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This paper deals with identification of discrete games of incomplete information
when we allow for three types of unobservables: payoff-relevant variables, both
players’ private information and common knowledge, and nonpayoff-relevant
variables that determine the selection between multiple equilibria. The specifi-
cation of the payoff function and the distributions of the common knowledge un-
observables is nonparametric with finite support (i.e., finite mixture model). We
provide necessary and sufficient conditions for the identification of all the prim-
itives of the model. Two types of conditions play a key role in our identification
results: independence between players’ private information, and an exclusion re-
striction in the payoff function. When using a sequential identification approach,
we find that the up-to-label-swapping identification of the finite mixture model in
the first step creates a problem in the identification of the payoff function in the
second step: unobserved types have to be correctly matched across different val-
ues of observable explanatory variables. We show that this matching-type prob-
lem appears in the sequential estimation of other structural models with nonpara-
metric finite mixtures. We derive necessary and sufficient conditions for identi-
fication, and show that additive separability of unobserved heterogeneity in the
payoff function is a sufficient condition to deal with this problem. We also com-
pare sequential and joint identification approaches.
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1. Introduction

Multiplicity of equilibria is a prevalent feature in games. An implication of multiplicity
of equilibria in the structural estimation of games is that the model predicts more than
one probability distribution of the endogenous variables. The standard criteria used for
estimation, such as likelihood or GMM criteria, are no longer functions of the structural
parameters but correspondences, and this makes the application of these estimation
methods impractical in many relevant cases. A substantial part of the recent literature
on the econometrics of games of incomplete information proposes simple two-step es-
timators that deal with these issues.1 These two-step methods assume that there are no
unobservables that are common knowledge to players, and that the same equilibrium
has been played in all the observations in the data. The model may have multiple equi-
libria for the true value of the structural parameters, but only one of them is present in
the data.2 Under these assumptions, structural parameters in these models are identi-
fied given the same type of exclusion restrictions as in games with equilibrium unique-
ness (see Bajari, Hong, Krainer, and Nekipelov (2010)).

The assumption that all the data have been generated from a single equilibrium
is very strong. In most empirical games of incomplete information in the literature,
uniqueness of the equilibrium in the data, together with the assumption that there are
no common knowledge unobservables, imply that the actions of players are indepen-
dent of one another conditional on observables. This testable implication is likely to fail
in most datasets. One possible interpretation of failure of this conditional independence
is that common knowledge unobservables are present.3 An alternative interpretation is
multiple equilibria in the data.4 These two alternative explanations can generate differ-
ent estimations of the structural parameters and different predictions when we use the
estimated model to make counterfactual experiments. Therefore, a relevant question is
whether it is possible to identify from the data the contribution of unobservables that
affect the selection of an equilibrium from the contribution of unobservables that are
payoff-relevant.

Authors in different areas of economics have proposed multiplicity of equilibria as
a plausible explanation for important economic phenomena. This argument has been
used in empirical applications to explain bank runs (Cooper and Corbae (2002) and

1See Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), and Pesendorfer and Schmidt-
Dengler (2008) as seminal contributions in this literature. Other recent contributions to this topic in the
context of games of incomplete information are Sweeting (2009), Aradillas-Lopez (2010), and Bajari et al.
(2010). See Bajari, Hong, and Nekipelov (2013) for a survey of this literature.

2A weaker version of this assumption establishes that we can partition the data into a number of sub-
samples according to the value of an exogenous variable such that the same equilibrium is played within
each subsample.

3Aguirregabiria and Mira (2007) and Arcidiacono and Miller (2011) extended sequential estimation
methods to allow for common knowledge unobservables in games of incomplete information. They do
not allow for multiple equilibria in the data and consider parametric models.

4De Paula and Tang (2012) relaxed the assumption of a unique equilibrium in the data. They interpret
failure of independence in terms of multiple equilibria and show that it is actually helpful to identify the
sign of the parameters that capture the strategic interactions between players. However, de Paula and Tang
assumed that the model does not contain common knowledge unobservables.
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Egan, Hortaçsu, and Matvos (2017)), spatial distribution of economic activity (Krug-
man (1991), Davis and Weinstein (2002, 2008), and Bayer and Timmins (2005, 2007)),
macroeconomic fluctuations (Farmer and Guo (1995)), market variation in firms’ be-
havior (Sweeting (2009), Ellickson and Misra (2008), and Grieco (2014)), and changes in
wage inequality (Moro (2003)), among others. In all these applications, the identifica-
tion of the contribution of multiple equilibria has been based on strong restrictions on
the role of payoff-relevant unobserved heterogeneity, for example, ruling out this form
of heterogeneity. One of the main purposes of this paper is to obtain conditions for the
identification of the relative contribution of multiple equilibria and payoff-relevant un-
observables when both sources of unobserved heterogeneity are specified nonparamet-
rically and allowed to have the same degree of variation.

In this paper, we study the identification of games when we allow for three types of
unobserved heterogeneity for the researcher: payoff-relevant, player-specific variables
or “types” that are private information (PI unobservables); payoff-relevant variables that
are common knowledge to all the players (PR unobservables), and variables that are
common knowledge to all the players and are not payoff-relevant but affect the equilib-
rium selection (multiple equilibria or ME unobservables). The specification of the pay-
off function is nonparametric, and the probability distribution of common knowledge
unobservables is also nonparametric but with finite support (i.e., finite mixture model).
The model is semiparametric because we assume that the researcher knows the distri-
bution of the private information unobservables, which are independent across players,
up to a scale parameter.

As far as we know, this is the first paper to study nonparametric identification of
games with these three different sources of unobservables. More specifically, the model
in this paper extends the specifications of several important papers in the literature on
identification of games. Sweeting (2009) and De Paula and Tang (2012) allowed for mul-
tiple equilibria but not for PR unobservables. Otsu, Pesendorfer, and Takahashi (2016)
considered games of incomplete information with common knowledge unobserved het-
erogeneity that can be either PR or ME. The paper proposes a test for the existence of
unobserved heterogeneity using panel data but it does not deal with the identification
of payoffs or with the separate identification of the contribution of PR and ME unob-
served heterogeneity. Our model is similar to the one in Grieco (2014). Grieco considered
a game of market entry that includes the three types of unobservables in our model, that
is, PI, PR, and ME unobservables. Grieco’s model is fully parametric in the specification
of the payoff function, the distribution of the PR unobservables, and the distribution of
the equilibrium selection. The identification results in Grieco’s paper rely crucially on
these parametric restrictions. In this paper, we consider identification conditions that
are not based on parametric assumptions.

We show that, in a model with N players, J + 1 choice alternatives, L points of
support in the distribution of common knowledge unobservables, and with N ≥ 3 and
L ≤ (J + 1)(N−1)/2, all of the structural functions of the model are identified under
the same type of exclusion restrictions that we need for identification without unob-
served heterogeneity. In particular, we can separately identify the relative contributions
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of payoff-relevant and multiple equilibria unobserved heterogeneity to explain players’
behavior.

Two types of conditions play a key role in our identification results: independence
between players’ private information, and an exclusion restriction in the payoff func-
tion. Most of our identification results in this paper are based on a sequential approach.
In a first step, we consider the nonparametric identification of players’ strategies (de-
fined as conditional choice probabilities) and the distribution of common knowledge
unobservables in the context of a nonparametric finite mixture model. The key identi-
fying restriction in this first step is the independence between players’ private informa-
tion variables. In a second step, we study the identification of payoffs and the separate
identification of payoff-relevant (PR) and multiple-equilibria (ME) common knowledge
unobservables. Identification in this second step is based on a exclusion restriction on
players’ payoff functions. We show that the conditions for the identification of the fi-
nite mixture model in the first step are sufficient but not necessary. In particular, when
using a nonsequential identification approach, the exclusion restrictions in the payoff
function can help us to relax some of the restrictions that we use to identify the finite
mixture model in the first step of the sequential approach.

We also find an important and previously neglected issue in the implementation of
the sequential identification approach. In the identification of the finite mixture model
in the first step, it is well known that the distribution of the unobservables is identified
up to label swapping of the types. We can identify the distribution of the unobservables
for each value of the exogenous variables but, without further assumptions, we can-
not “match” unobservable types across different values of these exogenous variables.
We show that this up to label swapping identification in the first step creates a prob-
lem in the identification of the payoff function in the second step: unobserved types
have to be correctly matched across different values of observable explanatory variables.
We also show that this matching-types problem appears in the sequential estimation of
other structural models with nonparametric finite mixtures, such as single-agent mod-
els, static or dynamic. We derive necessary and sufficient conditions for identification
under this problem, and show that additive separability of unobserved heterogeneity in
the payoff function is a sufficient condition to deal with this problem. We also present
and discuss the relative merits and limitations of other sufficient conditions for identifi-
cation such as independence between unobservables and explanatory variables.

Our identification results and tests rely on the assumption that players’ actions in
the data come from Bayesian–Nash equilibria (BNE) for a particular information struc-
ture, one where information is either common-knowledge to all the players or privately
known by only one player, and this player-specific private information is unobservable
to the researcher. While our framework generalizes the specification of the unobserv-
ables in the most widely-used class of empirical games of incomplete information, the
assumption on the information structure is maintained. One might consider environ-
ments with the same basic specification as ours but different informational assump-
tions. For instance, some information might be shared by a subgroup of players. Or
players might receive signals containing information about the other players’ types. In
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recent work, Bergemann and Morris (2013, 2016) have introduced the Bayesian Corre-
lated Equilibrium (BCE) as a solution concept which is more robust, in the sense that it
delivers all predictions compatible with Bayesian–Nash equilibria for any information
structure within a wide class. Magnolfi and Roncoroni (2017) studied inference based
on the BCE solution concept. Their goal is to identify only the payoff parameters, and
their work illustrates a tradeoff between robustness to assumptions about information
structures and the ability to achieve point identification.

The rest of the paper is organized as follows. Section 2 introduces the class of mod-
els. Section 3 describes the type of data and the assumptions on the data generating pro-
cess. Section 4 presents our identification results using a sequential approach. Section 5
presents necessary and sufficient conditions for local joint identification and a numeri-
cal example of a class of 2-player games which are jointly identified but not sequentially
identified locally. We conclude in Section 6.

2. Model

Consider a game that is played by N players which are indexed by i ∈ I = {1�2� � � � �N}.
Each player has to choose an action from a discrete set of alternatives A = {0�1� � � � � J}.
The decision of player i is represented by the variable ai ∈ A. Each player chooses
his action ai to maximize his expected payoff. The payoff function of player i is
Πi(ai�a−i�x�ω�εi), where: Πi( · ) is a real-valued function; a−i ∈ AN−1 is a vector with
choice variables of players other than i; and x ∈ X , ω ∈Ω, and εi are vectors of exogenous
characteristics of players and of the environment (market). The variables in x and ω are
common knowledge for all players, and the vector εi is private information of player i.
Variables ω and εi are unobservable to the researcher and x is observable.

In addition to these payoff relevant state variables, there are also common knowl-
edge, nonpayoff relevant variables that affect players’ beliefs about which equilibrium,
from the multiple ones the model has, is the one that they are playing. We denote these
as sunspots and represent them using the vector ξ. These sunspot variables are unob-
servable to the researcher. For the rest of the paper, we denote the unobservables εi as
PI (for private information), ω as PR (for payoff relevant), and ξ as ME (for multiple equi-
libria).

Example 1 (Coordination game within the classroom (Todd and Wolpin (2012))). In a
school class, the students and the teacher choose their respective levels of effort, ai ∈ A.
Each student has preferences on her own end-of-the-year knowledge, Πi. The teacher
cares about the aggregate knowledge of all the students. A student’s knowledge de-
pends on her own effort, the effort of her peers, teacher’s effort, and exogenous char-
acteristics of the student, the classroom, and the school. This type of game is an ex-
ample of Coordination Game (Cooper (1999)) and its main feature is the strategic com-
plementarity between the levels of effort of the different players. Coordination games
typically have multiple equilibria. In this example, we can distinguish three different
types of unobservables from the point of view of the outside researcher. The first type
consists of payoff-relevant common knowledge unobservables (PR), for example, class-
room, school, teacher, and students characteristics that enter in the production function
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of students’ knowledge and are known to all the players but not to the researcher. The
second type consists of private information unobservables (PI), for example, part of the
students’ and teacher’s skills, and their respective costs of effort, are private information
of these players, and they are also unknown to the researcher. Finally, in the presence of
multiple equilibria, we may have that two classes with exactly the same (payoff relevant)
inputs have selected different types of equilibria. Apparently, innocuous characteristics
of a class may affect students’ and teachers’ beliefs about the effort of others. Part of
these nonpayoff variables affecting beliefs are unobservable to the researcher (ME un-
observables).

Assumption 1 contains basic conditions on the structural model that are standard in
the empirical literature of discrete games of incomplete information.5

Assumption 1. (A) Payoff functions {Πi : i ∈ I} are additively separable in the private
information component, that is, Πi = π̃i(ai�a−i�x�ω)+ ε̃i(ai), where ε̃i ≡ {ε̃i(ai) : ai ∈ A}
is a vector of J+1 real valued random variables. (B) ε̃i is independently distributed across
players and independent of common knowledge variables (x�ω�ξ) with a distribution
function that is continuously differentiable with respect to the Lebesgue measure in the
Euclidean space R

J+1.

A player’s optimal choice is invariant to any affine transformation of his payoff func-
tion such that we can identify the payoff function only up to an affine transformation.6

Given a baseline choice alternative, say 0, for any ai �= 0 we define the normalized payoff
function, πi(ai�a−i�x�ω) ≡ [π̃i(ai�a−i�x�ω) − π̃i(0�a−i�x�ω)]/δi, and the normalized
private information variables εi(ai) ≡ [ε̃i(ai) − ε̃i(0)]/δi where δ2

i ≡ Var(ε̃i(1) − ε̃i(0)).
For the rest of the paper, we describe the model in terms of the normalized payoff func-
tions πi and private information variables εi.

Assumption 2. The researcher knows the distribution function G of the vector of (nor-
malized) private information variables εi ≡ {εi(ai) : ai �= 0}.

The standard equilibrium concept in static games of incomplete information is a
Bayesian–Nash equilibrium (BNE). We assume that the outcome of this game is a BNE.
Under this assumption, a player’s strategy is a function only of payoff-relevant variables,
that is, a function of (x�ω�εi). If the game has multiple equilibria, then the sunspot vari-
ables in ξ affect the selection of the equilibrium and, therefore, the outcome of the game.
We first describe a BNE and then we incorporate the equilibrium selection mechanism
when the model has multiple equilibria.

