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SWAPPING THE NESTED FIXED POINT ALGORITHM: A CLASS
OF ESTIMATORS FOR DISCRETE MARKOV

DECISION MODELS

By Victor Aguirregabiria and Pedro Mira1

This paper proposes a new nested algorithm (NPL) for the estimation of a class of dis-
crete Markov decision models and studies its statistical and computational properties. Our
method is based on a representation of the solution of the dynamic programming problem
in the space of conditional choice probabilities. When the NPL algorithm is initialized with
consistent nonparametric estimates of conditional choice probabilities, successive iterations
return a sequence of estimators of the structural parameters which we call K-stage policy
iteration estimators. We show that the sequence includes as extreme cases a Hotz-Miller
estimator (for K = 1) and Rust’s nested fixed point estimator (in the limit when K→�).
Furthermore, the asymptotic distribution of all the estimators in the sequence is the same
and equal to that of the maximum likelihood estimator. We illustrate the performance of
our method with several examples based on Rust’s bus replacement model. Monte Carlo
experiments reveal a trade-off between finite sample precision and computational cost in
the sequence of policy iteration estimators.

Keywords: Discrete Markov decision models, nested algorithms, policy iteration,
maximum pseudo-likelihood estimators.

1� introduction

Over the last two decades, there has been considerable progress in the
econometrics of discrete choice dynamic programming models. The estimation
of these models has enhanced our understanding of individual and firm behav-
ior and it has proved a useful tool in the quantitative assessment of public policy
proposals in numerous areas.2 However, the computational burden of estima-
tion has been an important constraint with substantial implications for empiri-
cal work: the model specification has to be very parsimonious in terms of state
variables and time-invariant explanatory variables and this may lead to impor-
tant misspecifications. Thus a major contribution of Rust (1987, 1988) was to
introduce the conditional independence assumption and the nested fixed point algo-
rithm (NFXP). The former defined a class of models in which the cost of mul-
tiple integration over unobserved state variables and the dimensionality of the

1 We are grateful to Miguel Delgado, Bob Miller, Ariel Pakes, John Rust, seminar participants at
Universidad Carlos III, Carnegie Mellon University, CREST, University of Chicago, the referees and
the editor for their useful comments. The Gauss code with the estimation procedures in this paper
can be found at the web address: http://people.bu.edu/vaguirre/programs/npl.html.
2 See Wolpin (1996). For excellent surveys on the structural estimation of dynamic discrete choice

models and their empirical applications, see Eckstein and Wolpin (1989), Pakes (1994), Rust (1994b),
and Miller (1997).
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dynamic programming problem were greatly reduced; the latter described how
to obtain maximum likelihood estimates. His work resulted in a spate of appli-
cations; examples include Rust (1987), Ahn (1995), Rust and Phelan (1997), and
Gilleskie (1998).3 NFXP is a full solution method that re-solves the fixed point
problem in value function space at each parameter value, and derives the choice
probabilities from the fixed point. Hotz and Miller (1993) pioneered an even sim-
pler estimator than NFXP for this class of problems. They observed that it is not
necessary to fully solve the fixed point problem in order to estimate the structural
parameters. Since there is a one to one mapping between the normalized value
functions and conditional choice probabilities, nonparametric estimates of choice
probabilities can be inverted into nonparametric estimates of the value functions
and these estimates can be combined with the current period utility functions to
obtain new choice probabilities that do not require solving the fixed point prob-
lem.4 Hotz and Miller showed that minimizing a sample criterion function based
on these choice probabilities leads to a consistent, asymptotically normally dis-
tributed estimator, i.e., the conditional choice probabilities estimator (CCP). The
CCP estimator has been used in empirical applications by Hotz and Miller (1993),
Slade (1998), Altug and Miller (1998), and Aguirregabiria (1999), among others.
Previous conventional wisdom was that the CCP estimator achieved a signifi-

cant computational gain at the expense of efficiency, both in finite samples and
asymptotically.5 Thus, researchers had the choice between two extremes: a full
solution NFXP estimator with the attendant computational burden, or the much
faster but less efficient CCP estimator. In this paper we propose a new estima-
tion procedure that bridges the gap between these two estimation strategies. In
particular, we show that an appropriately formed CCP estimator is asymptoti-
cally equivalent to the NFXP estimator and that for any finite sample a recursive
extension of this particular CCP estimator delivers the NFXP estimator.
We build on Hotz and Miller’s work to show that the original fixed point prob-

lem in “value function space” can be reformulated as a fixed point problem in
“probability space.” That is, for any value of the structural parameters � we prove
that the vector of conditional choice probabilities P� associated with the solution
of the dynamic programming problem can be obtained as the unique fixed point
of a mapping in probability space: P� =���P��. Moreover, at the fixed point P�
the Jacobian matrix of �� is always zero: ����P��/�P = 0. The policy iteration
mapping ���P� is the cornerstone of our estimation procedure and the “zero

3 The Conditional Independence Assumption restricts the structure of serial correlation of unob-
served state variables. See Miller (1984), Pakes (1986), and Berkovec and Stern (1991) for early
examples of applications that modeled important sources of unobserved heterogeneity. Keane and
Wolpin (1994, 1997) developed a simulation and interpolation method that has been used to obtain
approximate maximum likelihood estimates for models with serially correlated unobservables.
4 Magnac and Thesmar (2002) exploit this insight to analyze nonparametric identification of this

class of models. A similar estimation method that avoids nested solution of the dynamic programming
problem was proposed by Manski (1991, 1993).
5 See previous discussions on efficiency of the CCP estimator by Eckstein and Wolpin (1989), and

Rust (1994a, p. 154), and the Monte Carlo study by Hotz et al. (1994).
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Jacobian property” is the key to its finite sample and asymptotic properties. In
our nested pseudo-likelihood algorithm (NPL) the inner algorithm maximizes in
� a pseudo-likelihood function based on choice probabilities ���P� where P is
an estimate of choice probabilities. The outer algorithm is a fixed point algo-
rithm that computes ���P� at the current parameter estimates to update the
estimate of P . When the NPL algorithm is initialized with consistent nonpara-
metric estimates of conditional choice probabilities, successive iterations return
a sequence of estimators of the structural parameters that we call K-stage policy
iteration (PI) estimators. We show that the sequence includes as extreme cases a
CCP estimator (for K = 1) and a root of the likelihood equations (in the limit
when K→�). Furthermore, the asymptotic distribution of all the estimators in
the sequence is the same and equal to that of the NFXP estimator. The intu-
ition behind this result is quite simple. The maximum likelihood estimator is the
value of � that maximizes a likelihood function with choice probabilities P�. The
class of PI estimators recasts the estimation problem in terms of choice prob-
abilities ���P ∗�, where P ∗ represents the true (population) conditional choice
probabilities. These are treated as “nuisance” parameters and replaced by root-n
consistent and asymptotically normal estimates at each stage. However the zero
Jacobian property has the double implication that: (i) the pseudo-information
matrix is block-diagonal in the parameters of interest and the nuisance parame-
ters; and (ii) the score and pseudo-score variables are identical at the true param-
eter values. It follows from (i) that the asymptotic distribution of the K-stage PI
estimator does not depend on the asymptotic distribution of the estimator of the
nuisance parameters in P ∗, and from (ii) that this asymptotic distribution is the
same as that of the ML estimator.
Therefore contrary to conventional wisdom a particular CCP estimator is

asymptotically equivalent to the maximum likelihood estimator. If we are only
concerned about computation costs we might as well stop at K = 1. However,
the finite sample performance of a PI estimator might depend on the number
of stages K. We illustrate the potential trade-off between finite sample precision
and computational cost with several Monte Carlo experiments based on Rust’s
bus replacement model. We find that the finite sample properties of the estimator
do indeed improve monotonically with K. Also, the benefits of using the 2-stage
PI estimator instead of the 1-stage estimator are very significant, but the addi-
tional gains in precision obtained by using the ML estimator instead of 2-stage
PI are small.
Finally, we also compare the computational cost of the NFXP and NPL algo-

rithms for maximum likelihood estimation. We may want to obtain ML estimates
out of concern about finite sample properties of CCP and K-stage PI estimators,
or it may be that initial nonparametric estimates of conditional choice probabili-
ties are not available.6 In this case our NPL algorithm can be initialized with an

