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1 Introduction

The Berry, Levinsohn, and Pakes (1995) (hereafter BLP) random coefficients discrete-choice model

has become a workhorse of demand modeling in the empirical literature, as it accommodates

rich substitution patterns between products and avoids the independence of irrelevant alternatives

property inherent in standard multinomial logit models. The original estimation approach relies

on a nested fixed-point algorithm, which combines the minimization of a generalized method of

moments (GMM) criterion function in the outer loop with a fixed-point iteration in the inner loop

to invert the demand system and recover mean utilities. This method has been widely adopted in

empirical research, including Nevo (2000), Petrin (2002), Bayer, Ferreira, and McMillan (2007),

and Fan (2013), among many others.1

It is well known that the nested fixed-point algorithm is computationally inefficient for estimating

the GMM parameters in the BLP model. While the outer-loop minimization steps are relatively

inexpensive, the inner-loop fixed-point iterations are computationally intensive, as they involve

inversion of a high-dimensional demand system. The primary source of inefficiency is that the

algorithm fully solves the costly fixed-point problem for every candidate parameter vector, even

when those guesses are far from the final estimate.

Several studies have proposed alternative methods to reduce the computational burden of es-

timating the BLP model. Dubé, Fox, and Su (2012) introduce a mathematical program with

equilibrium constraints (MPEC) approach, which minimizes the GMM objective function subject

to the market share equations treated as constraints. By jointly optimizing the Lagrangian over

both the structural parameters and the mean utilities, the MPEC method requires solving the market

share inversion only once—at the optimum. Lee and Seo (2015) propose a method that uses a

linear approximation to analytically invert the market share equations, leading to a pseudo-GMM

minimization problem over the model parameters. We refer to this approach as the ABLP estimator.

Inspired by the Nested Pseudo Likelihood (NPL) estimator of Aguirregabiria and Mira (2002,

1See Ackerberg, Benkard, Berry, and Pakes (2007) for a comprehensive survey, and Conlon and Gortmaker (2020)
for a discussion of best practices in implementing this algorithm.
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2007) in the context of dynamic discrete choice models, we propose a Nested Pseudo-GMM

(NP-GMM) method for estimating the BLP demand model. Our approach incorporates several

features that substantially reduce the computational burden of GMM estimation. NP-GMM is a

computationally motivated estimator that targets the same structural parameters under the same

identification conditions as GMM. It trades a small asymptotic efficiency loss for large speed gains.

First, similar to Lee and Seo (2015) and in contrast to the standard nested fixed-point algorithm,

our method swaps the order of the fixed-point iteration and the GMM optimization. This avoids the

repeated—and computationally intensive—inversion of the demand system, at the cost of performing

more, but less expensive, iterations in the minimization of a pseudo-GMM criterion. Second, in

the inner loop, we treat the vector of individual outside-option choice probabilities as incidental

objects (i.e., as sufficient statistics for competitive effects). Conditional on these probabilities, mean

utilities can be recovered product by product using a closed-form expression: that is, the market-

share–mean-utility inversion is both closed-form and, crucially, separable across products. Third,

while the gradient of the full GMM objective function lacks an analytical expression, the gradient

of our pseudo-GMM criterion function is simple and explicit. This facilitates efficient computation

of both the objective function and its derivatives and makes our algorithm particularly well-suited

for parallel processing and multithreading. Together, these innovations lead to a significantly faster

estimation procedure. Importantly, while the defining feature in Lee and Seo (2015)’s ABLPmethod

is a Taylor approximation / linearization of the fixed point mapping, our method instead uses an

exact identity, not an approximation.

OurNP-GMMmethod outperforms alternativeNested Pseudo (NP) algorithms thatmore directly

adapt the insights from Aguirregabiria and Mira (2002, 2007) to the BLP framework. Our approach

extends these alternative methods in several important ways. First, rather than fixing the mean

utilities as in a direct adaptation, we fix individual choice probabilities for the outside option to

implement the pseudo-GMM step in the inner loop. This yields simple, closed-form expressions

that are well-suited for parallelization and multithreading. Second, we show that our estimation

problem can be reformulated as one in which the set of parameters is augmented with an auxiliary
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set, which is held fixed during the pseudo-GMM step. This recasts the problem into a structure

similar to that of the original Nested Pseudo estimators.

We establish consistency and asymptotic normality of our NP-GMM estimator, providing a new

asymptotic framework for NP estimation in high- and infinite-dimensional settings, where existing

proofs do not apply. In many applications of NP methods—such as those in Lin, Tang, and Xiao

(2024) and Dearing and Blevins (2025)—it is standard to assume a finite number of states, which

underpins the asymptotic arguments in Aguirregabiria and Mira (2002, 2007). However, the BLP

model differs fundamentally from standard dynamic discrete choice models: the dimensionality of

the mean utility vector grows with the sample size and tends to infinity. This renders conventional

asymptotic arguments for NP estimators inapplicable. In contrast, our reformulation offers a novel

framework for establishing the statistical properties of NP-GMM methods in such settings.

We conduct a series of Monte Carlo experiments to evaluate the computational efficiency and

finite-sample performance of the proposedmethod. Our comparison focuses on theABLP estimator,

which is the most closely related approach and, to date, the fastest available method for estimating

random-coefficients demand models using aggregate data. As shown by Lee and Seo (2015), the

ABLP estimator delivers substantial computational gains relative to traditional nested fixed-point

andMPECmethods. We then illustrate the implementation of our methodology using wine demand

data from the Liquor Control Board of Ontario (LCBO), demonstrating the scalability and feasibility

of estimating demand models with a large number of products.

A key advantage of ourmethod lies in its compatibility withmultithreading. While our algorithm

benefits significantly from parallelization when computing the GMM objective function and its

gradients, the ABLP estimator performs poorly under multithreading, particularly when evaluating

gradients—amajor component of its overall computational cost. As a result, ABLP gains little from

parallelization. When comparing bothmethods using their respective optimal number of threads, we

find that our algorithm evaluates theGMMobjective function and gradients approximately five times

faster than ABLP. Even for a moderate number of products, our proposed method is approximately

twice as fast as the fastest currently available estimator, and its computational advantage grows more
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than proportionally with the number of products in the demand system.

Our paper also relates to a broader literature that develops computationally efficient estimators

for variants of the BLP model. Assuming a discretization of consumer tastes and a reduced-form

pricing function, Fox, Kim, Ryan, and Bajari (2011) propose a linear regression estimator subject

to linear inequality constraints. Kalouptsidi (2012) also considers discrete consumer types and

leverages a duality between market shares and consumer heterogeneity. More recently, Lu, Shi,

and Tao (2023) introduce a semi-nonparametric approach and propose a two-step estimator based

on sieve GMM. See also Wang (2023) and Compiani (2022) for related sieve-based methods for

estimating nonparametric distributions of random coefficients in the BLP framework. In addition,

several papers examine the numerical performance and implementation best practices of the standard

BLP estimator and its alternatives; see, for example, Knittel and Metaxoglou (2014) and Conlon

and Gortmaker (2020).

The rest of the paper is organized as follows. Section 2 introduces the BLP demand model, the

GMM estimator, and three estimation algorithms: the Nested Fixed Point method, the ABLP ap-

proach, and our proposedNP-GMMalgorithm. Section 3 presentsMonte Carlo evidence comparing

the performance of the ABLP and NP-GMM estimators. Section 4 illustrates the implementation of

the proposed algorithm and demonstrates its computational performance using wine demand data

from the LCBO. Section 5 summarizes and concludes.

2 Model, estimators, and algorithms

2.1 BLP Model

We consider a set of markets indexed by 𝑡 ∈ {1, 2, . . . , 𝑇}. Each market is populated by a mass 𝑀𝑡

of consumers and offers a set of products J = {1, 2, . . . , 𝐽}. In each market, consumers choose

one product 𝑗 ∈ J or opt not to purchase, which we denote by 𝑗 = 0. Product 𝑗 in market 𝑡 is

characterized by observed attributes 𝒙 𝑗 𝑡 and an unobserved quality component 𝜉 𝑗 𝑡 . The vector 𝒙 𝑗 𝑡
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contains𝐾 product characteristics, including price, andwe let 𝒙𝑡 denote the collection (𝒙1𝑡 , . . . , 𝒙𝐽𝑡).

The scalar 𝜉 𝑗 𝑡 captures market- and product-specific utility components observed by consumers but

unobserved by the researcher; we collect these terms in the vector 𝝃 𝑡 = (𝜉1𝑡 , . . . , 𝜉𝐽𝑡). Consumer 𝑖

in market 𝑡 obtains the utility from purchasing product 𝑗 :

𝑢𝑖 𝑗 𝑡 = 𝒙′𝑗 𝑡 𝜷𝑖𝑡 + 𝜉 𝑗 𝑡 + 𝜖𝑖 𝑗 𝑡 . (1)

The utility of the outside good, the "no-purchase" option, is 𝑢𝑖0𝑡 = 𝜖𝑖0𝑡 . The parameter vector

𝜷𝑖𝑡 = (𝛽1
𝑖𝑡
, 𝛽2

𝑖𝑡
, ..., 𝛽𝐾

𝑖𝑡
)′ contains consumer 𝑖’s (in market 𝑡) tastes for the 𝐾 characteristics; 𝜖𝑖 𝑗 𝑡 is an

additional idiosyncratic shock that follows the Type I extreme value distribution.

For 𝑘 ∈ {1, 2, ..., 𝐾}, each random coefficient 𝛽𝑘
𝑖𝑡
has the following structure:

𝛽𝑘𝑖𝑡 = 𝛽
𝑘 + 𝜎𝑘 𝜈𝑘𝑖𝑡 + 𝒅′𝑖𝑡 𝝅

𝑘 , (2)

where 𝛽𝑘 and 𝜎𝑘 are fixed parameters; (𝜈1
𝑖𝑡
, . . . , 𝜈𝐾

𝑖𝑡
) are independent random draws from the

standard normal distribution; 𝒅𝑖𝑡 is a vector of observable demographics of consumer 𝑖 in market 𝑡,

which may be measured at the consumer or market level; and 𝝅𝑘 is a vector of parameters.

Let 𝜽 be the vector with all the model parameters. It is convenient to distinguish two groups

of parameters: 𝜽′ = (𝜷′, 𝝈′), with 𝜷′ =
(
𝛽1, ..., 𝛽𝐾

)
and 𝝈′ =

(
𝜎𝑘 , 𝝅𝑘 : 𝑘 = 1, 2, ..., 𝐾

)
. Let

𝛿 𝑗 𝑡 be the average utility of product 𝑗 in market 𝑡: that is, 𝛿 𝑗 𝑡 = 𝒙′
𝑗 𝑡
𝜷 + 𝜉 𝑗 𝑡 . Define the vector of

average utilities for all the products in market 𝑡 as 𝜹𝑡 . The market share of product 𝑗 in market 𝑡

is represented as 𝑠 𝑗 𝑡 . We use function s𝑗 (𝜹𝑡 , 𝒙𝑡 ,𝝈) to represent the prediction of the model about

market share 𝑠 𝑗 𝑡 . That is:

𝑠 𝑗 𝑡 = s𝑗 (𝜹𝑡 , 𝒙𝑡 ,𝝈) =

∫
𝝂𝑖𝑡 ,𝒅𝑖𝑡

exp{𝛿 𝑗 𝑡 +
∑𝐾
𝑘=1 𝑥

𝑘
𝑗𝑡
[𝜎𝑘 𝜈𝑘

𝑖𝑡
+ 𝒅′𝑖𝑡 𝝅

𝑘 ]}

1 + ∑𝐽
𝑗 ′=1 exp{𝛿 𝑗 ′𝑡 +

∑𝐾
𝑘=1 𝑥

𝑘
𝑗 ′𝑡 [𝜎𝑘 𝜈𝑘𝑖𝑡 + 𝒅′𝑖𝑡 𝝅

𝑘 ]}
𝑑𝐹𝑡 (𝝂𝑖𝑡 , 𝒅𝑖𝑡) (3)

where 𝐹𝑡 (·) represents the distribution function of (𝝂𝑖𝑡 , 𝒅𝑖𝑡) in market 𝑡. This integral is typically

evaluated viaMonte Carlo simulation, using 𝑁 draws from the distribution 𝐹𝑡 . Throughout the paper,
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we assume that market shares are computed using a finite number of such draws.2 Accordingly, we

treat the set of draws {𝝂𝑖𝑡 , 𝒅𝑖𝑡 : 𝑖 = 1, 2, . . . , 𝑁} as fixed and known to the researcher, and we use

the following expression for the model-predicted market shares:

𝑠 𝑗 𝑡 = s𝑗 (𝜹𝑡 , 𝒙𝑡 ,𝝈) =
1
𝑁

𝑁∑︁
𝑖=1

exp{𝛿 𝑗 𝑡 +
∑𝐾
𝑘=1 𝑥

𝑘
𝑗𝑡
[𝜎𝑘 𝜈𝑘

𝑖𝑡
+ 𝒅′𝑖𝑡 𝝅

𝑘 ]}

1 + ∑𝐽
𝑗 ′=1 exp{𝛿 𝑗 ′𝑡 +

∑𝐾
𝑘=1 𝑥

𝑘
𝑗 ′𝑡 [𝜎𝑘 𝜈𝑘𝑖𝑡 + 𝒅′𝑖𝑡 𝝅

𝑘 ]}
(4)

Define the vector of market shares 𝒔𝑡 ≡ (𝑠1𝑡 , ..., 𝑠𝐽𝑡) and the corresponding vector-valued

mapping s(𝜹𝑡 , 𝒙𝑡 ,𝝈) ≡ (s1(𝜹𝑡 , 𝒙𝑡 ,𝝈), ..., s𝐽 (𝜹𝑡 , 𝒙𝑡 ,𝝈)). The demand system, in vector form, is:

𝒔𝑡 = s(𝜹𝑡 , 𝒙𝑡 ,𝝈) (5)

By Berry’s Inversion Theorem (Berry, 1994), this mapping is invertible in 𝜹𝑡 . For any value of

(𝒙𝑡 ,𝝈), there exists an inverse function s−1(𝒔𝑡 , 𝒙𝑡 ,𝝈) such that 𝜹𝑡 = s−1(𝒔𝑡 , 𝒙𝑡 ,𝝈), or at the product

level,

𝛿 𝑗 𝑡 = s−1𝑗 (𝒔𝑡 , 𝒙𝑡 ,𝝈) (6)

While the inverse function has a closed-form expression in the standard logit and nested logit

models, this is not the case in the random coefficients logit model. In this case, the inversion must

be computed numerically, which is computationally intensive—particularly in models with a large

number of products.

