this section derives a recursive formula for the
probability bounds at period 1. Let �k

j be the set of player j’s
CCPs (at periods 1 and 2) that are consistent with level-k ra-
tionality. By definition, level-k rationality bounds at period 1
are PL,k

i1 (X1) = Hi(�
L,k
i1 (X1)) and PU,k

i1 (X1) = Hi(�
U,k
i1 (X1)),

where

�
L,k
i1 (X1) ≡ min

Pj∈�k−1
j

{�Pj
i1 (X1)},

(7)
�

U,k
i1 (X1) = max

Pj∈�k−1
j

{�Pj
i1 (X1)}.

Given the monotonicity of �
Pj
i1 (X1) with respect to Pj, the min-

imum and the maximum of �
Pj
i1 (X1) are reached at the bound-

aries of the set �k
j . More specifically, it is possible to show that

the value of (Pj1,Pj2) that minimizes �
Pj
i1 (X1) is

{
PU,k−1

j1 (X1);PU,k−1
j2 (1,1);PU,k−1

j2 (1,0);
PL,k−1

j2 (0,1);PL,k−1
j2 (0,0)

}; (8)

that is, the most pessimistic belief for firm i (i.e., the one that

minimizes �
Pj
i1 ) is such that the probability that the opponent

is active at period 1 takes its maximum value, and when firm i
decides to be active (inactive) at period 1, the probability that
the opponent is active at period 2 takes its maximum (mini-
mum) value. Similarly, the value of (Pj1,Pj2) that maximizes

�
Pj
i1 (X1) is

{
PL,k−1

j1 (X1);PL,k−1
j2 (1,1);PL,k−1

j2 (1,0);
PU,k−1

j2 (0,1);PU,k−1
j2 (0,0)

}
. (9)

Firm i’s most optimistic belief (i.e., the one that maximizes

�
Pj
i1 ) is such that the probability that the opponent is ac-

tive at period 1 takes its minimum value, and when firm
i decides to be active (inactive) at period 1, the probabil-
ity that the opponent is active at period 2 takes its mini-
mum (maximum) value. Therefore, we have the following re-
cursive formulas for the bounds �

L,k
i1 (X1) and �

U,k
i1 (X1); for

k ≥ 1,

�
L,k
i1 (X1) = Ziηi1 + γi1Yi0 + αi1PU,k−1

j1 (X1)

+ δi
[
PU,k−1

j1 (X1)W
L,k
i2 (1)

+ (1 − PU,k−1
j1 (X1))W

L,k
i2 (0)

]
,

(10)

�
U,k
i1 (X1) = Ziηi1 + γi1Yi0 + αi1PL,k−1

j1 (X1)

+ δi
[
PL,k−1

j1 (X1)W
U,k
i2 (1)

+ (1 − PL,k−1
j1 (X1))W

U,k
i2 (0)

]
,

where

WL,k
i2 (1) ≡ Gi

(
Ziηi2 + γi2 + αi2PU,k−1

j2 (1,1)
)

− Gi
(
Ziηi2 + αi2PL,k−1

j2 (0,1)
)
,

WL,k
i2 (0) ≡ Gi

(
Ziηi2 + γi2 + αi2PU,k−1

j2 (1,0)
)

− Gi
(
Ziηi2 + αi2PL,k−1

j2 (0,0)
)
,

(11)
WU,k

i2 (1) ≡ Gi
(
Ziηi2 + γi2 + αi2PL,k−1

j2 (1,1)
)

− Gi
(
Ziηi2 + αi2PU,k−1

j2 (0,1)
)
,

WU,k
i2 (0) ≡ Gi

(
Ziηi2 + γi2 + αi2PL,k−1

j2 (1,0)
)

− Gi
(
Ziηi2 + αi2PU,k−1

j2 (0,0)
)
.