6 For instance, this is the case when there is unobserved time-invariant heterogeneity in individual’s
preferences, or when there are unobservable aggregate shocks.
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arbitrary vector of choice probabilities. Although it is clear that it will not return a
sequence of consistent estimators of structural parameters, on convergence it will
still produce a root of the likelihood equations. Both NPL and NFXP are nested
algorithms that combine a (pseudo) likelihood climbing routine with fixed point
iterations that solve the dynamic programming problem. By swapping the nesting
of the two algorithms NPL avoids repeated solution of the dynamic programming
problem at the expense of a larger number of pseudo-likelihood climbing itera-
tions. Therefore, it is intuitive that NPL may be faster than NFXP if fixed point
iterations are more costly than pseudo-likelihood climbing iterations. This was
indeed the case in our experiments with Rust’s bus replacement model, where
NPL produced ML estimates 5 to 15 times faster than NFXP.
The rest of the paper is organized as follows. In Section 2 we first review a

class of discrete Markov decision processes and several useful results inherited
from the literature; we then define the Policy Iteration operator and establish
its properties. In Section 3 we describe the NPL algorithm and show that on
convergence it is equivalent to NFXP. In Section 4 we introduce the class of
K-stage PI estimators and we obtain their asymptotic properties. Section 5 com-
pares the performance of the NFXP and NPL algorithms using the bus engine
data set in Rust (1987) and presents a Monte Carlo study that illustrates the pre-
cision in finite samples of the different policy iteration estimators. We conclude
in Section 6 with a summary of our results. Proofs of propositions are provided
in the Appendix.

2� discrete markov decision processes

2�1� Definitions and Assumptions

We define a discrete decision process and present our basic assumptions.
There are two types of variables: the vector of state variables s and a control
variable a that belongs to a finite set of mutually exclusive choice alternatives
A = �1�2� � � � � J �. Time is discrete and it is indexed by t. At each period t an
agent observes st and chooses at in order to maximize the expected sum of cur-
rent and future discounted utilities. Future values of some state variables are
uncertain for the agent. His beliefs about uncertain future states can be repre-
sented by a Markov transition probability p�st+1�st� at�. The time horizon of the
decision problem is infinite. Utility is time separable and u�st� at� represents the
one-period utility function. The parameter � ∈ �0�1� is the time discount factor.
Under certain regularity conditions, Blackwell’s theorem establishes the fol-

lowing properties. First, there exists a stationary, Markovian optimal decision
rule ��st�: the decision at period t is the same as the decision at period t+ j
if st = st+j . Therefore, we omit the subindex t for the rest of this section
and we use s′ to denote the vector of next period’s state variables. Second,
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��s�= argmaxa∈A�u�s�a�+�
∫
V �s′�p�ds′�s� a�� where the value function V �� is

the unique solution of the Bellman equation:7

V �s�=max
a∈A

{
u�s�a�+�

∫
V �s′�p�ds′�s� a�

}
�(1)

We assume that the researcher knows the utility and the transition probabil-
ity functions up to a vector of parameters �. From an econometric point of view
we distinguish two types of state variables: s = �x� ��. The subvector x groups
variables that are observed by both the agent and the researcher, whereas the
subvector � includes those state variables that are observed only by the agent.
Given data on observable state variables and the actual choices made by agents,
our goal is to obtain an estimate of �. We introduce two assumptions concern-
ing the role of observable and unobservable state variables that have been widely
used in the literature (see Rust (1994b)). These assumptions contribute to sim-
plify the estimation problem considerably. Although the primitives and operators
introduced here are all functions of the parameter vector �, in this section we
are mostly concerned with their properties for a given �; we therefore omit it as
an argument in order to simplify the notation.

Assumption 1 (Additivity): The one period utility function is additively separa-
ble in the observable and unobservable components: u�s�a�= u�x�a�+��a�, where
��a� is the ath component of the J ×1 vector �. The support of ��a� is the real line
for all a.

Assumption 2 (Conditional Independence): The transition probability of the
state variables factors as p�x′� �′�x�a� �� = g��′�x′�f �x′�x�a�, where g��� has finite
first moments and is continuous and twice differentiable in �′.

Assumption 3 (Finite Domain of Observable State Variables): x ∈ X =
�x1� � � � � xM�.

We can exploit Assumptions 1–2 to obtain versions of the value functions and
the Bellman operator in which the unobservables are integrated out. These ver-
sions will prove more useful than equation (1) in the analysis of the estimation
problem. Let V!�x� hereafter denote the expectation of the value function con-
ditional on the state variables x " V!�x�≡

∫
V �x� ��g�d��x�, where ! represents

parameters that characterize the distribution of the �′s. Under Assumptions 1–3,
V! solves the smooth Bellman equation:

V!�x�=
∫
max
a∈A

[
u�x�a�+��a�+�∑

x′
V!�x

′�f �x′�x�a�
]
g�d��x��(2)

The smoothed Bellman operator #!��� defined by the right-hand side of this
functional equation is a contraction mapping (see the proof of Proposition l(a)
in the Appendix). It follows that V! is its unique fixed point: V! = #!�V!�.
7 In this paper the current period utility is not bounded. This requires a generalization of

Blackwell’s Theorem. See Rust (1988).
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The conditional choice probability P�a�x� is the probability that alternative a is
the optimal choice given the vector of observable state variables x:

P�a�x�=
∫
I
{
a= argmax

j∈A
%v�x� j�+ ��j�'

}
g�d��x�(3)

where v�x�a� is the choice-specific value function u�x�a�+�∑x′ V!�x′�f �x′�x�a�.
2�2� From Conditional Choice Probabilities to Value Functions

We now review several results that relate conditional choice probabilities and
value functions. In the next subsection we build on these results to show how
the original fixed point problem resulting from the Bellman equation in “value
space” can be solved using an operator in “probability space.”

First, it can be shown that the choice probabilities conditional on any value of
x are uniquely determined by the vector of normalized value functions or utility
differences �ṽ�x�a� " a > 1�, where ṽ�x�a� is defined as v�x�a�−v�x�1�. That is,
there exists a vector mapping Qx��� such that �P�a�x� " a > 1�=Qx��ṽ�x�a� " a >
1��, where, without loss of generality, we exclude the probability of alternative
one. For instance, if unobservables have independent-across-alternatives extreme
value distributions, the jth component of this function takes the well known
logistic form Qjx��ṽ�x�a���= exp�ṽ�x� j�/!� %1+∑Ja=2 exp�ṽ�x�a�/!�'−1.
A general representation of the mapping Qx�� can be obtained from

McFadden’s (1981) social surplus function:

S��v�x�a��a ∈A��x�=
∫
max
a∈A

[
v�x�a�+ ��a�]g�d��x��(4)

The social surplus function computes expected utility, in the multinomial
choice-random utility framework, as a function of the set of choice-specific util-
ities. Clearly, V!�x�= S��v�x�a��a ∈A��x�. The Williams-Daly-Zachary (WDZ)
theorem establishes the following properties of the social surplus function:8 (i)
it is strictly convex; (ii) it is additive: for any scalar +�S�++ �v�x�a���x� =
++ S��v�x�a���x�; and (iii) its gradient is equal to the vector of conditional
choice probabilities: P�a�x�= �S��v�x�a���x�/�v�x�a�. Using properties (ii) and
(iii) we obtain the representation Qjx��ṽ�x�a� " a > 1�� = �S�%0� �ṽ�x�a� " a >
1�'� x�/�v�x� j�.

Second, Hotz-Miller’s invertibility proposition states that continuous differentia-
bility and the strict convexity of the social surplus function imply that, for every
x�Qx�� is invertible.

Third, Hotz and Miller (1993) also showed how invertibility can be exploited
to obtain alternative representations of the value function in terms of choice

8 See Rust (1994b, Theorem 3.1, and references therein). The strict convexity of the social surplus
function is actually a strengthening of the WDZ theorem which follows from the unbounded support
and continuity of the distribution of unobservables.
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probabilities. We now restate one such representation in our framework.9 First,
notice that the Bellman equation (2) can be rewritten as

V!�x�=
∑
a∈A
P�a�x�

{
u�x�a�+E%��a� � x�a'+�∑

x′
f �x′�x�a�V!�x′�

}
(5)

where E%��a� � x�a' is the expectation of the unobservable ��a� conditional on
the optimal choice of alternative a:

E%��a� � x�a'= %P�a�x�'−1
∫
��a�I

{
ṽ�x�a�+ ��a�≥ ṽ�x� j�(6)

+��j�� j ∈A}g�d��x��
Clearly, the conditional expectations E%��a���' are functions of the utility dif-
ferences ṽ�x�a�. Since the mapping Qx from utility differences into choice
probabilities is invertible, it follows that these conditional expectations can be
expressed as functions of the choice probabilities. We denote these functions by
ex�a� �P�j�x���. In the case of extreme value unobservables they have the closed
form ex�a� �P�j�x���= .− ln�P�a�x�� where . is Euler’s constant. Let us substi-
tute these functions into (5) and stack the M equations for each possible value
of x. In compact matrix notation we get

V! =
∑
a∈A
P�a�∗ %u�a�+e�a�P�+�F �a�V!'(7)

where ∗ is the Hadamard (or element-by-element) product; V! is the M × 1
vector describing the value function V!�x�; P is the M�J −1�×1 vector of con-
ditional choice probabilities, alternative one excluded; P�a��u�a�, and e�a�P�
are M × 1 vectors that stack the corresponding elements at all states for alter-
native a; and F �a� is the M ×M matrix of conditional transition probabilities
f �x′�x�a�. This system of fixed point equations can be solved for the value func-
tion to obtain V! as a function of P :

V! = 0�P�= �IM −�F U�P��−1
{∑
a∈A
P�a�∗ %u�a�+e�a�P�'

}
(8)

where F U�P�=∑a∈A P�a�∗F �a� is theM×M matrix of unconditional transition
probabilities induced by P .