5In a recent working paper, Liu, Vuong, and Xu (2013) study identification of binary choice games of in-
complete information relaxing the assumptions of additive separability and independence between play-
ers’ private information. Wan and Xu (2014) study identification of a semiparametric binary game with
correlated private information. These two papers assume that there is not common knowledge unobserved
heterogeneity or multiple equilibria in the data.

6In this paper, we consider that the researcher has data only on players’ choices and state variables.
Some of our normalization assumptions can be relaxed when the researcher has data on a component of
the payoff function such as firms’ revenue.
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Let σ = {σi(x�ω�εi) : i ∈ I} be a set of strategy functions where σi is a function from
X ×Ω×R

J into A. Associated with a set of strategy functions, we can define a vector of
conditional choice probabilities (CCPs), P(x�ω�σ) ≡ {Pi(ai|x�ω�σi) : (ai� i) ∈ A−{0}×I}
such that

Pi(ai|x�ω�σi)≡
∫

1
{
σi(x�ω�εi) = ai

}
dG(εi)� (1)

where 1{ · } is the indicator function. These probabilities represent the expected behavior
of player i from the point of view of the other players, who do not know εi. By the inde-
pendence of private information across players in Assumption 1(B), players’ actions are
independent once we condition on common knowledge variables (x�ω) and players’s
strategies, such that Pr(a1� a2� � � � � aN |x�ω�σ) = ∏N

i=1 Pi(ai|x�ω�σi).
Given beliefs σ about the behavior of other players, each player maximizes his ex-

pected utility. Let πσ
i (ai�x�ω) + εi(ai) be player i’s (normalized) expected utility if he

chooses alternative ai and the other players behave according to their respective strate-
gies in σ . We have that

πσ
i (ai�x�ω) ≡

∑
a−i∈AN−1

(∏
j �=i

Pj(aj|x�ω�σj)

)
πi(ai�a−i�x�ω)� (2)

Definition 1. A Bayesian–Nash equilibrium (BNE) in this game is a set of strategy func-
tions σ ∗ such that for any player i and for any (x�ω�εi),

σ∗
i (x�ω�εi) = arg max

ai∈A
{
πσ∗
i (ai�x�ω)+ εi(ai)

}
� (3)

We can represent a BNE in the space of choice probabilities. This representation is
convenient for the econometric analysis of this model. Solving the equilibrium con-
dition (3) into the definition of choice probabilities in (1) and taking into account the
form of the expected payoff in (2), we can characterize a BNE as a vector of choice
probabilities, P∗(x�ω) = {P∗

i (ai|x�ω) : ai �= 0� i ∈ I}, that solves the fixed-point equation
P∗(x�ω) = Ψ(x�ω�P∗(x�ω)). The fixed-point mapping Ψ(x�ω�P) from CCP’s to CCPs
is defined as {Ψi(ai|x�ω�P−i) : ai �= 0� i ∈ I}, and

Ψi(ai|x�ω�P−i)

≡
∫

1
{
ai = arg max

k∈A

(∑
a−i

(∏
j �=i

Pj(aj)

)
πi(k�a−i�x�ω)+ εi(k)

)}
dG(εi)� (4)

We call Ψi best response probability function because it provides the probability that an
action is optimal for player i given that the player believes that his opponents behave
according to the probabilities in P−i.

The continuous differentiability of the distribution function G(εi) in Assumption 1
implies that the best response probability mapping Ψi is continuously differentiable in
P−i. Therefore, by Brower’s fixed-point theorem, the mapping Ψ(x�ω� ·) has at least one
equilibrium. The set of equilibria associated with (x�ω) is defined as (x�ω) ≡ {P : P =
Ψ(x�ω�P)}. Under our regularity conditions, the set of equilibria (x�ω) is discrete and
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finite for almost all games (x�ω�G). Furthermore, each equilibria belongs to a particu-
lar “type” such that a marginal perturbation in the payoff function implies a small varia-
tion in the equilibrium probabilities within the same type. The following definitions and
lemma establish these results formally.

Definition 2 (Singularity points and regular BNE). Let f (x�ω�P) be the function P −
Ψ(x�ω�P) such that an equilibrium of the game can be represented as a solution in P to
the system of equations f (x�ω�P) = 0. A vector P0 is a singularity point of the mapping
f (x�ω�P) if the Jacobian matrix ∂f (x�ω�P0)/∂P′ is singular. An equilibrium P∗ is regular
if and only if it is not a singularity point, that is, if the Jacobian matrix ∂f (x�ω�P∗)/∂P′ is
nonsingular.

Definition 3 (Equilibrium types). Let π(x�ω) ∈ R
N(J+1)N be the vector of players’ pay-

offs associated to (x�ω). The equilibrium mapping Ψ depends of (x�ω) only through
π(x�ω) such that we can represent the function f (x�ω�P) as f (π(x�ω)�P). Let π0 and π1

be two vectors of payoffs in R
N(J+1)N and let P∗0 and P∗1 be BNEs associated with π0

and π1, respectively. We say that P∗0 and P∗1 belong to the same type of equilibrium if
and only if there is a continuous path {P[t] : t ∈ [0�1]} (continuous in t) that satisfies the
condition f ([1 − t]π0 + tπ1�P[t]) = 0 for every t ∈ [0�1], such that this path connects in
a continuous way the equilibria P∗0 and P∗1.

Lemma 1. Under the conditions of Assumption 1: (A) For almost all payoffs π the set of
equilibria (π) includes only regular equilibria. (B) If the set of equilibria (π) contains
only regular equilibria, then the set (π) is finite. (C) Every regular equilibrium belongs to
a particular type. That is, let (π0�P0) be a regular equilibrium. Then there exists a neigh-
borhood of π0 such that, for every π in that neighborhood a unique equilibrium P[π]
exists, and (π�P[π]) is of the same type as (π0�P0).

Proof. In the Appendix.

Based on Lemma 1, we can index equilibrium types by τ ∈ {1�2� � � � �Lτ} and use
Υ(π(x�ω)) to represent the set of indexes for the equilibrium types associated to a game
with payoffs π(x�ω).

Example 2. Consider a simple version of the coordination game within the classroom
in Example 1. Students’ choice of effort is binary: ai ∈ {0�1}. The teacher’s combina-
tion of skills and effort is considered exogenous and represented by the scalar vari-
able x. A student’s payoff for choosing the high level of effort is πi(1�a−i� x) + εi(1)
with πi(1�a−i� x) = α + βx + γx( 1

N−1
∑

j �=i aj), where εi(1) is private information (e.g.,
a component of the cost of effort) and it is i.i.d. across students with a standard normal
distribution. All the students are assumed identical except for their private information
variables. We assume that the equilibrium is symmetric, that is, all the students have the
same probability of effort P(x). Then the best response probability function of any stu-
dent in this model is Ψ(1|x�P)= �(α+βx+γxP(x)). Suppose that x > 0 and γ > 0 such
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Figure 1. Coordination game. Best response function Ψ(x�P). Teacher’s effort: x = 0�52; Set of
equilibria: {0�054�0�521�0�937}.

that there are positive synergies between the teacher’s effort/skills and students’ effort.
The model is a coordination game and the best response probability function has an S
form as shown in Figure 1.

Figures 1 and 2 come from this example when the parameter values are α = 2�0,
β = −7�31, and γ = 6�75, and variable x is an index in the interval [0�1]. Figure 1
presents the equilibrium mapping when teacher’s effort is x = 0�52. For this value of

Figure 2. Coordination game. Equilibrium correspondence {(x�P) : P =Ψ(x�P)}.
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x, the model has three equilibria with low, middle, and high probability of students’
effort. Figure 2 presents the equilibrium correspondence of the model. This inverted-
S curve correspondence has two singularity points, at (x�P) = (0�4757�0�2301) and
(x�P) = (0�6131�0�8447). At these points, the derivative ∂[P − Ψ(x�P)]/∂P is zero such
that these two equilibria are not regular. For the rest of equilibria in the manifold, the
derivative ∂[P − Ψ(x�P)]/∂P is different to zero such that they are all regular equilib-
ria. The two singularity points divide the correspondence into three functions, from x

into P , which correspond to the three types of equilibria of this model. For values of x in
the interval [0�0�6131], the upper part of the inverted-S curve corresponds to the high-
probability equilibrium type. For values of x in the interval [0�4757�1], the lower part
of the curve corresponds to the low-probability equilibrium type. Finally, for values of
x in the interval [0�4757�0�6131], the intermediate part of the curve corresponds to the
middle equilibrium type. In this example, teacher’s effort is a substitute of student’s own
effort in the high and low equilibrium types, that is, the equilibrium probability of stu-
dents’ effort declines with teacher’s effort. However, their efforts are complements in the
middle equilibrium.

3. Data and data generating process

Suppose that the researcher observes M different realizations of the game; for exam-
ple, M different local markets in a game of market competition. We use the index m to
represent a realization of the game. For the sake of concreteness in our discussion, we
consider that these multiple realizations of the game represent the same players playing
the game at M different markets. For every market m, the researcher observes the vec-
tor xm and players’ actions {a1m�a2m� � � � � aNm}. For the asymptotics of the estimators,
we consider the case where the number of players N is small and the number of real-
izations of the game is large (e.g., the number of markets M goes to infinity). As stated
in Assumption 2, we assume that the distribution of the normalized private information
unobservables,G, is known to the researcher. We study the nonparametric identification
of the normalized payoff functions πi and of the distribution of common knowledge un-
observables (ωm�τm), where τm represents the equilibrium type selected in market m.

Let fω(ωm|xm) be the conditional probability function of ωm given xm, and let
λ(τm|xm�ωm) be the conditional probability function of τm given (xm�ωm) such that
p(τm�ωm�xm) = λ(τm|ωm�xm)fω(ωm|xm)px(xm). Assumption 3 summarizes all the con-
ditions that we impose on the Data Generating Process (DGP).7

Assumption 3. (A) The realizations of the vector (ωm�τm�xm) are independent and
identically distributed across markets and independent of the private information vari-
ables {εim}. (B) fω(ω|x) has finite support Ω ≡ {ω(1)�ω(2)� � � � �ω(Lω(x))}, that is, finite
mixture model. (C) For every value (x�ω), all the equilibria in the DGP are regular; by
Lemma 1, this implies that λ(τ|x�ω) has finite support Υ(π(x�ω)). (D) The observed vec-
tor of players actions in market m, am ≡ {a1m�a2m� � � � � aNm}, is a random draw from a

7Note that in the description of the DGP we do not need to specify the distribution of the vector of un-
observable sunspots ξm but only of the selected equilibrium type τm.
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multinomial distribution, Pr(am|xm�ωm�τm)= ∏N
i=1 P

(τm)
i (aim|xm�ωm), where the vector

of CCPs P(τm)(xm�ωm) ≡ {P(τm)
i (aim|xm�ωm) : (ai� i) ∈ A − {0} × I} is an equilibrium of

type τm, that is, P(τm)(xm�ωm) =Ψ(xm�ωm�P(τm)(xm�ωm)).

Let Q(a|x) be the probability distribution of observed players’ actions conditional on
observed exogenous variables: Q(a|x) ≡ Pr(am = a|xm = x). This probability distribution
Q is identified from the data under very mild regularity conditions. For the rest of the
paper, we assume the probability function Q(a|x) to be known. Furthermore, this prob-
ability distribution contains all the information from the data that is relevant to identify
the structural parameters of the model, {π� fω�λ}. According to the model and our as-
sumptions on the DGP, we have the following relationship between Q and the structural
parameters {π� fω�λ}:

Q(a|x) =
∑
ω∈Ω

∑
τ∈Υ(π(x�ω))

fω(ω|x)λ(τ|x�ω)

[
N∏
i=1

P(τ)
i (ai|x�ω)

]

subject to P(τ)(x�ω) = Ψ
(
x�ω�P(τ)(x�ω)

)
� (5)

The system of equations in (5) summarizes all the restrictions imposed by the model on
the data for identification of the structural parameters. Therefore, given Q, the primitive
functions are identified if this system of equations has a unique solution for {π� fω�λ}.

Definition 4 (Identification). Suppose that the distribution Q is known to the re-
searcher. The model is (point) identified if and only if there is a unique value {π� fω�λ}
that solves the system of equations (5).

We are interested in two main questions: under which conditions is the payoff func-
tion identified? and under which conditions is it possible to separately identify the rela-
tive contribution of payoff-relevant (PR) and multiple-equilibria (ME) unobservables as
competing explanations for nonindependence of players’ actions in the data?

Since the two common knowledge unobservables, ω and τ, have finite support, we
can define a scalar random variable κ≡ g(ω�τ), also with finite support, that represents
the combination of these two unobservables. Let h(κ|x) be the PDF of κ, that is, h(κ|x) =∑

ω�τ 1{κ = g(ω�τ)}fω(ω|x)λ(τ|x�ω).
We follow a sequential approach to derive conditions for identification. In the first

step, given Q, we obtain conditions for the identification of the CCPs Pi(ai|x�κ) and
the probability distribution h(κ|x) from the system of equations (i.e., nonparametric
finite mixture model): Q(a|x) = ∑

κ h(κ|x)[∏N
i=1 Pi(ai|x�κ)]. Under Assumptions 1 and

2, we can apply Hotz–Miller inversion theorem (Hotz and Miller (1993)) to recover the
expected payoff function of player i from the vector of CCPs of this player. Therefore,
identification of the CCPs Pi(ai|x�κ) implies the identification of the expected payoff
functions πP

i (ai�x�κ) ≡ πσ
i (ai�x�κ) as defined in equation (2). In the second step, we

consider the identification of the payoff function πi(ai�a−i�x�ω) given that the expected
payoff πP

i (ai�x�κ) is known and given the system of equations (2). Finally, in step 3, we
derive conditions for the identification of the distributions fω(ω|x) and λ(τ|x�ω) given
the payoff function πi and the distribution h(κ|x).



1670 Aguirregabiria and Mira Quantitative Economics 10 (2019)

4. Identification: Sequential approach

4.1 Model without PR or ME unobserved heterogeneity

Before we present our identification results for the model with the two sources of un-
observed heterogeneity, it is helpful to discuss the identification of the model without
any of these two sources of heterogeneity. This case is a useful benchmark of compar-
ison, and it illustrates the importance of exclusion restrictions for the identification of
payoffs.

Consider the model without any form of common knowledge unobserved hetero-
geneity, either payoff relevant or sunspots. In this restricted version of the model, ωm is
a constant across markets, and τm is a deterministic function of the observable xm, that
is, τm = fτ(xm), and the probability distribution that describes the equilibrium selection
is degenerate, that is, λ(τ|xm) = 1{τ = fτ(xm)}, where 1{ · } is the indicator function. This
condition is a soft version of the assumption “only one equilibrium is played in the data.”

