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This paper presents a hybrid genetic algorithm to obtain maximum likelihood estimates
of parameters in structural econometric models with multiple equilibria. The algorithm
combines a pseudo maximum likelihood (PML) procedure with a genetic algorithm (GA).
The GA searches globally over the large space of possible combinations of multiple
equilibria in the data. The PML procedure avoids the computation of all the equilibria
associated with every trial value of the structural parameters.
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1. Introduction

This paper deals with the computation of maximum likelihood estimates of struc-
tural parameters in econometric models with multiple equilibria. Multiplicity of
equilibria appears frequently in structural econometric models like empirical discrete
games,1 coordination games2 or models with social interactions,3 among others.
Models with multiple equilibria do not provide unique predictions on the probabil-
ity distribution of the endogenous variables conditional on the exogenous variables.
This indeterminacy poses practical problems in maximum likelihood estimation.
To obtain maximum likelihood estimates of the structural parameters one should
maximize the likelihood function not only with respect to the structural parameters
but also with respect to the multiple equilibrium types that can generate the obser-
vations in the data. There are two main reasons why optimization with respect to
equilibrium types can be a very complicated task. First, computing all the equilib-
ria associated with each trial value of the parameters can be computationally very
demanding. And second, the number of possible combinations of equilibria in the
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data increases exponentially with the sample size and it becomes a huge number
even for the simplest problems.

These problems have motivated the use of estimation methods which are compu-
tationally simpler than maximum likelihood. For instance, in the context of empir-
ical discrete games, Tamer,4 Pesendorfer and Smichdt-Dengler,5 Aguirregabiria,6

and Aguirregabiria and Mira7 have proposed and applied pseudo maximum likeli-
hood (PML) estimators. These PML methods proceed in two steps. The first step
identifies nonparametrically the equilibrium (or equilibria) played in the data. The
second step estimates the structural parameters of the model by maximizing a
pseudo likelihood function based on best response functions evaluated at the equi-
librium estimated in the first step. The main advantage of PML estimation is its
computational simplicity. However, the method is not statistically efficient, and it
can perform poorly in small samples because the nonparametric estimates in the
first step can be very imprecise.

To deal with these limitations, Aguirregabiria and Mira7 propose a recursive
extension of the pseudo likelihood method, the so-called nested pseudo likelihood
(NPL) algorithm. The NPL provides estimates which are statistically more efficient
than the two-step PML, both asymptotically and in finite samples. Furthermore,
the NPL algorithm can be used to search for the maximum likelihood estimator. In
particular, the maximum likelihood estimator is a fixed point of the NPL procedure.
However, the NPL algorithm can have other fixed points which are not the maximum
likelihood estimator. Therefore, to compute the maximum likelihood estimator, we
should search globally over the set of NPL fixed points.

In this paper, we propose a relatively simple but computationally effective algo-
rithm to search for the maximum likelihood estimator. The algorithm combines the
NPL procedure with a Genetic Algorithm (GA). The GA searches efficiently over
the huge space of possible combinations of multiple equilibria in the data. The NPL
procedure avoids the repeated computation of equilibria for each trial value of the
structural parameters.

A Genetic Algorithm (GA) is a class of stochastic optimization method that
exploits the concepts of natural selection and evolution to solve global optimization
problems. GAs were first proposed by Holland.8 Among their many applications,
GA have been successfully used to search for global optima of discrete and step
functions with very large search spaces. Mitchell9 provides an excellent survey of
the theory and applications of these algorithms. See also Mitchell, Holland and
Forrest.10 Although GAs have been extensively used in experimental and evolu-
tionary economics, the application of GAs in econometrics has been more rare.
Important exceptions are Dorsey and Mayer11 and Beenstock and Szpirob.12

The rest of this paper is organized as follows. Section 2 presents the class of struc-
tural models that this paper is concerned with and provides a particular example of
this class of models. Section 3 describes the estimation of structural parameters by
maximum likelihood and by pseudo maximum likelihood. Section 4 describes our
hybrid genetic algorithm. We summarize and conclude in Sec. 5.
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2. Model

