Some useful properties and formulas for random utility models with logit, nested logit, and ordered nested logit stochastic components

Victor Aguirregabiria*
University of Toronto

January 8, 2010

Abstract

Within the framework of discrete choice Random Utility Models (RUM) with additive stochastic components, this note reviews existing results on closed-form expressions for several key functions: the distribution of the maximum utility, the expected maximum utility, the choice probabilities, and the selection function. The analysis considers three different specifications for the distribution of the stochastic component: i.i.d. type I extreme value distribution, nested extreme value distribution, and ordered generalized extreme value distribution.

1 Random Utility Models

Consider a discrete choice Random Utility Model (RUM) with additive stochastic component. The optimal choice, a^{*}, is defined as:

$$
\begin{equation*}
a^{*}=\arg \max _{a \in \mathcal{A}}\left\{u_{a}+\varepsilon_{a}\right\} \tag{1}
\end{equation*}
$$

where $\mathcal{A}=\{1,2, \ldots, J\}$ is the set of feasible choice alternatives, $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{J}\right)$ is the vector with the deterministic component of the utility, and $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{J}\right)$ is the vector with the stochastic component. The vector ε has a joint CDF $G($.$) that is continuous and$ strictly increasing with respect to the Lebesgue measure in the Euclidean space.

[^0]This note derives closed-form expressions for the distribution of the maximum utility, $\max _{a \in \mathcal{A}}\left\{u_{a}+\varepsilon_{a}\right\}$, the expected maximum utility, $\mathbb{E}\left(\max _{a \in \mathcal{A}}\left\{u_{a}+\varepsilon_{a}\right\} \mid u\right)$, and the choice probabilities, $\operatorname{Pr}\left(a^{*}=a \mid \mathbf{u}\right)$, under three different specifications for the distribution of the vector ε : (1) i.i.d. Type I Extreme Value distribution (MNL model); (2) nested Extreme Value distribution (NL model); and (3) Ordered Generalized Extreme Value distribution (OGEV model).

The following definitions and properties are used in the note.
Definition: A random variable X has a Double Exponential or Type I Extreme Value distribution with location parameter μ and dispersion parameter σ if its CDF is:

$$
\begin{equation*}
G(x)=\exp \left\{-\exp \left(-\left[\frac{x-\mu}{\sigma}\right]\right)\right\} \tag{2}
\end{equation*}
$$

for any $x \in(-\infty,+\infty)$.
Definition: Maximum utility. Let v^{*} be the random variable that represents the maximum utility: $v^{*} \equiv \max _{a \in \mathcal{A}}\left\{u_{a}+\varepsilon_{a}\right\}$. This maximum utility is a random variable because it depends on the vector of random variables ε.

Definition: McFadden's Social Surplus function. The social surplus function $S(\mathbf{u})$ is the expected value of the maximum utility conditional on the vector of constants $\mathbf{u}: S(\mathbf{u}) \equiv$ $\mathbb{E}\left(\max _{a \in \mathcal{A}}\left\{u_{a}+\varepsilon_{a}\right\} \mid u\right)$.

Definition: Conditional choice probabilities (CCPs). The conditional choice probability $P(a \mid \mathbf{u})$ is the probability that alternative a is the optimal choice: $P(a \mid \mathbf{u}) \equiv \operatorname{Pr}\left(a^{*}=a \mid \mathbf{u}\right)$.

Definition: Conditional choice expected utilities (CCEU). The conditional choice expected utility $e(a, \mathbf{u})$ is the expected value of utility $u_{a}+\varepsilon_{a}$ conditional on the vector \mathbf{u} and on the event that alternative a is the optimal choice: $e(a, \mathbf{u}) \equiv \mathbb{E}\left(u_{a}+\varepsilon_{a} \mid \mathbf{u}, a^{*}=a\right)$.

Definition: Selection function. The selection function $\lambda(a, \mathbf{u})$ is the expected value of the stochastic component of the utility, ε_{a}, conditional on the vector \mathbf{u} and on the event that alternative a is the optimal choice: $\lambda(a, \mathbf{u}) \equiv \mathbb{E}\left(\varepsilon_{a} \mid \mathbf{u}, a^{*}=a\right)$.