4.1.1 Step 1: Identification of equilibrium CCPs Without common knowledge unob-
servables, players’ actions are independent conditional on observables x such that
Q(a|x) = ∏N

i=1 Qi(ai|x) where Qi is the marginal distribution of ai conditional on x. Ac-
cording to the model, this marginal distribution is the equilibrium CCP for player i:
Pi(ai|x� τ = fτ(x)) = Qi(ai|x). If x has a discrete and finite support, the probabilities Qi

can be consistently estimated under very mild regularity conditions. The case of contin-
uous variables in x is slightly more complicated because multiplicity of equilibria may
generate discontinuity points in the CCP function. The researcher does not know, ex-
ante, the number and the location of these discontinuity points, and this complicates
the application of smooth nonparametric estimators, such as kernel or sieve estima-
tors.8 However, the discontinuity of the probability function Q does not imply that the
model is not identified. Müller (1992) and Delgado and Hidalgo (2000) studied nonpara-
metric estimation of a regression function with ‘change-points’ or discontinuities when
the location of these points is unknown to the researcher. They propose variations of
standard kernel methods and show consistency and asymptotic normality.

4.1.2 Step 2: Identification of payoffs Given that Pi(ai|x) =Qi(ai|x), we can apply Hotz–
Miller inversion to uniquely recover equilibrium expected payoffs {πP

i (ai�x) : ai ∈ A −
{0}} from {Qi(ai|x) : ai ∈ A− {0}}. We can treat expected payoffs hereafter as known. The
problem of identification in step 2 is that of recovering the payoff function π from the
system of equations:

πP
i (ai�x) =

∑
a−i

P−i(a−i|x)πi(ai�a−ix)� (6)

where P−i(a−i|x) ≡ ∏
j �=i Pj(aj|x). Because of strategic interactions, there are multiple

payoff values πi(ai�a−i�x) for every πP
i (ai�x) that is identified, so a discrete game is

8If the model has multiple equilibria, the probability function Qi(ai|x) may be discontinuous in x if only
because some equilibria can appear and disappear when we move along the space of x. This point is illus-
trated in Figure 2. For any value of x in the interval [0�48�0�60], the model has multiple equilibria. However,
the model has a unique equilibrium for values x < 0�48 or x > 0�60.
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severely under-identified relative to a standard discrete choice-random utility model.
Some restrictions on payoffs are needed to restore identification.

In this literature, exclusion restrictions have been the most common type of identify-
ing restrictions (see Bajari et al. (2010)). Suppose that x = {xc� zi : i ∈ I} where zi ∈ Z and
the set Z is discrete with at least J + 1 points. Furthermore, suppose that πi(ai� a−i�x)
depends on (xc� zi) but not on z−i ≡ {zj : j �= i}. Then, for fixed (xc� zi) and different val-
ues of z−i the primitive payoffs πi(ai�a−i�x) on the right-hand side of (6) are constant.
However, the probabilities P−i and the expected payoffs do vary with z−i because z−i

changes the payoffs and equilibrium behavior of other players. Let ΠP
i (ai�xc� zi) be the

|Z|N−1 × 1 vector collecting {πP
i (ai�xc� zi�z−i)} for all z−i, and let Π i(ai�xc� zi) be the

(J + 1)N−1 × 1 vector collecting payoffs πi(ai�a−i�xc� zi) for all a−i. Then equations (6)
can be written in vector form as

ΠP
i

(
ai�xc� zi

) = P−i

(
xc� zi

)
Π i

(
ai�xc� zi

)
� (7)

where P−i(xc� zi) is a matrix with dimension |Z|N−1 × (J + 1)N−1 with elements
P−i(a−i|z−i� zi�xc) where each row corresponds to a different value of z−i and each col-
umn to a different value of a−i. We can recover the vector of payoffs Π i(ai�xc� zi) from
(7) as long as matrix P−i(xc� zi) has full-column rank.

4.2 Model with both PR and ME unobserved heterogeneity

4.2.1 Step 1: Identification of equilibrium CCPs and mixing distributions The identifi-
cation of CCPs is based on the set of restrictions:

Q(a|x)=
Lκ(x)∑
κ=1

h(κ|x)
[

N∏
i=1

Pi(ai|x�κ)
]
� (8)

where Lκ(x) represents the number of points in the support of the distribution h(κ|x).
This system of equations describes a nonparametric finite mixture model. The identifi-
cation of this class of models has been studied by Hall and Zhou (2003), Hall, Neeman,
Pakyari, and Elmore (2005), Allman, Matias, and Rhodes (2009), and Kasahara and Shi-
motsu (2014), among others. In all of these papers, identification is based on the inde-
pendence between the N variables {a1� a2� � � � � aN } once we condition on (x�κ) and it
does not exploit any variation in the exogenous variables in x, for example, indepen-
dence assumptions between x and κ. Therefore, the analysis that follows applies sepa-
rately for every value of x and for notational simplicity we drop x as an argument.

In equation (8), the necessary order condition for identification is (J + 1)N − 1 ≥
JNLκ + (Lκ − 1), that is, the number of restrictions or known probabilities Q should
be greater or equal than the number of unknown parameters in the choice probabili-
ties and in the distribution of the unobservables κ. The basic intuition from this order
condition is that the assumption of independent marginals can deliver identification
if the number of variables and/or their support are sufficiently large. Hall and Zhou
(2003) studied nonparametric identification for a mixture with two branches, Lκ = 2
in our notation. They showed that the model cannot be identified for N = 2, even if
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J is made large enough to satisfy the order condition. However, for any N ≥ 3 they
showed that the model is generically identified (Theorem 4.3 in Hall and Zhou (2003)).
Allman, Matias, and Rhodes (2009) studied the more general case with Lκ ≥ 2 branches.
They establish that a mixture with Lκ components is generically identified if N ≥ 3 and
Lκ ≤ (J + 1)int[(N−1)/2], where int[ · ] is the integer or floor function.9 Note that the upper
bound to the number of identifiable branches not only increases with the number of
variables (players) N but also with the size of support of these variables. Generic identi-
fication here means that the set of primitives for which identifiability does not hold has
measure zero.

The following Proposition 1 is an application to our model of Theorem 4 and Corol-
lary 5 in pages 13–14 of Allman, Matias, and Rhodes (2009). Let {Y1�Y2�Y3} be three ran-
dom variables that represent a partition of the vector of players’ actions (a1� a2� � � � � aN)

such that Y1 is equal to the action of one player (if N is odd) or two players (if N is even),
and variables Y2 and Y3 evenly divide the actions of the rest of the players. For j = 1�2�3,
let PYj (κ) be the vector with the probability distribution of Yj conditional on the unob-
served component κ.

Proposition 1. Suppose that: (a) N ≥ 3; (b) Lκ ≤ (J + 1)int[(N−1)/2]; (c) h(κ) > 0 for any
κ = 1�2� � � � �Lκ; and (d) for j = 1�2�3, the Lκ vectors PYj (κ = 1), PYj (κ = 2)� � � � �PYj (κ =
Lκ) are linearly independent. Then the distribution h and players’ CCPs Pi ’s are uniquely
identified, up to label swapping.

Proof. From the proof of Theorem 4 and Corollary 5 in Allman, Matias, and Rhodes
(2009).

To illustrate the conditions for identification of the mixture components and weights
in Proposition 1, consider the following examples. In an binary choice game with three
players, the model is step 1—identified if the DGP has two mixture components, but no
more. A binary choice game with five players is identified in step 1 with up to 4 mixture
components, for example, there might be a binary payoff-relevant unobservable with
two different equilibria being played at each of the two values of the payoff-relevant
unobservable.

In general, the true number of mixture components, Lκ, is not known by the re-
searcher. This is particularly relevant in our model because the support of τ depends on
the number of equilibria of the model that are selected in the DGP, which is an endoge-
nous object. Therefore, it seems reasonable not to impose restrictions on the number of
mixture components for κ but to identify it from the data. Kasahara and Shimotsu (2014,
hereinafter KS-2014) provided conditions for identification (and estimation) of a lower
bound on the number of mixture components.

Following the finite mixture literature, the number of mixture components (the true
value of Lκ) is defined as the the smallest integer Lκ such that the finite mixture repre-
sentation in equation (8) is possible.10 First, consider a model with two players. Let Pa1�a2

9The floor function int[x] is the the greatest integer less than or equal to x.
10Given a finite mixture representation as in equation (8), it is always possible to construct other finite

mixture representation with a larger value of Lκ and where the choice probabilities are linearly dependent.
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be the (J + 1) × (J + 1) matrix with the distribution of (a1� a2) such that the elements
of this matrix are Pa1�a2[j�k] = Pr(a1 = j� a2 = k). According to the finite mixture repre-
sentation in equation (8), we have that Pa1�a2 = ∑Lκ

κ=1 h(κ)Pa1(κ)Pa2(κ)
′, where Pai(κ) is

the (J + 1) × 1 vector with the probability distribution of ai conditional on κ. Propo-
sition 2 in KS-2014 establishes that, generically, if Lκ ≤ J + 1 then Lκ = rank(Pa1�a2).
Therefore, for a two-players game, the rank of matrix Pa1�a2 provides a lower bound to
the number of components Lκ. For N ≥ 3 players, Proposition 4 in KS-2014 provides
a similar result. To describe this result, let a∗

i be a variable that is deterministic func-
tion of variable ai and that may imply some information reduction with respect to ai,
for example, ai ∈ {0�1�2} and a∗

i = 1{ai ≥ 1}. Let S1 and S2 be two random variables that
come from a partition of the N variables (a∗

1� a
∗
2� � � � � a

∗
N) in two groups, for example,

S1 = {a∗
1} and S2 = {a∗

2� � � � � a
∗
N}. Let J̃1 and J̃2 be number of points in the supports of S1

and S2, respectively. Let PS1�S2 be the J̃1 × J̃2 matrix with the distribution of (S1� S2) such
that the elements of this matrix are PS1�S2[j�k] = Pr(S1 = j� S2 = k). The finite mixture

structure of the model implies that PS1�S2 = ∑Lκ
κ=1 h(κ)PS1(κ)PS2(κ)

′, where PSj (κ) is the
(J + 1)× 1 vector with the probability distribution of Sj conditional on κ. Proposition 4
in KS-2014 establishes that, generically, if Lκ ≤ min{J̃1� J̃2} then Lκ = rank(PS1�S2). The
following Proposition 2 is an application to our model of Proposition 4 in Kasahara and
Shimotsu (2014).

Proposition 2. (A) The rank of matrix PS1�S2 is a lower bound of the true number of
mixture components Lκ. (B) If the rank of PS1�S2 is strictly lower than min[J̃1� J̃2], then the
bound is tight and the number of components is exactly identified as Lκ = rank(PS1�S2).

Proof. From Proposition 2 (for N = 2) and Proposition 4 (for N ≥ 3) in Kasahara and
Shimotsu (2014).

From our Proposition 2, lower bounds on the number of mixture components are
easily identifiable. Clearly, different definitions of variables S1 and S2 are possible and
different lower bounds may be obtained depending on the researcher’s choice.11

Example 3. (i) Two-player game. As shown in Hall and Zhou (2003), the parameters of
this model are not uniquely identified if Lκ ≥ 2. However, using Proposition 2 we can
identify the number of components Lκ, or at least a lower bound. With only two players,
we can set S1 = a1 and S2 = a2 without any data reduction, and matrix PS1�S2 has dimen-
sion (J + 1) × (J + 1). If PS1�S2 is full rank, then we can say that Lκ ≥ J + 1. Otherwise,
we have that Lκ is exactly identified as the rank of PS1�S2 . For instance, in a two-player
binary choice game we have that |PS1�S2 | = Q(0�0)Q(1�1) − Q(1�0)Q(0�1). If this deter-

Therefore, we define the true number of components as the smallest value Lκ that satisfies this represen-
tation.

11Section 3 in Kasahara and Shimotsu (2014) describes a fairly simple sequential algorithm for estimation
of the bound based on the rank tests of Kleibergen and Paap (2006). The estimator allows the researcher to
aggregate information from different choices of S1 and S2. Intuitively, S variables with larger supports may
give more accurate lower bounds but their distributions will be estimated with less precision in any given
sample than those of S variables which use data reduction.
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minant is zero, then the rank of PS1�S2 and the value of Lκ are equal to 1. In this particular
example, the identification of the bound on Lκ is equivalent to the test of no common
knowledge unobserved heterogeneity that we describe in Section 4.3 below.

(ii) Three-player binary choice game. By Proposition 1, this model is step 1 identified
if the DGP has two mixture components, but no more. Define S1 = {a1� a2} and S2 = {a3}
such that J̃1 = 4 and J̃2 = 2. If the rank of PS1�S2 is 2, then we can tell that the number
of components is at least 2. If the rank of PS1�S2 in the data is 1, then the number of
components is exactly 1 such that the model does not have unobserved heterogeneity.

(iii) Five-player binary choice game. This game is identified in step 1 with up to Lκ = 4
mixture components, for example, there might be a binary payoff-relevant unobservable
and two different equilibria being played at each of the two values of the payoff-relevant
unobservable. In this case, we can set S1 = (a1� a2� a3), S2 = (a4� a5) and PS1�S2 would
be 8 × 4. With 4 mixture components in the DGP, the rank of this matrix would be 4
and the researcher would obtain this as a lower bound on the unknown true number of
components.

(iv) Five player game with three choice alternatives. The maximum number of compo-
nents that can be identified is 9. If we set a∗

i = 1(ai ≥ 1) for i = 1�2�3, S1 = (a∗
1� a

∗
2� a

∗
2) and

S2 = (a3� a4), then PS1�S2 is 8 × 9. If the DGP had 6 components the rank of PS1�S2 would
be 6 which is smaller than min[8�9] so the bound is tight and the researcher would know
this to be the exact number of components.

4.2.2 Step 2: Identification of payoff function and matching types problem Suppose
that the conditions of Propositions 1 and 2 hold such that the distribution h and the
CCPs {Pi(ai|x�κ)} are identified, and the number of mixture components for the unob-
served heterogeneity, Lκ(x), is known to the researcher.12 Given these CCPs, we can in-
vert the best response probability function to obtain expected payoffs πP

i (ai�x�κ). Then
the identification of the payoff function π is based on the system of equations:

πP
i (ai�x�κ)=

∑
a−i

P−i(a−i|x�κ)πi(ai�a−i�x�ω)� (9)

where P−i(a−i|x�κ) = ∏
j �=i Pj(aj|x�κ). The researcher has not identified yet which part

of the unobserved heterogeneity is PR and which part is ME. It should be clear that
the worst-case scenario for the identification of the payoff function πi is when all the
unobserved heterogeneity is payoff relevant, that is, Lκ(x) = Lω(x). Our identification
strategy is agnostic but allows for this worst-case scenario. Therefore, as a working hy-
pothesis, we allow the payoff function to depend freely on the whole unobserved com-
ponent κ, that is, πi(ai�a−i�x�κ). Note that this working assumption does not introduce
any bias in the estimation of the payoff function. Furthermore, once the payoff function
has been recovered we will be able to identify whether for two different values of κ the
payoff function is the same and, therefore, these two values of κ represent variation in
nonpayoff-relevant unobserved heterogeneity. That procedure will be part of the iden-
tification of the probability distributions of ω and τ in step 3.

