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Abstract

Within the framework of discrete choice Random Utility Models (RUM) with addi-
tive stochastic components, this note reviews existing results on closed-form expressions
for several key functions: the distribution of the maximum utility, the expected maxi-
mum utility, the choice probabilities, and the selection function. The analysis considers
three different specifications for the distribution of the stochastic component: i.i.d. type
I extreme value distribution, nested extreme value distribution, and ordered generalized
extreme value distribution.

1 Random Utility Models

Consider a discrete choice Random Utility Model (RUM) with additive stochastic component.

The optimal choice, a∗, is defined as:

a∗ = argmax
a∈A

{ua + εa} (1)

where A = {1, 2, ..., J} is the set of feasible choice alternatives, u = (u1, u2, ..., uJ) is the

vector with the deterministic component of the utility, and ε = (ε1, ε2, ..., εJ) is the vector

with the stochastic component. The vector ε has a joint CDF G(.) that is continuous and

strictly increasing with respect to the Lebesgue measure in the Euclidean space.
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This note derives closed-form expressions for the distribution of the maximum utility,

maxa∈A {ua + εa}, the expected maximum utility, E(maxa∈A {ua + εa} |u), and the choice

probabilities, Pr(a∗ = a|u), under three different specifications for the distribution of the

vector ε: (1) i.i.d. Type I Extreme Value distribution (MNL model); (2) nested Extreme

Value distribution (NL model); and (3) Ordered Generalized Extreme Value distribution

(OGEV model).

The following definitions and properties are used in the note.

Definition: A random variable X has a Double Exponential or Type I Extreme Value dis-

tribution with location parameter µ and dispersion parameter σ if its CDF is:

G(x) = exp

{
− exp

(
−
[
x− µ

σ

])}
(2)

for any x ∈ (−∞,+∞). ■

Definition: Maximum utility. Let v∗ be the random variable that represents the maximum

utility: v∗ ≡ maxa∈A {ua + εa}. This maximum utility is a random variable because it depends

on the vector of random variables ε. ■

Definition: McFadden’s Social Surplus function. The social surplus function S (u) is the

expected value of the maximum utility conditional on the vector of constants u: S(u) ≡

E(maxa∈A {ua + εa} |u). ■

Definition: Conditional choice probabilities (CCPs). The conditional choice probability

P (a|u) is the probability that alternative a is the optimal choice: P (a|u) ≡ Pr(a∗ = a|u). ■

Definition: Conditional choice expected utilities (CCEU). The conditional choice expected

utility e(a,u) is the expected value of utility ua + εa conditional on the vector u and on the

event that alternative a is the optimal choice: e(a,u) ≡ E(ua + εa|u, a∗ = a). ■

Definition: Selection function. The selection function λ(a,u) is the expected value of the

stochastic component of the utility, εa, conditional on the vector u and on the event that

alternative a is the optimal choice: λ(a,u) ≡ E(εa|u, a∗ = a). ■

2



Williams-Daly-Zachary (WDZ) Theorem is an important property of discrete choice RUM

with additive stochastic component. It is the discrete-choice version of Roy’s Identity in

consumer theory. I use this property in several parts of this note. I include here an enunciation

of the Theorem and a simple proof.

Williams-Daly-Zachary (WDZ) Theorem. For any choice alternative a ∈ A, the CCP

P (a|u) can be obtained as the partial derivative of the surplus function S(u) with respect to

utility u(a):

P (a|u) = ∂S(u)

∂ua

■ (3)

Proof: By definition of S(u), we have that:

∂S(u)

∂ua

=
∂

∂ua

∫
max
j∈A

{uj + εj} dG(ε) (4)

Given the conditions on the CDF of ε, we can move the partial derivative inside the integral

such that:
∂S(u)

∂ua

=

∫
∂maxj∈A {uj + εj}

∂ua

dG(ε)

=

∫
1{ua + εa ≥ uj + εj, ∀j ∈ A} dG(ε)

= P (a|u)

(5)

where 1{.} is the indicator function. ■

I also use the following Theorem to derive several results in this note.