Williams-Daly-Zachary (WDZ) Theorem is an important property of discrete choice RUM with additive stochastic component. It is the discrete-choice version of Roy's Identity in consumer theory. I use this property in several parts of this note. I include here an enunciation of the Theorem and a simple proof.

Williams-Daly-Zachary (WDZ) Theorem. For any choice alternative $a \in \mathcal{A}$, the $C C P$ $P(a \mid \mathbf{u})$ can be obtained as the partial derivative of the surplus function $S(\mathbf{u})$ with respect to utility $u(a)$:

$$
\begin{equation*}
P(a \mid \mathbf{u})=\frac{\partial S(\mathbf{u})}{\partial u_{a}} \tag{3}
\end{equation*}
$$

Proof: By definition of $S(\mathbf{u})$, we have that:

$$
\begin{equation*}
\frac{\partial S(\mathbf{u})}{\partial u_{a}}=\frac{\partial}{\partial u_{a}} \int \max _{j \in \mathcal{A}}\left\{u_{j}+\varepsilon_{j}\right\} d G(\varepsilon) \tag{4}
\end{equation*}
$$

Given the conditions on the CDF of ε, we can move the partial derivative inside the integral such that:

$$
\begin{align*}
\frac{\partial S(\mathbf{u})}{\partial u_{a}} & =\int \frac{\partial \max _{j \in \mathcal{A}}\left\{u_{j}+\varepsilon_{j}\right\}}{\partial u_{a}} d G(\boldsymbol{\varepsilon}) \\
& =\int 1\left\{u_{a}+\varepsilon_{a} \geq u_{j}+\varepsilon_{j}, \forall j \in \mathcal{A}\right\} d G(\varepsilon) \tag{5}\\
& =P(a \mid \mathbf{u})
\end{align*}
$$

where $1\{$.$\} is the indicator function.$
I also use the following Theorem to derive several results in this note.
Theorem CEV. For any distribution of $\boldsymbol{\varepsilon}$, any value of the vector \mathbf{u}, and any choice alternative $a \in \mathcal{A}$, we have that:

$$
\begin{equation*}
\mathbb{E}\left(\varepsilon_{a} \mid \mathbf{u}, a^{*}=a\right)=S(\mathbf{u})-u_{a} \tag{6}
\end{equation*}
$$

Proof: First, I show that $e(a, \mathbf{u})=S(\mathbf{u})$. Given that the random variable v^{*} represents
maximum utility, we have that the event $\left\{a^{*}=a\right\}$ implies the event $\left\{v^{*}=u_{a}+\varepsilon_{a}\right\}$. Thus,

$$
\begin{align*}
e(a, \mathbf{u}) & =\mathbb{E}\left(u_{a}+\varepsilon_{a} \mid \mathbf{u}, a^{*}=a\right) \\
& =\mathbb{E}\left(u_{a}+\varepsilon_{a}+v^{*}-v^{*} \mid \mathbf{u}, a^{*}=a\right) \tag{7}\\
& =\mathbb{E}\left(u_{a}+\varepsilon_{a}+v^{*}-v^{*} \mid \mathbf{u}, v^{*}=u_{a}+\varepsilon_{a}\right) \\
& =\mathbb{E}\left(v^{*} \mid \mathbf{u}\right)=S(\mathbf{u})
\end{align*}
$$

By definition, $e(a, \mathbf{u})=u_{a}+\mathbb{E}\left(\varepsilon_{a} \mid u, a^{*}=a\right)$. Therefore, equation (7) implies that $\mathbb{E}\left(\varepsilon_{a} \mid \mathbf{u}, a^{*}=a\right)=S(\mathbf{u})-u_{a}$.

2 Multinomial logit (MNL)

Suppose that the random variables in the vector ε are i.i.d. with Type I Extreme Value distribution with a location parameter $\mu=0$ and unrestricted dispersion parameter σ. That is, for every alternative $a \in \mathcal{A}$, the CDF of ε_{a} is $G\left(\varepsilon_{a}\right)=\exp \left\{-\exp \left(-\frac{\varepsilon_{a}}{\sigma}\right)\right\}$.