12Note that we allow for the number of mixtures Lκ(x) to vary with the vector of exogenous observables x.
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The identification of players’ payoffs is based on a similar identification argument as
in the model without unobserved heterogeneity. We assume that the vector of observ-
able state variables is x = {xc� zi : i ∈ I} where, for every player i, variable zi enters in the
payoff function of this player but not in the payoffs of other players.

However, a new difficulty arises in the model with unobserved heterogeneity. As
mentioned in Proposition 1, the identification of the distribution h and of CCPs is up
to label swapping, and “pointwise” or separately for each subpopulation defined by a
value of the observable x. In order to implement the identification argument in Step 2,
the researcher needs to be able to “match” mixture components which correspond to
the same value of ω across different subpopulations of observables defined by the in-
struments. Suppose that, for every x, every mixture component is assigned a label κ
from the same set K, for example, a subset of natural numbers indexed by κ. A label as-
signment is any mapping from the set of all mixture components identified in step 1 to
the set of labels K. Suppose the researcher matches mixture components with the same
label across different values of x. If the researcher uses a label assignment which incor-
rectly gives the same label κ to mixture components corresponding to different values of
ω, then the system of equations which exploits exclusion restrictions is not satisfied at
the true payoffs, and the estimation of payoffs in step 2 will be inconsistent. Example 4
below illustrates this problem.

First, we define formally a label assignment. Given identification in step 1, an unob-
served type can be described in terms of the vector {x�hκ(x)�P(x�κ)}, for example, the
unobserved type that has probability hκ(x) = 0�2 and CCPs P(x�κ) = (0�3�0�4�0�1) when
x = (5�2�1). Let K1 be the set with all the values of {x�hκ(x)�P(x�κ)} that have been iden-
tified in step 1. A label assignment is a function from the set K1 into the set of labels for
unobserved types.

Definition 5. (A) A label assignment consists of a set of labels K2 = {1�2� � � � �L∗
κ}, one

label for each unobserved type, and a function �(x�hκ(x)�P(x�κ)}) from the set K1 into
the set of labels K2 with the property that two different values in K1 with the same value
of x should have different labels. This label assignment function determines whether un-
observed types for different values of x are “matched” to the same label or not. (B) A true
label assignment is one that assigns the same label to unobserved types with the same
(ω�τ) in the DGP. (C) A label assignment is payoff-correct if it matches payoff-relevant
unobservable types ω correctly.

The following example illustrates the problem of matching-unobserved types.

Example 4. Consider a three-player binary choice game. Suppose that in step 1 the re-
searcher has identified Lκ = 2 mixtures or points in the support of the unobservable
κ, that we represent as κA and κB. The observable exogenous variables zi are binary:
zi ∈ Z = {0�1} for i = 1�2�3. Here, we concentrate in the identification of player 1’s payoff.
For any value of (z1�κ), we have a system of four equations (one for each value of (z2� z3))
to identify the four unknowns π1(1�a−1� z1�κ) for a−1 ∈ {(0�0)� (0�1)� (1�0)� (1�1)}. For
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notational simplicity, in this example we omit the arguments (a1� z1) in the payoff func-
tions. This system of equations is⎡⎢⎢⎢⎣

πP
1
(
(z2� z3) = (0�0)�κ

)
πP

1
(
(z2� z3) = (0�1)�κ

)
πP

1
(
(z2� z3) = (1�0)�κ

)
πP

1
(
(z2� z3) = (1�1)�κ

)
⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
P−1(0�0|0�0�κ) P−1(0�1|0�0�κ) P−1(1�0|0�0�κ) P−1(1�1|0�0�κ)
P−1(0�0|0�1�κ) P−1(0�1|0�1�κ) P−1(1�0|0�1�κ) P−1(1�1|0�1�κ)
P−1(0�0|1�0�κ) P−1(0�1|1�0�κ) P−1(1�0|1�0�κ) P−1(1�1|1�0�κ)
P−1(0�0|1�1�κ) P−1(0�1|1�1�κ) P−1(1�0|1�1�κ) P−1(1�1|1�1�κ)

⎤⎥⎥⎥⎦

×

⎡⎢⎢⎢⎣
π1

(
a−1 = (0�0)�κ

)
π1

(
a−1 = (0�1)�κ

)
π1

(
a−1 = (1�0)�κ

)
π1

(
a−1 = (1�1)�κ

)
⎤⎥⎥⎥⎦ � (10)

Given an assignment of unobserved types across the different values of z−1, the re-
searcher constructs the vector πP

1 (κ) and the matrix P−1(κ) and solves in equation (10)
for the vector of payoffs as π1(κ) = [P−1(κ)]−1πP

1 (κ). A key condition for the consistency
of this estimator is that the matching of unobserved types is correct. Table 1 presents
a numerical example. Panel I illustrates the case when the researcher makes a correct
matching of unobserved types such that the estimator of payoffs is consistent. Panel II
presents the case when the researcher makes a correct assignment of unobserved types
for (z2� z3) = (0�0) and (z2� z3) = (0�1), but for values (z2� z3) = (1�0) and (z2� z3) = (1�1)
the researcher swaps the correct types. Therefore, in the estimation of payoffs the re-
searcher solves the incorrect system of equations. In the system of equations for κA, the
two bottom rows come incorrectly from πP

1 (κB) and P−1(κB), and the opposite occurs
in the system of equations for κB. We see that the estimated payoffs are very seriously
biased for the two unobserved types. The bias is not just in the level or/and the scale of
the payoffs but the whole pattern of strategic interactions is inconsistently estimated.

The problem of matching-unobserved types in the identification of payoffs in step 2
may appear not only in games but also in single-agent models, static or dynamic, with
a single equilibrium. Example 5 illustrates this problem in the context of a single-agent
decision model.

Example 5. Consider a single-agent decision model where the payoff function of agent
i is π(ai�xi,ωi)+εi(ai). The researcher has panel data on {ait�xit} from many agents over
a short period of time. The unobservable ωi is time invariant and has a nonparametric
finite mixture distribution. The unobservables εit are i.i.d. over time and independent
of (xit �ωi). In step 1, with T ≥ 3, the CCP function P(ai|x�ω) is nonparametrically iden-
tified, up to label swapping. Applying the Hotz–Miller inversion, we can identify non-
parametrically, up to label swapping, the payoff function π(a�x�ω). The identification
of π(a�x�ω) up to label swapping is not a problem if the researcher is interested in the
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Table 1. Matching unobservable types across different values of the instruments.

Panel I: Consistent Matching
Unobserved Type κA

Probs P−1(a−1|z−1�κA) Estimated π1(a−1�κA)

z−1 P2(1|z−1�κA) P3(1|z−1�κA) πP
1 (z−1�κA) a−1 [P−1(κA)]−1πP

1 (κA) True π1(a−1�κA)

(0�0) 0�70 0�60 1�04 (0�0) 6�0 6�0
(0�1) 0�50 0�75 1�00 (0�1) 2�0 2�0
(1�0) 0�90 0�45 0�96 (1�0) 2�0 2�0
(1�1) 0�80 0�70 0�42 (1�1) −1�0 −1�0

Unobserved Type κB

Probs P−1(a−1|z−1�κB) Estimated π1(a−1�κB)

z−1 P2(1|z−1�κB) P3(1|z−1�κB) πP
1 (z−1�κB) a−1 [P−1(κB)]−1πP

1 (κB) True π1(a−1�κB)

(0�0) 0�20 0�15 1�03 (0�0) 2�0 2�0
(0�1) 0�10 0�50 −0�15 (0�1) 0�0 0�0
(1�0) 0�60 0�05 0�63 (1�0) −2�0 −2�0
(1�1) 0�50 0�40 −0�40 (1�1) −3�0 −3�0

Panel II: Inconsistent Matching
Unobserved Type κA [∗ Represents Incorrect Matching]

Probs P−1(a−1|z−1�κA) Estimated π1(a−1�κA)

z−1 P2(1|z−1�κA) P3(1|z−1�κA) πP
1 (z−1�κA) a−1 [P−1(κA)]−1πP

1 (κA) True π1(a−1�κA)

(0�0) 0�70 0�60 1�04 (0�0) −15�1 6�0
(0�1) 0�50 0�75 1�00 (0�1) 11�1 2�0
(1�0) 0�60∗ 0�05∗ 0�63∗ (1�0) 8�1 2�0
(1�1) 0�50∗ 0�40∗ −0�40∗ (1�1) −4�1 −1�0

Unobserved Type κB [∗ Represents Incorrect Matching]

Probs P−1(a−1|z−1�κB) Estimated π1(a−1�κB)

z−1 P2(1|z−1�κB) P3(1|z−1�κB) πP
1 (z−1�κB) a−1 [P−1(κB)]−1πP

1 (κB) True π1(a−1�κB)

(0�0) 0�20 0�15 1�03 (0�0) 1�4 2�0
(0�1) 0�10 0�50 −0�15 (0�1) 1�6 0�0
(1�0) 0�90∗ 0�45∗ 0�96∗ (1�0) −2�0 −2�0
(1�1) 0�80∗ 0�70∗ 0�42∗ (1�1) 0�4 −3�0

variation of payoffs with respect to the choice variable a keeping both x and ω constant,
or if she is interested in the average payoff given (a�x) and integrated over the distribu-
tion of ω. However, label swapping creates an identification problem if the researcher is
interested in the identification of the ceteris paribus effect of a change in x keeping ω

constant (or vice versa). The researcher does not know how to keep the unobserved type
constant when the observable variables x vary.

Label swapping creates also an identification problem if the researcher wants to im-
pose semiparametric restrictions on the payoff function. Suppose that the vector of ex-
planatory variables has two components, x = (z�w), and the payoff function has the
following semiparametric structure, π(a�x�ω) = f (a�z)′θ + g(a�w�ω) where f (a�z) is
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a vector of known functions, θ is a vector of unknown parameters, and g(a�w�ω) is a
nonparametric function. To identify θ, we need to fix the value of g(a�w�ω) and con-
struct a system of equations for different values of z. This identification is subject to the
matching-types problem because the researcher should be able to keep the unobserved
type ω constant for different values of the observable z.

Therefore, without further assumptions, step 2 identification requires a label assign-
ment that matches payoff-relevant unobservable types ω correctly across different val-
ues of the observable variables x. We call this a payoff-correct assignment, or a correct
assignment in short. The true label assignment assigns the same label to mixture com-
ponents with the same (ω�τ) in the DGP. The true label assignment is (of course) payoff-
correct. An assignment which is not the true one is still payoff-correct if it matches cor-
rectly the mixture components corresponding to the same value of the payoff-relevant
unobservable ω, but not the mixture components corresponding to different equilib-
rium types. Note that if multiple equilibria is the only source of unobserved heterogene-
ity, then all assignments are payoff-correct. On the contrary, if all unobserved hetero-
geneity is payoff-relevant only the true assignment is correct. Because the problem of
matching-unobserved types, identification in step 2 requires an extended rank condi-
tion. Consider the vector form representation of the system of equations (9):

ΠP
i

(
ai�xc� zi�κ

) = P−i

(
xc� zi�κ

)
Π i

(
ai�xc� zi�κ

)
� (11)

where the vectors ΠP
i and Π i and the matrices P−i have the same dimension and in-

terpretation as in equation (7) but now they are conditional on the unobservable κ. For
any correct assignment, this system of equations holds at the true vector of payoffs Π i.
In general, for any incorrect assignment, the system does not hold at the true vector of
payoffs. This is regardless the matrix P−i is full rank or not. We say that a label assignment
is consistent if it is payoff-correct and the matrix P−i is full-column rank for any player i.
By definition, for a consistent label assignment the system has a unique solution and this
solution provides the true payoffs. Clearly, the set of consistent assignments is included
in the set of correct assignments. The set of correct assignments is non-empty because
it always includes the true assignment. Instead, the set of consistent assignments can be
empty if for every correct assignment the matrix P−i is not full-column rank.

Two sets of necessary and sufficient conditions should be satisfied in order to
achieve step 2 identification. First, the set of consistent assignments should be
nonempty. This is a necessary condition for identification but it is not sufficient. Sup-
pose that there is an incorrect assignment for which the system of equations has a solu-
tion. This solution is different to the true payoffs but the researcher cannot distinguish
between the solution from a consistent assignment and the solution from an incor-
rect assignment. To avoid this underidentification, we need to impose the condition
that the system does not have a solution for any of the incorrect assignments. Proposi-
tion 3 establishes formally these necessary and sufficient conditions for identification
in step 2.
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Proposition 3. Under exclusion restrictions, the model is identified in step 2 if and only
if: (a) the set of consistent label assignments is nonempty, that is, there exists one payoff-
correct label assignment for which matrix P−i(xc� zi�κ) has full-column rank for every
player i; and (b) for every payoff-incorrect label assignment, there is at least one player i
for which the rank of the augmented matrix [ΠP

i (ai�xc� zi�κ)|P−i(xc� zi�κ)] is larger than
the rank of matrix P−i(xc� zi�κ), that is, the system of equations does not have a solution.

Proof. By contradiction and the application of the Rouché–Capelli theorem. As ex-
plained above, conditions (a) and (b) are sufficient to obtain step 2 identification. If (a)
does not hold, it is clear that we cannot recover the true vector of payoffs. If (b) does not
hold, there is an incorrect assignment and a vector of payoffs different to the true pay-
offs that solve the system of equations. The researcher has two different solutions and
cannot distinguish which one is the true.

Condition (a) is like the standard rank condition of the model with no heterogene-
ity. Condition (b) rules out that incorrect label assignments and payoffs can explain the
data. Unlike the rank condition for the model with no heterogeneity, the extended rank
conditions of Proposition 3 are not testable. Because the number of label assignments
is finite, the researcher can sweep through all of them, check the associated system of
step 2 restrictions, and more specifically, construct the set S∗ of assignments for which
the system has a unique solution, that is, for every player i, P−i is full-column rank. How-
ever, conditions (a) and (b) are not jointly testable because the researcher does not know
ex ante whether a particular label assignment is correct or incorrect. For instance, sup-
pose that the researcher sweeps all the possible label assignments and finds that there
is only one assignment in set S∗. Without further restrictions, the researcher does not
know if this assignment is payoff-correct, such that conditions (a) and (b) hold and the
model is step 2 identified, or if the assignment is incorrect, such that neither condition
(a) nor condition (b) hold and there is not step 2 identification.

