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Abstract

This paper deals with the estimation of structural econometric models where the probability distribution of

endogenous variables is implicitly defined as an equilibrium of a fixed-point problem. It proposes a pseudo

maximum likelihood (PML) procedure and studies its asymptotic properties.

D 2004 Elsevier B.V. All rights reserved.

Keywords: Fixed-points; Pseudo maximum likelihood estimation; Recursive methods

JEL classification: C13; C63

1. Introduction

This paper deals with the estimation of structural econometric models where the distribution of

endogenous variables is implicitly defined as a solution of a fixed-point problem. This structure

appears in Markov discrete decision processes (Rust, 1994), auction models (Guerre et al., 2000),

empirical games of incomplete information (Seim, 2002), and discrete models with social interactions

(Brock and Durlauf, 2001). This paper proposes a recursive pseudo maximum likelihood (PML)

procedure for the estimation of this class of models. There are two main reasons why this method is

of interest. First, it avoids the problem of indeterminacy associated with maximum likelihood

estimation of models with multiple equilibria. And second, the procedure avoids the repeated

solution of the fixed-point problem. In models where the dimension of the fixed-point is large, this

can result in significant computational gains relative to maximum likelihood.
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It is important to note that this paper considers a model where endogenous and exogenous variables

are discrete. Though the method can be extended to the case of continuous variables, the proofs of

consistency and asymptotic normality of the estimator are different, and additional conditions are

needed to guarantee a parametric rate of convergence for the estimator of the structural parameters.
2. Econometric model

Let yaY be a vector of discrete random variables, where Y is a discrete and finite set, and let

P0 be the true probability distribution of y.1 The structural model is a parametric family of

probability distributions P(h), where haH is a finite vector of parameters and H is a compact set.

The model does not provide a closed form analytical expression for P(h). Instead, this distribution

is implicitly defined as a fixed-point of a mapping in probability space:

PðhÞ ¼ WðPðhÞ; hÞ ð1Þ

where W(.jP,h) is a mapping from I �H into I , where I is the space of probability

distributions of y. In some models, and for some values of h, the mapping W(., h) can have

more than one fixed-point. If that is the case, the model does not provide a unique probability

distribution of y.

Example (A model of market entry). Consider a retail industry with many independent local markets.

N firms are the potential entrants in each local market. Let yit be the indicator of the event ‘‘firm i

operates in market t,’’ define yt=(y1t,y2t,. . .,yNt), and let xt be the size of market t. Profits of firm i in

market t are:

Y
it

¼

0 if yit ¼ 0

h0i þ h1xt � h2log

�
1þ

X
jpi

yjt

�
� eit if yit ¼ 1

8>><
>>: ð2Þ

where eit is private information of firm i and it is independently distributed over firms and over

markets with distribution function F. The vector of structural parameters is h={h01,. . .,h0N, h1, h2}. By
the independence of eit across firms, the joint probability Pr(yt | xt,h) can be described in terms of the

set of individual entry probabilities P(xt,h)u {Pi(xt,h): i = 1,2,. . .,N}. It is possible to show (see

Aguirregabiria and Mira, 2003) that the equilibrium probabilities of entry are implicitly defined as the

solution of the system:

Piðxi; hÞ ¼ Fðh0i þ h1xt � h2HiðP½xt; h	ÞÞ ð3Þ
1 For notational simplicity we omit exogenous explanatory variables. However, all the results in this paper apply also to the

case in which P0 is a conditional probability distribution {P0(yjx):(y,x)aY�X}.
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where Hi(P) is the expected value of log (1 +Sj p iyj) conditional on the information of firm i, and

under the condition that the other firms behave according to their entry probabilities in P. That is,

HiðPÞ ¼
X
y�i

Y
jpi

P
yj
j ½1� Pj	1�yj

 !
log 1þ

X
jpi

yj

 !
ð4Þ

and Sy � i represents the sum over all the possible actions of firms other than i. In this example, the

fixed-point mapping is W(P, xt, h)={F(h0i + h1xt� h2Hi(P)): i = 1,2,. . .,N}}.