2.1 Distribution of the maximum utility

The maximum utility v^{*} is a random variable because it depends on the vector of random variables ε. By definition, the cumulative probability distribution of v^{*} is:

$$
\begin{align*}
F_{v^{*}}(v) \equiv \operatorname{Pr}\left(v^{*} \leq v\right) & =\prod_{a \in \mathcal{A}} \operatorname{Pr}\left(u_{a}+\varepsilon_{a} \leq v\right) \\
& =\prod_{a \in \mathcal{A}} \exp \left\{-\exp \left(-\frac{v-u_{a}}{\sigma}\right)\right\} \tag{8}\\
& =\exp \left\{-\exp \left(-\frac{v}{\sigma}\right) U\right\}
\end{align*}
$$

where $U \equiv \sum_{a \in \mathcal{A}} \exp \left(\frac{u_{a}}{\sigma}\right)$. We can also write this expression as:

$$
\begin{equation*}
F_{v^{*}}(v)=\exp \left\{-\exp \left(-\frac{v-\sigma \ln U}{\sigma}\right)\right\} \tag{9}
\end{equation*}
$$

This expression shows that the maximum utility v^{*} is a double exponential random variable with dispersion parameter σ and location parameter $\sigma \ln U$. Therefore, the maximum of a vector of i.i.d. double exponential random variables is also a double exponential random
variable. This is the reason why this family of random variables is also called "extreme value". The density function of v^{*} is:

$$
\begin{equation*}
f_{v^{*}}(v) \equiv H^{\prime}(v)=F_{v^{*}}(v) \frac{U}{\sigma} \exp \left(-\frac{v}{\sigma}\right) \tag{10}
\end{equation*}
$$

2.2 Expected maximum utility

By definition, $S(\mathbf{u})=\mathbb{E}\left(v^{*} \mid \mathbf{u}\right)$. Therefore,

$$
\begin{equation*}
S(\mathbf{u})=\int v^{*} h\left(v^{*}\right) d v^{*}=\int v^{*} \exp \left\{-\exp \left(-\frac{v^{*}}{\sigma}\right) U\right\} \frac{U}{\sigma} \exp \left(-\frac{v^{*}}{\sigma}\right) d v^{*} \tag{11}
\end{equation*}
$$

Applying the change in variable $z=\exp \left(-v^{*} / \sigma\right)$, such that $v^{*}=-\sigma \ln (z)$, and $d v^{*}=$ $-\sigma(d z / z)$, we have:

$$
\begin{align*}
S(\mathbf{u}) & =\int_{+\infty}^{0}-\sigma \ln (z) \exp \{-z U\} \frac{U}{\sigma} z\left(-\sigma \frac{d z}{z}\right) \tag{12}\\
& =-\sigma U \int_{0}^{+\infty} \ln (z) \exp \{-z U\} d z
\end{align*}
$$

Using Laplace transformation we have that $\int_{0}^{+\infty} \ln (z) \exp \{-z U\} d z=\frac{\ln (U)+\gamma}{U}$, where γ is Euler's constant. Therefore, the expected maximum utility is:

$$
\begin{equation*}
S(\mathbf{u})=\sigma U\left(\frac{\ln (U)+\gamma}{U}\right)=\sigma(\ln (U)+\gamma) \tag{13}
\end{equation*}
$$

2.3 Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, the optimal choice probabilities can be obtained by differentiating the surplus function. Therefore, for the MNL model,

$$
\begin{align*}
P(a \mid \mathbf{u}) & =\sigma \frac{\partial \ln (U)}{\partial u_{a}}=\sigma \frac{\partial U}{\partial u_{a}} \frac{1}{U} \\
& =\exp \left(\frac{u_{a}}{\sigma}\right) \frac{1}{U}=\frac{\exp \left(u_{a} / \sigma\right)}{\sum_{j \in \mathcal{A}} \exp \left(u_{j} / \sigma\right)} \tag{14}
\end{align*}
$$

