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Abstract

This paper investigates the impact of decentralizing inventory decision-making in multi-
establishment firms using data from a large retail chain. Analyzing two years of daily
data, we find significant heterogeneity among the inventory decisions made by 634 store
managers. By estimating a dynamic structural model, we reveal substantial hetero-
geneity in managers’ perceived costs. Moreover, we observe a correlation between the
variance of these perceptions and managers’ education and experience. Counterfactual
experiments show that centralized inventory management reduces costs by eliminating
the impact of managers’ skill heterogeneity. However, these benefits are offset by the
negative impact of delayed demand information.
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1 Introduction

Multi-establishment firms can adopt various decision-making structures ranging from central-
ized decisions at the headquarters to a more decentralized approach where decision authority
is delegated to individual establishments. Determining the optimal decision-making process
for a firm involves weighing different trade-offs. A decentralized decision-making structure
empowers local managers to leverage valuable information specific to their respective stores.
This information, which may be difficult or time-consuming to communicate to headquar-
ters, can be utilized effectively at the local level. However, decentralization also entails
granting autonomy to heterogeneous managers who possess varied skills. This heterogeneity
can lead to suboptimal outcomes for the overall firm. When determining the degree of decen-
tralization in their decision-making structure, multi-establishment firms must evaluate this
trade-off. They need to consider the benefits of local knowledge and timely decision-making
against the potential challenges posed by managerial heterogeneity.

In this study, we investigate the inventory management decisions made by store managers
at the Liquor Control Board of Ontario (LCBO) and examine the impact on the firm’s perfor-
mance of delegating these decisions to the store level. The LCBO is a provincial government
enterprise responsible for alcohol sales throughout Ontario. As a decentralized retail chain,
each store has a degree of autonomy in its decision-making process. Specifically, store man-
agers have discretion in two key areas of inventory management: assortment decisions (i.e.,
determining which products to offer) and replenishment decisions (i.e., when and how much
to order for each product). Replenishment decisions involve forming expectations about fu-
ture demand to determine the optimal order quantity and timing. To conduct our analysis,
we utilize a comprehensive dataset obtained from the LCBO, encompassing daily information
on inventories, orders, sales, stockouts, and prices for every store and product (SKU) from
October 2011 to October 2013 (677 working days).1 Additionally, we supplement our main
dataset with information from LCBO reports and gather data on store managers’ education
and experience from professional networking platforms such as LinkedIn.

The LCBO data and framework provide a unique setting to study inventory management
due to the simple pricing mechanism employed, where prices are set as a fixed markup over
wholesale cost. This feature of the market allows us to focus specifically on the inventory set-
ting problem without the need to incorporate a model where equilibrium prices are explicitly
determined by inventory decisions. By abstracting from the complex relationship between
prices and inventory decisions, we can concentrate our analysis on understanding the factors
influencing inventory management within the LCBO retail chain.

1These data were obtained under the Access to Information Act, with assistance from the LCBO personnel.
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By employing descriptive evidence and the estimation of reduced-form models of inventory
decision rules, we first show substantial heterogeneity across store managers’ replenishment
decisions. Observable store characteristics – such as demand level, size, category, and ge-
ographic location – explain less than half of the differences across store managers in their
inventory decision rules.

To gain a deeper understanding of the factors contributing to this heterogeneity, we pro-
pose and estimate a dynamic structural model of inventory management. The model allows
for differences across stores in demand, storage costs, stockout costs, and ordering costs.
Leveraging the high-frequency nature of the daily data, we obtain precise estimates of hold-
ing cost, stockout cost, and ordering costs at both the individual product (SKU) and store
levels. Our findings reveal significant heterogeneity across stores in all the revealed-preference
cost parameters. Remarkably, observable store characteristics only account for less than 50%

of this heterogeneity. Furthermore, we uncover a correlation between the remaining het-
erogeneity and managers’ education and experience, suggesting that manager characteristics
contribute to this residual variation. We interpret this unexplained heterogeneity as the
result of local managers’ idiosyncratic perceptions regarding store-level costs.