For instance, for level-1 rationality, we have

�
L,1
i1 (X1) = Ziηi1 + γi1Yi0 + αi1

+ δi[Gi(Ziηi2 + γi2 + αi2) − Gi(Ziηi2)],
(12)

�
U,1
i1 (X1) = Ziηi1 + γi1Yi0

+ δi[Gi(Ziηi2 + γi2) − Gi(Ziηi2 + αi2)].
An important implication of the monotonicity in Pj of the

threshold function �
Pj
i1 is that the sequence of lower bounds

{�L,k
i1 (X1) : k ≥ 1} is nondecreasing and the sequence of up-

per bounds {�U,k
i1 (X1) : k ≥ 1} is nonincreasing, that is, for any

value of X1 and any k ≥ 1,

�
L,k+1
i1 (X1) ≥ �

L,k
i1 (X1),

(13)
�

U,k+1
i1 (X1) ≤ �

U,k
i1 (X1).

The bounds become sharper when we increase the level of ra-
tionality.

3. IDENTIFICATION

Suppose that we have a random sample of many (infi-
nite) independent markets at periods 1 and 2. For each mar-
ket in the sample, we observe a realization of the variables
{Yi0,Yi1,Yi2,Zi : i = 1,2}. The realizations of the unobservable
variables {εit} are independent across markets. We are inter-
ested in using this sample to estimate the vector of structural
parameters θ ≡ {δi,ηit, γit, αit : i = 1,2; t = 1,2}.

Let P0
it(Xt) be the true conditional probability function

Pr(Yit = 1|Xt) in the population, and let θ0 be the true value
of θ in the population. We consider the following assumptions
on the data-generating process for any player i ∈ {1,2} and any
period t ∈ {1,2}:

(A1) The reduced-form probability P0
it(Xt) is identified at

any point in the support of Xt.
(A2) The variance–covariance matrix var(Zi,Yi,t−1) has full

rank.
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(A3) The distribution function Hi is known to the researcher.
(A4) α0

it ≤ 0, and θ0 belongs to a compact set �.

Assumptions (A1) and (A3) imply that the population thresh-
old function �0

it(Xt) ≡ H−1
i (P0

it(Xt)) is identified at any point
in the support of Xt. We use �0

it(Xt) instead of P0
it(Xt) in the

following analysis.
Level-k rationality implies the following restrictions on the

threshold functions evaluated at the true θ0:

�
L,k
it (Xt, θ

0) ≤ �0
it(Xt) ≤ �

U,k
it (Xt, θ

0). (14)

Note that, by the monotonicity in k of the rationalizability
bounds, if a value of θ satisfies the restrictions for level-k ra-
tionality, then it also satisfies the restrictions for any level k′
smaller than k. Let �k be the identified set of parameters for
level-k rational players. By definition,

�k = {
θ ∈ � :�L,k

it (Xt, θ) ≤ �0
it(Xt) ≤ �

U,k
it (Xt, θ)

for any (i, t,Xt)
}
. (15)

In the context of dynamic games, the discount factor δi
is a particularly interesting parameter. Does the identified set
�k include the whole interval (0,1) for the discount factor,
or can we rule out some values for that parameter? For in-
stance, can we rule out that players are myopic (i.e., δi = 0)?
Consider the case of level-1 rationality. Given the restriction
�0

i1(X1) ≤ �
U,1
i1 (X1, θ

0), and assuming that γ 0
i2 − α0

i2 ≥ 0, it is
straightforward to show that

δ0
i ≥ sup

X1

{
�0

i1(X1) − Ziη
0
i1 − γ 0

i1Yi0

Gi(Ziη
0
i2 + γ 0

i2) − Gi(Ziη
0
i2 + α0

i2)

}

. (16)

This expression illustrates several aspects on the identifica-
tion of δ0

i . Level-1 rationality implies informative restrictions
on the set of parameters, such that �1 does not contain the
whole parameter space. In particular, given some values of the
other parameters, we can guarantee that the lower bound on
δ0

i (the right side of the inequality) is strictly positive. Ex-
pression (16) also illustrates that we can rule out some val-
ues of the discount factor in the interval (0,1) only if we im-
pose further restrictions, either on the other parameter, or ex-
clusion and support restrictions on the observable explanatory
variables.