Based on the inversion of the demand system, we can write this demand model as a partially

linear regression model:

s−1𝑗 (𝒔𝑡 , 𝒙𝑡 ,𝝈) = 𝒙′𝑗 𝑡 𝜷 + 𝜉 𝑗 𝑡 (7)

Price is included in 𝒙 𝑗 𝑡 and is potentially correlated with 𝜉 𝑗 𝑡 , so consistent estimation requires

instrumental variables. The econometric model is completed by specifying the validity and iden-

tification power of instrumental variables. Specifically, we assume the existence of a vector of

2This can be interpreted either as assuming a finite population or that 𝑁 is sufficiently large for the simulation error
to be negligible—an assumption that is nearly universal in this literature.
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𝑞 observable variables 𝒛 𝑗 𝑡 that satisfies the moment conditions E
(
𝒛 𝑗 𝑡 𝜉 𝑗 𝑡

)
= 0. These conditions

identify the parameter vector 𝜽 . A common choice for the instruments includes observable product

characteristics other than the price of product 𝑗 , along with the same characteristics for products

that compete with product 𝑗 .

2.2 The GMM estimator and the Nested Fixed Point algorithm

Let 𝑚(𝜽) be the vector of 𝑞 sample moments that correspond to the population moments E
(
𝒛 𝑗 𝑡 𝜉 𝑗 𝑡

)
.

𝑚(𝜽) =
1
𝐽𝑇

𝑇∑︁
𝑡=1

𝐽∑︁
𝑗=1

𝒛 𝑗 𝑡
[
s−1𝑗 (𝒔𝑡 , 𝒙𝑡 ,𝝈) − 𝒙′𝑗 𝑡 𝜷

]
(8)

The GMM estimator of 𝜽 is defined as:

𝜽̂ = argmin
𝜽∈Θ

𝐺 (𝜽) = 𝑚(𝜽)′ 𝑾 𝑚(𝜽) (9)

where𝑾 is a positive definite 𝑞 × 𝑞 weighting matrix.

The GMM estimator 𝜽̂ satisfies the first-order conditions: 𝜕𝐺 𝜽̂)
𝜕𝜽 = 0. Berry, Levinsohn, and

Pakes (1995) propose the Nested Fixed-Point (NFXP) algorithm that computes this estimator by

applying Newton’s method to solve this system of nonlinear equations (5). Specifically, it performs

the following iterative procedure until convergence. At iteration 𝑛 + 1 ≥ 1:

𝜽𝑛+1 = 𝜽𝑛 −
(
𝜕2𝐺 (𝜽𝑛)
𝜕 𝜽 𝜽′

)−1
𝜕 𝐺 (𝜽𝑛)
𝜕 𝜽

(10)

At every Newton iteration, and for everymarket 𝑡 in the data, the NFXP algorithm fully solves the

inversion problem that defines the vector of average utilities 𝜹𝑡 as an implicit function of (𝒔𝑡 , 𝒙𝑡 ,𝝈).

Specifically, for a fixed value of 𝝈 (the one from Newton’s iteration 𝑛), it applies the following fixed
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point iterations until convergence. At iteration 𝜏 + 1 ≥ 1:

𝜹𝜏+1𝑡 = 𝜹𝜏𝑡 + ln (𝒔𝑡) − ln
(
s(𝜹𝜏𝑡 , 𝒙𝑡 ,𝝈)

)
. (11)

Upon convergence of the fixed-point algorithm, the solution 𝜹𝑡 represents the evaluation of the

inverse function s−1(𝒔𝑡 , 𝒙𝑡 ,𝝈). This result can then be used to compute the criterion function

𝐺 (𝜽𝑛) and its derivatives, enabling a new Newton iteration that updates the parameter vector to a

new value 𝜽𝑛+1.

In empirically common situations –especially when the outside good share is small– themodulus

of this contraction mapping is often close to one, which means the fixed-point algorithmmay require

many iterations to converge (Dubé, Fox, and Su, 2012, Conlon and Gortmaker, 2020). The NFXP

algorithm must solve 𝑇 such fixed-point problems at each trial value of 𝜽 during the Newton

iterations. These characteristics make the NFXP algorithm computationally intensive.

2.3 Aguirregabiria-Mira Nested Pseudo-GMM estimator

Before introducing our estimator, we begin by describing a direct application of the Nested Pseudo-

Likelihood or GMM method from Aguirregabiria and Mira (2002, 2007) to the BLP model. This

section serves two purposes. First, it introduces the core ideas shared by a broad class of Nested

Pseudo-GMM (NP-GMM) estimators. Second, it demonstrates that a straightforward, off-the-shelf

application of the standard NP-GMM approach—commonly used in dynamic discrete choice mod-

els—does not work in the context of the BLP model. These limitations motivate the modifications

to this method that we present in Section 2.4.

Let 𝜹 = (𝜹𝑡 : 𝑡 = 1, 2, ..., 𝑇) be the vector of mean utilities across all the markets and products in

the sample. The method treats these mean utilities as incidental parameters to be estimated together

with the structural parameters in 𝜽 . Specifically, we define an extended or pseudo-GMM criterion
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function that includes (𝜹, 𝜽) as arguments:

𝑄(𝜹, 𝜽) =

(∑︁
𝑗 ,𝑡

𝒛 𝑗 𝑡
[
𝛿 𝑗 𝑡 − 𝒙′𝑗 𝑡 𝜷

] )′
𝑾

(∑︁
𝑗 ,𝑡

𝒛 𝑗 𝑡
[
𝛿 𝑗 𝑡 − 𝒙′𝑗 𝑡 𝜷

] )
(12)

Definition 1. TheAM-NP-GMM estimator is defined as the pair (𝜹̂, 𝜽̂) that satisfies the following

two conditions:

• AM-1. Given the vector of mean utilities 𝜹̂, the parameter vector 𝜽̂ minimizes the pseudo-

GMM criterion function:

𝜽̂ = argmin
𝜽

𝑄(𝜹̂, 𝜽) . (13)

• AM-2. Given the structural parameters 𝜽̂ , the vector of mean utilities 𝜹̂𝑡 solves, for each

market 𝑡, the system of 𝐽 nonlinear equations implied by the demand system:

𝒔𝑡 = s(𝜹̂𝑡 , 𝒙𝑡 , 𝜽̂) for 𝑡 = 1, 2, . . . , 𝑇 . ■ (14)

Akey feature concerns the algorithmused to compute the estimator (𝜹̂, 𝜽̂) that satisfies conditions

AM-1 and AM-2. This algorithm shares several characteristics with the NFXP algorithm: it is a

nested procedure that alternates between minimizing the pseudo-GMM criterion with respect to 𝜽

and performing iterations to solve for the mean utilities 𝜹𝑡 implied by the demand system. However,

unlike the NFXP algorithm, the roles of the inner and outer loops are reversed.

The algorithm proceeds as follows. It starts from an initial value for the vectors of means

utilities: 𝜹̂
0
= (𝜹̂0𝑡 : 𝑡 = 1, 2, ..., 𝑇). A natural way of initializing the mean utilities is using the

ones that we would have if the model did not have random coefficients (i.e., 𝝈 = 0) such that we

had a standard logit model:

𝛿̂0𝑗 𝑡 = ln(𝑠 𝑗 𝑡) − ln(𝑠0𝑡) (15)

Then, at every (outer) iteration 𝑛 ≥ 1 we perform two tasks:
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1. Pseudo-GMM estimation of 𝜽 , given 𝜹̂
𝑛−1
:

𝜽̂
𝑛
= argmin

𝜽
𝑄

(
𝜹̂
𝑛−1
, 𝜽

)
. (16)

2. One Newton-Kantorovich iteration to update the vector of mean utilities:

𝜹̂
𝑛

𝑡 = 𝜹̂
𝑛−1
𝑡 +

[
∇𝛿′ lns(𝜹̂

𝑛−1
𝑡 , 𝝈̂𝑛)

]−1 [
ln 𝒔𝑡 − lns(𝜹̂

𝑛−1
𝑡 , 𝝈̂𝑛)

]
for 𝑡 = 1, 2, . . . , 𝑇 . (17)

where ∇𝛿′ lns(𝜹,𝝈) denotes the 𝐽 × 𝐽 Jacobian matrix of market shares with respect to mean

utilities.

The main computational advantage of this algorithm over NFXP is that it avoids repeatedly

solving the 𝑇 fixed-point problems. Instead, the NP-GMM algorithm solves these 𝑇 fixed-point

problems only once -—at convergence. This efficiency comes at the cost of solvingmultiple pseudo-

GMM minimization problems. However, these minimizations are computationally inexpensive

because the pseudo-GMM criterion function is quadratic in 𝜽 such that the pseudo-GMM estimator

has a simple closed-form solution.

However, the approach described above suffers from a fundamental limitation. The pseudo-

GMM criterion function in equation (12) depends on the incidental parameters 𝜹 and a subset of

the structural parameters, 𝜷, but not on the remaining structural parameters, 𝝈. As a result, these

parameters cannot be identified or estimated within this framework.

In the next section, we introduce an alternative pseudo-GMM criterion function that depends

on a set of incidental parameters distinct from 𝜹. This new criterion enables the estimation of

all structural parameters within a NP-GMM framework. Crucially, it retains the computational

simplicity of the original pseudo-GMM approach.
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2.4 Our NP-GMM estimator

2.4.1 A new regression-like representation of the model

Let 𝑠0𝑖𝑡 denote the market share of the outside good for consumer 𝑖 in market 𝑡. This consumer-level

market share can be expressed as a function of the mean utilities 𝜹𝑡 and 𝝈:

𝑠0𝑖𝑡 = 𝜆𝑖𝑡 (𝜹𝑡 , 𝝈) =
1

1 +
𝐽∑︁
𝑗=1
exp

(
𝛿 𝑗 𝑡 +

∑𝐾
𝑘=1 𝑥

𝑘
𝑗𝑡
[𝜎𝑘 𝜈𝑘

𝑖𝑡
+ 𝒅′𝑖𝑡 𝝅

𝑘 ]
) (18)

Combining the definition of 𝑠0𝑖𝑡 with equation (4) for the model-implied market shares, we have:

𝑠 𝑗 𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

𝑠0𝑖𝑡 exp
(
𝛿 𝑗 𝑡 +

∑𝐾
𝑘=1 𝑥

𝑘
𝑗𝑡
[𝜎𝑘 𝜈𝑘

𝑖𝑡
+ 𝒅′𝑖𝑡 𝝅

𝑘 ]
)

= exp(𝛿 𝑗 𝑡)
1
𝑁

𝑁∑︁
𝑖=1

𝜆𝑖𝑡 exp
(∑𝐾

𝑘=1 𝑥
𝑘
𝑗𝑡
[𝜎𝑘 𝜈𝑘

𝑖𝑡
+ 𝒅′𝑖𝑡 𝝅

𝑘 ]
) (19)

That implies the following regression-like expression:

ln
(
𝑠 𝑗 𝑡

)
= 𝒙′𝑗 𝑡 𝜷 + ℎ

(
𝝀𝑡 , 𝒙 𝑗 𝑡 ,𝝈

)
+ 𝜉 𝑗 𝑡 (20)

where 𝝀𝑡 represents the vector of consumer-level market shares for the outside good, (𝑠0𝑖𝑡 : 𝑖 =

1, 2, . . . 𝑁), and:3

ℎ
(
𝝀𝑡 , 𝒙 𝑗 𝑡 ,𝝈

)
≡ ln

(
1
𝑁

𝑁∑︁
𝑖=1

𝜆𝑖𝑡 exp
{∑𝐾

𝑘=1 𝑥
𝑘
𝑗𝑡
[𝜎𝑘 𝜈𝑘

𝑖𝑡
+ 𝒅′𝑖𝑡 𝝅

𝑘 ]
})
. (21)

An interesting property of the vector 𝝀𝑡 is that—although it does not vary across products 𝑗—it

captures all the information from the market shares of products other than 𝑗 that is required to

3Note that when𝝈 = 0, the function ℎ
(
𝝀𝑡 , 𝒙 𝑗𝑡 ,𝝈

)
simplifies to ln(𝑠0𝑡 ), and the regression equation (20) corresponds

to the standard logit model.
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compute the inverse demand function 𝛿 𝑗 𝑡 = s−1
𝑗
(𝒔𝑡 , 𝒙𝑡 ,𝝈). Specifically, the model implies:

𝛿 𝑗 𝑡 = s−1𝑗 (𝒔𝑡 , 𝒙𝑡 ,𝝈) = ln
(
𝑠 𝑗 𝑡

)
− ℎ

(
𝝀𝑡 , 𝒙 𝑗 𝑡 ,𝝈

)
(22)

This property has an important implication for constructing the Pseudo-GMM criterion function

used in our estimator: once we treat 𝝀𝑡 as a vector of incidental parameters, we no longer need to

include 𝜹𝑡 explicitly. Thus, conditional on 𝝀𝑡 , recovering mean utilities 𝜹𝑡 requires only evaluating

the closed form expression ℎ
(
𝝀𝑡 , 𝒙 𝑗 𝑡 ,𝝈

)
separately for each product, and does not require solving

a 𝐽-dimensional fixed point.