2�3� The Fixed Point Problem in Probability Space

We now introduce a policy iteration operator � in the space of conditional
choice probabilities. This operator is the cornerstone of our estimation algorithm.
In the preceding subsections we defined conditional choice probabilities in terms

9 The representation we restate here is one of two representations proposed by Hotz-Miller for
finite horizon models; it was used by Aguirregabiria (1999) in an infinite horizon Markov model. See
our comment on the alternative representation in Section 4.
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of the value function in equation (3) and we showed that the value function can
be written in terms of conditional choice probabilities in equation (8). Substitut-
ing equation (8) into equation (3) for all choices and states we get:

P =��P�≡2�0�P���(9)

0�� is a policy valuation operator that maps anM�J −1�×1 vector of conditional
choice probabilities into an M×1 vector in value function space using Hotz and
Miller’s representation. 2�� is a policy improvement operator that maps anM×1
vector in value function space into an M�J −1�×1 vector of conditional choice
probabilities. It stacks all choice probabilities associated with the value function,
as defined in equation (3).
The policy iteration operator � can be evaluated at any vector of conditional

choice probabilities, optimal or not. For an arbitrary vector of choice probabili-
ties P 0, the valuation operator 0�P 0� returns the value function corresponding
to the arbitrary behavior represented by P 0. For an arbitrary vector of values,
say V 0! , the policy improvement mapping 2�V

0
! � returns the optimizing agent’s

choice probabilities under the assumption that expected utilities as of next period
are given by the vector V 0! . Thus the composite mapping ��P

0� should be inter-
preted as giving the current optimal choice probabilities of an agent whose future
behavior will be to randomize over alternatives according to P 0.10

Notice that by the definitions in equations (3) and (8) we have that V! = 0�P�
and P =2�V!�; therefore it is clear that the set of optimal choice probabilities P
is a fixed point of � . Thus the original fixed point problem in “value space” can
be reformulated as a fixed point problem in “probability space.” The following
propositions establish the relationship between the two fixed point problems and
an important property of the policy iteration operator.

Proposition 1: Under Assumptions 1–3:
(a) � has a unique fixed point P .
(b) The sequence PK =��PK−1�, K = 1� � � � ��, converges to P for any P 0.
(c) Equivalence of � and Newton iterations: For any P 0, consider the pair of

linked sequences �V K! �P
K� defined by VK! = 0�PK��PK+1 =2�VK! �. Clearly, PK =

��PK−1�. Then, �V K! � is the sequence of Newton iterations converging to the unique
solution of the Bellman equation (2).

Proposition 2: Under Assumptions 1–3, the Jacobian matrices of 0��� and
���� are zero at the fixed point P .

Proposition 2 establishes that at the fixed point it is not possible to increase
expected utility by changing choice probabilities; that is, the optimal choice prob-
abilities maximize the valuation operator locally. As a consequence, the Jacobian

10 The interpretation of � as a policy iteration operator is made explicit in the proof of
Proposition 1. We provide a reformulation of the original DDP in which unobserved state variables
are ‘integrated out,’ conditional choice probabilities are the (continuous) control variables, V! is the
value function, and � is the policy iteration operator.
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of the policy iteration operator is zero. This result is the key to the properties of
the algorithm and the sequential estimators we propose in this paper.
We end this section with remarks on the role of Assumptions 1–3. Assump-

tion 3 allows us to describe functions as vectors in a Euclidean space and to
use compact matrix notation, but we believe it is not essential for the results in
this section.11 On the contrary, Assumptions 1 and 2 are central to our analy-
sis. Assumption 2 (Conditional Independence) is necessary for future utility dif-
ferences not to depend on current unobservable state variables. Together with
Assumption 1 (Additivity), this plays a crucial role in Hotz and Miller’s repre-
sentation of the value functions that we use to define the policy iteration opera-
tor. Assumption 1 can be relaxed to allow for multiplicative separability between
observable and unobservable components. The differentiability in Assumption 2
is needed in order to make the policy iteration operator a differentiable function
of choice probabilities.

3� maximum likelihood estimation and nested algorithms

Let �u� �g , and �f be the vectors of unknown parameters in the utility func-
tion u, the density of unobservables g, and the conditional transition probability
function f , respectively. That is, � ≡ ��u� �g� �f �. Hereafter, we incorporate the
subindex �, or a component of �, in those functions that depend on the structural
parameters. In order to guarantee the existence, consistency, and asymptotic nor-
mality of the ML estimator, we impose smoothness of the primitives with respect
to �.

Assumption 4: u�u�x�a��g�g ���x�, and f�f �x′�x�a� are continuous and twice
differentiable with respect to �.

Suppose our data set consists of a cross-section of observations from a random
sample of individuals �xi� ai� x′i " i = 1� � � � � n�. Under Assumption 2, the log-
likelihood function of the model can be decomposed into conditional choice
probability and transition probability terms as follows:

l���= l1���+ l2��f �=
n∑
i=1
lnP��ai�xi�+

n∑
i=1
ln f�f �x

′
i�xi� ai��(10)

Consistent estimates of the conditional transition probability parameters �f can
be obtained from transition data without having to solve the Markov decision
model. In the rest of the paper we focus on the estimation of +≡ ��u� �g� given
initial consistent estimates of �f obtained from likelihood l2��f �.12 This two-stage

11 For instance, the representation of the value function V! = 0�P� in (8) still holds with continu-
ous state variables but, instead of inverting a matrix, the inversion of an infinite-dimensional linear
operator is required. This can be done via approximation methods; see Rust (1996). However, the
implications of the approximation error on the statistical properties of the estimators are unknown
in this literature.
12 The discount factor � is assumed to be known.
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estimation strategy, which reduces the computational burden of estimation, was
used in Rust (1987) and Hotz and Miller (1993).13

Let +∗ denote the true value of + hereafter. The (partial) MLE of +∗ can
be computed using Rust’s well known nested fixed point algorithm (NFXP). In
this procedure, an ‘inner’ fixed point algorithm computes the conditional choice
probabilities P� = ���P�� and their derivatives for given parameter values. The
‘outer’ algorithm feeds on this solution and maximizes the likelihood with respect
to + using the BHHH method.14 We propose an alternative nested procedure:

Nested Pseudo Likelihood Algorithm (NPL):
Let �̂f be an estimate of �f . Start with an initial guess for the conditional

choice probabilities, P 0 ∈ %0�1'MJ . At iteration K ≥ 1, apply the following steps:
Step 1: Obtain a new pseudo-likelihood estimate of +�+K , as

+K = argmax
+∈5

n∑
i=1
ln��+��̂f ��P

K−1��ai�xi�(11)

where ���P��a�x� is the element �a�x� of ���P�.
Step 2: Update P using the ‘arg max’ from step 2, i.e.

PK =��+K��̂f ��PK−1��(12)

Iterate in K until convergence in P (and +) is reached.

In our nested procedure we swap the order of the two algorithms. That is,
the outer algorithm (step 2) iterates on � to solve the fixed point problem,
and the inner algorithm (step 1) maximizes a pseudo-likelihood function. In the
inner algorithm a fixed PK−1 is used to construct the pseudo value function
0�+��̂f ��P

K−1� and choice probabilities ��+� �̂f ��P
K−1� that approximate the exact

choice probabilities P�+� �̂f �. The outer algorithm updates the value of P and
checks for convergence to a fixed point. Note that each outer policy iteration is
performed with updated parameter values.
The NFXP algorithm always converges to a root of the likelihood equations.