Using the estimated structural model, we quantify the impact of store manager hetero-
geneity on inventory outcomes. Overall, eliminating the idiosyncratic heterogeneity in cost
parameters produces significant effects on inventory management. Specifically, we observe a
6-day increase in the waiting time between orders, a decrease in the average order amount
equivalent to 1.5 days of average sales, and a 21% reduction in the inventory-to-sales ratio.
However, the frequency of stockouts remains largely unaffected. These findings indicate that
if the idiosyncratic component of costs represents a biased perception by store managers, it
has a substantial negative impact on the firm’s profitability. This is due to increased storage
and ordering costs while having little effect on stockouts and revenue generation.

Finally, we conduct an evaluation of the effects associated with centralizing the decision-
making of inventory management at the LCBO headquarters. To simulate this counterfactual
experiment, we take into account information provided by company reports, which indicate
that store-level sales information is processed by the headquarters with a one-week delay.
The main trade-off examined in this experiment revolves around the fact that a centralized
inventory management system eliminates the influence of store managers’ heterogeneous skills
and biased perceptions of costs. However, it also relinquishes the advantages derived from
store managers’ just-in-time information about demand and inventories. Our findings reveal
that implementing a centralized inventory management system would result in a substantial
reduction in ordering and storage costs, with an average cost decrease of 23% and a 3.7%

reduction for the median store. Despite the significant cost reduction, this benefit is nearly
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completely offset by the negative impact on profits due to the delayed information about
demand. Consequently, the net effect on profits is modest, with a mere 2% increase in
annual profit for LCBO, equivalent to $34 million. We further explore the implications of
this trade-off for designing a more efficient inventory system that incorporates elements of
both centralized and decentralized approaches.

This paper contributes to the growing empirical literature exploring the trade-offs be-
tween centralization and decentralization of decision-making in multi-division firms. Notably,
DellaVigna and Gentzkow (2019) observe that most retail chains in the US employ uniform
pricing across their stores, despite substantial differences in demand elasticities and potential
gains from third-degree price discrimination. The authors discuss possible explanations for
this phenomenon. In a study of a major international airline company, Hortaçsu et al. (2021)
analyze a pricing system that combines decision rights across different organizational teams.
They find that despite employing advanced techniques, the pricing system fails to internalize
consumer substitution effects, exhibits persistent biases in demand forecasting, and does not
adapt to changes in opportunity costs. These inefficiencies are primarily attributed to limited
coordination between teams. Examining decentralization decisions from a diverse set of firms
across 11 OECD countries, Aghion et al. (2021) show that firms that delegate decision power
from central headquarters to plant managers exhibited better performance during the Great
Recession compared to similar firms with more centralized structures. The empirical evi-
dence presented in their study supports the interpretation that the value of local information
increases during turbulent economic times. Our paper contributes to this literature by being,
to the best of our knowledge, the first empirical study to examine the trade-offs related to
the (de)centralization of inventory management within retail chains, and specifically the role
of store managers’ heterogeneous skills.

This paper also contributes to the empirical literature on dynamic structural models
of inventory behavior. Previous contributions in this area include works by Aguirregabiria
(1999), Hall and Rust (2000), Kryvtsov and Midrigan (2013), and Bray et al. (2019) in
the context of firm inventories, as well as Eberly (1994), Attanasio (2000), and Adda and
Cooper (2000) in the domain of household purchases of durable products. We contribute to
this literature by using high-frequency (daily) data at the granular store and product level
to estimate cost parameters using a dynamic structural model.

Finally, our paper contributes to the literature on structural models with boundedly ra-
tional firms. Most of this literature studies firms’ entry/exit decisions (Goldfarb and Xiao,
2011; and Aguirregabiria and Magesan, 2020), pricing decisions (Huang et al., 2022; Ellison
et al., 2018), and bidding behavior in auctions (Hortaçsu and Puller, 2008; Doraszelski et al.,
2018; Hortaçsu et al., 2019). To the best of our knowledge, our paper represents the first
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investigation into bounded rationality in firms’ inventory decisions. This research also con-
tributes to the existing literature by combining revealed-preference estimates of managers’
perceived costs with a decomposition of these costs into the objective component explained
by store characteristics and the subjective component associated with managers’ education
and experience.