Given the regression equation (20) and treating 𝝀 = (𝝀𝑡 : 𝑡 = 1, 2, . . . 𝑇) as incidental parameters,

we can define the following pseudo-GMM criterion function:

𝑄(𝝀, 𝜽) =

(∑︁
𝑗 ,𝑡

𝒛 𝑗𝑡
[
ln

(
𝑠 𝑗𝑡

)
− 𝒙′𝑗𝑡 𝜷 − ℎ

(
𝝀𝑡 , 𝒙 𝑗𝑡 ,𝝈

) ] ) ′
𝑾

(∑︁
𝑗 ,𝑡

𝒛 𝑗𝑡
[
ln

(
𝑠 𝑗𝑡

)
− 𝒙′𝑗𝑡 𝜷 − ℎ

(
𝝀𝑡 , 𝒙 𝑗𝑡 ,𝝈

) ] )
(23)

Definition 2. Our NP-GMM estimator is defined as a triple (𝝀̂, 𝜹̂, 𝜽̂) satisfying the following

three conditions:

• NP-1. Given 𝝀̂, the parameter vector 𝜽̂ minimizes the pseudo-GMM criterion function 𝑄:

𝜽̂ = argmin
𝜽

𝑄(𝝀̂, 𝜽) (24)

• NP-2. Given the structural parameters 𝜽̂ , the vector of mean utilities 𝜹̂𝑡 solves, for each market

𝑡, the system of 𝐽 nonlinear equations implied by the demand system:

𝒔𝑡 = s(𝜹̂𝑡 , 𝒙𝑡 , 𝜽̂) for 𝑡 = 1, 2, . . . , 𝑇 . (25)

• NP-3. Given (𝜹̂, 𝜽̂), the vector 𝝀̂ contains the consumer-level market shares of the outside
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good which are implied by the model:

𝜆𝑖𝑡 = 𝜆𝑖𝑡

(
𝜹̂𝑡 , 𝝈̂

)
for 𝑖 = 1, 2, . . . , 𝑁, and 𝑡 = 1, 2, . . . , 𝑇 . ■ (26)

In the remainder of this section, we present two main results. First, we explain why the NP-

GMM estimator differs from the standard GMM estimator. Second, we establish the consistency

and asymptotic normality of the NP-GMM estimator under identification assumptions that are no

stronger than those required for the consistency of the GMM estimator.

2.4.2 The difference between GMM and NP-GMM estimators

To illustrate the difference between the GMM and NP-GMM estimators, it is useful to define two

mappings that relate the incidental parameters 𝜹 and 𝝀 to the structural parameters 𝜽 . We begin by

defining Berry’s fixed-point mapping Ψ:

𝜹 = Ψ (𝜹, 𝝈) ≡ 𝜹 + ln (𝒔) − ln (s (𝜹, 𝒙,𝝈)) (27)

This mapping is continuously differentiable in both 𝜹 and 𝝈. By Berry’s Inversion Theorem (Berry,

1994), for any fixed value of 𝝈, the mapping Ψ (·,𝝈) is a contraction. Consequently, there exists a

unique solution 𝜹 to the fixed-point problem for each 𝝈. We denote this solution by 𝜹∗(𝝈). Given

𝝈 and the associated vector of mean utilities 𝜹∗(𝝈), we can then define the mapping 𝝀∗(𝝈), which

yields the consumer-level market shares for the outside good:

𝝀 = 𝜆∗ (𝝈) ≡ 𝜆 (𝛿∗(𝝈), 𝝈) (28)

Taking into account the mappings 𝛿∗ and 𝜆∗, we can establish a key relationship between the

GMM and the NP-GMM criterion functions. For any vector 𝝈, we have:

𝐺 (𝜽) = 𝐺 (𝜷, 𝝈) = 𝑄 (𝜆∗ (𝝈) , 𝜽) . (29)
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This identity implies the following expression for the gradient of the GMM criterion function:

𝜕𝐺

𝜕𝜷′
=

𝜕𝑄

𝜕𝜷′
and

𝜕𝐺

𝜕𝝈′ =
𝜕𝑄

𝜕𝝀′
· 𝜕𝜆

∗ (𝝈)
𝜕𝝈′ + 𝜕𝑄

𝜕𝝈′ . (30)

It is important to note that neither 𝜕𝑄/𝜕𝝀′ nor 𝜕𝜆∗/𝜕𝝈′ are generally equal to zero. As a result, the

condition 𝜕𝐺/𝜕𝝈′ = 0 does not imply 𝜕𝑄/𝜕𝝈′ = 0, and vice versa.

We are now in a position to formalize the distinction between the GMM and the NP-GMM

estimators, denoted by 𝜽̂𝑔𝑚𝑚 and 𝜽̂𝑛𝑝, respectively. By construction, these estimators satisfy the

following first-order optimality conditions:


𝜕𝐺

(
𝜽̂𝑔𝑚𝑚

)
/𝜕𝜽 = 0

𝜕𝑄

(
𝝀̂𝑛𝑝, 𝜽̂𝑛𝑝

)
/𝜕𝜽 = 0, with 𝝀̂𝑛𝑝 = 𝜆∗

(
𝜽̂𝑛𝑝

) (31)

Using equation (30), it follows that the NP-GMMestimator does not satisfy the first-order conditions

defining the GMM estimator, and vice versa. Therefore, the two methods yield distinct estimators.

2.4.3 Asymptotic properties of the NP-GMM estimator

Throughout the paper, we use the hat notation ·̂ to denote statistics and functions that involve

sampling error, and the subscript 0 to indicate their population counterparts. Let 𝜽0 be the true

value the structural parameters in the population, and let 𝝀0 be the corresponding value for 𝝀, i.e.,

𝝀0 = 𝜆∗(𝜽0). Remember that the mapping 𝜆∗(𝜽) is deterministic, i.e., it does not incorporate

sampling/estimation error. Define the population counterpart of the sample criterion functions, for

GMM and NP-GMM estimation:

𝐺0 (𝜽) ≡ E [𝐺 (𝜽) ] and 𝑄0 (𝝀, 𝜽) ≡ E [𝑄 (𝝀, 𝜽) ] (32)

The following assumptions summarize the identification and regularity conditions needed for the

consistency and asymptotic normality of the NP-GMM estimator. We study asymptotic properties

of the estimators as either the number of products or the number of markets grows large, that is, as
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𝐽𝑇 → ∞.

Assumption 1. For any 𝜽 ≠ 𝜽0, 𝑄0 (𝜆∗(𝜽), 𝜽) > 𝑄0 (𝝀0, 𝜽0) = 0. Note that, by construction,

this is equivalent to 𝐺0 (𝜽) > 𝐺0 (𝜽0) = 0 for any 𝜽 ≠ 𝜽0. ■

Assumption 1 imposes standard conditions ensuring correct model specification and parameter

identification. At the true parameter values, the moment conditions are satisfied, and the corre-

sponding criterion function attains its minimum at zero. For any parameter value different from the

true one, the moment conditions are violated, and the criterion function remains strictly positive.

Importantly, this identification assumption holds equivalently under both standard GMMestimation,

based on 𝐺0, and the NP-GMM framework, based on 𝑄0.

Assumption 2 presents standard regularity conditions which are used to derive the asymptotic

distribution of the NP-GMM estimator.

Assumption 2. The following conditions hold: (a) Θ is a compact set. (b) 𝑄(𝝀, 𝜽) is continuous

and bounded. (c) (𝝀0, 𝜽0) ∈ 𝑖𝑛𝑡 ( [0, 1]𝑁 × Θ). (d) (𝝀0, 𝜽0) is an isolated NP-GMM fixed point –

either it is unique, or there is a ball around it that does not contain any other NP-GMM fixed point.

(e) 𝑄0(𝝀, 𝜽) is concave in 𝜽 for any 𝝀 in a neighborhood around 𝝀0. ■

Proposition 1. Under Assumptions 1 and 2, as the sample size 𝐽𝑇 goes to infinity, the NP-GMM

estimator converges to the true value (𝝀0, 𝜽0) with probability approaching one. ■

Proof: See Appendix A.

Proposition 2 establishes the asymptotic distribution of the NP-GMM estimator. To present this

result, it is useful to express the first-order conditions for the NP-GMM estimator as follows:

𝜕𝑄(𝝀, 𝜽)
𝜕𝜽

=
1
𝐽𝑇

∑︁
𝑗 ,𝑡

𝑔 𝑗 𝑡 (𝝀, 𝜽) =
1
𝐽𝑇

∑︁
𝑗 ,𝑡

𝒛∗𝑗 𝑡 (𝝀, 𝜽) 𝜉 𝑗 𝑡 (𝝀, 𝜽) = 0 (33)

Here, 𝜉 𝑗 𝑡 (𝝀, 𝜽) represents ln
(
𝑠 𝑗 𝑡

)
− 𝒙′

𝑗 𝑡
𝜷 − ℎ

(
𝝀𝑡 , 𝒙 𝑗 𝑡 ,𝝈

)
, and 𝒛∗

𝑗 𝑡
(𝝀, 𝜽) denotes the effective vector

of instruments—equal in dimension to the number of parameters in 𝜽—obtained by multiplying the
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original instrument vector 𝒛 𝑗 𝑡 by the weighting matrix𝑾 and the gradient vector of 𝜉 𝑗 𝑡 (𝝀, 𝜽) with

respect to 𝜽 . We also define the following matrices:

Ω𝜃𝜃 ≡ E
[
𝜕𝑔 𝑗 𝑡 (𝝀0, 𝜽0)

𝜕𝜽

𝜕𝑔 𝑗 𝑡 (𝝀0, 𝜽0)
𝜕𝜽′

]
, Ω𝜃𝜆 ≡ E

[
𝜕𝑔 𝑗 𝑡 (𝝀0, 𝜽0)

𝜕𝜽

𝜕𝑔 𝑗 𝑡 (𝝀0, 𝜽0)
𝜕𝝀′

]
, Λ𝜃 ≡

𝜕𝝀∗(𝜽0)
𝜕𝜽′

(34)

Proposition 2. Under Assumptions 1 and 2, the NP-GMM estimator has a normal asymptotic

distribution:
√
𝐽𝑇

(
𝜽̂ − 𝜽0

)
→𝑑 𝑁 (0,𝑽𝑛𝑝) with:

𝑽𝑛𝑝 = [Ω𝜃𝜃 +Ω𝜃𝜆 Λ𝜃]−1 Ω𝜃𝜃

[
Ω𝜃𝜃 + Λ′

𝜃 Ω
′
𝜃𝜆

]−1
■ (35)

Proof: See Appendix A.

The asymptotic variance of the GMM estimator is given by Ω−1
𝜃𝜃
. In this model, the Jacobian

matrix Λ𝜃 is nonzero, and it is straightforward to show that this implies that matrix 𝑽𝑛𝑝 − Ω−1
𝜃𝜃

is positive definite. As a result, the NP-GMM estimator is asymptotically less efficient than the

standard GMM estimator. Nevertheless, as shown in our Monte Carlo experiments, the resulting

loss in efficiency is negligible in practice.

In the existing literature on Nested Pseudo estimation methods—including Aguirregabiria and

Mira (2002, 2007), as well as more recent applications such as Lin, Tang, and Xiao (2024) and

Dearing andBlevins (2025)—the asymptotic analysis is conducted under themaintained assumption

that the number of incidental parameters is finite. This typically follows from a finite state space,

which implies a fixed and finite number of conditional choice probabilities that does not grow with

the sample size. In sharp contrast, the BLP model departs fundamentally from this setting: the

dimension of the mean utility vector (the collection of 𝛿’s) increases with the number of products

and therefore diverges as the sample size grows. As a result, existing proofs of consistency and

asymptotic normality for NP-GMMor NPL estimators do not apply in this environment. This paper,

specifically Propositions 1 and 2, fills this gap by establishing consistency and asymptotic normality

of the NP-GMM estimator in a setting where the number of incidental parameters grows without
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bound as the number of products tends to infinity, thereby providing a new asymptotic framework

for NP-GMM estimation in high- and infinite-dimensional settings.

2.5 Our NP-GMM algorithm

This section presents the algorithm we use to compute our NP-GMM estimator. The algorithm is

similar to the one described above for the Aguirregabiria-Mira method, but with two key differences.

First, the pseudo-GMM criterion function 𝑄 now depends on the full set of structural parameters.

Second, before each pseudo-GMM iteration, we update the value of 𝝀̂ using its closed-form expres-

sion as a function of (𝜹̂, 𝝈̂).

NP-GMM algorithm:

0. Initialization: The algorithm is initialized with values for the vector of mean utilities 𝜹̂
0
and

for the structural parameters associated to random coefficients, 𝝈̂0. For instance, we could

start with the initial value 𝝈̂0 = 0 and 𝛿̂0
𝑗 𝑡
= ln(𝑠 𝑗 𝑡) − ln(𝑠0𝑡), that corresponds to the standard

logit model.