We show that NPL satisfies a weaker version of the same property.15

13 See Rust (1987, 1994b) for a 3-stage extension that is asymptotically equivalent to full maximum
likelihood.
14 See Rust (1988) for a description of NFXP. The inner algorithm is a hybrid fixed point algorithm

that begins with successive approximation iterations in the Bellman operator #! and then switches
to Newton-Kantorovich iterations in order to guarantee convergence. Results (b) and (c) in our
Proposition 1 suggest that the initial successive approximation iterations are actually not necessary
for convergence.
15 However, neither NFXP nor NPL guarantees convergence to a global maximum of the likelihood.

In both cases, the researcher should start the algorithms from different points and keep track of the
maxima. Note also that we are implicitly assuming that convergence of NPL’s inner algorithm is not
an issue. NFXP converges if the BHHH method with optimal step is used in its outer algorithm. The
same method can be used in NPL’s inner algorithm.
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Proposition 3 (Equivalence of NFXP and NPL): Suppose the pseudo-
likelihood maximization problems in (11) have unique interior solutions for any
sample and any value of P . Then, if NPL converges, it does so to a root of the
likelihood equations.

Proposition 3 is an application of Proposition 2. In particular, Proposition 2
implies that �P�/��′ = ����P��/��′, and therefore the pseudo-score is exactly
equal to the score when the pseudo-score is evaluated at the fixed point of the
policy iteration operator. If the problem is sufficiently smooth, then on conver-
gence NPL delivers a fixed point pair; that is, PNPL = ��+NPL� �̂f �

�PNPL�. It follows
that the NPL algorithm has found a root of the likelihood equation.16

We now give an example that illustrates practical issues in the implementation
of the NPL algorithm. Consider a class of models where: (i) the unobservable �′s
have independent across alternatives, extreme value distributions; and (ii) there
is multiplicative separability between x and �u in the utilities, i.e., u�u�x�a� =
h�x�a�′7��u� where h�x�a� and 7��u� are known vector-valued functions with
dimension p. Define H�a� as the M×p matrix with rows h�x�a� for each value
of x. In this case, the policy/iteration operator is

��+��f ��P��a�x�=
exp

{
h̃��f �P��x�a�

′7��u�+ ẽ��f �P��x�a�
}

∑J
j=1 exp

{
h̃��f �P��x� j�

′7��u�+ ẽ��f �P��x� j�
}

where h̃��f �P��x�a�
′ is a row of the matrix

H�a�+�F �a�(IM −�F U�f �P�
)−1 J∑

j=1
P�j�∗H�j��

and ẽ��f �P��x�a� is an element of the vector

�F �a�
(
IM −�F U�f �P�

)−1 J∑
j=1
P�j�∗ %.− lnP�j�'�

This model has several features that make the use of NPL specially advan-
tageous. First and most important, it is very convenient that the extreme value
assumption gives closed-form conditional expectation functions e�j�P� = . −
lnP�j�. In general computing e�� would involve first inverting the Qx�� mappings
to obtain utility differences and then solving the multiple integration problem in
(6) given utility differences. For distributions other than the extreme value this

16 Note that this result is conditional on convergence and that convergence itself has not been
proved. However, a weak convergence result can be established. Under the regularity conditions of
Proposition 4 we can show that the probability that NPL converges locally goes to 1 as the sample
size increases. By local convergence we mean that if P 0 is sufficiently close to P̂n, then PK converges
to P̂n, in K and +K converges to +̂n, where +̂n is the maximum likelihood estimator and P̂n are the
corresponding choice probabilities. More details are available from the authors.
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may be a serious computational problem.17 Second, the extreme value assump-
tion also implies that integration over unobservables during pseudo-likelihood
estimation has a simple (logistic) closed form. Third, since �h̃��f �P��x�a�� and
�ẽ��f �P��x�a�� do not depend on +, they are fixed over a pseudo-likelihood esti-
mation. To obtain ��+��f ��P��a�x� for different values of + we do not have to
repeat the inversion and multiplication of large matrices that is required for
policy valuation. And fourth, the pseudo-likelihood function is globally concave
in 7��u�, which guarantees convergence of the hill-climbing pseudo-likelihood
iterations for any initial value of �u.18 In contrast, to compute the probabilities
P�+��f ��a�x� that enter the likelihood function we have to invert and multiply
M×M matrices repeatedly in policy iteration. Furthermore, the likelihood func-
tion is not globally concave in +, nor in a transformation of +. Therefore, conver-
gence of NFXP’s outer BHHH algorithm may require the use of optimal steps
with a significant increase of the computational cost of estimation.19 In Section 5
we show that NPL is indeed much faster than NFXP for Rust’s bus replacement
problem, which is an example of this class of models.
Finally, note that Proposition 2 is crucial to obtain equivalence of NFXP and

NPL. Based on this, it is straightforward to see that the equivalence result also
holds for full likelihood versions of NFXP and NPL.20 Also note that finite hori-
zon models are covered in our infinite horizon framework if the decision period
t is included among the observable state variables.21 Next section studies the
properties of NPL when it is initialized with a consistent estimator of the true
conditional choice probabilities.

4� sequential policy iteration estimators

Let �̂f denote a consistent estimator of conditional transition probability
parameters, and let P 0 be a consistent, nonparametric estimator of the true con-
ditional choice probabilities P ∗. Consider using P 0 as an initial guess in our NPL

17 In the context of static discrete choice models of product differentiation, Berry (1994) shows
that the mapping from utility differences to market shares (i.e., choice probabilities) is invertible and
that for any vector of choice probabilities the inverse is the unique fixed point of a mapping in utility
space. Berry, Levinsohn, and Pakes (1995) solve this inverse problem in the estimation of a model
of product differentiation in the automobile industry.
18 Given the pseudo MLE of 7��u�, we can obtain an estimator of �u using minimum distance.

This is the pseudo MLE of �u if 7�� is a one-to-one function.
19 Without multiplicative separability in the utility function, the pseudo likelihood function will not

in general be globally concave. Furthermore, to obtain the conditional choice value functions v�x�a�
for different values of + we have to multiply M×M matrices. However, it is still true that we do not
have to invert the matrix I −�F U �P�, which is the main computational cost of policy valuation.
20 See the Appendix. However, our discussion above suggests that the potential gains from using

NPL instead of NFXP are much larger in a partial likelihood context.
21 In infinite horizon problems the inverse of the matrix �I −�F U �, which is used in the valuation

operator, has a very special structure. On the other hand, backward induction reduces the cost of
NFXP’s inner algorithm. Therefore, it is harder to conjecture what the potential gains of using NPL
are in this case. However, all the results in Propositions 1–4 of this paper apply, beginning with the
key ‘zero-jacobian’ property of Proposition 2.
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algorithm. Performing one, two, and in general K iterations of the NPL algorithm
yields a sequence �+̂1� +̂2� � � � � +̂K� of statistics that can be used as estimators of
+∗. We call them sequential policy iteration (PI) estimators. Thus, for K ≥ 1, the
K-stage PI estimator is defined as:

+̂K = argmax
+∈5

n∑
i=1
ln��+� �̂f ��P

K−1��ai�xi�(13)

where PK = ��+̂K� �̂f ��PK−1�, and P 0 is a consistent, nonparametric estimator of
the true conditional choice probabilities P ∗.
In this section we study the asymptotic statistical properties of this sequence

of estimators. The main result is in Proposition 4, which shows that for any value
of K the PI estimators are consistent and asymptotically equivalent to the partial
MLE of +∗. More formally we have the following proposition.

Proposition 4: Let P ∗ be the true set of conditional choice probabilities, and
let f ∗ be the true conditional transition probability of x. Let 5+�5f , and 5P ≡
%0�1'�J−1�M be the set of possible values of +��f , and P , respectively. Consider the
following regularity conditions:
(a) 5+ and 5f are compact sets.
(b) ��+��f ��P� is continuous and twice continuously differentiable in +��f , and
P .
(c) ��+��f ��P��a�x� > 0 for any �a�x� ∈A×X and any �+��f �P� ∈5+×5f ×

5P .
(d) �ai� x′i� xi� for i = 1�2� � � � � n are independently and identically distributed,

and Pr�xi = x� > 0 for any x ∈X.
(e) There is a unique �∗f ∈ int�5f � such that f�∗f �x

′�x�a� = f ∗�x′�x�a� for all
�x′� x�a�.
(f) There is a unique +∗ ∈ int�5+� such that, for any �a�x� ∈ A ×

X�P�+∗� �∗f ��a�x� = P ∗�a�x�. Furthermore, for any + �= +∗ the set ��a�x� "
��+��∗f ��P

∗��a�x� �= P ∗�a�x�� is nonempty.