2.4 Conditional choice expected utilities

As shown in Theorem CEV, $\mathbb{E}\left(\varepsilon_{a} \mid \mathbf{u}, a^{*}=a\right)=S(\mathbf{u})-u_{a}$. For the case of the i.i.d. double $\operatorname{exponential} \varepsilon$ we have that:

$$
\begin{equation*}
\mathbb{E}\left(\varepsilon_{a} \mid \mathbf{u}, a^{*}=a\right)=\sigma(\ln (U)+\gamma)-u_{a} \tag{15}
\end{equation*}
$$

2.5 Relationship between selection function and CCPs

In some applications, we are interested in the selection function that relates the expected value $\mathbb{E}\left(\varepsilon_{a} \mid \mathbf{u}, a^{*}=a\right)$ with the conditional choice probabilities. From the expression for $P(a \mid \mathbf{u})$ in the MNL model, we have that $\ln P(a \mid \mathbf{u})=u_{a} / \sigma-\ln U$, and therefore $\ln (U)=u_{a} / \sigma-\ln P_{a}$. Solving this expression in equation (15) we get:

$$
\begin{equation*}
\mathbb{E}\left(\varepsilon_{a} \mid \mathbf{u}, a^{*}=a\right)=\sigma\left(u_{a} / \sigma-\ln P(a \mid \mathbf{u})+\gamma\right)-u_{a}=\sigma(\gamma-\ln P(a \mid \mathbf{u})) \tag{16}
\end{equation*}
$$

3 Nested logit (NL)

Suppose that the random variables in the vector ε have the following joint CDF:

$$
\begin{equation*}
G(\varepsilon)=\exp \left\{-\sum_{r=1}^{R}\left[\sum_{a \in \mathcal{A}_{r}} \exp \left(-\frac{\varepsilon_{a}}{\sigma_{r}}\right)\right]^{\frac{\sigma_{r}}{\delta}}\right\} \tag{17}
\end{equation*}
$$

where $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{R}\right\}$ is a partition of \mathcal{A}, and $\delta, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{R}$ are positive parameters, with $\delta \leq 1$.

3.1 Distribution of the Maximum Utility

Using the same approach as for the MNL model, we have:

$$
\begin{align*}
F_{v^{*}}(v) \equiv \operatorname{Pr}\left(v^{*} \leq v\right) & =\prod_{a \in \mathcal{A}} \operatorname{Pr}\left(u_{a}+\varepsilon_{a} \leq v, \forall a \in \mathcal{A}\right) \\
& =\prod_{a \in \mathcal{A}} \exp \left\{-\sum_{r=1}^{R}\left[\sum_{a \in A_{r}} \exp \left(-\frac{v-u_{a}}{\sigma_{r}}\right)\right]^{\frac{\sigma_{r}}{\delta}}\right\} \\
& =\exp \left\{-\exp \left(-\frac{v}{\delta}\right) \sum_{r=1}^{R}\left[\sum_{a \in \mathcal{A}_{r}} \exp \left(\frac{u_{a}}{\sigma_{r}}\right)\right]^{\frac{\sigma_{r}}{\delta}}\right\} \tag{18}\\
& =\exp \left\{-\exp \left(-\frac{v}{\delta}\right) U\right\}
\end{align*}
$$

where:

$$
\begin{equation*}
U \equiv \sum_{r=1}^{R}\left[\sum_{a \in \mathcal{A}_{r}} \exp \left(\frac{u_{a}}{\sigma_{r}}\right)\right]^{\frac{\sigma_{r}}{\delta}}=\sum_{r=1}^{R} U_{r}^{1 / \delta} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{r} \equiv\left[\sum_{a \in \mathcal{A}_{r}} \exp \left(\frac{u_{a}}{\sigma_{r}}\right)\right]^{\sigma_{r}} \tag{20}
\end{equation*}
$$

The density function of v^{*} is:

$$
\begin{equation*}
f_{v^{*}}(v) \equiv H^{\prime}(v)=F_{v^{*}}(v) \frac{U}{\delta} \exp \left(-\frac{v}{\delta}\right) \tag{21}
\end{equation*}
$$