The rest of the article presents sufficient conditions for point
identification of the parameters in θ0. To prove point identifi-
cation, we need to establish that for any vector θ �= θ0, there
are values of Xt with positive probability mass such that the
inequality �

L,k
it (Xt, θ) ≤ �0

it(Xt) ≤ �
U,k
it (Xt, θ) does not hold,

that is, either �
L,k
it (Xt, θ) > �0

it(Xt) or �
U,k
it (Xt, θ) < �0

it(Xt).
The following exclusion restriction and large-support assump-
tion is key to the point identification results that we present
later:

(A5) There is a variable Zi� ⊂ Zi such that η0
i1� �= 0, η0

i2� �= 0,
and conditional on any value of the other variables
in (Zi,Zj), denoted by Z(−i�), the random variable
{Zi�|Z(−i�)} has unbounded support.

Theorem 1 (Point identification under level-1 rationalizabil-
ity). Suppose that players are level-1 rational and that assump-
tions (A1)–(A5) hold. Let η0

i1� and η0
i2� be the parameters asso-

ciated with the exclusion restrictions in assumption (A5). Then
η0

i1� and η0
i2� are point identified.

Proof. For notational simplicity, in this proof we omit the
subindex i, but it should be understood that all variables and pa-
rameters are player i’s. First, we prove the identification of η0

2�.
Suppose that θ is such that η2� �= η0

2�. Given θ and an arbitrary
value of (Z(−�),Y1), let Z∗

� be the value of Z� that makes the
lower bound function evaluated at θ equal to the upper bound
function evaluated at θ0, that is, �

L,1
2 (Z∗

� ,Z(−�),Y1; θ) =
�

U,1
2 (Z∗

� ,Z(−�),Y1; θ0). Given the form of these functions, this
value is

Z∗
� ≡ (η2� − η0

2�)
−1(Z(−�)

[
η0

2(−�) − η2(−�)

]

+ Y1[γ 0
2 − γ2] − α2

)
. (17)

Here Z∗
� is a finite value that belongs to the support of Z�. Sup-

pose that η2� > η0
2�. Then, for values of Z� greater than Z∗

� , we
have that

�
L,1
2 (X2, θ) = Zη2 + γ2Y1 + α2

> Zη0
2 + γ 0

2 Y1 = �
U,1
2 (X2, θ

0), (18)

which contradicts the restrictions imposed by level-1 rational-
ity. By assumption (A5), the probability Pr(Z� > Z∗

� |Z(−�),Y1)

is strictly positive. Because the previous argument can be ap-
plied for any possible value of (Z(−�),Y1), the result holds
with a positive probability mass Pr(Z� > Z∗

� ); therefore, we can
reject any value of η2� strictly greater than η0

2�. Similarly, if
η2� < η0

2�, then for values of Z� smaller than Z∗
� , we have that

�
L,1
2 (X2, θ) > �

U,1
2 (X2, θ

0). We can reject any value of η2�

strictly smaller than η0
2�. Thus η0

2� is identified.
Now consider the identification of η0

1�. Note that the proof
that follows does not assume that η0

2� is known. Identification
of η0

1� does not require identification of η0
2�. Given the form of

the functions �
L,1
1 and �

U,1
1 , we have that

�
L,1
1 (X1, θ) − �

U,1
1 (X1, θ

0)

= Z(η1 − η0
1) + Y0(γ1 − γ 0

1 ) + α1

+ δ
[
G(Zη2 + γ2 + α2) − G(Zη2)

]

− δ0[G(Zη0
2 + γ 0

2 ) − G(Zη0
2 + α0

2)
]
. (19)