This example has two features that make PML estimation particularly useful. First, in general

W(., xt, h) does not have a unique fixed-point. And second, when the number of firms is relatively

large, the evaluation of W for different values of h and fixed P is much cheaper than the evaluation

of W for different values of P and fixed h. This is because the main computational cost comes from

the sum Sy� i, and this sum should be recalculated only when we change P but not when we

change h.
3. Pseudo maximum likelihood estimators

The problem is to estimate the vector of structural parameters h0 given a random sample {yt:

t = 1,2,. . .,T} from the population P0. Let P̂T
0 = P̂T

0(y):yaY} be the nonparametric frequency

estimator of P0, i.e., P̂T
0(y) = T� 1St = 1

T I{yt = y}, where I{.} is the indicator function. For Kz 1,

the K-stage PML estimator is defined as:

ĥKT ¼ arg max
haH

XT
t¼1

lnWðyt j P̂K�1
T ; hÞ ð5Þ

where the sequence of probability distributions {P̂T
K:Kz 1} are constructed recursively as:

P̂K
T ¼ WðP̂K�1

T ; ĥKT Þ: ð6Þ

The one-stage estimator of h0 maximizes the pseudo likelihood St = 1
T lnW(ytjP̂T

0,h). Given P̂T
0 and ĥT

1

we obtain a new estimate of P0 by iterating in the fixed-point mapping, i.e., P̂T
1 =W (P̂T

0, ĥT
1). Then, ĥT

2

maximizes the pseudo likelihood St = 1
T ln W (yt | P̂T

1,h), and so on.

An alternative procedure consists in calculating one-stage PML estimator and then apply one

Newton iteration for the maximization of the likelihood function. There are several reasons why

PML iterations may be preferred. First, a Newton iteration requires the computation of the Jacobian

matrix BW/BP V, and this can be computationally much more expensive than the successive iterations

in the PML procedure. Second, in models with multiple equilibria the gradient of the likelihood

function is not well defined, but the gradient of the pseudo likelihood is always well defined. And

third, when the initial frequency estimator of P0 is very imprecise, the Newton iteration estimator
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can perform very poorly in finite samples. Though, one can apply successive Newton iterations in

the likelihood function, this can be computationally very costly.

Example. Let {yt,xt:t = 1,2,. . .,T} be a sample of firms’ entry decisions and market sizes from

T independent local markets. For simplicity, suppose that our measure of market size is discrete.

Let P̂i
0(x) be the frequency estimator (St = 1

T yitI{xt = x}) / (St = 1
T I{xt = x}), and let P̂0(x) be the vector

P̂i
0(x):i =1,2,. . .,N}. Given these frequency estimates, the one-stage estimator maximizes the pseudo

likelihood function,

XT
t¼1

XN
i¼1

yitlnFðh0i þ h1xt � h2HiðP̂0ðxtÞÞÞ þ ð1� yitÞln½1� Fðh0i þ h1xt � h2HiðP̂0ðxtÞÞÞ	: ð7Þ

When F is the cdf of a standard normal (logistic) random variable, this is just the likelihood of a Probit

(Logit) model. Given this one-stage estimator we can get new estimates of firms’ entry probabilities as:

P̂i
1(xt) =F(ĥ0i

1 + h
ˆ
1
1xt� hˆ2

1Hi(P̂
0(xt))). Using these probabilities we can construct new values Hi(P̂

1(xt)),

obtain a two-stage estimator, and so on.

Proposition 1 shows that the PMLEs are consistency and asymptotically normal under standard

regularity conditions, and it provides a recursive expression for the sequence of asymptotic variance

matrices. Proposition 2 presents a sufficient condition for the asymptotic efficiency of these estimators.