3.2 Expected maximum utility

By definition, $S(\mathbf{u})=\mathbb{E}\left(v^{*}\right)$. Therefore,

$$
\begin{equation*}
S(\mathbf{u})=\int_{-\infty}^{+\infty} v^{*} h\left(v^{*}\right) d v^{*}=\int_{-\infty}^{+\infty} v^{*} \exp \left\{-\exp \left(-\frac{v^{*}}{\delta}\right) U\right\} \frac{U}{\delta} \exp \left(-\frac{v^{*}}{\delta}\right) d v^{*} \tag{22}
\end{equation*}
$$

Let's apply the following change in variable: $z=\exp \left(-v^{*} / \delta\right)$, such that $v^{*}=-\delta \ln (z)$, and $d v^{*}=-\delta(d z / z)$. Then,

$$
\begin{equation*}
S(\mathbf{u})=\int_{+\infty}^{0}-\delta \ln (z) \exp \{-z U\} \frac{U}{\delta} z\left(-\delta \frac{d z}{z}\right)=-\delta U \int_{+\infty}^{0} \ln (z) \exp \{-z U\} d z \tag{23}
\end{equation*}
$$

And using Laplace transformation:

$$
\begin{equation*}
S(\mathbf{u})=\delta U\left(\frac{\ln (U)+\gamma}{U}\right)=\delta(\ln (U)+\gamma) \tag{24}
\end{equation*}
$$

where γ is the Euler's constant.

3.3 Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, choice probabilities can be obtained differentiating the surplus function. For the NL model:

$$
\begin{align*}
P(a \mid \mathbf{u}) & =\delta \frac{\partial \ln (U)}{\partial u_{a}}=\delta \frac{\partial U}{\partial u_{a}} \frac{1}{U}= \\
& =\delta \frac{\sigma_{r a}}{\delta}\left[\sum_{j \in A_{r a}} \exp \left(\frac{u_{j}}{\sigma_{r a}}\right)\right]^{\frac{\sigma_{r a}}{\delta}-1} \frac{1}{\sigma_{r a}} \exp \left(\frac{u_{a}}{\sigma_{r a}}\right) \frac{1}{U} \tag{25}\\
& =\frac{\exp \left(u_{a} / \sigma_{r a}\right)}{\sum_{j \in \mathcal{A}_{r a}} \exp \left(u_{j} / \sigma_{r a}\right)} \frac{\left[\sum_{j \in A_{r a}} \exp \left(u_{j} / \sigma_{r a}\right)\right]^{\frac{\sigma_{r a}}{\delta}}}{\sum_{r=1}^{R}\left[\sum_{j \in \mathcal{A}_{r}} \exp \left(u_{j} / \sigma_{r}\right)\right]^{\frac{\sigma_{r}}{\delta}}}
\end{align*}
$$

The first term is $q\left(a \mid r_{a}\right)$ (i.e., probability of choosing a given that we are in group $A_{r a}$), and the second term is $Q\left(r_{a}\right)$ (i.e., probability of selecting the group $A_{r a}$).

3.4 Conditional choice expected utilities

As shown in general, $e(a, \mathbf{u})=S(\mathbf{u})$. This implies that $\mathbb{E}\left(\varepsilon_{a} \mid u, a^{*}=a\right)=S(\mathbf{u})-u_{a}$. Given that for the NL model $S(\mathbf{u})=\delta(\ln U+\gamma)$ we have that:

$$
\begin{equation*}
\mathbb{E}\left(\varepsilon_{a} \mid u, a^{*}=a\right)=\delta \gamma+\delta \ln U-u_{a} \tag{26}
\end{equation*}
$$

3.5 Relationship between selection function and CCPs

To write $\mathbb{E}\left(\varepsilon_{a} \mid u, a^{*}=a\right)$ in terms of choice probabilities, note that from the definition of $q\left(a \mid r_{a}\right)$ and $Q\left(r_{a}\right)$, we have that:

$$
\begin{equation*}
\ln q\left(a \mid r_{a}\right)=\frac{u_{a}-\ln U_{r a}}{\sigma_{r a}} \Rightarrow \ln U_{r a}=u_{a}-\sigma_{r a} \ln q\left(a \mid r_{a}\right) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln Q\left(r_{a}\right)=\frac{\ln U_{r a}}{\delta}-\ln U \Rightarrow \ln U=\frac{\ln U_{r a}}{\delta}-\ln Q\left(r_{a}\right) \tag{28}
\end{equation*}
$$