1. Iteration 𝑛 ≥ 1: It consists of a sequence of three steps.

Step 1. Updating 𝝀̂: For any 𝑖 = 1, 2, . . . , 𝑁 and 𝑡 = 1, 2, . . . , 𝑇 , we use (𝜹̂𝑛−1, 𝝈̂𝑛−1) to

calculate 𝜆𝑛
𝑖𝑡
using its closed-form formula:

𝜆𝑛𝑖𝑡 = 𝜆𝑖𝑡

(
𝜹̂
𝑛−1
𝑡 , 𝝈̂𝑛−1

)
=

1
1 + ∑𝐽

𝑗=1 exp{𝛿̂𝑛−1𝑗 𝑡 + ∑𝐾
𝑘=1 𝑥

𝑘
𝑗𝑡
[𝜎̂𝑛−1

𝑘
𝜈𝑘
𝑖𝑡
+ 𝒅′𝑖𝑡 𝝅̂

𝑛−1
𝑘 ]}

(36)

Step 2. Pseudo-GMM estimation of 𝜽: Given 𝝀̂
𝑛
, we obtain 𝜽̂

𝑛
as:

𝜽̂
𝑛
= argmin

𝜽
𝑄

(
𝝀̂
𝑛
, 𝜽

)
. (37)
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Step 3. Newton-Kantorovich iteration to update mean utilities:

𝜹̂
𝑛

𝑡 = 𝜹̂
𝑛−1
𝑡 +

[
∇𝛿′ lns(𝜹̂

𝑛−1
𝑡 , 𝝈̂𝑛)

]−1 [
ln 𝒔𝑡 − lns(𝜹̂

𝑛−1
𝑡 , 𝝈̂𝑛)

]
for 𝑡 = 1, 2, . . . , 𝑇 . (38)

Upon convergence, the algorithm provides the NP-GMM estimator defined by conditions NP-1

to NP-3.

Remark 1: The main computational advantage of this algorithm over NFXP is that it eliminates the

need to repeatedly solve the 𝑇 fixed-point problems. Instead, the NP-GMM algorithm solves these

problems only once, at the point of convergence. This efficiency comes at the cost of solvingmultiple

pseudo-GMMminimization problems. However, these minimizations are relatively inexpensive, as

the pseudo-GMM criterion has a simple closed-form expression and is globally concave in 𝜽 .4

In contrast to theApproximate BLPmethod proposed by Lee and Seo (2015)—whichwe describe

in Section 2.6—our criterion function does not rely on a linear approximation of the nonlinear

demand system. Instead, it leverages the structure of the model and treats certain endogenous

objects as incidental parameters. As our Monte Carlo experiments demonstrate, this difference has

important implications for the relative performance of the two methods.

Remark 2: Step 1, which updates 𝝀̂, is relatively inexpensive and can be fully parallelized across

𝑁𝑇 threads. The pseudo-GMM iteration in Step 2 is slightly more computationally demanding than

in the standard Aguirregabiria-Mira version of the NP-GMM. This is because the criterion function

is no longer quadratic, and we no longer have a closed-form expression for the estimator. However,

the criterion function still has a simple analytical form and can be concentrated in 𝝈 by exploiting

its quadratic structure in 𝜷. Most importantly, the function is easy to evaluate, globally convex in 𝜽 ,

and has a closed-form expression for its gradient. As a result, standard gradient-based optimization

methods can be used to reliably obtain the global minimum, i.e., the pseudo-GMM estimator.

4Aswith any existingmethod for estimating the BLPmodel, our algorithm yields a local optimum upon convergence,
which may not be the global optimum if multiple local optima exist. The standard practice applies: the algorithm
should be run from multiple starting values to assess the presence of multiple local minima. In such cases, the estimator
is defined as the local optimum that achieves the lowest value of the GMM criterion function.
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The Newton–Kantorovich outer iteration in Step 3 can be replaced by a standard fixed-point

iteration based on Berry’s mapping. We implemented this alternative version of the algorithm as

well. In our experiments, the version using Newton iterations performs markedly better: it requires

far fewer outer iterations to converge and reduces the incidence of non-convergence to essentially

zero.

2.6 The Approximate-BLP estimator

Lee and Seo (2015) proposed an estimation procedure for the BLP model parameters based on a

first-order approximation of the log-demand system around an arbitrary vector of mean utilities,

denoted by 𝜹0. For any value (𝜹,𝝈):

lns(𝜹,𝝈) ≈ lns(𝜹0,𝝈) + ∇𝛿′ lns(𝜹0,𝝈) (𝜹 − 𝜹0) (39)

where ≈ denotes a first-order Taylor series expansion, ∇𝛿′ ≡ 𝜕/𝜕𝛿′, and ∇𝛿′ lns(𝜹0,𝝈) is a 𝐽 × 𝐽

Jacobian matrix.

Thanks to this linear approximation, the inversion of the system of demand equations to obtain

the vector of average utilities 𝜹 can be approximated using matrix inversion or linear projection.

We denote this approximation to the inversion problem using the operator Ψ𝑎𝑏𝑙 𝑝 (𝜹0,𝝈). That is:

𝜹 = Ψ𝑎𝑏𝑙 𝑝 (𝜹0,𝝈) ≡ 𝜹0 + [∇𝛿′ lns(𝜹0,𝝈)]−1 [ln 𝒔 − lns(𝜹0,𝝈)] (40)

The Approximate-BLP (ABLP) estimator is based on the following criterion function:

𝑄𝑎𝑏𝑙 𝑝 (𝜹0, 𝜽) =

(∑︁
𝑗 ,𝑡

𝒛 𝑗 𝑡
[
Ψ
𝑎𝑏𝑙 𝑝

𝑗𝑡
(𝜹0,𝝈) − 𝒙′𝑗 𝑡 𝜷

] )′
𝑾

(∑︁
𝑗 ,𝑡

𝒛 𝑗 𝑡
[
Ψ
𝑎𝑏𝑙 𝑝

𝑗𝑡
(𝜹0,𝝈) − 𝒙′𝑗 𝑡 𝜷

] )
(41)

where Ψ𝑎𝑏𝑙 𝑝

𝑗𝑡
(𝜹0,𝝈) represents element 𝑗 𝑡 of the vector Ψ𝑎𝑏𝑙 𝑝 (𝜹0,𝝈).

Definition 3. The ABLP estimator is defined as a pair (𝜹̂, 𝜽̂) satisfying two sets of conditions:
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• ABLP-1. Given 𝜹̂, we have that 𝜽̂ = argmin𝜽 𝑄𝑎𝑏𝑙 𝑝 (𝜹̂, 𝜽).

• ABLP-2. Given 𝜽̂ , we have that 𝜹̂ = Ψ𝑎𝑏𝑙 𝑝 (𝜹̂, 𝝈̂). ■

Approximate BLP algorithm: Lee and Seo (2015) proposed the following algorithm to compute

this ABLP estimator.

0. Initialization: The algorithm is initialized with values for the vector of mean utilities 𝜹̂
0
.

1. Iteration 𝑛 ≥ 1: It consists of a sequence of two steps.

Step 1. Pseudo-GMM estimation of 𝜽: Given 𝜹̂
𝑛−1
, we obtain 𝜽̂

𝑛
as:

𝜽̂
𝑛
= argmin

𝜽
𝑄𝑎𝑏𝑙 𝑝

(
𝜹̂
𝑛
, 𝜽

)
. (42)

Step 2. Updating 𝜹̂. Mean utilities are updated using the approximate mapping Ψ𝑎𝑏𝑙 𝑝:

𝜹̂
𝑛
= Ψ𝑎𝑏𝑙 𝑝 (𝜹̂𝑛−1, 𝝈̂𝑛). (43)

Upon convergence, the algorithm provides the ABLP estimator defined by conditions ABLP-1

and ABLP-2.

Remark 3: There is a fundamental difference between the Pseudo-GMM estimation in the ABLP

algorithm and that in our NP approach. Each Pseudo-GMM step in the ABLP procedure requires

repeatedly evaluating Ψ
𝑎𝑏𝑙 𝑝

𝑗𝑡
(𝜹0,𝝈) —once for each trial value of 𝝈 —which, in turn, involves

computing the matrix inverse [∇𝛿′ lns(𝜹0,𝝈)]−1 for each of those values. By contrast, the Pseudo-

GMM step in our NP-GMM algorithm only requires evaluating simple, closed-form expressions for

each product individually when computing both the criterion function and its gradient.

Remark 4: The distinction between ABLP and our NP-GMM algorithm becomes even more signif-

icant when parallel computing is introduced. A key advantage of our approach is the straightforward

computation of the sample counterparts of the error terms 𝜉 𝑗 𝑡 , which can be efficiently parallelized
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Table 1: Features of Algorithms for the Estimation of BLP Demand Model

Features NFXP MPEC ABLP NP-GMM

Avoids solving inversion at each 𝜎 trial value No Yes Approx. Yes

Avoids linearization of shares mapping Yes Yes No Yes

Closed-form inversion conditional on auxiliary objects No No No Yes

Closed-form gradient of criterion function No No No Yes

Scales well with multithreading Mixed Mixed Weak Strong

Returns GMM estimator Yes Yes No No

Asymptotically equivalent to GMM estimator Yes Yes Yes No

across multiple threads. As demonstrated in our numerical experiments in Section 3.2, this leads to

substantial reductions in CPU time during the Pseudo-GMM estimation step.5 In contrast, parallel

computing yields negligible time savings for the Pseudo-GMM step in the ABLP method. This

is because evaluating ABLP’s criterion function and its gradients requires inverting matrices that

depend on all products simultaneously, limiting the effectiveness of parallelization across products.

Table 1 summarizes key features of the main algorithms used for the estimation of BLP demand

models, and highlights the novel features of the NP-GMM method.

3 Monte Carlo Experiments

In this section, we use simulated datasets to compare the computational speed of our approach with

that of the ABLP method. Lee and Seo (2015) show that the ABLP algorithm is significantly faster

than both the NFXP and MPEC algorithms, especially in large-sample settings.

5Appendix C derives the gradients of our Pseudo-GMM objective function, which have a notably simple form and
are straightforward to vectorize.
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3.1 Data-Generating Process

We adopt the same Monte Carlo simulation setting as in Dubé, Fox, and Su (2012), which is also

used by Lee and Seo (2015) to compare the ABLP and MPEC approaches.6

We conduct a series of Monte Carlo experiments using samples in which the number of markets

𝑇 takes values 50, 100, or 500, and the number of products 𝐽 takes values 25, 50, 100, 200, 400,

800, 1600, and 3200. In each market 𝑡, all 𝐽 products are present.

Let the deterministic component of utility be defined as: 𝒙′
𝑗 𝑡
𝜷 = 𝛽0 + 𝛽1𝑥1, 𝑗 + 𝛽2𝑥2, 𝑗 + 𝛽3𝑥3, 𝑗 +

𝛽𝑝𝑝 𝑗 𝑡 , where the vector of coefficients is given by 𝜷′ = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽𝑝) = (0, 1.5, 1.5, 0.5,−3).

The three exogenous product characteristics -—𝑥1, 𝑗 , 𝑥2, 𝑗 , and 𝑥3, 𝑗 -— are constant across markets 𝑡

and are drawn from a multivariate normal distribution given by:


𝒙1 𝑗

𝒙2 𝑗

𝒙3 𝑗


∼ 𝑁

©­­­­­«

0

0

0


,


1 −0.8 0.3

−0.8 1 0.3

0.3 0.3 1


ª®®®®®¬
. (44)

In each market 𝑡, we simulate 𝑁 = 1, 000 individual-level taste draws, denoted by 𝝂′
𝑖𝑡
=

(𝜈0,𝑖𝑡 , 𝜈1,𝑖𝑡 , 𝜈2,𝑖𝑡 , 𝜈3,𝑖𝑡 , 𝜈𝑝,𝑖𝑡), which are independently drawn from a standard normal distribution. The

scale parameters associatedwith these consumer-level randomcoefficients are𝝈′ = (𝜎0, 𝜎1, 𝜎2, 𝜎3, 𝜎𝑝)

= (
√
0.5,

√
0.5,

√
0.5,

√
0.5,

√
0.2). Note that this DGP abstracts from observed demographics, 𝒅𝑖.

Each product 𝑗 has a market-specific vertical characteristic 𝜉 𝑗 𝑡 , which is independently drawn

across products andmarkets from a standard normal distribution. Product prices vary acrossmarkets

and are determined by the following equation:

𝑝 𝑗 𝑡 = 3 + 𝑥1, 𝑗 + 𝑥2, 𝑗 + 𝑥3, 𝑗 + 1.5 𝜉 𝑗 𝑡 + 5𝜔 𝑗 𝑡 , (45)

where 𝜔 𝑗 𝑡 is a marginal cost shock, independently drawn from a uniform distribution𝑈 (0, 1) across

6All experiments are conducted on a system equipped with an Intel(R) Core(TM) i7-8850H CPU@2.60GHz, 16GB
of RAM, running Windows 10 (64-bit) and MATLAB R2023a. For additional speed gains, we also provide Julia code
implementing our method.
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products and markets. Note that price 𝑝 𝑗 𝑡 is an endogenous regressor in the demand estimation due

to its correlation with the unobserved demand shock 𝜉 𝑗 𝑡 .

We address price endogeneity using instrumental variables derived from observable marginal

cost shifters. Specifically, the DGP includes six observable cost shifters per product, denoted by

𝑤𝑘, 𝑗 𝑡 , which are generated according to the following equation:

𝑤𝑘, 𝑗 𝑡 = 0.25 ·
��5𝜔 𝑗 𝑡 + 1.1(𝑥1, 𝑗 + 𝑥2, 𝑗 + 𝑥3, 𝑗 )

�� + 𝑒𝑘, 𝑗 𝑡 , for 𝑘 = 1, 2, . . . , 6, (46)

where 𝑒𝑘, 𝑗 𝑡 ∼ 𝑖.𝑖.𝑑.𝑈 (0, 1). By construction, each instrument 𝑤𝑘, 𝑗 𝑡 is strongly correlated with price

𝑝 𝑗 𝑡 and independent of the unobserved component 𝜉.