However, based on sweeping through all the possible assignments and the construc-
tion of set S∗, it is possible to obtain a testable necessary condition for step 2 identifica-
tion. Proposition 4 establishes this identification result.

Proposition 4. Suppose that exclusion restrictions hold. Define S∗ as the set of label as-
signments for which the system (11) has a unique solution, that is, for every player i, P−i

is full-column rank. A necessary condition for step 2 identification is that S∗ is nonempty
and all the assignments within this set imply the same solution. This identification con-
dition is testable.

Proof. From Proposition 3, there is step 2 identification if and only if conditions (a)
and (b) hold. It is clear that if conditions (a) and (b) hold, then set S∗ is not empty and
all the assignments within this set imply the same solution.

The identification conditions in Propositions 3 and 4 are not on the primitives of the
model. In some applications, the researcher may be interested in imposing restrictions
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on the primitives of the model that imply step 2 identification. Here, we present two
different sufficient conditions on the primitives that provide identification of payoffs
in step 2: (i) ranking independence between unobservables and observables; and (ii)
additive separability and mean independence of the unobservables.

(i) Ranking independence. Suppose that the distribution of κ may vary with x but this
dependence does not affect the ranking of unobserved types according to the values of
the probabilities h(κ|x). That is, for any value of x we have that h(κ(1)|x) > h(κ(2)|x) >
· · · > h(κ(Lκ)|x). Under this condition, we can use the ranking of probabilities to match
correctly unobserved types. For any value x, type κ(1) corresponds to the highest prob-
ability, type κ(2) to the second largest probability, and so on. This restriction is weaker
than independence; it still restricts the number of unobserved types Lκ to be constant
across different values of x. This particular restriction is testable after the identification
of h(κ|x) in step 1.

(ii) Additive separability. Suppose that the payoff function πi(ai�a−i�x�ω) is addi-
tively separable between the unobservable ω and the opponents’ actions a−i:

πi(ai�a−i�x�ω) = βi(ai�a−i�x)+ηi(ai�x�ω)� (12)

Furthermore, for any value of (ai�x) the random variable ηi(ai�x�ω) is mean indepen-
dent of x and, without loss of generality, this mean is zero, that is, Eω|x(ηi(ai�x�ω)) = 0.
We also assume that the component βi(ai�a−i�x) of the payoff function satisfies the
standard exclusion restriction such that (with some abuse of notation) βi(ai�a−i�x) =
βi(ai�a−i� zi�xc). Under these conditions, equation (9) has the following form:

πP
i (ai�x�κ)= ηi(ai�x�ω)+

∑
a−i

P−i(a−i|x�κ)βi

(
ai�a−i� zi�xc

)
� (13)

From the identification in step 1, the researcher knows the probability distribution
h(κ|x) up to label swapping. Using this information, we can construct a version of equa-
tion (13) integrated over the distribution of h(κ|x). Note that this integration is not sub-
ject to any problem of matching types, that is, for any fixed x, the distribution h(κ|x) is
known. This integrated equation is

πP
i (ai�x)=

∑
a−i

P−i(a−i|x)βi

(
ai�a−i� zi�xc

)
� (14)

where πP
i (ai�x) ≡ ∑

κ h(κ|x)πP
i (ai�x�κ), P−i(a−i|x) ≡ ∑

ω h(κ|x)P−i(a−i|x�ω), and we
have used the condition Eκ|x(ηi(ai�x�ω)) = Eω|x(ηi(ai�x�ω)) = 0. Note that functions
πP
i (ai�x) and P−i(a−i|x) are identified from step 1 and, very importantly, they are not

subject to the matching-types problem. Given equation (14), the payoff function βi( · )
is identified under similar conditions as the model without unobserved heterogeneity.
We can construct a matrix P−i(zi�xc) with elements P−i(a−i|z−i� zi�xc) where each row
corresponds to a different value of z−i and each column to a different value of a−i. Func-
tion βi is identified if matrix P−i(zi�xc) is full-column rank for any value of (zi�xc).
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The restriction of additive separability can be relaxed if the interaction between ω

and a−i in the payoff function has a parametric form. For instance, suppose that the pay-
off function has the following form: πi(ai�a−i�x�ω) = βi(ai�a−i�x)g(ω) + ηi(ai�x�ω),
where g( · ) is a parametric function that is perfectly known to the researcher, for exam-
ple, g(ω) = exp{ω}. It is straightforward to extend the previous identification argument
to this semiparametric model.13

4.2.3 Step 3: Identification of distributions for the two types of heterogeneity Suppose
that the conditions in Propositions 1 and 3 hold such that the researcher has identified
the distribution h(κ|x) and the payoff functions πi. Now, we want to identify the proba-
bility distributions fω(ω|x) and λ(τ|x�ω). There are two sets of restrictions that we can
exploit to identify these distributions: (1) the payoff πi depends on ω but not on τ, and
(2) by definition, h(κ|x)= 1{κ= g(ω�τ)}fω(ω|x)λ(τ|x�ω).

Let Π i(x) be the matrix with dimension J(J+1)N−1 ×Lκ(x) that contains all the pay-
offs {πi(ai�a−i�x�κ)} for a given value of x. More specifically, each column corresponds
to a value of κ and it contains the payoffs πi(ai�a−i�x�κ) for every value of (ai�a−i) with
ai > 0. If two values of κ represent the same value of ω, then the corresponding columns
in the matrix Π i(x) should be equal. Therefore, the number of distinct columns in the
payoff matrix Π i(x) should be equal to Lω(x). That is, we can identify the number of
mixtures Lω(x) as

Lω(x) = Number of distinct columns in Π i(x)� (15)

The information in matrix Π i(x) not only identifies the number of points in the
support of the PR unobservables ω, but it also identifies the inverse of the mapping
κ = g(ω�τ) such that we know the value of (ω�τ) that corresponds to each value of κ.
We use ω(κ) and τ(κ) to represent this inverse mapping. Without loss of generality, we
can make τ(κ) = κ for every κ.14 We sweep through the different columns of Π i(x) (i.e.,
the different of κ): (a) if two columns, say κ and κ′, are equal, then we assign them the
same value ω, that is, ω(κ)=ω(κ′); (b) if the columns are different, then ω(κ) �=ω(κ′).

Given the identification of the mappings ω(κ) and τ(κ), the probability distribution
of the payoff relevant heterogeneity, fω(ω|x), is identified as

fω(ω|x) =
Lκ(x)∑
κ=1

1
{
ω(κ)=ω

}
h(κ|x)� (16)

13With a nonparametric payoff function that does not impose additive separability, the equation inte-
grated over the distribution of ω is similar to (14) but includes an additional term that depends on the
covariance between P−i(a−i|x�κ) and βi(ai�a−i�x�κ) conditional on (ai�a−i�x). This covariance term is
not zero and it is unknown to the researcher. This implies that the average payoff is not identified from this
integrated equation.

14Note that at this stage, without solving the equilibrium (and applying a homotopy method) we cannot
establish whether two vectors of CCPs for two different values of ω correspond to the same equilibrium
type or not. Therefore, for the moment we consider that they are different equilibrium types.
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Taking into account that τ(κ)= κ, the probability distribution of multiple equilibria het-
erogeneity, λ(τ|x�ω), is identified as

λ(τ|x�ω)= h(τ|x)
Lκ(x)∑
κ=1

1
{
ω(κ)=ω(τ)

}
h(κ|x)

� (17)

Proposition 5. Under the conditions of Propositions 1 and 3, the probability distribu-
tions of the unobservables, fω(ω|x) and λ(τ|x�ω), are nonparametrically identified.

Example 6. Suppose that Lκ(x) = 7 such that Π i(x) has seven columns that we la-
bel as κ = 1�2� � � � �7. Suppose the number of distinct columns of Π i(x) is 4 such that
Lω(x) = 4. Columns 1, 2, and 4 are equal to each other, and columns 6 and 7 are
also equal to each other. Then we have that fω(1|x) = h(1|x) + h(2|x) + h(4|x), with
λ(τ|x�ω = 1) = h(τ|x)

h(1|x)+h(2|x)+h(4|x) for τ ∈ {1�2�4}; fω(2|x) = h(3|x), with λ(3|x�ω= 2) = 1;
fω(3|x) = h(5|x), with λ(5|x�ω = 3) = 1; and fω(4|x) = h(6|x) + h(7|x), with λ(τ|x�ω =
4) = h(τ|x)

h(6|x)+h(7|x) for τ ∈ {6�7}.

4.3 Testable restrictions on unobserved heterogeneity

(i) Testing null hypothesis of no common knowledge unobserved heterogeneity. The
model without PR and ME unobservables imposes the restriction that players’ actions
are independent conditional on the observable x: Q(a|x) = ∏N

i=1 Qi(ai|x). This assump-
tion can be easily tested using a test of the null hypothesis of independence. For in-
stance, for a binary choice game with two players the testable restriction is

Q(1�1|x)Q(0�0|x)=Q(1�0|x)Q(0�1|x)� (18)

(ii) Testing null hypothesis of no ME unobserved heterogeneity. If there is not ME un-
observed heterogeneity, then the number of points in the support of ω, Lω(x), should
be equal to the points of support of κ for any value of x in the sample. Therefore, taking
into account that Lκ(x) = cols(Π i(x)) and that Lω(x) = distinct_cols(Π i(x)), testing for
the null hypothesis of “no ME unobserved heterogeneity” is equivalent to testing for:

For every value of x� cols
(
Π i(x)

) = distinct _cols
(
Π i(x)

)
� (19)

(iii) Testing null hypothesis of no PR unobserved heterogeneity. If there is not PR unob-
served heterogeneity, then for any value of x in the sample the number of points in the
support of ω should be equal to the 1. This implies that testing for the null hypothesis of
“no PR unobserved heterogeneity” is equivalent to testing for:

For every value of x�distinct _cols
(
Π i(x)

) = 1� (20)

Therefore, the tests for these null hypotheses can be described in terms of tests of
the rank of a matrix of statistics. They can be implemented using, for instance, the rank
tests proposed by Kleibergen and Paap (2006).
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Our identification results and tests rely importantly on our model specification
and assumptions, for example, independence of private information unobservables, a
particular information structure of the game and the equilibrium concept of BNE. In
our model, unobservables are either common-knowledge to all the players or privately
known by only one player. Some departures from our specification of the information
structure can invalidate our identification results. For instance, if private information
unobservables are not player-specific but shared by a subgroup of players, our current
step 1 identification, and for that matter the identification of the whole model, would
not be valid.

5. Joint identification

All the previous identification results are based on the sequential approach. The exclu-
sion restrictions we exploit in step 2 are quite natural in the estimation of games, and
they are necessary for nonparametric identification even in games without common
knowledge unobserved heterogeneity. However, the conditions for the identification of
the nonparametric finite mixture in step 1 are more stringent and rule out some inter-
esting applications, for example, two-player games. An important question is whether
these restrictions are really necessary for identification. More precisely, suppose that
we do not follow a sequential approach to identify/estimate the model but we estimate
jointly all the structural functions: is it possible to obtain identification even when the
conditions in Proposition 1 are not satisfied? In this section, we study this issue. We do
this by comparing rank conditions for sequential and joint identification. We provide
some insights into the relationship between sequential and joint identification. and we
show that when the exclusion restrictions that are needed to identify the payoff func-
tion in step 2 provide overidentifying restrictions, these can help identify the mixture
components even when step 1 identification conditions are not satisfied.

It is important to underline that, while in Section 4 we present conditions for global
(sequential) identification, our analysis below deals with local identification, both se-
quential and joint. We are particularly interested in showing that there is a class of mod-
els where local step 1 identification fails, yet local joint identification holds. We charac-
terize this class in terms of rank conditions. In Section 5.4, we use an example to illus-
trate that this class is not empty. Because local identification is necessary for global iden-
tification, for all the models within this class the sufficient conditions for step 1 identifi-
cation of Proposition 1 fail.15

As we have shown above, once the mixing distributions h and the payoff vectors π

have been identified, disentangling PR and ME heterogeneity in step 3 does not require
any additional assumptions. Therefore, our discussion of sequential versus joint identi-
fication concentrates on steps 1 and 2.

15It is also important to keep in mind that: (i) the conditions in Proposition 1 for global step 1 identifi-
cation are sufficient; (ii) the conditions in Proposition 3 for global step 2 identification are necessary and
sufficient; and (iii) the conditions that we present below for local identification (either step 1, or step 2, or
joint) are necessary and sufficient.
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Define the vectors of parameters: h, with the mixing probabilities h(κ|x) for ev-
ery value of (κ�x); P, with the choice probabilities Pi(ai|x�κ) for every player and
value of (ai�x�κ); and π, with the payoffs πi(ai�a−i�x�κ) for every player and value of
(ai�a−i�x�κ). Let (h0�P0�π0) be the true value of (h�P�π) in the population. We are in-
terested in the point identification of (h0�P0�π0).16 To compare the rank conditions for
identification under the sequential and joint approaches, it is convenient to describe
the identification problem as a constrained maximum likelihood problem in the popu-
lation. The model implies that Pr(a|x�h�P) = ∑Lκ(x)

κ=1 h(κ|x)∏N
i=1 Pi(ai|x�κ). The (popu-

lation) log-likelihood function for the actions a conditional on x and parameters (h�P)
is

�(h�P) =
∑
x∈X

p(x)
∑
a∈AN

Q(a|x) ln

[
Lκ(x)∑
κ=1

h(κ|x)
(

N∏
i=1

Pi(ai|x�κ)
)]

� (21)

We use ∇�0 and ∇2�0 to represent the gradient vector and the Hessian matrix, respec-
tively, of the likelihood function evaluated at the true value (h0�P0).

5.1 Rank condition for sequential identification

5.1.1 Rank condition for step 1 identification By the information inequality, the true
value (h0�P0) maximizes the likelihood �(h�P). We say that (h0�P0) is point identified
in step 1 (up to label swapping) if it uniquely maximizes this likelihood. It is clear that
�(h�P) is twice continuously differentiable with respect to (h�P). Suppose that (h0�P0)

is an interior point in the probability space such that every probability in these vectors
is strictly greater than zero. Then (h0�P0) should satisfy the first-order conditions of op-
timality ∇�0 = 0. The rank condition for local identification in step 1 is that the Hessian
matrix ∇2�0 (or equivalently, the information matrix) is nonsingular.