(g) �̂f and P 0 are strongly consistent estimators of �∗f and P
∗, respectively, and[

�1/
√
n�

n∑
i=1
� ln��+∗� �∗f ��P

∗��ai�xi�/�+′�

√
n��̂f −�∗f �′�

√
n�P 0−P ∗�′

]′
→d N�0�:��

Under these conditions, a policy iteration estimator, +̂K, is root-n-consistent,
asymptotically normal, and asymptotically equivalent to the partial maximum likeli-
hood estimator, i.e.,

√
n�+̂K−+∗�→d N�0�V ∗� where

V ∗ =:−1
00 +:−1

00 �Hf:f 0+:0fH ′
f +HfV ��̂f �H ′

f �:
−1
00
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and

:00 = E
(
� lnP ∗

i

�+

� lnP ∗
i

�+′

)
� Hf = E

(
� lnP ∗

i

�+

� lnP ∗
i

��′f

)
�

:f 0 =:′
0f =

[
E

(
� ln f ∗i
��f

� ln f ∗i
��′f

)]−1
E

(
� ln f ∗i
��f

� lnP ∗
i

�+′

)
�

with P ∗
i ≡ P�+∗� �∗f ��ai�xi� and f ∗i ≡ f�∗f �x′i�xi� ai�.

The K-stage PI estimator is a particular case of a quasi-generalizedM-estimator
as defined in Gourieroux and Monfort (1995), with ��∗f �P

∗� as the vector of
nuisance parameters. The proof of Proposition 4 uses an induction argument.
We show that if PK−1 is root-n-consistent and asymptotically normal, then√
n�+̂K−+∗�→d N�0�V ∗�, and PK ≡��+̂K� �̂f ��PK−1� is also root-n-consistent and

asymptotically normal. Since P 0 is root-n-consistent and asymptotically normal
by assumption, the proof is complete.22

The regularity conditions (b) and (c) follow from our assumptions in Sections 2
and 3. The assumption of iid observations in condition (d) makes the proof of
Proposition 4 easier, but it can be relaxed.23 Conditions (e) and (f) are identifica-
tion assumptions. In particular, (f) implies that +∗ uniquely maximizes in + both
E%ln��+��∗f ��P

∗��ai�xi�' and E%lnP�+��∗f ��ai�xi�'. That is, this condition implies that
+∗ is identified from the partial likelihood as well as from the pseudo-likelihood
that is used to obtain the K-stage estimators.
Notice that the asymptotic variance of a K-stage PI estimator does not depend

on the variance of the initial nonparametric estimator of the choice probabilities,
P 0. This asymptotic property of the PI estimators results from Proposition 2.
In particular, in a Taylor expansion of the first order conditions that define a
K-stage PI estimator, the term associated with PK−1 is[

�1/n�
n∑
i=1
�2 ln��+̂K� �̂f ��P

K−1��ai�xi�/�� �P ′
]√
n�PK−1−P ∗��

The expression within brackets converges in probability to

E��2 ln��+∗� �∗f ��P
∗��a�x�/�� �P ′��

22 Given our assumptions that x is discrete and Pr�xi = xm� > 0 for any xm ∈ X, obtaining√
n-consistent nonparametric estimators is straightforward. Delgado and Mora (1995a, b) show that in

nonparametric regression with discrete regressors frequency or ‘cell’ estimators and nearest-neighbor
estimators are

√
n-consistent under very weak conditions. Frequency estimators for empty x-cells in

a given sample are defined to be zero. Bierens (1983) proves that in a nonparametric regression with
discrete explanatory variables, the kernel estimator is root-n-consistent.
23 We consider a cross-section for the sake of simplicity, but our results here and in Section 3 of

the paper can be extended to the case of panel datasets as long as the conditional independence
assumption holds along both dimensions of the panel.
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which by Proposition 2 and the equivalence of the information matrix is zero; and√
n�PK−1−P ∗� converges to a vector of random variables with finite variances.

Therefore, this term does not have any effect on the asymptotic distribution of√
n�+̂K −+∗�. Furthermore, this asymptotic distribution is the same as that of

the MLE because the score and pseudo-score variables are identical at the true
parameter values.
Using consistent estimators of +∗ and �∗f , it is straightforward to obtain a con-

sistent estimator of V ∗. Furthermore, though V ∗ depends on expectations that
involve partial derivatives for P�∗ , by Proposition 2 it is possible to estimate con-
sistently V ∗ by using ���+̂K� �̂f ��P

K−1�/�+ instead of �P�+̂K� �̂f �/�+. That is, the
estimation of V ∗ does not require one to solve once the fixed point problem to
obtain the vector of choice probabilities P�+̂K� �̂f � and its partial derivatives.
It is simple to verify that Proposition 4 can be extended to a full maximum

likelihood context, i.e., the joint estimation of +∗ and �∗f . However, as mentioned
in Section 3 we focus on partial maximum likelihood estimation because we
believe it is in this context that the potential computational gains of the NPL
algorithm and PI estimators are greatest.
It is clear from Proposition 3 that as the NPL algorithm converges in PK

the corresponding K-stage PI estimators converge to the NFXP estimator. The
family of PI estimators also encompasses a conditional choice probability (CCP)
estimator (Hotz and Miller (1993)). The CCP estimators were defined as the
values of + that solve systems of equations of the form:

n∑
i=1

J∑
j=1
Z
j
i

[
I�ai = j�− P̃�+� �̂f ��P 0��j�xi�

]= 0(14)

where �Zji � are vectors of instrumental variables (e.g., functions of xi) and
P̃ denotes conditional choice probability functions that use Hotz and Miller’s
invertibility result to simplify the computation of the future component of
value functions. It is straightforward to verify that the 1-stage PI estima-
tor is a CCP estimator when P̃ �� is the policy iteration operator and Zji =
� ln��+� �̂f ��P

0��j�xi�/�+. For problems with terminating actions, Hotz and Miller
proposed P̃ functions based on a second representation of the value functions.
This alternative representation is not equivalent to the valuation operator in
equation (8). In particular, it does not satisfy Proposition 2 and as a result the
corresponding CCP estimators are not asymptotically equivalent to the partial
MLE.24

24 If a= 1 is the terminating action, Hotz and Miller’s second representation of the value function
in terms of conditional choice probabilities is

02�P��x�=
J∑
j=1
P�j�x�e�j� �P�d�x���+v�1� x�+

J∑
j=2
P�j�x�Q−1

j ��P�d�x����

For problems with the terminating action property, this is simpler to compute than the valuation
operator 0�P�. Note that 0�P� = 02�P� only at the fixed point P = ��P�. Hotz and Miller (1993)
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Given the asymptotic equivalence of the PI estimators and the partial MLE,
the analysis of the relative performance of these estimators in finite samples is of
interest. Unless there is a loss of precision, why not use the computationally inex-
pensive 1-stage PI estimator? An important limitation of Hotz-Miller’s estima-
tor is that initial nonparametric estimates of the conditional choice probabilities
can be very imprecise, and this lack of accuracy might be transmitted, in finite
samples, to the estimates of the structural parameters (see Eckstein and Wolpin
(1989), Rust (1994a), and Hotz et al. (1994)). Our K-stage estimator may over-
come this problem by iterating K times in the smooth policy iteration operator.
The computational cost of these �K−1� additional iterations is equal to the cost
of �K−1� policy iterations and �K−1� pseudo-maximum likelihood estimations.
Therefore, for intermediate values of K we get asymptotically equivalent estima-
tors that are still cheaper to obtain than the MLE, yet potentially more precise
in finite samples than the Hotz-Miller estimator. Is a 2-stage or 3-stage estimator
enough to obtain significant gains in precision with respect to Hotz-Miller? We
address this issue with a Monte Carlo experiment in Section 5.2.