Combining these expressions, we have that:

$$
\begin{equation*}
\ln U=\frac{u_{a}-\sigma_{r a} \ln q\left(a \mid r_{a}\right)}{\delta}-\ln Q\left(r_{a}\right) \tag{29}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
e_{a} & =\delta \gamma+\delta\left(\frac{u_{a}-\sigma_{r a} \ln q\left(a \mid r_{a}\right)}{\delta}-\ln Q\left(r_{a}\right)\right)-u_{a} \\
& =\delta \gamma-\sigma_{r a} \ln q\left(a \mid r_{a}\right)-\delta \ln Q\left(r_{a}\right)
\end{aligned}
$$

4 Ordered GEV (OGEV)

Suppose that the random variables in the vector $\boldsymbol{\varepsilon}$ have the following joint CDF:

$$
\begin{equation*}
G(\varepsilon)=\exp \left\{-\sum_{r=1}^{J+M}\left[\sum_{a \in B_{r}} W_{r-a} \exp \left(-\frac{\varepsilon_{a}}{\sigma_{r}}\right)\right]^{\frac{\sigma_{r}}{\delta}}\right\} \tag{30}
\end{equation*}
$$

where:

- M is a positive integer;
- $\left\{B_{1}, B_{2}, \ldots, B_{J+M}\right\}$ are $J+M$ subsets of A, with the following definition:

$$
\begin{equation*}
B_{r}=\{a \in \mathcal{A}: r-M \leq a \leq r\} \tag{31}
\end{equation*}
$$

For instance, if $A=\{1,2,3,4,5\}$ and $M=2$, then $B_{1}=\{1\}, B_{2}=\{1,2\}, B_{3}=$ $\{1,2,3\}, B_{4}=\{2,3,4\}, B_{5}=\{3,4,5\}, B_{6}=\{4,5\}$, and $B_{7}=\{5\}$.

- δ, and $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{J+M}$ are positive parameters, with $\delta \leq 1$;
- $W_{0}, W_{1}, \ldots, W_{M}$ are constants (weights) such that: $W_{m} \geq 0$, and $\sum_{m=0}^{M} W_{m}=1$.

4.1 Distribution of the Maximum Utility

$$
\begin{align*}
F_{v^{*}}(v) \equiv \operatorname{Pr}\left(v^{*} \leq v\right) & =\operatorname{Pr}\left(\varepsilon_{a} \leq v-u_{a}: \text { for any } a \in \mathcal{A}\right) \\
& =\exp \left\{-\sum_{r=1}^{J+M}\left[\sum_{a \in B_{r}} W_{r-a} \exp \left(-\frac{v-u_{a}}{\sigma_{r}}\right)\right]^{\frac{\sigma_{r}}{\delta}}\right\} \\
& =\exp \left\{-\exp \left(-\frac{v}{\delta}\right) \sum_{r=1}^{J+M}\left[\sum_{a \in B_{r}} W_{r-a} \exp \left(\frac{u_{a}}{\sigma_{r}}\right)\right]^{\frac{\sigma_{r}}{\delta}}\right\} \tag{32}\\
& =\exp \left\{-\exp \left(-\frac{v}{\delta}\right) U\right\}
\end{align*}
$$

where:

$$
\begin{equation*}
U \equiv \sum_{r=1}^{J+M}\left[\sum_{a \in B_{r}} W_{r-a} \exp \left(\frac{u_{a}}{\sigma_{r}}\right)\right]^{\frac{\sigma_{r}}{\delta}}=\sum_{r=1}^{J+M} U_{r}^{1 / \delta} \tag{33}
\end{equation*}
$$

where $U_{r} \equiv\left[\sum_{a \in B_{r}} W_{r-a} \exp \left(\frac{u_{a}}{\sigma_{r}}\right)\right]^{\sigma_{r}}$. The density function of v^{*} is:

$$
\begin{equation*}
f_{v^{*}}(v) \equiv H^{\prime}(v)=F_{v^{*}}(v) \frac{U}{\delta} \exp \left(-\frac{v}{\delta}\right) \tag{34}
\end{equation*}
$$