Theorem CEV. For any distribution of ε, any value of the vector u, and any choice alter-

native a ∈ A, we have that:

E(εa | u, a∗ = a) = S(u)− ua ■ (6)

Proof: First, I show that e(a,u) = S(u). Given that the random variable v∗ represents
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maximum utility, we have that the event {a∗ = a} implies the event {v∗ = ua + εa}. Thus,

e(a,u) = E(ua + εa | u, a∗ = a)

= E(ua + εa + v∗ − v∗ | u, a∗ = a)

= E(ua + εa + v∗ − v∗ | u, v∗ = ua + εa)

= E(v∗ | u) = S(u)

(7)

By definition, e(a,u) = ua + E(εa | u, a∗ = a). Therefore, equation (7) implies that

E(εa | u, a∗ = a) = S(u)− ua. ■

2 Multinomial logit (MNL)

Suppose that the random variables in the vector ε are i.i.d. with Type I Extreme Value

distribution with a location parameter µ = 0 and unrestricted dispersion parameter σ. That

is, for every alternative a ∈ A, the CDF of εa is G(εa) = exp
{
− exp

(
− εa

σ

)}
.

2.1 Distribution of the maximum utility

The maximum utility v∗ is a random variable because it depends on the vector of random

variables ε. By definition, the cumulative probability distribution of v∗ is:

Fv∗(v) ≡ Pr(v∗ ≤ v) =
∏

a∈A Pr(ua + εa ≤ v)

=
∏

a∈A exp

{
− exp

(
−v − ua

σ

)}

= exp
{
− exp

(
−v

σ

)
U
}

(8)

where U ≡
∑

a∈A exp
(ua

σ

)
. We can also write this expression as:

Fv∗(v) = exp

{
− exp

(
−v − σ lnU

σ

)}
(9)

This expression shows that the maximum utility v∗ is a double exponential random variable

with dispersion parameter σ and location parameter σ lnU . Therefore, the maximum of

a vector of i.i.d. double exponential random variables is also a double exponential random
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variable. This is the reason why this family of random variables is also called "extreme

value". The density function of v∗ is:

fv∗(v) ≡ H ′(v) = Fv∗(v)
U

σ
exp

(
−v

σ

)
(10)

2.2 Expected maximum utility

By definition, S(u) = E(v∗|u). Therefore,

S(u) =

∫
v∗ h(v∗) dv∗ =

∫
v∗ exp

{
− exp

(
−v∗

σ

)
U

}
U

σ
exp

(
−v∗

σ

)
dv∗ (11)

Applying the change in variable z = exp(−v∗/σ), such that v∗ = −σ ln(z), and dv∗ =

−σ(dz/z), we have:

S(u) =

∫ 0

+∞
−σ ln(z) exp {−z U} U

σ
z

(
−σ

dz

z

)

= −σU

∫ +∞

0

ln(z) exp {−z U} dz

(12)

Using Laplace transformation we have that
∫ +∞
0

ln(z) exp {−z U} dz =
ln(U) + γ

U
, where γ

is Euler’s constant. Therefore, the expected maximum utility is:

S(u) = σU

(
ln(U) + γ

U

)
= σ ( ln(U) + γ ) (13)

2.3 Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, the optimal choice probabilities can be obtained

by differentiating the surplus function. Therefore, for the MNL model,

P (a|u) = σ
∂ ln(U)

∂ua

= σ
∂U

∂ua

1

U

= exp
(ua

σ

) 1

U
=

exp (ua/σ)∑
j∈A exp (uj/σ)

(14)

5



2.4 Conditional choice expected utilities

As shown in Theorem CEV, E(εa|u, a∗ = a) = S(u) − ua. For the case of the i.i.d. double

exponential ε we have that:

E(εa|u, a∗ = a) = σ ( ln(U) + γ )− ua (15)

2.5 Relationship between selection function and CCPs

In some applications, we are interested in the selection function that relates the expected value

E(εa|u, a∗ = a) with the conditional choice probabilities. From the expression for P (a|u) in

the MNL model, we have that lnP (a|u) = ua/σ − lnU , and therefore ln(U) = ua/σ − lnPa.