In general, the nonsingularity of the information matrix is a necessary and sufficient
condition for local identification in a likelihood model where the vector of parameters
has finite dimension (Rothenberg (1971)). Therefore, the nonsingularity of the Hessian
of the likelihood function is a necessary and sufficient condition for local identification
in step 1. A necessary condition for local identification is also necessary for global iden-
tification. Thus, the sufficient conditions for global step 1 identification in Proposition 1
imply that the Hessian is nonsingular.

5.1.2 Rank condition for step 2 identification Given a label assignment, define the sys-
tem of restrictions in step 2 as c(π�P) = 0, where c(π�P) = {ci(ai�x�κ;π�P) : i ∈ I� ai ∈
A− {0}�κ = 1�2� � � � �Lκ(x)�x ∈ X } and

ci(ai�x�κ;π�P)≡
∑
a−i

(∏
j �=i

Pj(aj|x�κ)
)
πi(ai�a−i�x�κ)−πP

i (ai�x�κ)� (22)

The number of restrictions in c(π�P) is equal to the number of free probabilities in P.
We use ∇c0 to represent the Jacobian matrix of c(π�P) evaluated at the true (π0�P0).

16We assume that Lκ(x) is known for all x, for example, by use of Proposition 2.
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We use ∇π′c0 and ∇P′c0 to represent the columns of this Jacobian associated to π and
P, respectively, such that ∇c0 ≡ [∇π ′c0�∇P′c0]. Note that the vector of functions c(π�P)
is linear in π. We can represent c(π�P) as A(P)π − b(P) where b(P) is a vector with
elements {πP

i (ai�x�κ)}, and A(P) is a matrix with elements
∏

j �=i Pj(aj|x�κ) and zeroes.

Therefore, the Jacobian matrix ∇π ′c0 is A0 ≡ A(P0).
As defined in Section 4, π0 is globally identified in step 2 if: (a) there exists at least one

label assignment for which π0 is the unique value of π that solves the system c(π�P0) =
0; and (b) there is no other label assignment delivering a different unique solution for
π. The rank condition for local identification in step 2 is that the Jacobian matrix ∇π ′c0

(or A0) is full-column rank given at least one correct label assignment. This condition is
equivalent to condition (a) in Proposition 3.

In summary, the rank condition for the sequential identification of (h0�P0�π0) using
steps 1 and 2 can be described in terms of the full-column rank of the matrix:

Jseq ≡
⎡⎢⎣∇2

hh′�0 ∇2
hP′�0 0

∇2
Ph′�0 ∇2

PP′�0 0

0 0 A0

⎤⎥⎦ � (23)

where we use ∇2
hh′�0, ∇2

hP′�0, ∇2
Ph′�0, and ∇2

PP′�0 to represent the submatrices that form
the Hessian matrix.

5.2 Rank condition for joint identification

The true value (h0�P0�π0) maximizes the likelihood �(h�P) subject to the constraints
c(π�P) = 0. The Lagrange function of this constrained maximum likelihood problem
is L(θ) = �(h�P) + λ′c(π�P) where λ is a vector of Lagrange multipliers, and θ ≡
(h�P�π�λ). We say that the true value θ0 ≡ (h0�P0�π0�λ0) is point-identified if it is the
unique solution of this constrained maximum likelihood problem. This Lagrange func-
tion L(θ) is twice continuously differentiable in θ. Suppose that θ0 is an interior point
in the parameter space. Then θ0 should satisfy the Lagrange first-order conditions of
optimality.

∇h�
0 = 0�

∇P�
0+[∇Pc0]′λ0 = 0�

A0′λ0 = 0�

A0π0 − b0 = 0�

(24)

where the last two sets conditions take into account the particular structure of the con-
straints c(π�P)= 0.

In this constrained optimization problem, the true value of the vector of Lagrange
multipliers, λ0, is zero. Remember that the Lagrange multipliers are the shadow prices
of the constraints. By the information inequality, the true (h0�P0) maximizes the likeli-
hood �(h�P) (and satisfies the constraints) and there is not any value (h�P) that does not
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satisfy the constraints and implies a larger value for the likelihood. Therefore, the value
of the shadow prices of the constraints, λ0 at any solution to the constrained problem
should be zero. This implies that (h0�P0�π0) should satisfy the following conditions:

∇h�
0 = 0�

∇P�
0 = 0�

A0π0 − b0 = 0�

(25)

The rank condition for local joint identification is that the Jacobian matrix of this system
of equations with respect to (h�P�π) (and evaluated at (h0�P0�π0)) is full-column rank.
This Jacobian matrix has the following form:

Jjoint =
⎡⎢⎣∇2

hh′�0 ∇2
hP′�0 0

∇2
Ph′�0 ∇2

PP′�0 0

0 ∇P′c0 A0

⎤⎥⎦ (26)

5.3 Relationship between sequential and joint identification

We can determine the relationship between sequential and joint identification by com-
paring the conditions for full-column rank of matrices Jseq and Jjoint. Note that the only
difference between these two matrices is in the submatrix ∇P′c0 that appears in Jjoint

but not in Jseq. That is, joint identification rank conditions incorporate additional con-
straints on choice probabilities and parameters which are implied by equilibrium be-
havior and the structure of the model and may resolve step 1 underidentification.

Proposition 6 below presents necessary and sufficient conditions to have local joint
identification without local step 1 identification. Before we present this proposition, it is
worthwhile to present several results on the relationship between joint and sequential
identification that are straightforward implications of the full-column rank conditions
of Jseq and Jjoint.17

(A) The condition of full-column rank of the matrices A0 and
[∇2

hh′�0

∇2
Ph′�0

]
is necessary both

for sequential and for joint identification. This follows from the structure of the columns

in matrices Jseq and Jjoint. The condition of full-column rank of matrix
[∇2

hh′�0

∇2
Ph′�0

]
means

that the mixture distribution h0 is locally identified if we know the vector of choice prob-
abilities P0. Similarly, full-column rank of matrix A0 is equivalent to say that the vector
of payoffs π0 is identified if we know the vector of choice probabilities P0. That is, joint
identification cannot help if failure of sequential identification occurs because mixture
weights and/or payoffs are not identified given P0.

17We are comparing rank conditions at a correct label assignment only. Note that the only effect of label
reassignments on the rank of matrices Jseq and Jjoint is through the blocks of matrix A0. Extended rank
conditions which remove incorrect label assignments, such as the ones in condition (b) of Proposition 3,
are necessary and sufficient for both joint and sequential global identification.
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(B) Sequential identification implies joint identification. Sequential identification re-
quires: (i) the Hessian matrix ∇2�0is full-column rank; and (ii) A0 is full-column rank.
Condition (i) implies that the matrix that results from vertically stacking the Hessian
and [0, ∇P′c0] is also full-column rank, regardless the value of ∇P′c0. Then full-column
rank of Jjoint follows by contradiction.

(C) Joint identification implies step 2 identification. Joint identification requires A0 to
be full-column rank, and this implies step 2 identification.

(D)

Lemma 2. The Jacobian matrix ∇P′c0 is nonsingular if the equilibria in the DGP are reg-
ular.18

Proof. By an appropriate rearrangement of the rows in the system of equations
c(π�P) = 0, we can represent it as a set of subsystems one for each value of (x�κ).
Let c(x�κ�π(x�κ)�P(x�κ)) = 0 be the subsystem for a value of (x�κ), where π(x�κ) and
P(x�κ) represent the vectors of payoffs and choice probabilities associated to (x�κ).
Since the vector of choice probabilities P(x�κ) enters only in the subsystem of equa-
tions for the corresponding value (x�κ), we have that the Jacobian matrix ∇P′c0 is a
block diagonal matrix that contains the Jacobians ∇P′c0

(x�κ) for each value of (x�κ).

Therefore, ∇P′c0 is nonsingular if and only if the Jacobians ∇P′c0
(x�κ) are nonsingu-

lar for each value of (x�κ). We can represent the equilibrium equations of the model
as P(x�κ) − Ψ(x�κ�P(x�κ)) = 0. The definition of regular equilibrium is that the Jaco-
bian matrix ∂[P(x�κ) − Ψ(x�κ�P(x�κ))]/∂P′

(x�κ) is nonsingular. By definition, the system

c(x�κ�π(x�κ)�P(x�κ)) is equal to Λ−1[P(x�κ)] −Λ−1[Ψ(x�κ�P(x�κ))], where Λ[·] is the func-
tion mapping choice-specific utilities into choice probabilities. This well-known map-
ping is invertible so the Jacobian matrix Λ−1

P is nonsingular. Therefore, we have that
∇P′c0

(x�κ) = Λ−1
P ∂[P(x�κ) − Ψ(x�κ�P(x�κ))]/∂P′

(x�κ), so ∇P′c0
(x�κ) is nonsingular because the

product of nonsingular matrices is nonsingular.

Proposition 6. We have local joint identification without local sequential identifica-
tion if and only if the following conditions hold: (i) The Hessian matrix ∇2�0 is singular,

but its submatrix
[∇2

hh′�0

∇2
Ph′�0

]
is full-column rank; (ii) matrix A0 is full-column rank; and (iii)

the column space (or span) of matrix A0 does not include any of the vectors ∇P′c0βP , where
βP is the P-component of any vector (β′

h�β
′
P) from the null space of ∇2�0.

Proof. Suppose that conditions (i) and (ii) hold. We need to show that it is possible to
have a matrix Jjoint that is full-column rank so there is joint identification. First, since
∇2�0 is not full-column rank, there should be vectors βh and βP with (β′

h�β
′
P) �= 0 such

that [∇2
hh′�0

∇2
Ph′�0

]
βh +

[
∇2

hP′�0

∇2
PP′�0

]
βP = 0� (27)

18Note that Assumption 3(C) establishes that all the equilibria in the DGP are regular.
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Recall that the null space of the Hessian matrix, Null(∇2�0), is defined as the set of vec-
tors (β′

h�β
′
P) �= 0 that satisfy equation (27). Note that any vector in this null space can-

not have βh �= 0 and βP = 0 because this contradicts the condition that
[∇2

hh′�0

∇2
Ph′�0

]
is full-

column rank. Therefore, all vectors in this null space should have βP �= 0. Since βP �= 0
and ∇P′c0 is non-singular at a regular equilibrium, it should be true that ∇P′c0βP �= 0;
otherwise, we would find the contradiction that βP = 0. Given these conditions, we have
that matrix Jjoint is full-column rank if and only if, for any value of βP in Null(∇2�0), the
vector ∇P′c0βP does not belong to the column space (span) of matrix A0.

Conditions (i) and (ii) in Proposition 6 are quite intuitive identification conditions
as discussed in result (A) above. Condition (iii) has a clear interpretation in term a ma-
trix algebra but it is not intuitive from the point of view of identification. The following
corollaries of Proposition 6 are intuitive conditions which are necessary for condition
(iii) in Proposition 6.

Corollary 1. A necessary condition for condition (iii) is that the number of restrictions
c(π�P) = 0 is strictly greater than the number of parameters in π. Otherwise, A0 is a
square matrix, and given that it is nonsingular (condition (ii)) its column space includes
any vector ∇P′c0βP . Therefore, if the number of restrictions is equal to the number of pay-
off parameters, then Jjoint is full-column rank if and only if Jseq is full-column rank.

Corollary 2. A necessary condition for condition (iii) is that the number of free prob-
abilities in the distribution Q(a|x) is greater or equal than the number of structural pa-
rameters (h�π).

Ideally, we would like that the identification conditions in Proposition 6 were condi-
tions on the primitives of the model. With that type of sufficient conditions, we would
be sure that there is a subclass of DGPs where we have local joint identification without
local sequential identification. In the absence of sufficient conditions on the primitives
of the model, it is reasonable to wonder whether there are DGPs within our class of mod-
els that satisfy the necessary and sufficient conditions in Proposition 6. Unfortunately,
deriving this type of sufficient conditions on the primitives of the model is a very com-
plicated task. Instead, in the following section we study a general class of games where
sequential identification never applies. We particularize the conditions of Proposition 6
to this example, and provide more intuitive identification conditions for this case. We
also present a numerical example showing that there is a continuum of parameter val-
ues (of DGPs) for which there is not sequential identification but there is local joint iden-
tification.

5.4 Example: 2 × 2 × 2 games

Consider a game with two players, binary choice, and two points in the support of the
unobserved market heterogeneity κ. Let {A�B} be the two values of the unobserved type.
We use hA(x) to represent h(A|x), and PiA(x) and PiB(x) to represent the CCPs Pi(ai =
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1|x�κ = A) and Pi(ai = 1|x�κ = B), respectively. The vector x has two variables, z1 ∈ Z
and z2 ∈ Z , with Z ≡ {z(1)� z(2)� � � � � z(|Z|)}. We use πiA(aj� zi) and πiB(aj� zi) to represent
the payoff of player i when ai = 1 and for κ= A and κ= B, respectively.

5.4.1 Proposition 6 in 2 × 2 × 2 games First, we particularize to this model conditions
(i) to (iii) in Proposition 6.

Condition (i). “The Hessian matrix ∇2�0 is always singular.” Hall and Zhou (2003)
have proved this result for a general nonparametric finite mixture model with two in-
dependent discrete random variables (e.g., two players) and two points of support for
the unobserved heterogeneity. We briefly illustrate this result for our 2 × 2 × 2 game. Let
�x(x;hA(x)�P(x)) be the population log-likelihood conditional on a value of x, where
P(x) is the vector of CCPs (P1A(x)�P1B(x)�P2A(x)�P2B(x))′. This log-likelihood function
is

�x
(
x;hA(x)�P(x)

)
=

∑
(a1�a2)∈{0�1}2

Q(a1� a2|x) ln

[
hA(x)d

(
a1�P1A(x)

)
d
(
a2�P2A(x)

)
+ (

1 − hA(x)
)
d
(
a1�P1B(x)

)
d
(
a2�P2B(x)

)] (28)

with d(a�P) ≡ Pa(1 − P)1−a. The full log-likelihood function is �(h�P) = ∑
x∈X p(x)×

�x(x;hA(x)�P(x)). Note that the vector of parameters (hA(x)�P(x)) associated to x
enters only in the log-likelihood �x(x;hA(x)�P(x)) and not in the log-likelihood for
any other value of x. Therefore, the Hessian matrix of the complete log-likelihood
function is a block diagonal matrix of the x-specific Hessians ∇2�x(x), that is, ∇2� =
diag{∇2�x(x) : for x ∈X }. This implies that the Hessian matrix ∇2�0 is nonsingular if and
only if the Hessian matrices ∇2�x�0(x) are nonsingular for every value of x. The Hessian
evaluated at true parameter values is equal to minus the variance-covariance matrix of
the vector of scores. The variance of a random vector is singular if and only if the com-
ponents of the vector are linearly dependent with probability one. Linear dependence
always follows if the support of the random vector has fewer points than the number of
elements in the vector. In this model, the score vector has 5 components and its support
is (at most) the number of points in the support of (a1� a2) which is 4. Therefore, the
Hessian matrix is always singular in this model.