Suppose that θ is such that η1� > η0
1�. By the properties of

function G(·), the values δ[G(Zη2 + γ2 + α2) − G(Zη2)] and
δ0[G(Zη0

2 + γ 0
2 ) − G(Zη0

2 + α0
2)] are bounded within the inter-

vals [0, δ(γ2 + α2)] and [0, δ0(γ 0
2 − α0

2)]. Because the parame-
ter space � is a compact set, both δ(γ2 + α2) and δ0(γ 0

2 − α0
2)

clearly are finite values. This implies that for any arbitrary
value of (Z(−�),Y1), we can always find a finite value of Z�,
say Z̄�, such that for Z� > Z̄�, we have that �

L,1
1 (X1, θ) −

�
U,1
1 (X1, θ

0) > 0, which contradicts the restrictions imposed
by level-1 rationality. By assumption (A5), the probability
Pr(Z� > Z̄�|Z(−�),Y0) is strictly positive; therefore, we can re-
ject any value of η1� strictly greater than η0

1�. We can apply a
similar argument to show that we can reject any value of η1�

strictly smaller than η0
1�. Thus η0

1� is identified.
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Point identification of all of the parameters of the model re-
quires at least level-2 rationality. Furthermore, in this dynamic
game, at least two additional conditions are needed. First, iden-
tifying the discount factor requires that the last period entry
cost, γ 0

i2, be strictly positive. If this parameter is zero, then the
dynamic game becomes static at period 1, and the discount fac-
tor does not play any role in the decisions of rational players.
Second, the parameters η0

i1� and η0
i2� in assumption (A5) should

have the same sign.

Theorem 2 (Point identification under level-2 rationaliz-
ability). Suppose that assumptions (A1)–(A5) hold, players
are level-2 rational, the parameters η0

i1� and η0
i2�, in assump-

tion (A5) have the same sign, and γ 0
i2 > 0. Then all of the struc-

tural parameters in θ0 are point identified.

Proof. Aradillas-Lopez and Tamer (2008) show that under
the conditions of this theorem, all of the parameters in the sta-
tic game are identified. Therefore, this proof considers that the
vector (η0

i2, γ
0
i2, α

0
i2) is known, and it concentrates on the identi-

fication of (δ0
i ,η0

i1, γ
0
i1, α

0
i1). The proof goes through four cases,

which cover all the possible values of θ �= θ0.

Case (a). Suppose that θ is such that ηi1� �= η0
i1�. Theorem 1

shows that we can reject this value of θ .

Case (b). Suppose that θ is such that ηi1� = η0
i1� but

ηi1(−�) �= η0
i1(−�) or/and γi1 �= γ 0

i1. We prove here that, given
this θ , there is a set of values of X1, with positive probability
mass, such that �

L,2
i1 (X1, θ) > �

U,2
i2 (X1, θ

0), which contradicts
the restrictions of level-2 rationality. By definition,

�
L,2
i1 (θ) − �

U,2
i2 (θ0)

= Zi(ηi1 − η0
i1) + Yi0(γi1 − γ 0

i1)

+ αi1PU,1
j1 (X1, θ) − α0

i1PL,1
j1 (X1, θ

0)

+ δi
[
PU,1

j1 (X1, θ)WL,2
i2 (1)

+ (1 − PU,1
j1 (X1, θ))WL,2

i2 (0)
]

− δ0
i

[
PL,1

j1 (X1, θ
0)WU,2

i2 (1)

+ (1 − PL,1
j1 (X1, θ

0))WU,2
i2 (0)

]
. (20)

Given θ , let (Zi(−�),Yi0) be a vector such that Zi(−�)(ηi1 −
η0

i1) + Yi0(γi1 − γ 0
i1) > 0. By the noncollinearity assumption

in (A2) and the exclusion restriction in (A5), for any pair
(Zi�,Zj�), the set of values (Zi(−�),Yi0) satisfying the previ-
ous inequality has positive probability mass. Now, given the
monotonicity of the probabilities PL,1

j1 , PU,1
j1 , PL,1

j2 , and PU,1
j2

with respect to Zj�, and given that sign(η0
j1�) = sign(η0

j2�), we
can find values of Zj� large enough (or small enough, depend-
ing on the sign of the parameter) such that these probabilities
are arbitrarily close to 0. That is the case both for the probabili-
ties evaluated at θ and for those evaluated at θ0, because in both
cases the values of ηj1� and ηj2� are the true ones, η0

j1� and η0
j2�.