Solving this expression in equation (15) we get:

E(εa|u, a∗ = a) = σ (ua/σ − lnP (a|u) + γ)− ua = σ (γ − lnP (a|u)) (16)

3 Nested logit (NL)

Suppose that the random variables in the vector ε have the following joint CDF:

G(ε) = exp

−
R∑

r=1

[∑
a∈Ar

exp

(
−εa
σr

)]σr

δ

 (17)

where {A1,A2, ...,AR} is a partition of A, and δ, σ1, σ2, ..., σR are positive parameters, with

δ ≤ 1.
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3.1 Distribution of the Maximum Utility

Using the same approach as for the MNL model, we have:

Fv∗(v) ≡ Pr(v∗ ≤ v) =
∏

a∈A Pr(ua + εa ≤ v,∀ a ∈ A)

=
∏

a∈A exp

−
R∑

r=1

[∑
a∈Ar

exp

(
−v − ua

σr

)]σr

δ


= exp

− exp
(
−v

δ

) R∑
r=1

[∑
a∈Ar

exp

(
ua

σr

)]σr

δ


= exp

{
− exp

(
−v

δ

)
U
}

(18)

where:

U ≡
R∑

r=1

[∑
a∈Ar

exp

(
ua

σr

)]σr

δ =
R∑

r=1

U1/δ
r (19)

and

Ur ≡
[∑

a∈Ar

exp

(
ua

σr

)]σr

(20)

The density function of v∗ is:

fv∗(v) ≡ H ′(v) = Fv∗(v)
U

δ
exp

(
−v

δ

)
(21)

3.2 Expected maximum utility

By definition, S(u) = E(v∗). Therefore,

S(u) =
∫ +∞
−∞ v∗ h(v∗) dv∗ =

∫ +∞
−∞ v∗ exp

{
− exp

(
−v∗

δ

)
U

}
U

δ
exp

(
−v∗

δ

)
dv∗

(22)

Let’s apply the following change in variable: z = exp(−v∗/δ), such that v∗ = −δ ln(z), and

dv∗ = −δ(dz/z). Then,

S(u) =
∫ 0

+∞ −δ ln(z) exp {−z U} U

δ
z

(
−δ

dz

z

)
= −δU

∫ 0

+∞ ln(z) exp {−z U} dz

(23)
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And using Laplace transformation:

S(u) = δU

(
ln(U) + γ

U

)
= δ ( ln(U) + γ ) (24)

where γ is the Euler’s constant.

3.3 Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, choice probabilities can be obtained differenti-

ating the surplus function. For the NL model:

P (a|u) = δ
∂ ln(U)

∂ua

= δ
∂U

∂ua

1

U
=

= δ
σra

δ

[ ∑
j∈Ara

exp

(
uj

σra

)]σra

δ
−1

1

σra

exp

(
ua

σra

)
1

U

=
exp (ua/σra)∑

j∈Ara
exp (uj/σra)

[∑
j∈Ara

exp (uj/σra)
]σra

δ

∑R
r=1

[∑
j∈Ar

exp (uj/σr)
]σr

δ

(25)

The first term is q(a|ra) (i.e., probability of choosing a given that we are in group Ara), and

the second term is Q(ra) (i.e., probability of selecting the group Ara).

3.4 Conditional choice expected utilities

As shown in general, e(a,u) = S(u). This implies that E(εa | u, a∗ = a) = S(u)− ua. Given

that for the NL model S(u) = δ (lnU + γ) we have that:

E(εa|u, a∗ = a) = δγ + δ lnU − ua (26)

3.5 Relationship between selection function and CCPs

To write E(εa|u, a∗ = a) in terms of choice probabilities, note that from the definition of

q(a|ra) and Q(ra), we have that:

ln q(a|ra) =
ua − lnUra

σra

⇒ lnUra = ua − σra ln q(a|ra) (27)
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and

lnQ(ra) =
lnUra

δ
− lnU ⇒ lnU =

lnUra

δ
− lnQ(ra) (28)

Combining these expressions, we have that:

lnU =
ua − σra ln q(a|ra)

δ
− lnQ(ra) (29)