5� the performance of the npl algorithm
and the pi estimators: an example

5�1� Relative Speed of NPL and NFXP

In order to illustrate the performance of our NPL algorithm in maximum likeli-
hood estimation, we use Rust’s well known bus replacement model and dataset.25

We obtain partial ML estimates using the NPL and the NFXP algorithms for dif-
ferent specifications of the model according to the dimension of the state space
(i.e., from 100 to 1100 cells) and the number of structural parameters (i.e., 2
and 4).26

Clearly, the CPU time required by these algorithms will depend on our choice
of the values that initialize them, i.e., initial guesses of structural parameters for
NFXP and initial conditional choice probabilities for NPL. In order to make the
initial values for the two algorithms comparable, we consider a researcher who
obtains these guesses from the data using a Hotz-Miller estimator. That is, the
initial vector of structural parameters for NFXP is the Hotz-Miller estimator �̂1,
and the initial conditional choice probabilities for NPL are the ones obtained
from the Hotz-Miller estimator ��̂1�P

0�.
The results from this experiment can be summarized as follows. An important

feature of this example is that fixed point iterations (i.e., policy iterations) are

described the CCP estimator in terms of 0�P� but they used 02�P� in estimation of their contraceptive
choice model.
25 See Rust (1987). Rust’s model has been used in other studies to evaluate the performance of

alternative algorithms and estimators, e.g. Hotz et al. (1994) and Rust (1997).
26 The NFXP algorithm that we use has two features that contribute very significantly to improve

its computational efficiency. First, we use a closed-form expression for the gradient of the likelihood
function. Second, at each outer iteration, we use “smart guesses” for the vector of choice probabilities
that initialize the policy iteration algorithm. Both features have been considered by Rust (1987, 1988).
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much more expensive than likelihood and pseudo-likelihood climbing iterations.
In fact, when the number of cells in the state space is larger than 200, policy
iterations represent almost 100% of the estimation time for both algorithms.
Therefore, it is very relevant to assess to what extent the use of NPL instead
of NFXP reduces the number of policy iterations in the estimation procedure.
The size of the state space does not affect the number of policy iterations in
any of the two algorithms. For the model with two parameters the ratio of the
number of policy iterations of NFXP and NPL is 5.5, and for the model with
four parameters this ratio is equal to 9. Therefore, in these examples, NPL is
5.5 and 9 times faster, respectively, than the NFXP algorithm. Note that the
use of the Hotz-Miller estimator to produce ‘comparable’ initial guesses actually
undervalues the relative performance of the NPL algorithm. When we considered
cases in which initial guesses were very poor, NPL always converged and the
number of policy iterations decreased relative to NFXP with equally arbitrary
initial guesses.27 For instance, when we used a vector of zeros as an initial guess
for the NFXP algorithm and random draws from a U�0�1� to initialize NPL, the
ratio of policy iterations NFXP/NPL was 10 for the model with two parameters
and 15 with four parameters.
A final warning seems appropriate given the limited scope of this experiment.

The main features of this example are extreme value distributed unobservables,
partial likelihood estimation, infinite horizon, binary choice, and multiplicative
separability between parameters and state variables in the utility functions. The
relative speed of NPL and NFXP could be different in other applications.

5�2� The Precision of PI Estimators: A Monte Carlo Exercise

In Section 4 we established that all K-stage PI are asymptotically equivalent.
We now illustrate their behavior in finite samples using a Monte Carlo experi-
ment. We used Rust’s bus engine model with parameters equal to ML estimates
as the DGP. For sample sizes 1000, 5000, and 10000, we generated 1000 sam-
ples and for each of them we obtained the sequence of PI estimators and its
limit, the ML estimator. The size of the state space grid is 200. Since the exper-
iments with different sample sizes provided very similar results, we only report
the experiment with 1000 observations.
Table I presents summary statistics for this experiment. For the 1, 2, and

3-stage PI estimators, we report the mean and median of the absolute estimation
error and the empirical standard deviations, in all cases relative to the corre-
sponding statistic for the MLE. We find that the finite sample properties of the
estimators improve monotonically with K. The 1-PI estimator performs poorly
and there are very significant benefits of doing more than one policy iteration.

27 In fact, NFXP did not always converge even when initial values were within a 1% confidence
region around the ML estimate. NFXP is guaranteed to converge if we compute an optimal step in
the hill climbing iteration. However, the use of an optimal step requires one to solve the dynamic
programming problem several times at each hill climbing iteration, and this increases enormously the
computational cost of estimation.
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TABLE I
Monte Carlo Experiment

Experiment design

Model: Bus engine replacement model (Rust)
Parameters: �0 = 10�47; �1 = 0�58; �= 0�9999
State space: 201 cells
Number observations: 1000
Number replications: 1000
Initial probabilities: Kernel estimates

Monte Carlo distribution of MLE
(In parenthesis, percentages over the true value of the parameter)

�0 �1

Mean Absolute Error: 2.08 (19.9%) 0.17 (29.0%)
Median Absolute Error: 1.56 (14.9%) 0.13 (22.7%)
Std. dev. estimator: 2.24 (21.4%) 0.16 (26.9%)
Policy iterations (avg.): 6.2

Monte Carlo distribution of PI estimators (relative to MLE)
(All entries are 100∗ (K-PI statistic-MLE statistic)/MLE statistic)

Estimators

Parameter Statistics 1-PI 2-PI 3-PI

�0 Mean AE 4�7% 1�6% 0�3%
Median AE 14�2% 0�2% −0�3%
Std. dev. 6�8% 1�2% 0�3%

�1 Mean AE 18�7% 1�5% 0�2%
Median AE 25�1% 0�7% 0�6%
Std. dev. 11�0% 1�3% 0�2%

More interestingly, the relative performance of the 2-PI is excellent. Most of the
benefits of additional policy iterations are obtained when one goes from 1 to 2
iterations.28

In Table II we study the discrepancy between the empirical standard deviations
of the estimators in the Monte Carlo distributions and the average estimate of
their asymptotic standard error. We can see that for the 2-stage and 3-stage
this discrepancy is small and of the same order of magnitude as for the MLE.
However, for the l-stage estimator the estimated asymptotic standard error is
clearly downward biased.
Therefore, when we construct expected value functions using choice probabil-

ities that are closer to the fixed point, our estimates become much more precise.
In this application, two policy iterations are enough to get choice probabilities

28 We also considered the performance of these estimators when the initial values for the choice
probabilities are very imprecise (i.e., kernel estimator plus a noise term). The findings from this
experiment, which we do not report here, actually reinforce the results in Table I: poor initial guesses
have a very serious effect on the 1-PI estimator but a relatively small effect on the 2-PI, which is still
close to the MLE.
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TABLE II
Ratio Between Estimated Standard Errors and Standard

Deviation of Monte Carlo Distribution

Parameters Statistics Estimators

1-PI 2-PI 3-PI MLE

�0 Ratio 0.801 1.008 1.027 1.022
�1 Ratio 0.666 1.043 1.076 1.065

that are close enough to the fixed point. A possible interpretation of this finding
is based on the qualitative differences between going from 1 to 2 policy iterations
and going from 2 to more iterations. The second policy iteration is the first one
in which we incorporate the structure of the model to obtain the choice probabil-
ities used to compute the pseudo-social surplus. These probabilities incorporate
parametric assumptions on preferences and the distribution of unobservables
that are not contained in the initial nonparametric estimates. All subsequent pol-
icy iterations impose (recursively) that the choice probabilities should be a fixed
point of the policy iteration mapping, but no further assumptions about the func-
tional form of the primitives are incorporated.

6� concluding remarks

We have proposed a new nested algorithm (NPL) for the estimation of the class
of discrete Markov decision models with the conditional independence assump-
tion. Our method is based on a representation of the solution of the dynamic
programming problem in the space of conditional choice probabilities. When the
NPL algorithm is initialized with consistent nonparametric estimates of condi-
tional choice probabilities, successive iterations return a sequence of estimators
of the structural parameters that we call K-stage policy iteration estimators. We
show that the sequence includes as extreme cases a Hotz-Miller CCP estimator
(for K = 1) and Rust’s nested fixed point estimator (in the limit when K→��.
Furthermore, the asymptotic distribution of all the estimators in the sequence is
the same and equal to that of the maximum likelihood estimator. If consistent
nonparametric estimates are not available and NPL is initialized with arbitrary
choice probabilities, on convergence it still produces a root of the likelihood
equations. We illustrated the performance of our method with several examples
based on Rust’s bus replacement model. We found that NPL produces maximum
likelihood estimates 5 to 15 times faster than NFXP. In Monte Carlo experiments
we found that the finite sample properties of K-stage PI estimators improve
monotonically with K. Also, the benefits of using the 2-stage PI estimator instead
of the l-stage estimator were very significant, but the additional gains in preci-
sion obtained by using the ML estimator instead of 2-stage PI were small. To
what extent these encouraging results will generalize beyond our simple example
is an open question. In particular, it remains to be seen whether CCP and PI
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estimators will be useful once we relax the assumption that unobservable state
variables have iid extreme value distributions.
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APPENDIX: Proofs of Propositions

For the sake of simplicity, we omit x as an argument in functions Qx����Q−1
x ���� S��� x�� ex�j� ��,

v�j� x�, and ṽ�j� x�. In order to prove Propositions 1 and 2 we need the following Lemmas.