Condition (i). “Submatrix ∇2
[h�P]h′�0 is full-column rank.” As described above, the

Hessian matrix has a block diagonal structure. Therefore, submatrix ∇2
[h�P]h′�0 is equal to

diag{∇2
[h�P]h�

x�0(x) : for x ∈ X }, where ∇2
[h�P]h�

x�0(x) is the 5×1 vector (∇2
hh�

x�0�∇2
hP1A

�x�0�

∇2
hP1B

�x�0∇2
hP2A

�x�0�∇2
hP2B

�x�0)′. The condition that a vector has full-column rank is that

at least one of its elements is not zero. We show in the Appendix that ∇2
[h�P]h�

x�0 is full-
column rank if and only if PiA �= PiB for at least one of the players. Therefore, we need
that for every value of x the unobserved heterogeneity has an effect on the choice prob-
ability of at least one player. Otherwise, it is clear that the mixture weight h cannot be
identified.
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Condition (ii). “Matrix A0 is full-column rank.” For every player i, unobserved type
κ, and state variables (z1� z2) ∈ Z2, we have a constraint ciκ(z1� z2;π�P) = 0 with

ciκ(z1� z2;π�P)

≡ [
1 − Pjκ(z1� z2)

]
πiκ(0� zi)+ Pjκ(z1� z2)πiκ(1� zi)−Λ−1(Piκ(z1� z2)

)
� (29)

For a value of (i�κ� zi), we can define the |Z| × 1 vector of restrictions ciκ(zi;π�P) for ev-
ery value of zj with j �= i. Note that the vector ciκ(zi;π�P) depends on π only through the
2 × 1 vector of payoffs πiκ(zi) ≡ (πiκ(0� zi)�πiκ(1� zi))′. Furthermore, the payoff vector
πiκ(zi) only enters in the restrictions ciκ(zi;π�P) and not in restrictions for values differ-
ent to (i�κ� zi). Therefore, the Jacobian matrix A0 ≡ ∇π′c0 has a block-diagonal structure,
that is, A0 = diag{A0

iκ(zi) : for any (i�κ� zi)} where A0
iκ(zi) ≡ ∇πiκ(zi)′c

0
iκ(zi). This implies

that A0 is full-column rank if and only if every submatrix A0
iκ(zi) is full-column rank.

Taking into account the structure of the constraints in equation (29), we have that

A0
iκ(zi) =

⎡⎢⎢⎢⎢⎢⎣
1 − Pjκ

(
zi� z

(1)
j

)
� Pjκ

(
zi� z

(1)
j

)
1 − Pjκ

(
zi� z

(2)
j

)
� Pjκ

(
zi� z

(2)
j

)
���

���

1 − Pjκ

(
zi� z

(|Z|)
j

)
� Pjκ

(
zi� z

(|Z|)
j

)

⎤⎥⎥⎥⎥⎥⎦ � (30)

A necessary and sufficient condition for A0
iκ(zi) to be full-column rank is that there are

two values of zj , say z(a)j and z(b)j , such that Pjκ(zi� z
(a)
j ) �= Pjκ(zi� z

(b)
j ). Therefore, A0 is

full-column rank if this condition holds for every value of (i�κ� zi). That is, for any value
of (i�κ� zi) the probability Pjκ(zi� zj) varies with zj such that the exclusion restriction has
power.

Condition (iii). “The column space (or span) of matrix A0 does not include any of the
vectors ∇P′c0βP .” We consider here the three necessary conditions established in the
Corollaries 1 and 2.

Corollary 1: “The number of restrictions c(π�P)= 0 is strictly greater than the number
of parameters in π.” In this example, the number of restrictions is 4|Z|2 and the number
of payoff parameters is 8|Z|. Therefore, condition (iii) requires the support set Z to have
3 points or more: |Z| ≥ 3.

Corollary 2: “The number of free probabilities in the distribution Q(a|x) is greater or
equal than the number of structural parameters (h�π).” In this example, the number
of free probabilities in Q is 3|Z|2, and the number of structural parameters in (h�π) is
|Z|2 + 8|Z|. Therefore, this order condition requires |Z| ≥ 4. Note that this order condi-
tion is tighter that the one that comes from Corollary 1.

Nonsingularity of the square Jacobian matrix ∇Pc0. Let c(z1�z2�κ)(π�P) be the vec-
tor of functions ciκ(z1� z2;π�P) associated to a particular value of (z1� z2�κ), that is,
c(z1�z2�κ)(π�P) is the 2 × 1 vector (c1κ(z1� z2;π�P), c2κ(z1� z2;π�P))′. Given the expres-
sion of ciκ(z1� z2;π�P) in equation (29), we have that c(z1�z2�κ)(π�P) depends on P only
through the two probabilities P(z1�z2�κ) = (P1κ(z1� z2)�P2κ(z1� z2)). Furthermore, these
probabilities do not enter in the vector of constraints c(z′

1�z
′
2�κ

′)(π�P) for values (z′
1� z

′
2�κ

′)
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different to (z1� z2�κ). Therefore, the Jacobian matrix ∇P′c0 has a block diagonal struc-
ture: ∇P′c0 = diag{∇P(z1�z2�κ)

c0
(z1�z2�κ)

: for any value (z1� z2�κ)}. The Jacobian matrix ∇P′c0

is nonsingular if and only if every (sub) Jacobian matrix ∇P(z1�z2�κ)
c0
(z1�z2�κ)

is nonsingular.
Given equation (29), we have that this Jacobian is the following 2 × 2 matrix:

∇P(z1�z2�κ)
c0
(z1�z2�κ)

=
[

ϕ
(
P1κ(z1� z2)

)
� π1κ(1� z1)−π1κ(0� z1)

π2κ(1� z2)−π2κ(0� z2)� ϕ
(
P1κ(z1� z2)

) ]
� (31)

where ϕ( · ) is the derivative of the Quantile function (inverse CDF) of the private in-
formation variable ε.19 It is clear that this matrix is singular only if ϕ(P1κ(z1� z2))×
ϕ(P2κ(z1� z2)) = [π1κ(1� z1) − π1κ(0� z1)][π2κ(1� z2) − π2κ(0� z2)]. This condition corre-
sponds to an equilibrium that is a singularity point, as described in Definition 2. The
condition that the equilibrium is regular implies that this matrix is nonsingular.

Unfortunately, even for this relatively simple model, the complete characterization
of condition (iii), in Proposition 6, is not much simpler or intuitive than for the general
model. Therefore, we present here a specific numerical example.

5.4.2 Numerical example The following numerical example shows that there is a con-
tinuum of DGPs for the 2×2×2 game where there is joint identification of the structural
parameters but there is not sequential identification.

Description of DGPs. The distribution of the private information is logistic. The sup-
port Z of the exogenous variables zi consists of |Z| points uniformly spaced over the
interval [0�1] including the values 0 and 1. That is, Z = {0� 1

|Z|−1 �
2

|Z|−1 � � � � �
|Z|−2
|Z|−1 �1}. We

implement numerical experiments for different values of |Z|. The support of the un-
observed heterogeneity κ is {A�B} = {0�1}. In all of our experiments, the unobserved
heterogeneity is payoff relevant and there is not multiple equilibria in the DGP. For the
results that we report here, the probability distribution hA(z1� z2) = hA for any value of
(z1� z2), where hA is a constant such that there is independence between κ and (z1� z2).
Of course, this independence is not known by the researcher, who estimates all the pa-
rameters hA(z1� z2) without restrictions. We have also implemented numerical experi-
ments where the values of the probabilities hA(z1� z2) are generated as random draws
from a Uniform (0,1) distribution, and we have obtained the same identification results
as the ones reported here. In the experiments that we report here, we consider different
values for the parameter hA.

The form of the payoff functions is: πiκ(0� zi) = αi0 + αizzi + αiκκ and πiκ(1� zi) −
πiκ(0� zi)= βi0 +βizzi +βiκκ. Again, this linear form of the payoff function is not known
to the researcher, who estimates unrestricted payoff functions πiκ(aj� zi). For the results
that we report here, the values for the coefficients α and β are: α10 = −2; α1z = 5; α1κ = 1;
β10 = −2; β1z = 0; β1κ = 0; α20 = −3; α2z = 4; α2κ = 0�5; β20 = −3; β2z = 0; and β2κ = 0.
That is, π1κ(0� z1) = −2 + 5z1 + κ, π1κ(1� z1) − π1κ(0� z1) = −2, π2κ(0� z2) = −3 + 4z2 +
0�5κ, and π2κ(1� z2) − π2κ(0� z2) = −3. We can interpret this DGP as a model of market
entry because the strategic interactions πiκ(1� zi)−πiκ(0� zi) are negative. As we describe

19For instance, if Λ( · ) is the logistic function (Logit model), we have that Λ−1(p) = ln(p)− ln(1 −p) and
ϕ(p) = 1/p− 1/(1 −p).
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Figure 3. Equilibrium probabilities.

below, we have also considered DGPs where payoff parameters are randomly chosen,
and we have obtained the same identification results.

For every value of (z1� z2�κ), we compute an equilibrium by iterating simultaneously
in the best response probability functions of the two players, and using as the initial
value of this algorithm the vector of probabilities (P1�P2) = (0�0). We have always con-
verged to an equilibrium using this procedure. Figure 3 presents the equilibrium proba-
bilities for the two players for the DGP with |Z| = 4.

Local identification.20 Table 2 presents local identification results for DGPs with dif-
ferent values of |Z| and with hA = 0�7. For the Jacobian matrices Jseq, Jjoint, A0, and
∇2

[h�P]h′�0, we report their number of columns, their rank, and the minimum absolute

eigenvalue of the corresponding square matrix, for example, for the Jacobian matrix A0,
the minimum absolute eigenvalue of the square matrix A0′A0. This minimum absolute
eigenvalue is strictly greater than zero if and only if the original matrix is full-column
rank.21

In Table 2, we can see that for any value of |Z| the matrices A0 and ∇2
[h�P]h′�0 are full-

column rank such that conditions (i) and (ii) in Proposition 6 hold. Also, as we expect,
for any value of |Z| the Jacobian matrix Jseq is not full-column rank and there is not se-
quential identification. In fact, as the dimension of the state space increases, the degree
of underidentification also increases, as measured by the difference between the num-
ber of columns and the rank of matrix Jseq. As shown above, the application of Corol-
lary 2 to this 2 × 2 × 2 model implies that a necessary condition for joint identification is
that |Z| ≥ 4. This result is illustrated in Table 2: when |Z| = 3, the Jacobian matrix Jjoint

is not full-column rank. However, for any value of |Z| greater or equal than four, this
DGP has a Jacobian matrix Jjoint that is full-column rank such that there is local joint

20The code in GAUSS that we have used for the implementation of these numerical experiments can be
found at http://individual.utoronto.ca/vaguirre/wpapers/mequidata_endpaper_example.gss.

21The rank and the eigenvalues of these matrices are computed using the GAUSS commands rank and
eig, respectively.

http://individual.utoronto.ca/vaguirre/wpapers/mequidata_endpaper_example.gss
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Table 2. Numerical example of local joint identification.

Two-Players, Binary Choice, Two Unobserved Types

DGP: Parameters hA(z1� z2) are equal to 0�7 for any value of (z1� z2)

Payoffs: πiκ(0� zi) = αi0 + αizzi + αiκκ, and πiκ(1� zi)−πiκ(0� zi)= βi0 +βizzi +β1κκ, with
α10 = −2, α1z = 5, α1κ = 1, β10 = −2, β1z = 0, β1κ = 0, α20 = −3, α2z = 4, α2κ = 0�5, β20 = −3,
β2z = 0, β2κ = 0

|Z| Matrix Jseq Matrix Jjoint Matrix A0 Matrix ∇2
[h�P]h′�0

|Z| = 3 columns 69 69 24 9
rank 51 63 24 9
min abs eig. 8�7 ∗ 10−18 7�4 ∗ 10−18 0�0111 0�4066

|Z| = 4 columns 112 112 32 16
rank 80 112 32 16
min abs eig. 5�6 ∗ 10−18 2�8 ∗ 10−5 0�0119 0�4066

|Z| = 12 columns 816 816 96 144
rank 528 816 96 144
min abs eig. 6�6 ∗ 10−18 6�3 ∗ 10−4 0�0211 0�3876

|Z| = 20 columns 2160 2160 160 400
rank 1360 2160 160 400
min abs eig. 1�4 ∗ 10−18 1�9 ∗ 10−3 0�0313 0�3877

identification without sequential identification. Furthermore, for |Z| ≥ 4, the minimum
absolute eigenvalue of (Jjoint)

′Jjoint increases with |Z| such that identification becomes
“stronger.”22

This numerical example illustrates that there are DGPs where the conditions
of Proposition 6 hold. Still, it might be possible that there is only a finite num-
ber of DGPs where these conditions hold such that the conditions of Proposition 6
do not hold generically. To show that this is not the case, we have implemented
two types of numerical experiments. First, we consider a set of 100 DGPs with the
same parameter values as those in the DGP in Table 2 expect for parameters hA

and α10 that are changed marginally. Remember that in the DGP Table 2, we have
(hA�α1z) = (0�7�5). Then, in this experiment we consider 100 DGPs where the values
of (hA�α1z) are those in the grid {0�65�0�66�0�67�0�68�0�69�0�71�0�72�0�73�0�74�0�75} ×
{4�95�4�96�4�97�4�98�4�99�5�01�5�02�5�03�5�04�5�05}. For all of these DGPs, we obtain the
same identification results as in Table 2. The second experiment consists of 100 DGPs
where the values of the probabilities hA(z1� z2) are independent random draws from a
Uniform(0�1) distribution, and the values of the payoffs πiκ(aj� zi) are independent ran-
dom draws from a Normal(0�1) distribution. Again, for all these 100 “random” DGPs we
obtain the same identification results as in Table 2. We interpret these results as evidence
that there is a continuum of DGPs where the conditions of Proposition 6 hold.

22For |Z| ≥ 4, the minimum absolute eigenvalue of matrix (Jjoint)
′Jjoint is small. However, there is a sub-

stantial difference, of several orders of magnitude, between the computed minimum absolute eigenvalues
of matrices (Jseq)

′Jseq and (Jjoint)
′Jjoint. Similarly, there is the same order of magnitude in the difference

between the minimum absolute eigenvalues of the matrices (Jjoint)
′Jjoint when |Z| = 3 and when |Z| ≥ 4.