Therefore,

ea = δγ + δ

(
ua − σra ln q(a|ra)

δ
− lnQ(ra)

)
− ua

= δγ − σra ln q(a|ra)− δ lnQ(ra)

4 Ordered GEV (OGEV)

Suppose that the random variables in the vector ε have the following joint CDF:

G(ε) = exp

−
J+M∑
r=1

[∑
a∈Br

Wr−a exp

(
−εa
σr

)]σr

δ

 (30)

where:

• M is a positive integer;

• {B1, B2, ..., BJ+M} are J +M subsets of A, with the following definition:

Br = {a ∈ A : r −M ≤ a ≤ r} (31)

For instance, if A = {1, 2, 3, 4, 5} and M = 2, then B1 = {1}, B2 = {1, 2}, B3 =

{1, 2, 3}, B4 = {2, 3, 4}, B5 = {3, 4, 5}, B6 = {4, 5}, and B7 = {5}.

• δ, and σ1, σ2, ..., σJ+M are positive parameters, with δ ≤ 1;

• W0, W1, ..., WM are constants (weights) such that: Wm ≥ 0, and
∑M

m=0Wm = 1.
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4.1 Distribution of the Maximum Utility
Fv∗(v) ≡ Pr(v∗ ≤ v) = Pr(εa ≤ v − ua : for any a ∈ A)

= exp

−
J+M∑
r=1

[∑
a∈Br

Wr−a exp

(
−v − ua

σr

)]σr

δ


= exp

− exp
(
−v

δ

) J+M∑
r=1

[∑
a∈Br

Wr−a exp

(
ua

σr

)]σr

δ


= exp

{
− exp

(
−v

δ

)
U
}

(32)

where:

U ≡
J+M∑
r=1

[∑
a∈Br

Wr−a exp

(
ua

σr

)]σr

δ =
J+M∑
r=1

U1/δ
r (33)

where Ur ≡
[∑

a∈Br
Wr−a exp

(
ua

σr

)]σr

. The density function of v∗ is:

fv∗(v) ≡ H ′(v) = Fv∗(v)
U

δ
exp

(
−v

δ

)
(34)

4.2 Expected maximum utility

By definition, S(u) = E(v∗|u). Therefore,

S(u) =
+∞∫
−∞

v∗ h(v∗) dv∗ =
+∞∫
−∞

v∗ exp

{
− exp

(
−v∗

δ

)
U

}
U

δ
exp

(
−v∗

δ

)
dv∗ (35)

Let’s apply the following change in variable: z = exp(−v∗/δ), such that v∗ = −δ ln(z), and

dv∗ = −δ(dz/z). Then,

S =
0∫

+∞
−δ ln(z) exp {−z U} U

δ
z

(
−δ

dz

z

)
= −δU

+∞∫
0

ln(z) exp {−z U} dz (36)

And using Laplace transformation:

S = δU

(
lnU + γ

U

)
= δ (lnU + γ) = δγ + δ ln

J+M∑
r=1

[∑
a∈Br

Wr−a exp

(
ua

σr

)]σr

δ


(37)

where γ is the Euler’s constant.
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4.3 Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, choice probabilities can be obtained differenti-

ating the surplus function.

P (a|u) = 1

U

a+M∑
r=a

[ ∑
j∈Br

Wr−j exp

(
uj

σr

)]σr

δ
−1

Wr−a exp

(
ua

σr

)
=

a+M∑
r=a

q(a|r) Q(r) (38)

where:
q(a|r) =

Wr−a exp (ua/σr)∑
j∈Br

Wr−j exp (uj/σr)
=

exp (ua/σr)

exp(lnUr/σr)

Q(r) =
exp (lnUr/δ)∑J+M

j=1 exp (lnUj/δ)
=

exp (lnUr/δ)

U

(39)

4.4 Conditional choice expected utilities

As shown in general, e(a,u) = S(u). This implies that E(εa | u, a∗ = a) = S(u)− ua. Given

that for the OGEV model S(u) = δ (lnU + γ) we have that:

E(εa|u, a∗ = a) = δγ + δ lnU − ua (40)
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