The full vector of instrumental variables 𝒛 𝑗 𝑡 includes 42 variables, comprising: a constant term

(1 variable); the product’s own 𝑥 variables in levels, squares, and cubes (9 variables); the product’s

own 𝑤 variables in levels, squares, and cubes (18 variables); the product of all own 𝑥 variables (1);

the product of all own 𝑤 variables (1); the cross-products between 𝑥1, 𝑗 and each 𝑤 variable (6); and

the cross-products between 𝑥2, 𝑗 and each 𝑤 variable (6).

3.2 Comparing computational speeds of NP-GMM and ABLP methods

We begin by comparing the two methods in terms of both the computational speed of the algorithms

and the statistical properties of the estimators. For a fair comparison, we apply the same convergence

criterion and identical initial values to both algorithms. Convergence is assessed using the infinity

norm of the differences between successive iterations of the vectors (𝜹̂𝑛 − 𝜹̂
𝑛−1) and (𝜽̂𝑛 − 𝜽̂

𝑛−1).

Specifically, an algorithm is considered to have converged when

max
𝑗 ,𝑡

|𝛿̂𝑛𝑗𝑡 − 𝛿̂𝑛−1𝑗 𝑡 | < 10−6 and max
𝑘

|𝜃̂𝑛𝑘 − 𝜃̂
𝑛−1
𝑘 | < 10−6. (47)

Since both NP-GMM and ABLP may yield multiple fixed points, we implement each algorithm

using five distinct starting values—identical across the two methods—for each simulated dataset.
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For each algorithm, we select the fixed point that minimizes the value of the criterion function. To

generate the initial values 𝜹̂
0
and 𝝈̂0, we follow the approach proposed by Dubé, Fox, and Su (2012)

to construct five random starting points.7 For each sample and algorithm, we define a successful

estimation as one in which at least one of the five starting points converges.

3.2.1 Total wall-clock time and its components

Table 2 and Figure 1 compare the performance of the ABLP and NP-GMMmethods using simulated

samples with 𝑇 = 100 markets and the numbers of products ranging from 𝐽 = 25 to 𝐽 = 400. Each

method is implemented with its optimal number of computational threads.8 Across all values of

𝐽, NP-GMM achieves significantly lower wall-clock times than ABLP (Panel A).9 This advantage

exists even though NP-GMM requires more outer iterations (Panel D), more inner iterations (Panel

E), and more criterion-function evaluations (Panel F). The source of this advantage is clearly shown

in Panel B of Table 2. ABLP incurs a substantially higher computational cost in each inner-

loop GMM minimization because, at every trial value of 𝜎, it repeatedly computes and inverts a

Jacobian matrix. By conditioning on the incidental parameters 𝝀, the NP-GMM algorithm avoids

this expensive step, leading to a far lower per-iteration cost and ultimately much faster overall

computation despite requiring more iterations.

Figure 1 shows how the performance gap between ABLP and NP-GMM methods widens more

than proportionally as 𝐽 increases. An OLS regression of log–Time-per-Inner-Iteration on log-𝐽

yields a slope of 0.96 for the NP-GMM algorithm—indicating roughly linear growth— and a slope

of 1.32 for the ABLP algorithm. Consequently, the relative speed advantage of NP-GMM becomes

increasingly pronounced as the size of the problem grows. For example, extrapolating these rates to

7To generate a random initial value for 𝝈̂0, Dubé, Fox, and Su (2012) use the formula: 𝜎̂0
𝑘
= 0.5 · |𝛽𝑙𝑜𝑔𝑖𝑡

𝑘
| ·𝑈𝑘 , where

𝜷̂
𝑙𝑜𝑔𝑖𝑡

is the IV estimate of 𝜷 from a standard logit model with instruments 𝒛 𝑗𝑡 . 𝑈𝑘 is a random draw from a U(0,1).
Given 𝝈̂0, the initial value 𝜹̂

0
is obtained by solving the fixed-point problem that defines the vector of mean utilities.

8See Section 3.2.2 on the calculation of the optimal number of threads.
9Wall-clock time is the standard computer-science measure of the total time required to complete a task, as recorded

by a real clock. It includes all delays, such as input/output operations, system interruptions, and waiting time. This
contrasts withCPU time, which measures only the periods during which the processor is actively executing instructions.
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𝐽 = 12,800 products yields predicted times per-inner-iteration of approximately 1076 seconds for

ABLP versus only 33 seconds for NP-GMM.

Table 2: Comparing Computational Performance (𝑇 = 100)

Panel A Panel B Panel C
Wall-clock Time Time per Inner Iteration Time per Crit. Fun. Eval.

𝐽 ABLP NP-GMM ABLP NP-GMM ABLP NP-GMM
25 55.84 16.95 0.3619 0.0817 0.2764 0.0633
50 74.61 40.52 0.6543 0.1596 0.4905 0.1242
100 161.83 92.18 1.4040 0.3008 1.0579 0.2379
200 612.55 249.75 4.9949 0.6127 3.8164 0.4731
400 2,415.2 740.07 12.4464 1.1790 9.5191 0.9068

Panel D Panel E Panel F
Number of Outer Iterations Number of Inner Iterations Number of Crit. Fun. Eval.

𝐽 ABLP NP-GMM ABLP NP-GMM ABLP NP-GMM
25 9 11.4 151.5 202.2 199.4 260.2
50 7.6 14.2 113.5 247.0 150.8 316.6
100 7.3 16.1 114.7 297.4 151.8 375.1
200 7.6 21.6 122.6 392.7 159.8 509.1
400 10.6 31.0 191.8 595.0 250.8 772.4

Note: For each value of 𝐽, we generate five datasets with 𝑇 = 100 and 𝑁 = 1, 000. The estimation for each
dataset is done with five different starting points. Reported means are based on the 5 × 5 = 25 runs. All
time measures are wall-clock seconds.

Figure 1: Total Wall-Clock Times of ABLP and BP-GMMMethods

Note: For each value of 𝐽, we generate five datasets with 𝑇 = 100 and 𝑁 = 1, 000. The estimation for each
dataset is done with five different starting points. Reported means are based on the 5 × 5 = 25 runs.
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3.2.2 Parallel computing and optimal number of threads

Figure 2 reports the average wall-clock time required by the NP-GMM and ABLP algorithms to

evaluate their respective GMM criterion functions and gradients. The averages are computed over

1,000 simulated samples with 𝐽 = 25, 𝑇 = 500, and 𝑁 = 1,000. All evaluations are conducted using

parallel computing, with the number of threads varying from 1 to 6. For the evaluation of the GMM

objective function, NP-GMM and ABLP differ only in their computation of 𝜹. NP-GMM relies

on Equation (22), which provides a simple closed-form mapping in 𝝈 for a given 𝝀. In contrast,

ABLP uses Equation (40), a mapping in𝝈 that crucially requires matrix inversion for its calculation.

Because 𝜹 is a simpler closed-form function of 𝝈 under NP-GMM, our estimator is substantially

faster than ABLP in computing both the GMM objective function and its associated gradients.

A further advantage of our market-share inversion is its ability to exploit parallel computing

more effectively. The Lee and Seo (2015) MATLAB code uses the -singleCompThread flag

or option to disable multithreading, in which case CPU time and wall-clock time are comparable

across algorithms. When multiple threads are allowed, however, we observe substantial reductions

in wall-clock time for evaluating the GMM objective function and its gradients under NP-GMM. By

contrast, ABLP’s gradient evaluation does not benefit from multithreading and in fact deteriorates

as the number of threads increases, as shown in Figure 2.

Figure 2: Speed Comparison of NP-GMM and ABLP Algorithms –
Computing GMM Criteria and Gradient

Note: Average wall-clock time (in seconds) for 1,000 evaluations of the GMM objective function and
associated gradients. The model setting is 𝐽 = 25, 𝑇 = 500, and 𝑁 = 1,000.
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To understand why the optimal number of threads in parallel computing is finite—and why this

optimum is substantially larger for NP-GMM than for ABLP—it is useful to consider the following

simple decomposition. Let ℓ denote the number of threads, 𝑇 (ℓ) the total execution time using ℓ

threads, 𝑇parallel the time required to perform tasks that can be parallelized, 𝑇serial the time required

for inherently serial tasks, and 𝑇overhead(ℓ) the overhead introduced by parallelization, which is

increasing in ℓ. Total execution time can then be written as

𝑇 (ℓ) =
𝑇parallel

ℓ
+ 𝑇serial + 𝑇overhead(ℓ) (48)

As the number of threads increases, parallel execution incurs overhead costs 𝑇overhead(ℓ) that are

absent in serial computation, including thread creation and management, synchronization, inter-

thread communication, and operating-system scheduling. These overhead costs grow with the

number of threads and eventually offset the gains from dividing the parallel workload across more

processors. For example, if the overhead is linear in ℓ, so that 𝑇overhead(ℓ) = 𝑘0 + 𝑘1 ℓ, the optimal

number of threads is finite and given by ℓ∗ =
√︁
𝑇parallel/𝑘1.

This framework also clarifies why the optimal number of threads is substantially larger for

NP-GMM than for ABLP. Under NP-GMM, the computation of the 𝛿’s and the associated gradients

relies on the closed-form expression in Equation (22). These calculations are fully parallelizable

and therefore contribute almost entirely to 𝑇parallel. In contrast, under ABLP the computation of

the 𝛿’s and gradients is based on Equation (40), which requires matrix inversion. Such operations

are only partially parallelizable and involve substantial serial components, implying that a larger

fraction of the computation falls into 𝑇serial. As a result, NP-GMM can efficiently exploit a larger

number of threads before overhead dominates, leading to a higher optimal degree of parallelization

than in ABLP.

Given this, we determine the optimal number of threads for each estimator to minimize overall

evaluation time and apply it to ensure a fair comparison. Under the model setting 𝐽 = 25,

𝑇 = 500, and 𝑁 = 1, 000, the optimal number of threads is 2 for ABLP and 6 for NP-GMM. See
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Appendix B for further details on optimal thread configurations under different model settings.

Using these optimized settings, we employ MATLAB’s profiler to track the wall-clock time for

1,000 evaluations of the GMM objective function and associated gradients, as shown in Figure

3. NP-GMM demonstrates significant speed advantages in computing both the GMM objective

function and its gradients. Overall, our NP-GMM algorithm is approximately five times faster than

ABLP in evaluating the objective function and gradients. See Appendix B for more details.

Figure 3: Speed Comparison

Note: Average wall-clock time (in seconds) for 1,000 evaluations of the GMM objective function and
associated gradients. The model setting is 𝐽 = 25, 𝑇 = 500, and 𝑁 = 1,000. We use the optimal number of
threads: 2 for ABLP and 6 for NP-GMM.

3.2.3 Comparing Statistical Properties

Tables 3 and 4 summarize the performance of the two estimators and algorithms in twoMonte Carlo

experiments: one with 𝐽 = 25 and 𝑇 = 500, and another with 𝐽 = 100 and 𝑇 = 100. Additional

experiments with comparable sample sizes 𝐽 ×𝑇 but different combinations of 𝐽 and 𝑇 yield similar

statistical properties for both estimators.10 Each experiment is based on 20 simulated datasets.

For each dataset, estimation is initialized from five random starting values, resulting in a total of

100 estimations per method. The maximum number of outer iterations is capped at 100, and the

10In our DGP, and thus in all our experiments, the number of random draws for consumer-level random coefficients
is fixed at 𝑁 = 1, 000.
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algorithm terminates once this limit is reached.

Table 3 summarizes the computational and statistical performance of the two algorithms in

these experiment. Both algorithms exhibit excellent convergence behavior. For each experiment

and dataset, at least one run converged for each estimator. In the experiment with 𝐽 = 25 and

𝑇 = 500, out of 100 estimations per algorithm (20 datasets × 5 starting values), ABLP failed to

converge in 2 cases (from a single dataset), while NP-GMM failed in 4 cases (from two datasets).

In the experiment with 𝐽 = 100 and 𝑇 = 100, each algorithm failed to converge in one case.

Table 3: Monte Carlo Experiments: Performance Comparisons

With 𝐽 = 25 & 𝑇 = 500 With 𝐽 = 100 & 𝑇 = 100
ABLP NP-GMM ABLP NP-GMM

Computational Properties

Convergence Rate (%)
At dataset level: 100.0 100.0 100.0 100.0

At dataset-initial value level: 98.0 96.0 99.0 99.0

Wall-clock Time (in seconds):
Mean 263 101 230 93

25th pct 207 78 159 66
Median 248 99 181 86
75th pct 311 117 215 101

Statistical Properties:

Root Mean Square Error: 0.1101 0.1086 0.2282 0.1744
Mean Absolute Bias of Price Coeff: 0.0423 0.0368 0.0181 0.0396
Standard deviation of Price Coeff.: 0.1049 0.1016 0.1490 0.1582

Note: Convergence Rate is the percentage of estimations meeting convergence criterion.

Consistent with the results reported above, the wall-clock time required to implement NP-GMM

is between two and three times lower than that of ABLP. This difference appears systematically

across all datasets and initial parameter values.

The bottom panel of Table 3 reports the statistical properties of the estimators. The results show

that both estimators exhibit very similar finite-sample performance in terms of bias, variance, and
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mean squared error. The NP-GMM estimator performs slightly better in terms of RMSE in the two

experiments.