The rest of the paper is organized as follows. Section 2 describes the institutional back-
ground of the LCBO and presents the dataset and descriptive evidence. Section 3 presents
evidence of managers following (S, s) decision rules and illustrates the heterogeneity in these
(S, s) thresholds across store managers. Section 4 presents the structural model and its
estimation. The counterfactual experiments to evaluate the effects of decentralization are
described in section 5. We summarize and conclude in Section 6.

2 Firm and data

2.1 LCBO retail chain

History. LCBO was founded in 1927 as part of the passage of the Ontario Liquor Licence
Act.2 This act established that LCBO was a crown corporation of the provincial government
of Ontario. Today, the wine retail industry in Ontario is a triopoly - consisting of 634 LCBO
stores, 164 Wine Rack stores, and 100 Wine Shop stores. Despite its government ownership,
LCBO is a profit maximizing company. As described in its governing act, part of its mandate
is "generating maximum profits to fund government programs and priorities".3

Store managers. According to the LCBO, store managers are responsible for managing
their "store, sales and employees to reflect [their] customers’ needs and business goals", with
a particular focus on the inventory management of their store. Managers must oversee their
store’s overall inventory level to ensure that daily demand is met. For incentive purposes, part
of the store managers’ remuneration depends on the overall sales performance of their store.
The managers’ pay is therefore closely tied to their stores’ profits. In order to satisfy daily
demand, managers periodically restock their shelves by ordering products from the nearest
distribution center. The order is then delivered by trucks according to a pre-determined

2The information in this section originates from various archived documents from the LCBO. General
information about the company and its organization is based on the company’s annual reports Liquor Con-
trol Board of Ontario (2012) and Liquor Control Board of Ontario (2013), and the collective agreement
between the LCBO and OPSEU. Information regarding headquarters’ order recommendations (Suggested
Order Quantities, SOQs) originates from the report Liquor Control Board of Ontario (2016). Additional
information regarding the role of store managers originates from an interview we conducted with an LCBO
store manager from a downtown Toronto store.

3See https://www.lcbo.com/content/lcbo/en/corporate-pages/about/aboutourbusiness.html.
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route and schedule. In addition to the ordering decisions, managers are also responsible for
their store’s product assortment, as they must decide which products to offer at their store
in order to cater to local demand. Inventory management at LCBO, therefore, entails a dual
responsibility for store managers: providing products that are in high demand and keeping
these products stocked on the shelves.

Classification of stores. The LCBO classifies its stores into six categories, AAA, AA, A,
B, C, and D, ranging from the highest to the lowest. These classifications primarily reflect
variations in store size and product assortment. However, there are also differences in the
consumer shopping experience across these classifications, with the AAA and AA stores being
considered flagship stores.

Headquarters. Headquarters are in charge of the assignment of store managers across
the different stores. Assignments are occasionally shuffled due to managers being promoted
(demoted) to higher- (lower-) classified stores, with seniority being a main factor in the
promotion decision. Another responsibility of headquarters is to assist store managers in their
inventory decisions. Headquarters use forecasting techniques to provide recommendations to
managers regarding how much to order for each product at their store. In the company’s
internal jargon, these recommendations are referred to as Suggested Order Quantities (SOQs).
For each store and product, headquarters generate order recommendations based on the
previous week’s sales and inventory information.4 Importantly, this entails that headquarters
process store-level information with a weekly delay. Headquarters do not use just-in-time
daily information that store managers may be using in their replenishment decisions. This
informational friction may play a role in the optimal allocation of decision rights.

Pricing. LCBO and its competitors are subject to substantial pricing restrictions. Prices
must be the same across all stores in all markets for a given store-keeping unit (SKU). There
is no price variation across the LCBO and its competitors. Retail prices are determined on a
fixed markup over the wholesale price set by wine distributors. Furthermore, the percentage
markup applies to all the SKUs within broadly defined categories.5

No franchising system. The LCBO operates its stores without adopting a franchising
system. Instead, all store managers are employees of the LCBO. As a result, store managers
are not required to pay any franchise fees, fees per order, or any other types of fees to the
firm. The absence of a franchising system ensures that the store managers operate within
the organizational structure of the LCBO as employees, without the additional financial
obligations associated with a franchising arrangement.