Therefore, for these values of Zj�, we have that

�
L,2
i1 (θ) − �

U,2
i2 (θ0)

� Zi(−�)(ηi1 − η0
i1) + Yi0(γi1 − γ 0

i1)

+ (δi − δ0
i )[Gi(Ziη

0
i2 + γ 0

i2) − Gi(Ziη
0
i2)]. (21)

By the definition of the function Gi(·), as Zi�η
0
i�2 goes to −∞,

both Gi(Ziη
0
i2 + γ 0

i2) and Gi(Ziη
0
i2) go to 0. Therefore, for

these pairs of (Zi�,Zj�), we have that �
L,2
i1 (θ) − �

U,2
i2 (θ0) �

Zi(−�)(ηi1 − η0
i1) + Yi0(γi1 − γ 0

i1) > 0,which contradicts the re-
strictions of level-2 rationality. Thus η0

i1(−�)
and γ 0

i1 are identi-
fied.

Case (c). Suppose that θ is such that ηi1 = η0
i1 and γi1 = γ 0

i1,
but αi1 �= α0

i1. Now

�
L,2
i1 (θ) − �

U,2
i2 (θ0)

= αi1PU,1
j1 (X1, θ) − α0

i1PL,1
j1 (X1, θ

0)

+ δi
[
PU,1

j1 (X1, θ)WL,2
i2 (1)

+ (1 − PU,1
j1 (X1, θ))WL,2

i2 (0)
]

− δ0
i

[
PL,1

j1 (X1, θ
0)WU,2

i2 (1)

+ (1 − PL,1
j1 (X1, θ

0))WU,2
i2 (0)

]
. (22)

Suppose that αi1 > α0
i1. There are values of Zj� large enough (or

small enough) such that the probabilities PL,1
j1 , PU,1

j1 , PL,1
j2 , and

PU,1
j2 are arbitrarily close to 1. For these values,

�
L,2
i1 (θ) − �

U,2
i2 (θ0)

� αi1 − α0
i1 + (δi − δ0

i )

× [Gi(Ziη
0
i2 + γ 0

i2 + α0
i2) − Gi(Ziη

0
i2 + α0

i2)]. (23)

As Zi�η
0
i�2 goes to −∞, Gi(Ziη

0
i2 + γ 0

i2 + α0
i2) and Gi(Ziη

0
i2 +

α0
i2) go to 0. Therefore, for these pairs of (Zi�,Zj�), we have

that �
L,2
i1 (θ) − �

U,2
i2 (θ0) � αi1 − α0

i1 > 0, which contradicts
the restrictions of level-2 rationality. Similarly, when αi1 < α0

i1,
we can show that there is a set of values of X1 with positive
probability mass such that �

U,2
i1 (X1, θ) < �

L,2
i2 (X1, θ

0), which
also contradicts the restrictions of level-2 rationality. Thus α0

i1
is identified.

Case (d). Suppose that θ is such that ηi1 = η0
i1, γi1 = γ 0

i1,
and αi1 = α0

i1, but δi �= δ0
i . Then

�
L,2
i1 (θ) − �

U,2
i2 (θ0)

= α0
i1[PU,1

j1 (X1, θ) − PL,1
j1 (X1, θ

0)]
+ δi

[
PU,1

j1 (X1, θ)WL,2
i2 (1)

+ (1 − PU,1
j1 (X1, θ))WL,2

i2 (0)
]

− δ0
i

[
PL,1

j1 (X1, θ
0)WU,2

i2 (1)