Table 4 reports detailed Monte Carlo results on the means and standard deviations of the

parameter estimates under the two methods. For each parameter, the two methods exhibit very

similar finite-sample biases and variances.

Table 4: Summary Statistics of Parameter Estimates

𝛽0 𝛽1 𝛽2 𝛽3 𝛽𝑝 𝜎0 𝜎1 𝜎2 𝜎3 𝜎𝑝

True 0 1.5 1.5 0.5 -3 0.7071 0.7071 0.7071 0.7071 0.4472
Panel A
𝐽 = 25, 𝑇 = 500

ABLP Mean -0.0940 1.4809 1.4801 0.4967 -2.9577 0.6661 0.7047 0.7072 0.7153 0.4371
Std 0.1579 0.0539 0.0532 0.0376 0.1049 0.2507 0.0349 0.0240 0.0229 0.0349

NP-GMM Mean -0.0814 1.4813 1.4797 0.4990 -2.9632 0.6423 0.7094 0.7069 0.7181 0.4393
Std 0.1626 0.0525 0.0529 0.0374 0.1016 0.2473 0.0332 0.0274 0.0215 0.0333

Panel B
𝐽 = 100, 𝑇 = 100

ABLP Mean -0.0841 1.4916 1.4940 0.4988 -2.9819 0.8272 0.7050 0.7018 0.7228 0.4422
Std 0.2211 0.0573 0.0602 0.0464 0.1490 0.4612 0.0367 0.0402 0.0335 0.0474

NP-GMM Mean -0.0849 1.4904 1.4910 0.4995 -2.9604 0.6306 0.7086 0.6975 0.7231 0.4344
Std 0.2395 0.0552 0.0564 0.0453 0.1582 0.4179 0.0386 0.0436 0.0324 0.0504

4 Application: Wine Demand at the LCBO

In this section, we use wine demand data from the LCBO to illustrate the implementation of the

proposedmethodology and to assess its computational performance relative to ABLP. The empirical

results are intended to demonstrate the scalability and feasibility of estimating demand models with

a large number of products. The LCBO is a provincially owned near monopoly that oversees the

wholesale and retail distribution of alcoholic beverages in Ontario. A detailed description of the

industry and the raw data is provided in Aguirregabiria and Guiton (2023).
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4.1 Data and Working Sample

The dataset covers all 634 LCBO stores in Ontario and contains monthly sales data from October

2011 to October 2013, for a total of 25 months. LCBO classifies stores into six size categories

–AAA, AA, A, B, C, and D– from largest to smallest. We focus on the five AAA stores, which are

the highest-volume outlets and together account for a substantial share of total LCBO wine sales.

Restricting attention to these stores allows us to study demand in large, stable markets with a broad

and consistently available product assortment.

We abstract from consumers’ store choice and treat each store-month observation as a separate

market. Over the sample period, the LCBO sold 14,364 distinct wine products. Many of these

products are offered only temporarily or in a limited number of stores, which creates substantial

product turnover and sparsity at the store-month level. To avoid unbalanced product availability

and to simplify the interpretation and estimation of the demand system, we restrict attention to the

76 store–month markets (out of 125) in which at least 3,000 products record positive sales. Within

each selected market, we designate the products with the highest sales as inside goods and aggregate

sales of all remaining wine products into the outside good. We fix the number of inside goods at

𝐽 = 2900, thereby trimming products with extremely small market shares. Our full working sample

therefore consists of the top 2,900 wine products in each of the 76 markets, yielding a total of

220,400 product–market observations.

Product-level variables include standardized monthly sales (measured in 750-ml bottle equiva-

lents), standardized price per 750-ml bottle, alcohol content, sugar content, and indicators for red

and white wine, with other wine types serving as the omitted category. We define market size as

twice the maximum monthly sales observed at each store over the sample period. Table 5 presents

summary statistics for our working sample and the variables in our model.11

11The LCBO also sells non-wine spirits whichwe exclude from our sample. We rely on the LCBO’s own classification
of products as “wine”. Ten out of the 14,364 products that LCBO classifies as wines have alcohol content above 30%.
One of these—Zwack Unicum Slivovitz 3-Year-Old—is sufficiently popular to appear in our estimation sample, which
explains why the maximum observed alcohol content is 47%. All other wines in the sample have alcohol levels below
23%.
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Table 5: Summary Statistics: Market Shares and Product Characteristics

Variable Observations Mean Std. Dev. Min Max
Market share 220,400 1.08 × 10−4 2.31 × 10−4 1.98 × 10−6 0.0113
Price (CAD $ per 750ml bottle) 220,400 21.53 19.57 4.93 199.85
Alcohol (%) 220,400 13.07 1.71 4.80 47.00
Sugar (Grams per litter) 220,400 12.52 25.36 2.00 373.00
Red wine (Dummy) 220,400 0.55 0.50 0 1
White wine (Dummy) 220,400 0.31 0.46 0 1

Note: The sample includes 𝐽 = 2,900 products across 𝑇 = 76 markets. Market shares are computed using market size
defined as twice the maximum monthly sales observed at each store.

4.2 Empirical Model

In our empirical model, the product attribute vector 𝒙 𝑗 𝑡 includes a constant, alcohol content, sugar

content, price, and indicators for red and white wine. The deterministic component of utility is

therefore:

𝒙′𝑗 𝑡𝜷 = 𝛽0 + 𝛽alc alc 𝑗 + 𝛽sugar sugar 𝑗 + 𝛽red 1{ 𝑗 is red} + 𝛽white 1{ 𝑗 is white} + 𝛽𝑝 𝑝 𝑗 𝑡 . (49)

We allow for random coefficients on the constant, alcohol content, sugar content, and price. In

each market 𝑡, individual taste heterogeneity is captured by draws 𝝂𝑖𝑡 = (𝜈0,𝑖𝑡 , 𝜈alc,𝑖𝑡 , 𝜈sugar,𝑖𝑡 , 𝜈𝑝,𝑖𝑡),

which are independently drawn from a standard normal distribution. We simulate 1,000 consumers

in each market. The corresponding scale parameters are denoted by 𝝈 = (𝜎0, 𝜎alc, 𝜎sugar, 𝜎𝑝). As

in our Monte Carlo experiments, we abstract from observed demographics.

We treat price as endogenous. In addition to the product characteristics summarized in Table 5,

the data include information on each wine’s country of origin and a broad classification of wine

style (e.g., dry or sweet). We construct BLP-style instruments using the average alcohol and sugar

content of other wines from the same country of origin, as well as those of other wines within the

same style category.

These instruments are motivated by cost-side and technological similarities among wines that

share a country of origin or style. Alcohol and sugar content are closely linked to grape character-
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istics and fermentation technology, reflecting exogenous production conditions that systematically

affect wine quality and pricing outcomes (Combris, Lecocq, and Visser, 1997; Ashenfelter, 2008).

Accordingly, variation in the average alcohol and sugar content of competing wines within narrowly

defined competitive groups acts as a cost shifter that predicts equilibrium prices, consistent with

standard differentiated-product pricing models in which firms’ optimal prices respond to rivals’ cost

conditions (Berry, Levinsohn, and Pakes, 1995; Nevo, 2001). Empirically, these instruments are

highly predictive of price, with a first-stage 𝐹-statistic of 1,903.98, suggesting that weak-instrument

concerns are unlikely.

4.3 Estimation Results

To study how the relative performance of the algorithms varies with the number of products, we

estimate the model using different values of 𝐽, holding the set of markets 𝑇 fixed at the 76 identified

above. We report results for the full sample with 𝐽 = 2,900 products, as well as for smaller

subsamples with 𝐽 = 800 and 𝐽 = 1,600 products, drawn at random from the full product set.

Both ABLP and NP-GMM benefit from parallelization as 𝐽 increases. Table 13 in Appendix D

reports mean wall-clock time per evaluation of the objective function and its gradients using one

to six threads. For NP-GMM, six threads consistently yield the fastest evaluation. For ABLP, five

threads are optimal when 𝐽 = 800, and six threads are optimal when 𝐽 = 1,600 or 2,900. These

thread settings are used in all subsequent estimations.

Estimation is conducted with five random starting points, with both estimators initialized from

the same starting values and updating the mean utility vector 𝜹 via Newton’s method in the outer

loops. Table 6 reports parameter estimates obtained using the two methods for each of the three

samples. Across all samples and parameters, except for 𝛽0 and 𝜎0, the estimates produced by the

two methods are extremely close, with only negligible differences between them. Parameters 𝛽0

and 𝜎0 are typically weakly identified in this setting due to limited variation in baseline preferences

once observed characteristics and unobserved product quality are accounted for (see, e.g., Dubé,

Fox, and Su (2012) and Lee and Seo (2015)).
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Table 6: Parameter Estimates: LCBO Application

𝐽 𝛽0 𝛽𝑎𝑙𝑐 𝛽𝑠𝑢𝑔𝑎𝑟 𝛽𝑝 𝛽𝑟𝑒𝑑 𝛽𝑤ℎ𝑖𝑡𝑒 𝜎0 𝜎𝑎𝑙𝑐 𝜎𝑠𝑢𝑔𝑎𝑟 𝜎𝑝

800 ABLP -10.0973 -0.1116 -0.0591 -0.2219 0.2370 0.1666 0.4533 0.2407 0.0180 0.0117
NP-GMM -10.0954 -0.1115 -0.0592 -0.2219 0.2370 0.1666 0.4476 0.2407 0.0180 0.0120

1,600 ABLP -10.7204 -0.1251 -0.0548 -0.2063 0.2484 0.1860 1.8423 0.2156 0.0025 0.0276
NP-GMM -13.0064 -0.0937 -0.0520 -0.2197 0.2286 0.1625 4.6914 0.2068 0.0081 0.0077

2,900 ABLP -9.8265 -0.1114 -0.0466 -0.2253 0.2487 0.1779 0.8842 0.1967 0.0086 0.0237
NP-GMM -11.1340 -0.0940 -0.0474 -0.2271 0.2326 0.1576 3.7913 0.2039 0.0025 0.0006

Figure 4 shows total wall-clock times, illustrating that the performance gap between ABLP and

NP-GMM widens disproportionately as 𝐽 increases.

Figure 4: Total Wall-Clock Times: LCBO Application

Note: Each estimation is conducted with five random starting points. Reported means are based on five runs.
Each 𝐽 is paired with 𝑇 = 76 and 𝑁 = 1,000.

Table 7 reports detailed computational performance metrics, highlighting the speed advantage

of NP-GMM over ABLP. Although NP-GMM requires more objective function evaluations, its

per-evaluation cost is substantially lower. As 𝐽 doubles, NP-GMM’s per-evaluation time roughly

doubles, whereas ABLP’s increases by about a factor of three. Across the three values of 𝐽

considered, evaluations of the ABLP objective function and gradients are between 12 and 41 times

slower than those of NP-GMM. Overall, NP-GMM is between 7 and 14 times faster than ABLP in
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this application.

Table 7: Comparing Computational Performance: LCBO Application

Panel A Panel B Panel C
Wall-clock Time Time per Inner Iteration Time per Crit. Fun. Eval.

𝐽 ABLP NP-GMM ABLP NP-GMM ABLP NP-GMM
800 1,683.02 168.43 20.99 1.64 14.62 1.17
1,600 12,431.66 1,719.89 71.19 3.22 53.37 2.38
2,900 26,405.95 1,847.03 262.09 6.34 183.96 4.48

Panel D Panel E Panel F
Number of Outer Iterations Number of Inner Iterations Number of Crit. Fun. Eval.

𝐽 ABLP NP-GMM ABLP NP-GMM ABLP NP-GMM
800 5.0 6.2 79.4 91.4 114.0 127.4
1,600 8.8 22.2 177.8 473.6 232.2 641.0
2,900 6.2 13.2 99.8 201.8 142.0 285.4

Note: Each estimation is conducted with five random starting points. Reported values are means over five
runs. All time measures are wall-clock seconds. Each model uses 𝑇 = 76 markets and 𝑁 = 1,000 simulated
consumers.

5 Conclusion

This paper proposes a new computational approach to estimating the random-coefficients logit

demand model that substantially reduces the computational burden of existing methods while

preserving their desirable large-sample properties. The key insight is that, conditional on consumer-

level probabilities of choosing the outside option, the BLP share inversion admits a closed-form

representation that decouples the evaluation of unobserved product characteristics across products.

Exploiting this representation allows us to reformulate estimation as a nested pseudo-GMMproblem

inwhich themost computationally demanding component of standardBLP estimation—the repeated

numerical solution of the share inversion—is no longer required at each parameter trial.

This reformulation leads to an estimation algorithm with three important features. First, it

replaces repeated fixed-point iterations or constrained optimization over mean utilities with simple,

regression-like calculations that are analytically tractable and admit closed-form gradients. Second,

it shifts computational effort from the inner loop to the outer loop of the algorithm, yielding a
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criterion function that is considerably cheaper to evaluate even if a larger number of outer iterations

is required. Third, because the resulting objective and gradient evaluations are naturally separable

across products and simulation draws, the algorithm scales particularlywell with parallel computing.

Monte Carlo experiments and an empirical application show that these features translate into

substantial computational gains at no cost in terms of finite-sample performance. Even inmoderately

sized demand systems, the proposed estimator is approximately twice as fast as the fastest currently

available alternative, and its relative advantage grows more than proportionally with the number

of products. Importantly, these gains do not come at the expense of statistical reliability: across

all designs considered, the pseudo-GMM estimator exhibits sampling variability and finite-sample

bias that are very close to those of fully iterated GMM estimators.