4More specifically, order recommendations are a function of the Average Rate of Sale (ARS) of the product
from the previous week, and of seasonal brand factors.

5See Aguirregabiria et al. (2016) for further details about markups at LCBO.
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Union. Most employees at the LCBO are unionized under the Ontario Public Service Em-
ployees Union (OPSEU). As of 2022, the OPSEU "represents more than 8,000 workers at
the Liquor Control Board of Ontario", with their main goal being to "establish and continue
harmonious relations between the [LCBO] and the employees". Members of the union include
store managers, retail workers, warehouse workers, and corporate workers.

2.2 Data from LCBO

Our analysis combines three data sources: the main dataset provided by the LCBO; data on
store managers’ experience and education collected from the social media platform LinkedIn;
and consumers’ socioeconomic characteristics from the 2011 Census of Population.

We use a comprehensive and rich dataset obtained from the LCBO, encompassing daily
information on inventories, sales, deliveries, and prices of every product sold at each LCBO
store. The dataset covers a period of two years, specifically from October 2011 to October
2013, spanning a total of 677 days. With a total of 634 stores operating across Ontario and
an extensive product range consisting of over 20,000 different items, our dataset comprises
approximately 720 million observations. Moreover, the dataset includes additional valuable
information, such as product characteristics, store characteristics (including location, size,
and store category), and the store manager’s name.

Table 1 presents summary statistics. The average store has an assortment of 2, 029 items.
Weekly sales per store amount to 12, 909 units, translating to an average of 6.36 units sold
per item. The average weekly revenue per store is $162, 250, resulting in $80 in revenue
per item per week and $12.6 in revenue per unit sold. Regarding deliveries, stores receive
shipments at approximately 5.37 days per week, with total weekly deliveries containing an
average of 12, 258 units. Stockout events occur, on average, 415 times per week across all
stores.

Notably, these figures exhibit significant variation across different store types. Larger
stores, as expected, generate higher weekly revenues. For instance, AAA and AA stores
generate average weekly revenues of $874, 367 and $518, 067, respectively, while C and D
stores generate average weekly revenues of $59, 328 and $23, 913, respectively. Stockout events
appear to be more prevalent in larger stores compared to smaller ones. The average AAA
store experiences 1, 203 stockout events per week, whereas the average D store encounters
204 stockout events per week. Additionally, larger stores tend to place orders more frequently
and in larger quantities. On average, AAA and AA stores receive orders 6.30 and 6.27 days
per week, totaling 51, 340 and 35, 711 units, respectively. In contrast, C and D stores receive
orders 5.09 and 3.83 days per week, amounting to 4, 395 and 1, 660 units, respectively.

The bottom panel in Table 1 presents inventory-to-(daily)sales ratios and ordering fre-
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quencies. These statistics are closely related to the (S, s) decision rules that we analyze in
Section 3. At the store-product level, the inventory-to-sales ratio before and after an order
corresponds to the thresholds s and S, respectively. On average, stores maintain enough
inventory to meet product demand for approximately 23 days, initiate an order when there is
sufficient inventory for about 9 days, and the ordered quantity covers sales for around 18 days.
In terms of ordering frequency, the average store and product place an order approximately
once every two weeks, equivalent to a frequency of 0.07 ' 1/14.

Average inventory-to-sales ratios tend to decrease with store size/type, although this
difference is influenced by the composition effect arising from varying product assortments
across store types. For the remainder of the paper, to account for this composition effect and
reduce the computational burden of estimating our model across numerous products, we focus
on a working sample consisting of a few products carried by all stores. This approach allows
us to manage the complexity associated with different product assortments while maintaining
the robustness of our analysis.