Lemma 1: The mappings Q����Q−1���, and e�j� �� are differentiable.

Proof: Differentiability of the three mappings follows from Assumptions 1 and 2 on the distri-
bution of unobservables, from application of the inverse function and chain rule theorems, and from
the strict convexity of the social surplus function.

Lemma 2: Let p0 denote an arbitrary vector of J −1 choice probabilities. Then

�

�p

[ J∑
j=1
p0j e�j�p

0�

]
=−Q−1�p0��

Proof: Let v and ṽ be arbitrary vectors of J choice-specific utilities and J −1 utility differences,
respectively, and let Wj�ṽ� represent the expectation E���j��x� j� as a function of the J − 1 utility
differences. Since the Q�� mapping is invertible we can write e�j�p0� = Wj�Q−1�p0��. Therefore,
differentiating

∑J
j=1 p

0
j �j�p

0�, we obtain

�

�p

[ J∑
j=1
p0j e�j�p

0�

]
= %−i> I'W�ṽ�+

[
�Q�ṽ�′

�ṽ

]−1
�W�ṽ�′

�ṽ

(
1− i′p0
p0

)
(Ap.1)

where i is a vector of ones.
Now, consider the following representation of the surplus function:

S�v�=
J∑
j=1
Qj�ṽ��v�j�+Wj�ṽ���

In matrix notation, we can write S�v� = %1− i′Q�ṽ�>Q�ṽ�′'�v+W�ṽ��. Differentiating with respect
to ṽ′ and using the WDZ theorem, it is possible to show that the right-hand side of (Ap. 1) is zero.

Lemma 3: Let P 0 be an arbitrary set of conditional choice probabilities, and define the mapping

H�P 0�V!�=
∑
a∈A
P 0�a�∗ %u�a�+e�a�P 0�+�F �a�V! '�

Let p0m be the column vector containing the �J − 1� choice probabilities in P 0 associated with state
x = xm. Let ṽm be the vector of utility differences associated with x = xm. Then: �a� for any arbitrary
P 0�H�P 0�V!� is a contraction in V! ; �b� �Hn/�p0m = 0, for n �=m> �c� �Hm/�0m = −Q−1�p0m�+ ṽm;
and �d� Hm is a concave function of p0m.
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Proof: (a) is straightforward from the definition of H�� with modulus �. Given that Hm does
not depend on the probabilities for states different to m, (b) follows trivially. (c) results directly from
Lemma 2. Note that the convexity of the social surplus implies that the Jacobian matrix �Q�ṽ�/�ṽ′

is positive semidefinite; this and (c) imply (d).

Proof of Proposition 1(a): The set of optimal choice probabilities P defined in equation �3� is
the unique fixed point of the operator � . We first note that the smoothed Bellman operator #! has
a unique fixed point. Rust, Traub, and Wozniakowski (2002) show that the additivity of the social
surplus makes the smooth Bellman operator “quasilinear” and this is used to prove that #! is a
contraction. Second, we show that if P is a fixed point of � , then 0�P� is a fixed point of #! . Let P
be a fixed point of � , i.e., P = 2�0�P��. Then, by the definition of mapping #! in equation (2) we
have that

#!�0�P��=
∑
a∈A
2�a>0�P��∗ %u�a�+e�a>2�0�P��+�F �a�0�P��'

=∑
a∈A
P�a�∗ %u�a�+e�a>P�+�F �a�0�P�'= 0�P��

Now suppose that P 1 and P 2 are different fixed points of � . Since 0�P 1� and 0�P 2� are fixed
points of #! , uniqueness of the fixed point of #! implies that 0�P 1�= 0�P 2�. But then, P 1 =��P 1�=
2�0�P 1��=2�0�P 2��=��P 2�= P 2, a contradiction. Therefore, uniqueness of the fixed point of �
follows from uniqueness of the fixed point of #! .
Finally, note that P ≡2�V!� and V! = 0�P�. Therefore, P =2�0�P��=��P�; i.e., ��� does have

a fixed point, which is P .

Proof of Proposition 1(b): For any arbitrary P 0, the sequence PK =��PK−1�, K = 1� � � � ��,
converges to the fixed point P . Consider the Markov decision process defined as follows. (a) The
state variable is the observable state vector of the original problem, x. (b) The decision vari-
able is a vector of probabilities, p, that belongs to the interior of the J -dimensional simplex.
(c) The current period return is U�x�p� ≡∑

j pj %u�x� j�+ e�j>p�'. (d) The transition probabilities
fp�x

′ �x�p� ≡ ∑
j pj f �x

′ �x� j�. We show that in this transformed problem 0�2, and � are indeed
policy valuation, policy improvement, and policy iteration operators. Checking that 0 is the valua-
tion operator for the transformed problem is trivial. Now notice that the policy improvement step
involves solving maxp′ H�P ′�0�P��. By Lemma 3, it is straightforward to see that 2�0�P�� satisfies
the first order conditions for an interior solution to this problem. Since the objective function is
globally concave by Lemma 3(d), a solution does exist and it is ��P�. Finally, notice that the trans-
formed problem is a Markov decision process with discrete state space and continuous action space
and that a maximizing decision rule always exists in the Bellman equation. Therefore, Theorem 6.4.6
in Puterman (1994) applies and policy iteration is guaranteed to converge.

Proof of Proposition 1(c): Equivalence of � and Newton iterations. The vector V! solves the
functional equation (2), V! = #!�V!�. Therefore, it is a zero of the operator T �V!�≡ V! −#!�V!�;
i.e., T �V!�= 0. Newton iterations are defined by

VK+1
! = VK! − %�T �V K! �/�V ′

! '
−1T �V K! �= VK! − %I − �#!�V K! �/�V ′

! '
−1%V K! −#!�V K! �'�

Notice we can write the Bellman operator as #!�V!� = H�2�V!��V!�, and by Lemma 3,
�H�2�V!��V!�/�V

′
! = �F �V!�, and �H�2�V!��V!�/�P ′ = 0. Therefore, Newton iterations take the

form

VK+1
! = %I −�F �V K! �'−1

∑
j

2�j�V K! �∗�u�j�+e�j�2�V K! ���= 0�2�V K! ���

So Newton’s algorithm for this problem consists of iterative application of the same policy improve-
ment and policy valuation operators 2 and 0 that define � .
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Proof of Proposition 2: Zero Jacobian matrices for 0 and � at the fixed point. By definition,
for any arbitrary P 0

0�P 0�=
J∑
j=1
P 0�j�∗{u�j�+e�j�P 0�+�F �j�0�P 0�}�

Therefore, 0�P 0� = H�P 0�0�P 0��. Differentiating on both sides with respect to pm and collecting
terms, one can show that

�0�P 0�/�p′
m = %I −�F U �P 0�'−1�H�P 0�0�P 0��/�p′

m�

By Lemma 3(c) �Hm/�pm =−Q−1�p0m�+ ṽm. Let P be the fixed point of � . Then, ṽm =Q−1��m�P��.
So at the fixed point ṽm = Q−1�pm� and �Hm/�p′

m = 0. Since �Hn/�p′
m = 0 for n �= m, we get

�0�P�/�p′
m = 0. Therefore, ���P�/�p′

m = ��2�0�P���V ′
! ��0�P�/�p

′
m = 0 at the fixed point.