Therefore, there is a clear cut between identification and no-identification in this numerical example.
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6. Conclusion

In empirical applications of games of incomplete information, we typically find that
conditional on observable exogenous variables players’ actions are correlated. One pos-
sible interpretation of this correlation is that common knowledge unobservables are
present. Some of these unobservables may be payoff relevant while others may be
“sunspots” that affect players’ beliefs and the selected equilibrium but do not have a
direct effect on players’ payoffs. This paper is motivated by the following question: is it
possible to separate empirically the contribution of unobservables that affect the selec-
tion of an equilibrium in the data (i.e., nonpayoff relevant unobservables or “sunspots”)
from the contribution of unobservables that are payoff-relevant? Is it possible to con-
clude that we need multiple equilibria to explain players’ observed behavior?

We investigate this question by studying semiparametric identification of games
when we allow for three types of unobserved heterogeneity for the researcher: payoff-
relevant variables that are private information of each player (PI unobservables); payoff-
relevant variables that are common knowledge to all the players (PR unobservables);
and variables that are common knowledge to all the players, are not payoff-relevant but
affect the equilibrium selection (multiple equilibria or ME unobservables). Two types
of restrictions are crucial for our identification results: independence between private
players’ private information, and a exclusion restriction in the payoff function.

We show that implementation of a sequential identification/estimation approach
requires that the researcher be able to match unobserved types across different val-
ues of the explanatory variables. We show that this problem of matching unobserved
types can also appear in the sequential estimation of single-agent models. We provide
necessary and sufficient conditions for the identification of payoffs in step 2 under this
matching-type problem. We also show that some restrictions on the primitives (e.g., ad-
ditive separability of the unobservables in the payoff function) are sufficient conditions
for identification.

Our results show that it is possible to separately identify the relative contributions of
payoff-relevant and multiple equilibria unobserved heterogeneity to observed players’
behavior. As De Paula and Tang (2012) and others have shown, multiplicity of equilibria
can help identify some elements of the structure such as the sign of strategic interac-
tions. However, without the exclusion restrictions that are needed to identify payoffs, it
does not seem possible for the researcher to ascertain ex-ante that the correlation be-
tween the actions of players is induced by the occurrence of multiple equilibria in the
data.

Appendix

A.1 Proof of Lemma 1

Proof. The proof of Lemma 1(A) is in the spirit of the proof in Mas-Colell, Whinston,
and Green (1995; Propositions 17.D.3, 17.D.4, and 17.D.5, pp. 595–596) of the genericity
of a finite set of equilibria in a competitive exchange economy. It is also similar to the
proof of Theorem 1 in Doraszelski and Escobar (2010) though our model is different
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because it is static and with incomplete information. The basic mathematical tools for
our proof are the transversality theorem, the Hotz–Miller inversion theorem, and the
implicit function theorem. We start enunciating the transversality theorem.

Transversality theorem (Mas-Colell, Whinston, and Green (1995; Proposition
17.D.3, p. 595)). Let U ⊆ R

n and Θ ⊆ R
q be open sets, and let f : Θ × U → R

n be con-
tinuously differentiable. Suppose that the Jacobian matrix ∂f (θ�u)/∂(θ′�u′) has rank n

for all values (θ�u) ∈ Θ × U with f (θ�u) = 0. Then, for almost every θ ∈ Θ, the Jacobian
∂f (θ�u)/∂u′ has rank n for every u ∈ U with f (θ�u) = 0.

We now proceed with the proof of Lemma 1. Define n ≡ NJ and q = NJ(J + 1)N−1,
let P ⊂ R

n be the open set of players’ choice probabilities P, and let Π ⊂ R
q be the open

set of payoff parameters π. Our equilibrium mapping f (π�P) is f : Π × P → R
n, and it

is continuously differentiable.

Proof of Lemma 1(A). It proceeds in four parts, [i] to [iv].

[i] Remember that Ψ(π�P) = {Ψi(πi�P−i) : i ∈ ×I} with Ψi(πi�P−i) = {Ψi(ai|πi�

P−i) : ai �= 0} and where Ψi(ai|πi�P−i) is the choice probability for alternative ai in the
Random Utility Model (RUM) ai = arg maxk∈A[ui(k) + εi(k)] with ui(k) ≡∑

a−i
(
∏

j �=i Pj(aj))πi(k�a−i). Note that ui(0) = 0 because πi(0�a−i) = 0. Let ui be the
J × 1 vector of utilities {ui(k) : k �= 0}. We can represent the vector-valued best response
function Ψi(πi�P−i) as a function from the vector of J utilities ui into a vector of J choice
probabilities Pi. We can make this structure more explicit by representing function
Ψi(πi�P−i) as Λi(ui) where function Λi( · ) is the function that maps utility (differences)
into choice probabilities in a RUM. The form of function Λi depends of the joint CDF of
the random components εi. Hotz–Miller (1993, Proposition 1) establish that if the CDF
of the vector εi is continuously differentiable with respect to the Lebesgue measure in
the Euclidean space R

J (our Assumption 1(B)), then function Λi( · ) is invertible at every
point ui. That is, for any player i and for any ui ∈ R

J , the Jacobian matrix is DuiΛi is
nonsingular, that is, its rank is equal to J.

[ii] Let πi ≡ {πi(ai�a−i) : ai �= 0�a−i ∈ AN−1} be the vector of payoffs for player i.
For this proof, it is convenient to represent this vector in terms of two subvectors:
πi = (αi�βi) where αi is a vector of dimension J defined as αi = {πi(ai�0) : ai �= 0}, and
βi is a vector of dimension J[(J + 1)N−1 − 1] defined as βi = {πi(ai�a−i)−πi(ai�0) : ai �=
0�a−i ∈ AN−1�a−i �= 0}. That is, (αi�βi) is reparameterization of πi, and this reparame-
terization is without loss of generality. Using these definitions, taking into account the
structure of the utilities ui(ai) defined in point [i] above, and given that

∏
j �=i Pj(0) = 1 −∑

a−i �=0(
∏

j �=i Pj(aj)), we have that ui(ai) = αi(ai)+ ∑
a−i �=0(

∏
j �=i Pj(aj))βi(ai�a−i), or in

vector form ui = αi + H(P−i)βi, where H(P−i) is a matrix with probabilities
∏

j �=i Pj(aj).
Using this notation, we have that Ψi(πi�P−i) = Λi(ui) = Λi(αi + H(P−i)βi). Given this
structure, it is clear that the Jacobian matrix DαiΨi is equal to the Jacobian DuiΛi. There-
fore, by the result [i] above, we have that for any player i and for any (αi�βi�P−i) the
Jacobian matrix DαiΨi is nonsingular and it has rank J.
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[iii] Let α and β be the vectors with the αi’s and βi’s for every player such that π =
(α�β). We can represent f (π�P) as f (α�β�P) with f (α�β�P)= P − {Λi(αi + H(P−i)βi) :
i ∈ I}. Since the vector of payoffs αi enters in the best response function of player i,
Λi, but not in the best responses of players other than i, we have that the Jacobian ma-
trix Dαf ≡ ∂f (α�β�P)/∂α′ is a block diagonal matrix where each block corresponds to
−DαiΨi for each player i. Therefore, the previous result in [ii] that rank[DαiΨi] = J im-
plies that at every point (α�β�P) the rank of Dαf is equal to n = NJ. In turn, this im-
plies that the Jacobian matrix Dα�β�Pf ≡ ∂f (α�β�P)/∂(α′�β′�P′) has rank n = NJ for any
value (α�β�P).

[iv] Previous result [iii] provides the condition we need to apply the transversality
theorem to our model. Therefore, by the transversality theorem, we have that for al-
most every (α�β) the Jacobian ∂f (α�β�P)/∂(α′�β′�P′) has rank NJ for every P ∈ P with
f (α�β�P) = 0. That is, for almost every vector of payoffs π the set of equilibria (π)

includes only regular equilibria.

Proof of Lemma 1(B). Given π, an equilibrium P is locally unique or isolated if there
is a small scalar δ > 0 such that if P′ �= P and ‖P′ − P‖ < δ then f (π�P′) �= 0 (Mas-
Colell, Whinston, and Green(1995, p. 590)). First, we show that the implicit function the-
orem implies that every regular equilibrium is isolated. For a regular equilibrium, the
nonsingularity of the Jacobian DPf implies that DPfdP �= 0 for any vector of infinites-
imal changes dP. Therefore, keeping π constant, we cannot remain in equilibrium if
P′ = P + dP, that is, given π fixed, a regular equilibrium P is isolated. This implies that if
the set of equilibria (π) contains only regular equilibria, then this set is discrete. Now,
given that the set of CCPs P is (0�1)NJ that is bounded, we have that the set of regular
equilibria (π)is discrete and bounded, and a discrete and bounded set is finite (The-
orem M.F.3 in section M.F. of the mathematical Appendix in Mas-Colell, Whinston, and
Green (1995)).

Proof of Lemma 1(C). Let (π0�P0) be a regular equilibrium. The implicit function the-
orem applied to f (π0�P0)= 0 implies that there is a continuously differentiable function
that relates P and π in a neighborhood of the equilibrium (π0�P0). Suppose that (π1�P1)

is an equilibrium that belongs to this neighborhood. Then, by continuity of the implicit
function, there is a continuous path {P[t] : t ∈ [0�1]} with f ([1 − t]π0 + tπ1�P[t]) = 0
for every t ∈ [0�1]. By the definition of equilibrium type, this means that (π0�P0) and
(π1�P1) belong to the same type. The equilibrium type of (π0�P0) is described by the set
of equilibria in the neighborhood of (π0�P0) for which the implicit function exists.

A.2 2 × 2 × 2 game

This Appendix presents the expressions for the Hessian matrix ∇2�0 and the Jacobian
matrices ∇P′c0 and A0 for the 2×2×2 game. We can represent the log-likelihood function
�x(x;hA(x)�P(x)) as

�x
(
x;hA(x)�P(x)

) =
∑

(a1�a2)∈{0�1}2

Q(a1� a2|x) ln
[
Qθ

(
a1� a2|x;hA(x)�P(x)

)]
� (A.1)
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where Qθ( · ) represents the distribution of (a1� a2) conditional to x predicted by the

model,

Qθ
(
a1� a2|x;hA(x)�P(x)

)
≡ hA(x)d

(
a1�P1A(x)

)
d
(
a2�P2A(x)

) + (
1 − hA(x)

)
d
(
a1�P1B(x)

)
d
(
a2�P2B(x)

)
(A.2)

with d(a�P) ≡ [P]a[1−P]1−a. For notational simplicity, in the expressions below we omit

x as an argument, but we refer all the time to the log-likelihood �x(x;hA(x)�P(x)).
In the likelihood �x(hA�P), the vector of scores is:

∂ lnQθ(a1� a2|hA�P)
∂[hA�P]

= 1

Qθ(a1� a2|hA�P)

×

⎡⎢⎢⎢⎢⎢⎣
d(a1�P1A)d(a2�P2A)− d(a1�P1B)d(a2�P2B)

hA(2a1 − 1)d(a2�P2A)

(1 − hA)(2a1 − 1)d(a2�P2B)

hAd(a1�P1A)(2a2 − 1)
(1 − hA)d(a1�P1B)(2a2 − 1)

⎤⎥⎥⎥⎥⎥⎦ � (A.3)

The Hessian, evaluated at true parameter values, is equal to negative expected value of

outer product of the scores, that we can represent as

−∇2�x�0 =
∑

(a1�a2)∈{0�1}2

1
Q(a1� a2)

∂Qθ
(
a1� a2|h0

A�P0)
∂[hA�P]

∂Qθ
(
a1� a2|h0

A�P0)
∂[hA�P]′ � (A.4)

The first column of the Hessian matrix is −∑
(a1�a2)∈{0�1}2 Q(a1� a2)

−1∂Qθ/∂[hA�P]∂Qθ/

∂hA. Applying equation (A.4), we have that

−∇2�x�0[h�P]h =
[
(1 − P1A)(1 − P2A)− (1 − P1B)(1 − P2B)

]
Q(0�0)

×

⎡⎢⎢⎢⎢⎢⎣
(1 − P1A)(1 − P2A)− (1 − P1B)(1 − P2B)

−hA(1 − P2A)

−(1 − hA)(1 − P2B)

−hA(1 − P1A)

−(1 − hA)(1 − P1B)

⎤⎥⎥⎥⎥⎥⎦

+
[
(1 − P1A)P2A − (1 − P1B)P2B

]
Q(0�1)

⎡⎢⎢⎢⎢⎢⎣
(1 − P1A)P2A − (1 − P1B)P2B

−hAP2A

−(1 − hA)P2B

hA(1 − P1A)

(1 − hA)(1 − P1B)

⎤⎥⎥⎥⎥⎥⎦
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+
[
P1A(1 − P2A)− P1B(1 − P2B)

]
Q(1�0)

⎡⎢⎢⎢⎢⎢⎣
P1A(1 − P2A)− P1B(1 − P2B)

hA(1 − P2A)

(1 − hA)(1 − P2B)

−hAP1A

−(1 − hA)P1B

⎤⎥⎥⎥⎥⎥⎦

+ [P1AP2A − P1BP2B]
Q(1�1)

⎡⎢⎢⎢⎢⎢⎣
P1AP2A − P1BP2B

hAP2A

(1 − hA)P2B

hAP1A

(1 − hA)P1B

⎤⎥⎥⎥⎥⎥⎦ � (A.5)

The vector ∇2�
x�0
[h�P]h has full-column rank (i.e., rank 1) if and only if it has at least one

element different to zero. Consider the first element of this vector:

−∇2�x�0hh =
[
(1 − P1A)(1 − P2A)− (1 − P1B)(1 − P2B)

]2

Q(0�0)

+
[
(1 − P1A)P2A − (1 − P1B)P2B

]2

Q(0�1)

+
[
P1A(1 − P2A)− P1B(1 − P2B)

]2

Q(1�0)

+ [P1AP2A − P1BP2B]2

Q(1�1)
� (A.6)

It is the sum of four components that are greater or equal to zero. Therefore, ∇2�
x�0
hh is

equal to zero only if its four components are zero. It is straightforward to show that these
four restrictions hold only if P1A = P1B and P2A = P2B. Also, taking into account (A.5), we
can see that if P1A = P1B and P2A = P2B, then ∇2�x�0[h�P]h is a vector of zeroes. Therefore,

−∇2�x�0[h�P]h is full-column rank if and only if PiA �= PiB for at least one of the players.
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