2.1. General framework

Let y ∈ Y and x ∈ X be two vectors of random variables where Y is a discrete and
finite set. And let p0(y|x) be the probability distribution of y conditional to x in the
population under study. Given that y is a discrete variable with a finite support,
we can also represent the conditional probability function p0(·|x) using the vector
P0(x) ≡ {p0(y|x) : y ∈ Y }. A model can be described as a family of probability
distribution functions p(y|x, θ), where θ ∈ Θ is a vector of K parameters, and
Θ ⊂ R

K is a compact set. We can also represent a probability function p(·|x, θ)
using the vector P (x, θ) ≡ {p(y|x, θ) : y ∈ Y }.

An important feature of the class of models that we consider in this paper is that
the model does not provide a closed form analytical expression for the probability
functions p(·|x, θ). Instead, these functions are only implicitly defined as fixed points
of a mapping. More specifically, the vector P (x, θ) is a fixed point of a mapping
Ψ(x, θ, P ) = {ψ(y|x, θ, P ) : y ∈ Y }, where ψ(·|x, θ, P ) is a probability function for
y conditional on x. Therefore, P (x, θ) = Ψ(x, θ, P (x, θ)) or, what is equivalent, for
any y ∈ Y :

p(y|x, θ) = ψ(y|x, θ, P (x, θ)). (1)

The function ψ is twice continuously differentiable in P and θ, and for any (y, x, θ, P )
the probability ψ(y|x, θ, P ) is strictly greater than zero.

For some values of (x, θ) the mapping Ψ(x, θ, ·) can have more than one fixed
point. That is, the model can have multiple equilibria for some values of the struc-
tural parameters. Let {P τ (x, θ) : τ = 1, 2, . . .} be the set of equilibria associated
with (x, θ). The equilibria are indexed by the variable τ ∈ {1, 2, . . .} that is called
the equilibrium type.

2.2. Example: Discrete game with incomplete information

There are N players which are indexed by i ∈ I = {1, 2, . . . , N}. Each player should
choose an action from a set of choice alternatives Y = {0, 1, . . . , J}. We represent
the decision of player i by the variable yi ∈ Y . The utility function of player i is:

Ui = ui(yi, y−i, x) + εi(yi) (2)

where y−i is the vector with the decisions of players other than i; x is a vec-
tor of players’ exogenous characteristics which are common knowledge; and εi ≡
(εi(0), εi(1), . . . , εi(J)) represents characteristics that are private information of
player i.

Assumption 1. For any i ∈ I the vector εi ∈ RJ+1 is: (1) independent of common
knowledge variables x; and (2) independently distributed across players with dis-
tribution function Gi(·) that is absolutely continuous with respect to the Lebesgue
measure.



June 27, 2005 11:19 202-NMNC 00016

298 V. Aguirregabiria & P. Mira

Let σ = {σi(x, εi) : i ∈ I} be a set of strategy functions where σi : X ×
RJ+1 → Y . Associated with a set of strategy functions we can define a set of choice
probabilities P σ(x) = {P σ

i (yi|x) : (yi, i) ∈ Y × I} such that:

P σ
i (yi|x) ≡

∫
I {σi(x, εi) = yi} dGi(εi) (3)

where I{·} is the indicator function. These probabilities represent the expected
behavior of player i from the point of view of the other players (who do not know
εi) when he follows his strategy in σ. Let uσ

i (yi, x) be player i’s expected utility if
he chooses alternative yi and the other players behave according to their respective
strategies in σ. By the independence of private information in Assumption 1,

uσ
i (yi, x) =

∑
y−i


∏

j �=i

P σ
j (yj |x)


 u(yi, y−i, x). (4)

A Bayesian Nash equilibrium (BNE) is a vector of strategy functions σ∗ such
that for any player i and for any (x, εi) ∈ X × RJ+1,

σ∗
i (x, εi) = arg max

yi∈Y

{
uσ∗

i (yi, x) + εi(yi)
}
. (5)

We can represent this BNE in probability space. Let σ∗ be a set of BNE strategies,
and let P ∗ be the choice probabilities associated with these strategies. By definition,
P ∗

i (yi|x) =
∫
I{yi = σ∗

i (x, εi)} dGi(εi). Solving the equilibrium condition (5) in this
expression we get that for any (yi, i) ∈ Y × I:

P ∗
i (yi|x) =

∫
I
(
yi = argmax

y∈Y
{u∗

i (y, x) + εi(y)}
)
dGi(εi). (6)

Notice that the function uσ
i depends on players’ strategies only through the choice

probabilities P σ associated with σ . To emphasize this point, we modify the notation
and use the symbol uP

i , instead of uσ
i , to denote these expected utility functions.