Table 1: Summary Statistics

Type of store
All AAA AA A B C D

Mean Mean Mean Mean Mean Mean Mean
(st.dev) (st.dev) (st.dev) (st.dev) (st.dev) (st.dev) (st.dev)

Number of Observations
Number of Stores 634 5 25 148 157 164 135

Number of Unique Products 22,327 18,200 18,879 20,860 17,769 13,527 9,198
Number of Days 677 676 676 676 677 676 675

Sales & Stockouts Per Store
Revenue per week ($) 162,249 874,367 518,067 320,263 162,588 59,327 23,912

(158,268) (255,172) (111,241) (75,387) (47,385) (21,159) (10,503)
Units sold per week 12,908 57,160 38,369 25,665 14,068 4,522 1,730

(11,885) (8,992) (5,399) (5,405) (4,554) (1,820) (819)
Stockout events per week 414 1,202 912 699 371 273 204

(326) (429) (279) (306) (152) (252) (200)
Inventories Per Store

Number of products 2,028 6,477 4,852 3,555 2,102 1,098 742
(1,416) (1,018) (745) (937) (706) (291) (190)

Delivery days per week 5.37 6.30 6.27 6.23 6.06 5.09 3.83
(1.08) (0.01) (0.05) (0.11) (0.31) (0.66) (0.88)

Delivery units per week 12,257 51,339 35,710 24,350 13,476 4,395 1,660
(11,108) (6,872) (4,848) (5,063) (4,478) (1,792) (814)

Inventory Ratios Per Store
Inventory to (daily) sales ratio 23.31 15.67 15.74 16.89 18.97 25.21 34.23

(9.86) (2.16) (2.74) (3.32) (5.24) (7.20) (11.85)
Inventory to sales ratio after order 18.48 8.78 10.34 12.18 15.13 21.65 26.87

(9.16) (0.62) (1.55) (2.76) (4.40) (7.38) (11.72)
Inventory to sales ratio before order 8.62 5.31 6.83 7.82 8.88 9.23 8.92

(3.59) (0.60) (1.40) (2.39) (2.97) (3.66) (4.99)
Ordering frequency 0.07 0.10 0.10 0.09 0.08 0.06 0.04

(0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.02)
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2.3 Working sample

In our econometric models, estimated in Sections 3 and 4, the parameters are unrestricted at
the store-product level. Considering that our dataset comprises nearly 2 million store-product
pairs, estimating these models for every store-product combination would be exceedingly
time-consuming. To save time while maintaining the integrity of our analysis, we have
employed a different approach. Specifically, we estimate the econometric models for every
store in our dataset but limited the analysis to a selected subset of 5 products.

We employ two criteria to determine the product basket for our analysis. Firstly, we
select products that exhibit high sales across all LCBO stores, ensuring that their inventory
decisions significantly impact the firm’s overall profitability. Secondly, we include products
from each broad category to account for product-level heterogeneity. These categories en-
compass white wine, red wine, vodka, whisky, and rum. Table 2 provides an overview of the
five selected products that satisfy these criteria. By focusing on this subset, we capture a
diverse range of products that are representative of the different categories while also being
impactful in terms of their sales performance.

Table 2: SKUs - Working Sample

SKU SKU SKU SKU SKU
#67 #117 #340380 #550715 #624544

Product Information
Name Smirnoff Bacardi Superior Two Oceans Forty Creek Yellow Tail

Vodka White Rum Sauvignon Blanc Barrel Select Whisky Shiraz

Category Vodka Rum White Whine Whisky Red Wine

Average Retail Price ($) 25.28 24.93 9.98 25.86 11.83

Table 3 provides summary statistics for our working sample. On average, the stores in
our working sample sell 91 units per week, equivalent to 18 units per SKU. The average
weekly revenue per store is $1, 687, resulting in $347 in revenue per SKU per week and $18 in
revenue per unit sold. Regarding deliveries, stores in our working sample receive shipments
approximately 2 days per week, with each delivery containing an average of 88 units. The
average number of stockout events per week per store is 0.37.

Similar to Table 1, these numbers exhibit significant variation across different store types.
Larger stores generate higher average weekly revenues compared to smaller ones. For instance,
the average AAA and AA stores generate weekly revenues of $5, 197 and $4, 511, respectively,
while the smaller C and D stores generate average weekly revenues of $821 and $302, re-
spectively. Contrary to the full sample, stockout events appear to occur more frequently in
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smaller stores than in larger ones within our working sample. The average D store experi-
ences 0.56 stockout events per week, while the average AAA store encounters 0.14 stockout
events per week. Delivery patterns in our working sample follow a similar trend to Table 1,
with larger stores placing larger and more frequent orders. The average AAA store receives
deliveries 4 days per week, totaling 272 units per week, whereas the average D store only
receives deliveries 0.6 days per week, amounting to 15 units per week.