Beyond its immediate computational benefits, the proposed approach opens several avenues for

future research. First, the idea of conditioning on auxiliary statistics that summarize competitive

interactions may be useful in other models of differentiated-product demand, including extensions

with richer heterogeneity, alternative choice sets, or dynamic consumer behavior. Second, the

algorithm’s favorable scaling properties make it well suited for applications involving large product

spaces, high-frequency data, or repeated estimation in simulation-based policy analysis.
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Appendix A Proofs of Propositions 1 and 2

A.1 Definitions

Throughout this appendix, we use the hat notation ·̂ to denote statistics and functions that involve

sampling error, and the subscript 0 to indicate their population counterparts.

Define the set of sample NP-GMM fixed points as:

Υ̂ ≡
{
(𝝀, 𝜽) ∈ [0, 1]𝑁 × Θ : 𝜽 = 𝜃̂∗(𝝀) and 𝝀 = 𝜆∗(𝜽)

}
,

where 𝜃̂∗(𝝀) denotes the NP-GMM estimator evaluated at a given value of 𝝀, defined as:

𝜃̂∗(𝝀) ≡ argmin
𝜽

𝑄(𝝀, 𝜽).

If Υ̂ contains a single element, that value is the NP-GMM estimator. In the case of multiple fixed

points, the NP-GMM estimator is defined as the element in Υ̂ that minimizes the criterion function

𝑄.

Let 𝜽0 be the true value the structural parameters in the population, and let 𝝀0 be the corre-

sponding value for 𝝀, i.e., 𝝀0 = 𝜆∗(𝜽0). Remember that the mapping 𝜆∗(𝜽) is deterministic, i.e., it

does not incorporate sampling/estimation error.

Define the population counterpart of the sample criterion function 𝑄 (𝝀, 𝜽):

𝑄0 (𝝀, 𝜽) ≡ E
[
𝑄 (𝝀, 𝜽)

]
, (A50)

the corresponding mapping 𝜃∗0(𝝀),

𝜃∗0(𝝀) ≡ argmin𝜽 𝑄0 (𝝀, 𝜽) , (A51)

and the set of population NP-GMM fixed points:

Υ0 ≡
{
(𝝀, 𝜽) ∈ [0, 1]𝑁 × Θ : 𝜽 = 𝜃∗0(𝝀) and 𝝀 = 𝜆∗(𝜽)

}
, (A52)
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It is important to note that Assumption 1 does not imply that (𝝀0, 𝜽0) is the only point in the set Υ0.

Our identification assumption does not rule that Υ0 may have multiple elements. But, as we show

below, this does not affect the consistency of the NP-GMM estimator.

A.2 Consistency of the NP-GMM Estimator

We begin with an outline of the proof, which proceeds in four steps:

• Step 1. The true vector (𝝀0, 𝜽0) uniquely minimizes 𝑄0(𝝀, 𝜽) within the set Υ0.

• Step 2. With probability approaching 1, every element of Υ̂ belongs to an arbitrarily small

open ball around an element of Υ0.

• Step 3. With probability approaching 1, the NP-GMM estimator belongs to an open ball

around the true (𝝀0, 𝜽0).

If Υ0 is a singleton, then Steps 1 and 2 prove the consistency of the NP-GMM estimator.

Otherwise, if Υ0 contains multiple NP-GMM fixed points, then Steps 1 to 3 prove the consistency

of the NP-GMM estimator.

Step 1 — (𝝀0, 𝜽0) uniquely minimizes 𝑄0(𝝀, 𝜽) within the set Υ0

1.a. This is a direct implication of identification Assumption 1.

1.b. First, we can establish that (𝝀0, 𝜽0) belongs to the set Υ0. By construction, 𝝀0 = 𝜆∗(𝜽0), and

the correct specification of the model –embedded into Assumption 1 – implies that𝑄0(𝝀0, 𝜽)

is minimized at 𝜽 = 𝜽0. Therefore, (𝝀0, 𝜽0) belongs to Υ0.

1.c. Second, by Assumption 1, for any element (𝝀, 𝜽) ∈ Υ0 different to (𝝀0, 𝜽0), we have that

𝑄0(𝝀, 𝜽) > 𝑄0(𝝀0, 𝜽0) = 0.

Step 2 — Convergence in probability of Υ̂ to Υ0

2.a. Let (𝝀̂, 𝜽̂) be an element of Υ̂. For each element of Υ0, consider an arbitrarily small open

ball that contains it. Let O be the union of these open balls. We want to prove that as the
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sample size increases, we have that Pr
(
(𝝀̂, 𝜽̂) ∈ O

)
→ 1, i.e., every element in Υ̂ belongs to

an arbitrarily small ball around an element in Υ0.

2.b. Define the function

Δ0(𝝀, 𝜽) ≡ 𝑄0(𝝀, 𝜽) −min
𝑐∈Θ

{𝑄0(𝑐, 𝝀)} . (A53)

Because 𝑄0(𝝀, 𝜽) is continuous and [0, 1]𝑁 × Θ is compact, Berge’s maximum theorem

establishes that Δ0(𝝀, 𝜽) is a continuous function on [0, 1]𝑁 ×Θ. By construction, Δ0(𝝀, 𝜽) ≥

0 for all (𝝀, 𝜽) ∈ [0, 1]𝑁 × Θ.

2.c. Given the set of arbitrarily small balls O, we can construct a scalar 𝜀 > 0 that provides a

distance between O and Υ0. We now describe how we construct 𝜀.

2.c.1. Let E be the set of vectors (𝝀, 𝜽) that satisfy the model restrictions 𝝀 = 𝜆∗(𝜽):

E ≡
{
(𝝀, 𝜽) ∈ [0, 1]𝑁 × Θ : 𝝀 = 𝜆∗(𝜽)

}
. (A54)

Since [0, 1]𝑁 × Θ is compact and the function 𝝀 − 𝜆∗(𝜽) is continuous, the set E is

compact. By definition, Υ0 ⊂ E. Because both E and O𝑐 are compact, the set O𝑐 ∩ E

is compact.

2.c.2. Define the constant:

𝜀 = min
(𝝀,𝜽)∈O𝑐∩E

Δ0(𝝀, 𝜽). (A55)

By construction, 𝜀 > 0. To see this, suppose 𝜀 = 0. Then there exists (𝝀, 𝜽) which does

not belong to Υ0 but belongs to E and minimizes 𝑄∗
0(𝝀, 𝜽) – as zero is the minimum

value this function can reach– which contradicts the definition of Υ0.

2.d. Since Θ is a compact set and 𝑄(𝝀, 𝜽) is continuous and bounded, we have that 𝑄(𝝀, 𝜽)

converges uniformly to 𝑄0(𝝀, 𝜽). Define the following indicator of a sample event:

Â ≡ 1
{���𝑄(𝝀, 𝜽) −𝑄0(𝝀, 𝜽)

��� < 𝜀

2
for all (𝝀, 𝜽) ∈ Θ × [0, 1]𝑁

}
. (A56)

Uniform convergence of 𝑄 to 𝑄0 implies that, as the sample size increases, 𝑃𝑟 (Â = 1)
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approaches one for any arbitrary 𝜀 > 0.

2.e. Let (𝝀̂, 𝜽̂) be an element of Υ̂ and let the sample size be large enough such that Â = 1. Then:

i. Since Â = 1, we have that 𝑄0(𝝀̂, 𝜽̂) −𝑄(𝝀̂, 𝜽̂) < 𝜀/2.

ii. Since Â = 1, for any 𝜽 ∈ Θ, we have that 𝑄(𝝀̂, 𝜽) −𝑄0(𝝀̂, 𝜽) < 𝜀/2.

iii. Since (𝝀̂, 𝜽̂) is an NP-GMM fixed point, for any 𝜽 ∈ Θ, 𝑄(𝝀̂, 𝜽̂) ≤ 𝑄(𝝀̂, 𝜽).

Combining (𝑖) and (𝑖𝑖𝑖) gives:

𝑄0(𝝀̂, 𝜽̂) < 𝑄(𝝀̂, 𝜽) + 𝜀
2
, ∀𝜽 ∈ Θ. (A57)

Adding (𝑖𝑖), we obtain:

𝑄0(𝝀̂, 𝜽̂) < 𝑄0(𝝀̂, 𝜽) + 𝜀, ∀𝜽 ∈ Θ. (A58)

Hence,

Δ0(𝝀̂, 𝜽̂) ≡ 𝑄0(𝝀̂, 𝜽̂) −min
𝜽∈Θ

𝑄0(𝝀̂, 𝜽) < 𝜀. (A59)

Since (𝝀̂, 𝜽̂) ∈ E and 𝜀 = min(𝝀,𝜽)∈O𝑐∩E Δ0(𝝀, 𝜽), this implies that (𝝀̂, 𝜽̂) ∈ O.

Therefore, as the sample size increases and 𝑃𝑟 (Â = 1) approaches one, we have that

Pr
(
(𝝀̂, 𝜽̂) ∈ O

)
→ 1, i.e., every element in Υ̂ belongs to an arbitrarily small ball around an

element in Υ0.

2.f. As a corollary, note that if Υ0 is a singleton, consistency follows immediately.

Step 3 — The NP-GMM estimator belongs to an open ball around (𝝀0, 𝜽0)

3.a Let O0 be an open ball around the true (𝝀0, 𝜽0), and let O1 be the union of open balls around

all other elements in Υ0 \ {(𝝀0, 𝜽0)}. Define the constant 𝜂:

𝜂 = inf
(𝝀,𝜽)∈O1

𝑄0(𝝀, 𝜽) − sup
(𝝀,𝜽)∈O0

𝑄0(𝝀, 𝜽). (A60)
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By continuity of 𝑄0 and since (𝝀0, 𝜽0) is isolated, we can take O0 and O1 small enough to

ensure 𝜂 > 0.

3.b Let (𝝀̂, 𝜽̂) be the NP-GMM fixed point in O0. Let Â be the event indicator defined in Step 2.

And let 𝜀∗ > 0 be the minimum between the constants 𝜂 defined above and the 𝜀 defined in

Step 2. Then:

i. Since Â = 1, 𝑄(𝝀̂, 𝜽̂) < 𝑄0(𝝀̂, 𝜽̂) + 𝜀∗/2.

ii. Since Â = 1, for any (𝝀, 𝜽) ∈ Θ × [0, 1]𝑁 , 𝑄0(𝝀, 𝜽) < 𝑄(𝝀, 𝜽) + 𝜀∗/2

iii. Since (𝝀̂, 𝜽̂) ∈ O0, for any (𝝀, 𝜽) ∈ Υ̂ ∩ O1, 𝑄0(𝝀̂, 𝜽̂) ≤ 𝑄0(𝝀, 𝜽) − 𝜀∗.

Combining (i) and (iii),

𝑄(𝝀̂, 𝜽̂) < 𝑄0(𝝀, 𝜽) − 𝜀∗/2 ∀(𝝀, 𝜽) ∈ Υ̂ ∩ O1. (A61)

Adding (ii), we obtain,

𝑄(𝝀̂, 𝜽̂) < 𝑄0(𝝀, 𝜽) − ∀(𝝀, 𝜽) ∈ Υ̂ ∩ O1. (A62)

By Step 2, Υ̂ →𝑝 Υ0 and this implies that with probability approaching one Υ̂ ⊂ O0 ∪ O1.

Therefore, with probability approaching one, the NP-GMM estimator lies in O0 and hence

converges in probability to the true (𝝀0, 𝜽0).

Q.E.D.

A.3 Asymptotic distribution of the NP-GMM estimator

The marginal conditions that define the NP-GMM estimator are:


1
𝐽

∑︁
𝑗

𝑔 𝑗 (𝝀̂, 𝜽̂) = 0

𝝀̂ − 𝜆∗(𝜽̂) = 0
(A63)
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Applying a stochastic mean value expansion between (𝝀0, 𝜽0) and (𝝀̂, 𝜽̂), and using the consistency

of (𝝀̂, 𝜽̂), we have:


1
√
𝐽

∑︁
𝑗

𝜕𝑔0
𝑗

𝜕𝜽
−Ω𝜃𝜃

√
𝐽 (𝜽̂ − 𝜽0) −Ω𝜃𝜆

√
𝐽 (𝝀̂ − 𝝀0) = 𝑜𝑝 (

√
𝐽)

√
𝐽 (𝝀̂ − 𝝀0) − Λ𝜃

√
𝐽 (𝜽̂ − 𝜽0) = 𝑜𝑝 (

√
𝐽)

(A64)

with Ω𝜃𝜃 ≡ E
[
𝜕2𝑔 𝑗 (𝝀0, 𝜽0)
𝜕𝜽𝜕𝜽′

]
, Ω𝜃𝜆 ≡ E

[
𝜕2𝑔 𝑗 (𝝀0, 𝜽0)
𝜕𝜽𝜕𝝀′

]
, and Λ𝜃 ≡ 𝜕𝝀∗(𝜽0)

𝜕𝜽′
. Solving the second

equation for
√
𝐽 (𝝀̂ − 𝝀0) and substituting into the first equation gives:

[Ω𝜃𝜃 +Ω𝜃𝜆 Λ𝜃]
√
𝐽 (𝜽̂ − 𝜽0) =

1
√
𝐽

∑︁
𝑗

𝜕𝑔0
𝑗

𝜕𝜽
+ 𝑜𝑝 (

√
𝐽) (A65)

Thus, by the Mann–Wald theorem:

√
𝐽 (𝜽̂ − 𝜽0)

𝑑−→ N(0, 𝑉𝑛𝑝),

where

𝑉𝑛𝑝 = [Ω𝜃𝜃 +Ω𝜃𝜆 Λ𝜃]−1 Ω𝜃𝜃

[
Ω𝜃𝜃 + Λ′

𝜃 Ω
′
𝜃𝜆

]−1 (A66)

Q.E.D.
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Appendix B Multithreading

We use MATLAB’s profiler to identify the source of computational cost reductions when using

NP-GMM. Tables 8, 9 and 10 compare ABLP and NP-GMM for 1,000 evaluations of the objective

function and associated gradients, using different numbers of threads and under different model

settings (all with 𝑁 = 1, 000).