4.2 Expected maximum utility

By definition, $S(\mathbf{u})=\mathbb{E}\left(v^{*} \mid u\right)$. Therefore,

$$
\begin{equation*}
S(\mathbf{u})=\int_{-\infty}^{+\infty} v^{*} h\left(v^{*}\right) d v^{*}=\int_{-\infty}^{+\infty} v^{*} \exp \left\{-\exp \left(-\frac{v^{*}}{\delta}\right) U\right\} \frac{U}{\delta} \exp \left(-\frac{v^{*}}{\delta}\right) d v^{*} \tag{35}
\end{equation*}
$$

Let's apply the following change in variable: $z=\exp \left(-v^{*} / \delta\right)$, such that $v^{*}=-\delta \ln (z)$, and $d v^{*}=-\delta(d z / z)$. Then,

$$
\begin{equation*}
S=\int_{+\infty}^{0}-\delta \ln (z) \exp \{-z U\} \frac{U}{\delta} z\left(-\delta \frac{d z}{z}\right)=-\delta U \int_{0}^{+\infty} \ln (z) \exp \{-z U\} d z \tag{36}
\end{equation*}
$$

And using Laplace transformation:

$$
\begin{equation*}
S=\delta U\left(\frac{\ln U+\gamma}{U}\right)=\delta(\ln U+\gamma)=\delta \gamma+\delta \ln \left[\sum_{r=1}^{J+M}\left[\sum_{a \in B_{r}} W_{r-a} \exp \left(\frac{u_{a}}{\sigma_{r}}\right)\right]^{\frac{\sigma_{r}}{\delta}}\right] \tag{37}
\end{equation*}
$$

where γ is the Euler's constant.

4.3 Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, choice probabilities can be obtained differentiating the surplus function.

$$
\begin{equation*}
P(a \mid u)=\frac{1}{U} \sum_{r=a}^{a+M}\left[\sum_{j \in B_{r}} W_{r-j} \exp \left(\frac{u_{j}}{\sigma_{r}}\right)\right]^{\frac{\sigma_{r}}{\delta}-1} W_{r-a} \exp \left(\frac{u_{a}}{\sigma_{r}}\right)=\sum_{r=a}^{a+M} q(a \mid r) Q(r) \tag{38}
\end{equation*}
$$

where:

$$
\begin{align*}
q(a \mid r) & =\frac{W_{r-a} \exp \left(u_{a} / \sigma_{r}\right)}{\sum_{j \in B_{r}} W_{r-j} \exp \left(u_{j} / \sigma_{r}\right)}=\frac{\exp \left(u_{a} / \sigma_{r}\right)}{\exp \left(\ln U_{r} / \sigma_{r}\right)} \\
Q(r) & =\frac{\exp \left(\ln U_{r} / \delta\right)}{\sum_{j=1}^{J+M} \exp \left(\ln U_{j} / \delta\right)}=\frac{\exp \left(\ln U_{r} / \delta\right)}{U} \tag{39}
\end{align*}
$$

4.4 Conditional choice expected utilities

As shown in general, $e(a, \mathbf{u})=S(\mathbf{u})$. This implies that $\mathbb{E}\left(\varepsilon_{a} \mid u, a^{*}=a\right)=S(\mathbf{u})-u_{a}$. Given that for the OGEV model $S(\mathbf{u})=\delta(\ln U+\gamma)$ we have that:

$$
\begin{equation*}
\mathbb{E}\left(\varepsilon_{a} \mid u, a^{*}=a\right)=\delta \gamma+\delta \ln U-u_{a} \tag{40}
\end{equation*}
$$

[^0]: *Department of Economics, University of Toronto. 150 St. George Street, Toronto, ON, M5S 3G7, Canada, victor.aguirregabiria@utoronto.ca.