Therefore, the right-hand side in Eq. (6) is a function that we define as ψi(yi|x, P ).
We call the functions ψi best response probability functions. The vector of equilib-
rium probabilities P ∗(x) ≡ {P ∗

i (yi|x) : (yi, i) ∈ Y × I} is a fixed point of the best
response mapping Ψ(x, P ) ≡ {ψi(yi|x, P ) : (yi, i) ∈ Y × I}. Given Assumption 1,
best response probability functions are continuous in the compact set of players’
choice probabilities. By Brower’s theorem, there exists at least one equilibrium. In
general, the equilibrium is not unique.

The primitives of the model {ui, Gi : i ∈ I} can be described in terms of
a vector of parameters θ ∈ Θ ⊆ RK . Primitives are continuously differentiable
in θ. We use Ψ(x, θ, P ) to denote the equilibrium mapping associated with (x, θ).
And P (x, θ) = {Pi(y|x, θ) : (y, i) ∈ Y × I} represents an equilibrium associated
with (x, θ).

For the sake of exposition we will concentrate on this empirical discrete game for
the rest of the paper. However, all our results can be applied to the general model
in Sec. 2.1.



June 27, 2005 11:19 202-NMNC 00016

A Hybrid GA for the Maximum Likelihood Estimation of Models with Multiple Equilibria 299

3. Estimation

3.1. Data generating process

Suppose that the game has been played at different moments in time or at dif-
ferent locations or markets. We have a random sample of T realizations of the
game where we observe players’ actions and common knowledge state variables
{yt, xt : t = 1, 2, . . . , T} with yt = (y1t, y2t, . . . , yNt). Let θ0 ∈ Θ be the true value
of θ in the population under study. We are interested in the estimation of θ0.

Let τt be the equilibrium type of observation t. These equilibrium types are
unobservable to the researcher. And let P 0

t (xt) be the distribution of yt conditional
on xt in the population that generates observation t. Since yt comes from an equi-
librium of the game, we have that P 0

t (xt) = P τt(xt, θ
0). The following assumption

establishes some conditions on the data generating process that guarantee the iden-
tification of θ0.

Assumption 2. (A) For every observation t the equilibrium type τt is determined
by a function τ0(·) of the common knowledge state variables, i.e. τt = τ0(xt). And
(B) there is a unique pair (θ0, τ0) such that P 0(x) = P τ0(x)(x, θ0) for every x ∈ X .

Under Assumption 2(A), two sample points with the same values of the exoge-
nous variables x should have the same equilibrium probabilities. The function τ0

is called the equilibrium selection mechanism. Under this assumption, we can iden-
tify nonparametrically the equilibrium probabilities in the population under study.
Assumption 2(B) establishes the joint identification of the structural parameters
and the equilibrium selection mechanism.

3.2. Maximum likelihood estimation

The maximum likelihood estimator (MLE) of (θ0, τ0) maximizes the likelihood with
respect to θ and with respect to the equilibrium types in the sample. Thus, the
MLE is:

θ̂ = arg max
θ∈Θ

{
sup

τ1,...,τT

T∑
t=1

N∑
i=1

log P τt

i (yit|xt; θ)

}
(7)

subject to the restriction that τt = τt′ when xt = xt′ . This estimator is consistent
and asymptotically efficient. However, its implementation can be computationally
very costly. The problem is in the maximization with respect to the equilibrium
types. First, we need to know all the equilibrium types that the model has for
every trial value of θ and for every value xt in the sample. This is impractical
in many applications. And second, the number of possible values that the vec-
tor (τ1, . . . , τT ) can take is huge even for very simple models. For instance, if the
number of equilibrium types is 3 and the number of observations is 200, we have
3200 � 1095 possible values for the vector (τ1, . . . , τT ). It is clear that optimization
with respect to the equilibrium types can be extremely costly. This problem has
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motivated the development of alternative methods, like pseudo maximum likelihood
(PML) estimation, that avoid the search for the MLE of the equilibrium selection
mechanism τ0.