NP-GMM is faster than ABLP in evaluating both the GMM objective function and its gradients.

For objective-function evaluation, as discussed above, NP-GMM’s speed advantage arises from its

use of an “almost” linear mapping in 𝝈 to recover 𝜹. For gradient evaluation, NP-GMM further

benefits from simple, closed-form analytic gradients that are particularly well suited to parallel

computation and multithreading.

In contrast, ABLP relies onmore complex numerical procedures to compute 𝜹 and its derivatives.

In particular, its linear approximation requires amatrix inversion that jointly accounts for all products

within a market, leading to higher-dimensional matrix operations. As shown in the three tables,

when each method is implemented using its respective optimal number of threads, NP-GMM

evaluates the objective function and gradients approximately five times faster than ABLP under

these model settings.

Table 8: Evaluation Time (seconds): ABLP versus NP-GMM (𝐽 = 25, 𝑇 = 500)

Number of Threads Method GMM (𝜹) Gradient (Jacobian) Total

1 ABLP 420.6(420.2) 1285.8(1278.2) 1706.4
NP-GMM 251.2(250.8) 320 571.2

2 ABLP 285.5(285) 1346.2(1338.7) 1631.7
NP-GMM 148.1(147.6) 261.4 409.5

3 ABLP 247.8(247.3) 1390.3(1382.7) 1638.1
NP-GMM 114.9(114.4) 248.7 363.6

4 ABLP 232.9(232.4) 1674(1666.3) 1906.9
NP-GMM 99.1(98.6) 247.2 346.3

5 ABLP 225.5(224.9) 1748.1(1740.4) 1973.6
NP-GMM 91.6(91.1) 249.7 341.3

6 ABLP 230.2(229.6) 2240.3(2232.7) 2470.5
NP-GMM 87.7(87.2) 251.5 339.2

Note: Entries report mean wall-clock time (in seconds) for a single eval-
uation of the GMM objective function and its gradient. In the GMM
column, numbers in parentheses report the time required to recover the
mean utility vector 𝜹. In the Gradient column, numbers in parentheses
report the time spent computing the Jacobian associated with the differ-
entiation of the mean utility vector 𝜹. Total time is the sum of GMM
and gradient evaluation times.
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Table 9: Evaluation Time (seconds): ABLP versus NP-GMM (𝐽 = 25, 𝑇 = 50)

Number of Threads Method GMM (𝜹) Gradient (Jacobian) Total

1 ABLP 45(44.8) 127.4(126.6) 172.4
NP-GMM 26.6(26.4) 31.8 58.4

2 ABLP 29.7(29.6) 131.1(130.2) 160.8
NP-GMM 15.6(15.4) 25.7 41.3

3 ABLP 25.4(25.3) 142.6(141.7) 168
NP-GMM 12.1(11.9) 24.3 36.4

4 ABLP 23.6(23.4) 157.7(156.8) 181.3
NP-GMM 11.1(10.9) 23.8 34.9

5 ABLP 23(22.9) 159.1(158.1) 182.1
NP-GMM 10.4(10.2) 23.7 34.1

6 ABLP 22.8(22.7) 172.9(171.8) 195.7
NP-GMM 10.1(9.9) 23.8 33.9

Table 10: Evaluation Time (seconds): ABLP versus NP-GMM (𝐽 = 100, 𝑇 = 100)

Number of Threads Method GMM (𝜹) Gradient (Jacobian) Total

1 ABLP 365(364.6) 1173.7(1166.9) 1538.7
NP-GMM 211.7(211.3) 268.6 480.3

2 ABLP 253.3(252.8) 1082.1(1075.2) 1335.4
NP-GMM 120.9(120.4) 208.9 329.8

3 ABLP 217(216.5) 1116.2(1109.4) 1333.2
NP-GMM 92.9(92.4) 205.1 298

4 ABLP 208.3(207.8) 1195.2(1188.2) 1403.5
NP-GMM 83.2(82.7) 204.8 288

5 ABLP 213.3(212.8) 1286.2(1279.4) 1499.5
NP-GMM 76.6(76.1) 207.6 284.2

6 ABLP 217.4(216.8) 1364(1356.7) 1581.4
NP-GMM 72.4(71.9) 207.8 280.2

From the discussion above, we observe the speed advantage of NP-GMM over ABLP under

the benchmark large sample setting of (a) 𝐽 = 25, 𝑇 = 500, 𝑁 = 1, 000. To assess the effect of

increasing sample size on NP-GMM’s speed advantage, we modify setting (a) by doubling 𝐽, 𝑇 ,

and 𝑁 to create the following settings: (b) 𝐽 = 50, 𝑇 = 500, 𝑁 = 1, 000; (c) 𝐽 = 25, 𝑇 = 1, 000,

𝑁 = 1, 000; and (d) 𝐽 = 25, 𝑇 = 500, 𝑁 = 2000. Figure 5 provides wall-clock time comparisons

under these four settings. The optimal number of threads for ABLP is always 2, while the optimal

number of threads for NP-GMM is either 5 or 6, with negligible differences between the two.

Once again, our algorithm is approximately five times faster than ABLP in evaluating the objective

function and associated gradients.
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Figure 5: Speed Comparisons under Different Model Settings

(a) 𝐽 = 25, 𝑇 = 500, 𝑁 = 1, 000 (b) 𝐽 = 50, 𝑇 = 500, 𝑁 = 1, 000

(c) 𝐽 = 25, 𝑇 = 1, 000, 𝑁 = 1, 000 (d) 𝐽 = 25, 𝑇 = 500, 𝑁 = 2000

We conduct more tests by fixing one dimension of the model settings (𝐽 or 𝑇) and increasing

the size of the other dimension. The results are consistent with our previous finding that NP-

GMM benefits from parallel computing and multithreading, whereas ABLP is less suited to these

techniques, as shown in Figure 6. We also calculate the speed gains of NP-GMM and ABLP using

the optimal number of threads compared to a single thread, as shown in Tables 11 and 12. NP-GMM

reduces wall-clock time by 40% to 47% with the optimal number of threads, while ABLP achieves

savings of only 2% to 14%.
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Figure 6: More Speed Comparisons

(a) ABLP, 𝐽 = 25, 𝑁 = 1, 000 (b) NP-GMM, 𝐽 = 25, 𝑁 = 1, 000

(c) ABLP, 𝑇 = 500, 𝑁 = 1, 000 (d) NP-GMM, 𝑇 = 500, 𝑁 = 1, 000

Table 11: Evaluation Time (seconds): ABLP versus NP-GMM (𝐽 = 25)

𝑇 Optimal number of threads Optimal time Single thread time Optimal/Single thread

100 ABLP 2 0.2608 0.2779 93.84%
NP-GMM 6 0.0475 0.0872 54.47%

250 ABLP 2 0.6491 0.6974 93.07%
NP-GMM 6 0.1169 0.2157 54.2%

500 ABLP 2 1.4573 1.5398 94.64%
NP-GMM 5 0.2700 0.4776 56.53%

1000 ABLP 2 2.9141 2.9822 97.72%
NP-GMM 5 0.5523 0.9108 60.64%

Table 12: Evaluation Time (seconds): ABLP versus NP-GMM (𝑇 = 500)

𝐽 Optimal number of threads Optimal time Single thread time Optimal/Single thread

15 ABLP 2 0.9069 0.9704 93.46%
NP-GMM 6 0.1705 0.3056 55.79%

25 ABLP 2 1.4573 1.5398 94.64%
NP-GMM 5 0.2700 0.4776 56.53%

50 ABLP 2 2.5453 2.8428 89.53%
NP-GMM 6 0.4740 0.8427 56.25%

75 ABLP 2 3.8550 4.4645 86.35%
NP-GMM 5 0.6823 1.2895 52.91%
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Appendix C Analytic Gradients of NP-GMM Estimators

In this section, we derive the analytic gradient of the NP-GMM objective function. The objective

function and its derivatives are explicit. For convenience, we concentrate out the linear parameters

𝜷 and use 𝜽 to denote the remaining parameters in this section. Let 𝑋 and 𝑍 denote the stacked

matrices of regressors and instruments, respectively, formed by stacking all 𝒙 𝒋 𝒕 and 𝒛 𝒋 𝒕 across

products and markets.

The GMM objective function is:

𝑄
(
𝝀, 𝜽

)
= 𝝃 (𝝀, 𝜽)′ 𝑍 𝑊 𝑍′ 𝝃 (𝝀, 𝜽),

where 𝜽 = (𝝈, 𝝅)′,

𝝃 (𝝀, 𝜽) = 𝜹(𝝀, 𝜽) − 𝑋 𝜷(𝝀, 𝜽),

𝛿 𝑗 𝑡 (𝝀, 𝜽) = ln 𝑠 𝑗 𝑡 − ln
[ 1
𝑁

𝑁∑︁
𝑖=1

𝜆𝑖𝑡 exp
( 𝐾∑︁
𝑘=1

𝒙𝑘𝑗𝑡 (𝜎𝑘𝑣𝑘𝑖 +
𝑅∑︁
𝑟=1

𝜋𝑘𝑟𝑑𝑖𝑟)
) ]
,

𝜷(𝝀, 𝜽) =

[
(𝑋′ 𝑍 𝑊 𝑍′𝑋)−1𝑋′ 𝑍 𝑊 𝑍′

]
𝜹(𝝀, 𝜽).

(C67)

Thus,

𝝃 (𝝀, 𝜽) = 𝜹(𝝀, 𝜽) − 𝑋
[
(𝑋′ 𝑍 𝑊 𝑍′𝑋)−1𝑋′ 𝑍 𝑊 𝑍′

]
𝜹(𝝀, 𝜽). (C68)

The gradient is:

∇𝜃𝑄(𝝀, 𝜽) =
𝑑𝝃 (𝝀, 𝜽)′
𝑑𝜽

𝑑𝑄

𝑑𝝃
= 2

𝑑𝝃 (𝝀, 𝜽)′
𝑑𝜽

𝑍 𝑊 𝑍′ 𝝃 (𝝀, 𝜽),

where
𝑑𝝃 (𝝀, 𝜽)
𝑑𝜽

=
𝑑𝜹(𝝀, 𝜽)
𝑑𝜽

− 𝑋
[
(𝑋′ 𝑍 𝑊 𝑍′𝑋)−1𝑋′ 𝑍 𝑊 𝑍′

] 𝑑𝜹(𝝀, 𝜽)
𝑑𝜽

;

and
𝜕𝛿 𝑗 𝑡 (𝝀, 𝜽)
𝜕𝜎𝑘

= −
∑𝑁
𝑖=1 𝜆𝑖𝑡 exp

( ∑𝐾
𝑘=1 𝒙

𝑘
𝑗𝑡
(𝜎𝑘𝑣𝑘

𝑖
+ ∑𝑅

𝑟=1 𝜋𝑘𝑟𝑑𝑖𝑟)
)
𝒙𝑘
𝑗𝑡
𝑣𝑘
𝑖∑𝑁

𝑖=1 𝜆𝑖𝑡 exp
( ∑𝐾

𝑘=1 𝒙
𝑘
𝑗𝑡
(𝜎𝑘𝑣𝑘

𝑖
+ ∑𝑅

𝑟=1 𝜋𝑘𝑟𝑑𝑖𝑟)
) ,

𝜕𝛿 𝑗 𝑡 (𝝀, 𝜽)
𝜕𝜋𝑘𝑟

= −
∑𝑁
𝑖=1 𝜆𝑖𝑡 exp

( ∑𝐾
𝑘=1 𝒙

𝑘
𝑗𝑡
(𝜎𝑘𝑣𝑘

𝑖
+ ∑𝑅

𝑟=1 𝜋𝑘𝑟𝑑𝑖𝑟)
)
𝒙𝑘
𝑗𝑡
𝑑𝑖𝑟∑𝑁

𝑖=1 𝜆𝑖𝑡 exp
( ∑𝐾

𝑘=1 𝒙
𝑘
𝑗𝑡
(𝜎𝑘𝑣𝑘

𝑖
+ ∑𝑅

𝑟=1 𝜋𝑘𝑟𝑑𝑖𝑟)
) .

(C69)

Both numerator and denominator of the above two equations are closed-form and "almost" linear

functions of 𝜽 , so their calculation is fast.
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Appendix D Supplementary Results for the LCBO Application

Table 13: Mean Wall-clock Time per Evaluation by Number of Threads

Number of Threads

𝐽 Method 1 2 3 4 5 6

800 ABLP 27.04 19.22 16.82 15.91 15.79 15.95
NP-GMM 2.28 1.54 1.35 1.20 1.24 1.17

1,600 ABLP 100.12 68.37 57.34 56.04 52.68 52.49
NP-GMM 4.58 3.12 2.67 2.51 2.43 2.39

2,900 ABLP 366.92 254.19 233.02 195.90 202.34 192.40
NP-GMM 8.47 5.66 4.91 4.56 4.34 4.30

Note: Entries report wall-clock time (in seconds) for a single evaluation of the objective function and its
gradients. Each model uses 𝑇 = 76 markets and 𝑁 = 1,000 simulated consumers. Each entry is the mean
over 10 runs.
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