+ (1 − PL,1
j1 (X1, θ

0))WU,2
i2 (0)

]
. (24)
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Suppose that δi > δ0
i . There are values of Zj� large enough (or

small enough) such that the probabilities PL,1
j1 , PU,1

j1 , PL,1
j2 and

PU,1
j2 are arbitrarily close to zero. For these values,

�
L,2
i1 (θ) − �

U,2
i2 (θ0)

� (δi − δ0
i )[Gi(Ziη

0
i2 + γ 0

i2) − Gi(Ziη
0
i2)] > 0, (25)

which contradicts the restrictions of level-2 rationality. Now,
consider the difference between �

U,2
i1 (θ) and �

L,2
i2 (θ0). We

have that

�
U,2
i1 (θ) − �

L,2
i2 (θ0)

= α0
i1[PL,1

j1 (X1, θ) − PU,1
j1 (X1, θ

0)]
+ δi

[
PL,1

j1 (X1, θ)WU,2
i2 (1)

+ (1 − PL,1
j1 (X1, θ))WU,2

i2 (0)
]

− δ0
i

[
PU,1

j1 (X1, θ
0)WL,2

i2 (1)

+ (1 − PU,1
j1 (X1, θ

0))WL,2
i2 (0)

]
. (26)

Suppose that δi < δ0
i . There are values of Zj� large enough (or

small enough) such that the probabilities PL,1
j1 , PU,1

j1 , PL,1
j2 , and

PU,1
j2 are arbitrarily close to zero. For these values:

�
U,2
i1 (θ) − �

L,2
i2 (θ0)

� (δi − δ0
i )[Gi(Ziη

0
i2 + γ 0

i2) − Gi(Ziη
0
i2)] < 0, (27)

which contradicts the restrictions of level-2 rationality. Thus δ0
i

is identified.
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Comment
Patrick BAJARI

Department of Economics, University of Minnesota, Minneapolis, MN 55455 (bajari@umn.edu)

In this short note, most of my efforts are directed toward open
research questions that exist in the literature, rather than cri-
tiquing the particulars of the current article. As a researcher,
I am always more interested in the question of where can we
possibly go from here rather than dwelling on the limitations of
a particular work. I start by describing the contribution of this
article to the growing literature on the econometric analysis of
games. Next I make some suggestions for some possible, fairly
immediate extensions of the current research. Finally, I discuss
some general outstanding issues that exist in the literature on
estimating games.

Most of my comments are made from the perspective of an
applied economist. I view myself as a potential end user of the
methods that Aradillas-Lopez and Tamer are creating. I hope
that my comments may suggest some directions for extensions
that will be useful to econometric theorists, who serve as up-
stream developers of these exciting new tools.

1. CONTRIBUTION OF THE ARTICLE

This paper is part of a growing literature at the intersection
of econometrics and game theory. An important class of mod-
els in this literature comprises generalizations of standard dis-
crete choice models, such as the conditional logit, which allow

for strategic interactions. In applied microeconomics, and espe-
cially empirical industrial organization, we are frequently con-
fronted with problems where the discrete choices of agents are
determined simultaneously. For example, starting with Bresna-
han and Reiss (1990, 1991), entry in spatially separated mar-
kets typically has been modeled as a simultaneous system of
discrete choice models. Bresnahan and Reiss noted that entry is
naturally modeled as a discrete choice. Economic theory sug-
gests that firms should enter if profits are greater than zero and
not enter if profits are less than zero. Therefore, it is natural
to include demand shifters, such as the number of consumers
in the market and their income and cost shifters, such as the
wage rate across markets in the discrete choice model. But in
many applied problems, the market structure is concentrated;
therefore, the entry decisions of the agents cannot be modeled
in isolation. For example, a reasonable model of the decision
by Wells Fargo to open a branch in mid-sized city should not
be viewed in isolation of Bank of America’s decision. To ac-
count for this interaction, Bresnahan and Reiss would have us
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