Proposition 1. Let {yt:t = 1,2,. . .,T} be a random sample of y, and let P̂T
0 be the frequency estimator

of P0. Assume that: (a) W is twice continuously differentiable in P and h, and for any (y,P,h)a
Y�I�H the probability W (y | P,h) is strictly greater than zero; (b) {P(h):haH} is a correctly

specified model, i.e., there is a value h 0aH such that P0 =W (P0,h 0); (c) H is a compact set; and (d)

(d) h0 uniquely maximizes in H the function E(lnW(y | P0,h)). Under these conditions the PML

estimators {ĥT
K, P̂T

K:Kz 1} are root-T consistent and asymptotically normal with asymptotic

variances:

Varð
ffiffiffiffi
T

p
ðP̂K

T � P0ÞÞ ¼ AKRAVK ; Varð
ffiffiffiffi
T

p
ðĥKT � h0ÞÞ ¼ BKRBVK

where R is the asymptotic variance of
ffiffiffiffi
T

p
(P̂T

0�P0), and {AK:Kz 1} and {BK:Kz 1} are sequences

of deterministic matrices which can be obtained recursively using the expressions:

AK=(I�WhM)WPAK� 1 +Wh M and BK=M(I�WPAK� 1), where: A0 is the identity matrix; Wh

and WP are the Jacobian matrices @W(P0, h0)@hVand @W(P0,h0)/@PV, respectively; and M is the

projection matrix (WhVdiag{P
0}� 1Wh)

� 1WhVdiag{P
0} � 1.

Proof. By Lemma 24.1 and Property 24.2 in Gourieroux and Monfort (1995), and an induction

argument, the proof of consistency is straightforward. I derive here the asymptotic distribution. First

order conditions of optimality imply that the sequence of estimators {ĥT
K, P̂T

K:Kz 1} can be obtained

using the recursive expressions St = 1
T

BlnW(yt | P̂T
K� 1, ĥT

K)/Bh = 0 and P̂T
K =W(P̂T

K� 1, ĥT
K). Since W is

twice continuously differentiable, we can apply the stochastic mean value theorem to these conditions
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between (P̂T
K� 1, ĥT

K) and (P0,h0). By consistency of (P̂T
K� 1, ĥT

K), the stochastic mean value theorem

implies that:

ffiffiffiffi
T

p
ðĥKT � h0Þ ¼ X�1

hh ½�XhP

ffiffiffiffi
T

p
ðP̂K�1

T � P0Þ þ ð1=
ffiffiffiffi
T

p
Þ
XT
t¼1

BlnW0
t =Bh	 þ opð1Þ ð8Þ

and

ffiffiffiffi
T

p
ðP̂K

T � P0Þ ¼ WP

ffiffiffiffi
T

p
ðP̂K�1

T � P0Þ þ Wh

ffiffiffiffi
T

p
ðĥKT � h0Þ þ opð1Þ ð9Þ

whereCt
0uW(yt |P

0,h0), XhhuE({B lnWt
0/Bh} {BlnWt

0/Bh}V), and XhPuE({BlnWt
0/Bh} {BlnWt

0/BP}V).
Solving (Eq. 8) into (Eq. 9) we get the following recursive expression for the sequence {

ffiffiffiffi
T

p
(P̂T

K�P0):

Kz 1}:

ffiffiffiffi
T

p
ðP̂K

T � P0Þ ¼ ½WP � WhX
�1
hh XhP	

ffiffiffiffi
T

p
ðP̂K�1

T � P0Þ

þ WhX
�1
hh ð1=

ffiffiffiffi
T

p
Þ
XT
t¼1

BlnW0
t =Bh þ 0pð1Þ: ð10Þ

Taking into account that P̂T
0(y) is the frequency estimator (1/T)St = 1

T I{yt = y}, we can write (1
ffiffiffiffi
T

p
)

St = 1
T

Bln Wt
0/Bh as SyaYBlnW(y |P0,h0)/Bh

ffiffiffiffi
T

p
(P̂T

0(y)�P0(y)), or in matrix form as WVh diag{P0}� 1ffiffiffiffi
T

p
(P̂T

0�P0). Also, the matrices XhhuE({BlnWt
0/Bh} {BlnWt

0/Bh}V) and XhPuE({BlnWt
0/Bh}

{Bln Wt
0/BP}V) can be written as:

Xhh ¼
X
yaY

fBlnWðy j P0; h0Þ=BhgfBlnWðy j P0; h0Þ=BhVgP0ðyÞ ¼ WVh diagðP0Þ�1Wh ð11Þ

XhP ¼
X
yaY

fBlnWðy j P0; h0Þ=BhgfBlnWðy j P0; h0Þ=BhVgP0ðyÞ ¼ WVh diagðP0Þ�1WP: ð12Þ

Therefore, we have:

ffiffiffiffi
T

p
ðP̂K

T � P0Þ ¼ ðI � WhMÞWP

ffiffiffiffi
T

p
ðP̂K�1

T � P0Þ þ WhM
ffiffiffiffi
T

p
ðP̂0

T � P0Þ þ opð1Þ ð13Þ

where M=Xhh
� 1 WhVdiag(P

0)� 1. Solving this difference equation backwards we get
ffiffiffiffi
T

p
(P̂T

K�P0) =

AK

ffiffiffiffi
T

p
(P̂T

0�P0) + op(1), where A0 = I and, for K > 0, AK=(I�WhM) WPAK� 1 +WhM. Solving this

expression in Eq. (8), we get that
ffiffiffiffi
T

p
(ĥT

K� h0) =BK

ffiffiffiffi
T

p
(P̂T

0�P0) + op(1), where BK=M(I�WPAK� 1).

Finally, by Mann–Wald Theorem, it is straightforward that
ffiffiffiffi
T

p
(P̂T

K�P0)! dN(0,AK SAVK) andffiffiffiffi
T

p
(ĥT

K� h0)! dN(0,BKSBKV), where S is the asymptotic variance of
ffiffiffiffi
T

p
(P̂T

0�P0). 5

Proposition 2. If the Jacobian matrix BW(P0,h0)/BPV is zero, then all the estimators in the

sequence {ĥT
K:Kz 1} are asymptotically equivalent to the maximum likelihood estimator (MLE).
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Proof. First, notice that applying the implicit function theorem to P(h0) =W(P(h0),h0) we have that:

BPðh0Þ=BhV ¼ ðI � BWðP0; h0Þ=BPVÞ�1
BWðP0; h0Þ=BhV: ð14Þ

Therefore, if BW(P0,h0)/BPV= 0, the score and pseudo-score are equal, i.e., BlnP(yt | h
0)/Bh=BlnW

(yt |P
0,h0)/Bh, and we can write the variance of the MLE as:

VMLE ¼
 X

yaY

fBlnPðy j h0Þ=BhgfBlnPðy j h0Þ=BhVgP0ðyÞÞ�1 ¼ ðWhV diagðP0Þ�1Wh

!�1

¼ X�1
hh : ð15Þ

Second, BW(P0,h0)/BPV= 0 implies that AK =WhM and BK =M for any Kz 1. Therefore,

Varð
ffiffiffiffi
T

p
ðĥKT ÞÞ ¼ MRMV ¼ X�1

hh WhV diagðP0Þ�1R diagðP0Þ�1WhX
�1
hh ð16Þ

R= diag(P0)�P0P0V is the asymptotic variance of the frequency estimator of P0, and it is simple

to show that diag(P0)� 1Rdiag(P0)� 1 = diag(P0)� 1. Therefore, Var(
ffiffiffiffi
T

p
(ĥT

K� h0)) =Xhh
� 1, which is

the variance of the MLE.. The zero Jacobian condition holds in single-agent dynamic

programming models with conditional independence of unobservables (see Aguirregabiria and

Mira, 2002), but it does not hold in static or dynamic games of incomplete information. However,

even when the one-stage estimator is asymptotically efficient, Montecarlo experiments show that

iterating in the PML procedure can provide estimators with significantly better finite sample

properties (see Aguirregabiria and Mira, 2003). 5
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