3.3. Pseudo maximum likelihood estimation

Define the pseudo likelihood function

Q (θ, P1, . . . , PT ) ≡
T∑

t=1

N∑
i=1

log Ψi(yit|xt, θ, Pt). (8)

This function is defined for arbitrary choice probabilities, not necessarily in equilib-
rium. The two-step PML estimator is the value of θ that maximizes the pseudo like-
lihood function Q(θ, P̂1, . . . , P̂T ), where {P̂1, . . . , P̂T } are nonparametric estimates
of players’ choice probabilities conditional on x. Notice that the nonparametric
estimates of choice probabilities can be interpreted as estimates of the equilibrium
selection mechanism τ0. Therefore, this estimator avoids the search for the MLE of
τ0 by estimating it nonparametrically in a first step.

The nested pseudo likelihood (NPL) estimator is a recursive extension of the
two-step PML. Given the initial nonparametric estimates of choice probabilities, the
NPL generates a sequence of estimators {θ̂K : K ≥ 1} where the K-step estimator
is defined as:

θ̂K = argmax
θ∈Θ

Q
(
θ, P̂K

1 , . . . , P̂K
T

)
(9)

and the probabilities {P̂K
1 , . . . , P̂K

T : K ≥ 2} are obtained recursively as: P̂K+1
t =

Ψ(xt, θ̂
K , P̂K

t ). The algorithm iterates until convergence. For any given sample,
Brower’s fixed-point theorem guarantees the existence of at least one NPL fixed-
point. Aguirregabiria and Mira7 show that NPL is consistent and more efficient
than the two-step PML. Monte Carlo experiments show that NPL has much better
finite sample properties than the two-step estimator.

Furthermore, the NPL algorithm can be used to search for the MLE. The reason
is that the MLE is a fixed point of the NPL algorithm (though not every fixed point
of the NPL procedure is the MLE). To see this, notice that the MLE in (7) can be
also described as:

θ̂ = argmax
θ∈Θ




sup
P1,...,PT

Q (θ, P1, . . . , PT )

subject to: Pt = Ψ(xt, θ, Pt) for every observation t

Pt = Pt′ for xt = xt′


 . (10)

Therefore, if the NPL has a unique fixed point, this should be the MLE. Aguirre-
gabiria and Mira13 show that for a class of discrete choice dynamic programming
models the NPL has a unique fixed point. Unfortunately, that is not the case in
other models like empirical discrete games. For these models, the NPL can still be
used to search for the MLE, but we need a method to search for the MLE within the
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set of NPL fixed points. It is in this context where the use of a Genetic Algorithm
is particularly useful.

4. Hybrid Genetic Algorithm

Consider the following procedure to search for the MLE. We obtain M fixed points
of the NPL procedure by applying this method to M different initial values of the
choice probabilities. Given these M fixed-points of the NPL, the estimator of θ0 will
be the fixed point with the highest value of the pseudo likelihood Q(·). A limitation
of this approach is that for some applications we will need a very large number of
fixed points, M , to guarantee that this estimator is the MLE. To deal with this
problem we combine the NPL procedure with a GA. At every step of the NPL we
perform three operations on the M vectors of probabilities: crossover, mutation and
selection. These operations, which are characteristic of GAs, permit a more global
search over the space of (θ, P1, . . . , PT ). Here we describe this algorithm.

(0) Initial population. The initial “population” of probability vectors is Π1 = {P̂ 1
mt :

t = 1, . . . , T ; m = 1, . . . , M}. This initial “population” may be arbitrarily chosen, or
it may come from nonparametric estimates. For instance, the M probabilities can be
obtained as M bootstrap nonparametric estimates of players’ choice probabilities.