Proof of Proposition 3: Let +̂ be a root of the (partial) likelihood equations

N∑
i=1
� lnP�+̂� �̂f ��ai�xi�/�+= 0�

Since P� is the unique fixed point of the mapping �� , we can apply the implicit function theorem
and Proposition 2 to obtain:

�P�/��
′ = %I − ����P��/�P ′'−1����P��/��

′ = ����P��/��′�(Ap.2)

Therefore we can write the likelihood equations as

N∑
i=1
� ln��+̂� �̂f ��P�+̂� �̂f ���ai�xi�/�+= 0�(Ap.3)

Now suppose the sequence �PK� from the NPL algorithm converges to a vector PNPL. By the Theorem
of the maximum, the mapping (11) that defines the pseudo-maximum likelihood estimator is contin-
uous in P . Therefore, the sequence �+̂K� converges. Let +̂NPL be the limit. Then +̂NPL maximizes the
pseudo log-likelihood function

∑N
i=1 ln��+� �̂f ��PNPL��ai�xi�, and at +̂NPL the following marginal condi-

tions of optimality hold:

N∑
i=1
� ln��+̂NPL� �̂f �

�PNPL��ai�xi�/�+= 0�(Ap.4)

But convergence of the sequences on both sides of equation (12) implies that PNPL is the fixed point
of the policy iteration mapping for � = �+̂′

NPL> �̂
′
f �

′" i.e., PNPL = P�+̂NPL� �̂f �
. It is clear that +̂NPL is a

root of the likelihood equations.
The same result also holds in the context of full likelihood estimation. The parameter vector is

now �′ = �+′� �′f �. The term �l2���/�� = �0′> �l2��f �/��′f �′ is added to the first order conditions. Since
exactly the same term is added to both likelihood and pseudo-likelihood equations, intuitively it
should not have any effect on equivalence. More, explicitly, the likelihood equations are

N∑
i=1
� ln��̂�P�̂��ai�xi�/��+ �l2��̂�/�� = 0�

which are again the first order conditions satisfied by NPL’s limit pair ��NPL�PNPL� in a full likelihood
context.

Proof of Proposition 4: Define . ≡ ���P�, and let # ≡ 5+×5f ×5P be the set of possible
values of .. Let n denote sample size, and consider the functions: Q̃n�.�≡ �1/n�

∑n
i=1 ln���P��ai�xi�,

QKn �+�≡ Q̃n�+� �̂fn�PK−1
n �, and Q̃��.�≡ E%ln���P��ai�xi�'.
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(A) Consistency of +̂K : The proof of consistency proceeds in stages:
(A.1) If PK−1

n and �̂fn are consistent, then QKn �+� converges a.s. and uniformly in + to a determin-
istic function Q��+�.
(A.2) If PK−1

n and �̂fn are consistent, then +̂Kn ≡ argmax+∈5 QKn �+� converges a.s. to +∗.
(A.3) For K ≥ 1, if PK−1

n →a�s� P
∗ and �̂fn →a�s� �

∗
f , then P

K
n →a�s� P

∗.
By condition (g), �̂fn →a�s� �

∗
f and P

0
n →a�s� P

∗; a simple induction argument based on (A.2) and
(A.3) completes the proof.
(A.1) By Lemma 24.1 in Gourieroux and Monfort (1995, Vol. II, p. 392), we have that if: (i)

Q̃n�.� converges a.s. and uniformly in . to Q̃��.�; (ii) Q̃��.� is uniformly continuous in .; and (iii)
��̂fn� and �PK−1

n � converge a.s. to �∗f and P
∗, respectively; then Q̃n�+� �̂fn�PK−1

n � converges a.s. and
uniformly in + to Q̃��+��

∗
f �P

∗�≡Q��+�.
By regularity conditions (a) and (b) Q̃��.� is continuous on a compact set, so it is uniformly

continuous, i.e., (ii) holds. Condition (iii) holds by assumption. In order to prove that condition (i)
holds, note that � ln���P��a�x�� is bounded. Furthermore, ifH∗��� �� is the true probability distribution
of �a�x� and Hn��� �� is the empirical distribution of �a�x� in a sample of size n, then Hn�j�x�→a�s�

H∗�j� x� by condition (d).
(A.2) By Property 24.2 in Gourieroux and Monfort (1995, Vol. II, p. 387), if: (i) QKn �+� converges

a.s. and uniformly in + to Q��+�; and (ii) Q��+� has a unique maximum in 5+ at +∗; then +̂Kn ≡
argmax+∈5 QKn �+� converges a.s. to +

∗. We have proved (i) in (A.1). Condition (f) implies (ii) by the
information inequality.
(A.3) By definition PKn =��+̂Kn � �̂fn��PK−1

n �. By (A.2) +̂Kn →a�s� +
∗. Since � is continuous in ., by the

Slutsky theorem PKn →a�s� ��+∗� �∗
f
��P

∗�= P ∗.

(B) Asymptotic distribution of +̂K : Let Pn be a consistent estimator of P ∗ such that

[√
n�Q̃n�.

∗�/�+′>
√
n��̂fn −�∗f �′>

√
n�Pn−P ∗�′

]′ →d N�0�:��

and define +̂n ≡ argmax+∈5 Q̃n�+� �̂fn�Pn�. Then:
(B.1)

√
n�+̂n −+∗�→d N�0�V ∗�, and V ∗ only depends on the upper left r × r submatrix of :

where r is the dimension of the parameter vector �+′> �′f �;
(B.2)

[√
n�Q̃n�.

∗�/�+′>
√
n��̂fn − �∗f �′>

√
n���+̂n� �̂fn��Pn�−P ∗�′

]′ →d N�0�:∗�, and the upper left
r× r submatrices of : and :∗ are identical.
The proof is completed by induction using (B.1) and (B.2) and condition (g).
(B.1) Given conditions (b) and (f) and the definition of +̂n, the first order conditions of optimal-

ity imply that with probability approaching one �Q̃n�.̂n�/�+ = 0, where .̂n ≡ �+̂n� �̂fn�Pn�. By con-
dition (b), Q̃n��� is twice continuously differentiable and we can apply the stochastic mean value
theorem to �Q̃n���/�+j between .̂n and .∗. If �.̄jn� are the p mean values, then .̄

j
n →a�s� .

∗ and
�2Q̃n�.̄

j
n�/�+j�.

′ →p �
2Q̃��.

∗�/�+j�.
′ (see Amemiya (1985, Theorems 4.2.1 and 4.1.5)). Notice that

condition (f) implies that �2Q̃��.
∗�/�+�+′ is a nonsingular (negative definite) matrix. Finally, by con-

dition (g) and the Mann-Wald Theorem, it is straightforward to show that
√
n�+̂n−+∗�→d N�0�V ∗�,

where

V ∗ =
(
�2Q̃��.

∗�
�+�+′

)−1(
I>
�2Q̃��.

∗�
�+��′f

>
�2Q̃��.

∗�
�+�P ′

)
:

×
(
I>
�2Q̃��.

∗�
�+��′f

>
�2Q̃��.

∗�
�+�P ′

)′(
�2Q̃��.

∗�
�+�+′

)−1
�

Notice that

�2Q̃��.
∗�/�+�. ′ = E�� ln��∗ �P ∗��ai�xi�/�+× � ln��∗ �P ∗��ai�xi�/�. ′�
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by equivalence of the information matrix. By Propositions 1 and 2, for any pair �a�x�: (i)
��∗ �P

∗��a�x� = P�∗ �a�x�; (ii) ���∗ �P ∗��a�x�/�P = 0; and (iii) ���∗ �P ∗��a�x�/�� = �P�∗ �a�x�/��.
Then, �2Q̃��.

∗�/�+�P ′ = 0 and we get

V ∗ =:−1
00 +:−1

00 �Hf:f 0+:0fH
′
f +HfV ��̂f �H ′

f �:
−1
00

where

:00=E
(
� lnP�∗ �ai�xi�

�+

� lnP�∗ �ai�xi�
�+′

)
> Hf =E

(
� lnP�∗ �ai�xi�

�+

� lnP�∗ �ai�xi�
��′f

)

:f 0=:′
0f =

[
E

(
� lnf�∗

f
�x′i�xi�ai�
��f

� lnf�∗
f
�x′i�xi�ai�
��′f

)]−1

E

(
� lnf�∗

f
�x′i�xi�ai�
��f

� lnP�∗ �ai�xi�
�+′

)
�

It is simple to verify that V ∗ is the variance of the asymptotic distribution of the partial maximum
likelihood estimator of +∗.
(B.2) Define

CK+1
n ≡ [√

n�Q̃n�.
∗�/�+′>

√
n��̂fn −�∗f �′>

√
n�PKn −P ∗�′

]′
�

We have PKn ≡��+̂Kn � �̂fn� �PK−1
n �. By a stochastic mean value theorem we can write PKn −P ∗ as a func-

tion of %+̂Kn −+∗> �̂fn −�∗f >PK−1
n −P ∗', and by the same expansion used in (B.1) we express �+̂Kn −+∗�

as a function of %�Q̃n�.∗�/�+> �̂fn − �∗f >PK−1
n −P ∗'. Therefore, we can obtain CK+1

n = AKn CKn , where
AKn depends on the mean values. It is possible to show that A

K
n →p A

∗ <�. It follows that if CKn
is asymptotically normal, then CK+1

n is also asymptotically normal. Furthermore, the upper-left r × r
submatrix of AKn is the identity matrix. Therefore, the upper-left r × r submatrices in the variances
of CK+1

n and CKn are equal.
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