Our hybrid algorithm generates a sequence of probability vectors that we denote
by {ΠK : K ≥ 1}, where K is the index for the step or iteration of the algorithm.
Associated with this sequence of probabilities the GA also generates a sequence
of vectors of parameter estimates {θ̂K

m : m = 1, . . . , M ; K ≥ 1}. An iteration of
the algorithm consists in the creation of a new generation with the offsprings of
the existing generation. An iteration can be described in terms of four processes or
steps that are followed sequentially: (1) mating or selection of parents; (2) crossover
and mutation; (3) NPL iteration; (4) selection of offsprings.

(1) Selection of parents. We draw, with replacement, O > M pairs of probability
vectors from the population ΠK . The probability that a vector is chosen depends
on its relative fitness. Fitness is a term from evolution theory. In our problem, the
fitness of a probability vector is the Lagrangian function:

l(P̂1, . . . , P̂T ) = Q
(
θ̂, P̂1, . . . , P̂T

) − λ

T∑
t=1

||P̂t − Ψ(xt, θ̂, P̂t)|| (11)

where θ̂ is the PML estimate associated with (P̂1, . . . , P̂T ), and λ is a small and
positive constant. Given the measures of fitness of the M elements of ΠK , the
probability that the mth element is selected is:

SK
m =

exp
{
σ−1l

(
P̂K

m1, . . . , P̂
K
mT

)}
∑M

j=1 exp
{
σ−1l

(
P̂K

j1 , . . . , P̂K
jT

)} (12)

where σ > 0 is a parameter that measures the strength of the dependence of selection
on fitness. If σ = 0, only the fittest individual is selected in the O “random” draws.
If σ = ∞, every individual has the same probability of being selected.
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(2) Crossover and mutation. Each couple generates one offspring. An offspring inher-
its “chromosomes” from its parents, but there maybe mutation as well. We represent
this with two sets of binary variables: {zt, dt : t = 1, 2, . . . , T}. zt is the indicator
of a mutation for chromosome t and it is i.i.d. over t with Pr(zt = 1) = γ, i.e.
the mutation probability. dt is the indicator for the identity of the parent who
transmits the tth chromosome and it is i.i.d. over t with Pr(dt = 1) = 1/2. Let
{P̂m1, . . . , P̂mT } and {P̂m′1, . . . , P̂m′T } be a couple. Then, the offspring from this
couple is {P̂ ′

1, . . . , P̂
′
T } where for any t:

P̂ ′
t = dt

{
P̂mt + ztδ(P̂mt − Ut)

}
+

(
1 − dt

){
P̂m′t + ztδ(P̂m′t − Ut)

}
(13)

where Ut is a vector of N independent random draws from a U(0, 1); and δ is a
parameter that represents the magnitude of the mutation.

(3) NPL iteration. For each offspring we obtain its associated PML estimator of θ0,
i.e. the value of θ that maximizes the pseudo likelihood Q

(
θ, P̂ ′

1, . . . , P̂
′
T

)
. Then, for

each offspring {P̂ ′
1, . . . , P̂

′
T } and its PML estimator θ̂, we obtain a new offspring

{P̂ ′′
1 , . . . , P̂ ′′

T } such that P̂ ′′
t = Ψ(xt, θ̂, P̂ ′

t ).

(4) Selection of offsprings. We calculate the fitness of each new O offsprings and
select the M ones with highest fitness. This is the new population ΠK+1.

The algorithm iterates until convergence of the sequence of populations {ΠK}.

5. Conclusions

This paper proposes a new algorithm to obtain maximum likelihood estimates of
structural parameters in econometric models with multiple equilibria. The algo-
rithm combines the nested pseudo likelihood method proposed by Aguirregabiria
and Mira7,13 with a genetic algorithm. This method can be applied to the estima-
tion of a broad class of econometric models with multiple equilibria. For instance,
in the context of empirical Industrial Organization, the algorithm can be applied
to obtain maximum likelihood estimates of parameters in empirical discrete games,
e.g. models of market entry, spatial competition, adoption of new technologies, or
investment in R&D, among many others.
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