Table 3: Summary Statistics - Working Sample

Type of store
All AAA AA A B C D

Mean Mean Mean Mean Mean Mean Mean
(st.dev) (st.dev) (st.dev) (st.dev) (st.dev) (st.dev) (st.dev)

Number of Observations
Number of Stores 634 5 25 148 157 164 135

Number of Unique Products 5 5 5 5 5 5 5
Number of Days 677 676 676 676 677 676 675

Sales & Stockouts Per Store
Revenue per week ($) 1,687 5,197 4,511 3,192 1,801 821 302

(1,402) (1,487) (1,415) (835) (660) (443) (200)
Units sold per week 91 274 252 173 98 43 15

(75) (51) (65) (39) (33) (22) (10)
Stockouts events per week 0.37 0.14 0.13 0.21 0.28 0.49 0.56

(0.39) (0.07) (0.11) (0.15) (0.23) (0.35) (0.60)
Inventories Per Store

Number of products Offered 4.85 5 5 5 5 4.90 4.42
(0.51) (0) (0) (0) (0) (0.34) (0.92)

Delivery days per week 1.94 4.04 3.79 3.20 2.28 1.20 0.62
(1.15) (0.29) (0.24) (0.49) (0.56) (0.51) (0.35)

Delivery units per week 88 272 243 167 95 42 15
(73) (55) (68) (38) (33) (21) (9)

Inventory Ratios Per Store
Inventory to sales ratio 20.97 28.27 25.18 24.93 24.07 18.80 14.59

(7.03) (8.06) (7.18) (6.44) (6.91) (4.84) (3.46)
Inventory to sales ratio after order 20.80 21.02 18.85 20.09 22.48 21.46 19.17

(4.94) (10.69) (4.11) (4.46) (6.18) (4.07) (3.81)
Inventory to sales ratio before order 13.06 17.48 15.77 16.61 16.25 10.90 7.43

(5.33) (7.10) (3.42) (3.83) (4.72) (3.44) (2.95)
Ordering frequency 0.15 0.31 0.30 0.25 0.17 0.09 0.05

(0.09) (0.06) (0.06) (0.06) (0.05) (0.04) (0.03)

Figure 1 shows strong heterogeneity across stores in several measures related to inventory
management of the five products in our working sample. The figures in panels (a) to (f) are
inverse cumulative distributions over stores, together with their 95% confidence bands.6

6For every store, the 95% confidence interval is based on the construction of store-product-specific rates.
The 95% confidence interval is determined by percentiles 2.5% and 97.5% in this distribution.
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Panel (a) presents the distribution of the stockout rate. For store i, we have:

Stockout ratei =
# (product, day) observations with stockout in store i

# (product, day) observations for store i
(1)

The figure shows a large spread of stockout rates: the 10th and 90th percentiles are 0.20% and
2.82%, respectively. Panel (b) shows substantial heterogeneity across stores in the revenue-
loss per-product-day generated by stockouts. Indexing products by j, and using J = 5 to
represent the number of products, the revenue-loss for store i is:

Revenue lossi =
1

J

J∑
j=1

Stockout ratei,j × Average daily revenue without stockoutsi,j (2)

The 10th and 90th percentiles are $0.06 and $1.03 per product-day, respectively. Aggregated
at the annual level and over all the products offered in a store, they imply an average
annual revenue-loss of approximately $44, 000 at the 10th percentile and $760, 000 at the 90th

percentile. Panel (c) presents the ordering frequency of stores in our sample calculated as:

Ordering frequencyi =
# (product, day) observations with an order in store i

# (product, day) observations for store i
(3)

This ordering rate varies significantly across stores, with the 10th percentile being 3.59% and
the 90th being 28.41%. Panels (d) to (f) present the empirical distributions for the inventory-
to-sales ratio, for this ratio just before an order (a measure of the lower threshold s), and for
this ratio just after an order (a measure of the upper threshold S ). Indexing days by t:

Inventory − to− (daily)sales− ratioi =

∑J
j=1

∑T
t=1 Inventoryi,j,t∑J

j=1

∑T
t=1 Units soldi,j,t

(4)

The distribution of the inventory-to-sales ratio shows that stores at the 10th and 90th per-
centiles hold inventory for 11 days and 33 days of average sales, respectively. For the upper
threshold S (in Panel (e)), the values of these percentiles are 9 and 37 days, and for the lower
threshold s (in Panel (f)) they are 5 and 19 days.

Given these substantial differences in inventory outcomes across stores, it is interesting
to explore how they vary together. We present these correlations in Appendix A.1 (Figure
10). The strongest correlation appears for the positive relationship between our measures of
the thresholds S and s. This correlation can be explained by store heterogeneity in storage
costs: a higher storage cost implies lower values of both s and S. We confirm this conjecture
in the estimation of the structural model in Section 4.
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Figure 1: Empirical Distribution (Inverse CDF) of Inventory Outcomes Across Stores
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To investigate the possibility of stockouts at the warehouse level and their potential impact
on store-level stockouts, we also analyze aggregate daily deliveries from the warehouse to all
634 stores. Given that the products in our working sample are popular items, we interpret a
zero value in aggregate daily deliveries as a stockout event at the warehouse. The results of
our analysis, presented in Section A.4 in the Appendix, reveal that warehouse stockouts are
negligible for our working sample. For each product within the working sample, warehouse
stockout events occur on no more than 3 out of the 677 days in the sample, which accounts
for less than 0.5% of the observed period. These findings suggest that stockouts observed at
the store level are primarily driven by factors other than warehouse-level stockouts.

2.4 Data on store managers’ education and experience

In addition to the main dataset, we enhance our analysis by incorporating information
on store managers’ human capital. Leveraging the professional social networking platform
LinkedIn, we gather data on the education and experience of store managers from their public
profiles. Out of the 634 store managers in our dataset, 600 are identifiable by name in the
LCBO’s records.7 Within this subset, we were able to locate public LinkedIn profiles for 143
managers, allowing us to retrieve valuable information about their educational background
and work experience.

Table 4 presents summary statistics for the variables related to store managers’ educa-
tional background and work experience. Notably, we observe a pattern in which managers
with greater experience and higher educational attainment tend to be assigned to higher-
classified stores. This finding suggests a positive correlation between manager characteristics
and store classification, indicating that the LCBO may allocate more experienced and highly
educated managers to stores of higher importance or larger scale. In Appendix A.2, we pro-
vide more detailed information on the positive relationship between manager characteristics
and the classification of stores within the LCBO retail chain.

7During our sample period, some stores are overseen by interim managers who are not identified by name
in our main dataset.
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Table 4: Experience and Education of Store Managers by Store Type

Type of store
Statistic All AAA AA A B C D

# of stores 634 5 25 148 157 163 125
(%) (100.0) (0.8) (4.0) (23.3) (24.7) (25.9) (21.3)

# managers with observed education 86 1 8 30 32 5 10
(%) (100.0) (1.2) (9.3) (34.9) (37.2) (5.8) (11.6)

# managers with observed LCBO exper. 136 3 9 48 44 20 12
(%) (100.0) (2.2) (6.6) (35.3) (32.4) (14.7) (8.8)

# managers with observed industry exper. 72 1 7 30 26 5 3
(%) (100.0) (1.4) (9.7) (41.7) (36.1) (6.9) (4.2)

Dummy highest degree = high school (Mean) 0.093 0.000 0.000 0.067 0.094 0.200 0.200
Dummy highest degree = college (Mean) 0.395 0.000 0.625 0.333 0.375 0.600 0.400

Dummy highest degree = university (Mean) 0.512 1.000 0.375 0.600 0.531 0.200 0.400

Years LCBO exper. (Mean) 13.7 10.0 12.3 12.2 9.7 24.7 17.8
Years industry (non-LCBO) exper. (Mean) 9.8 15.0 8.0 11.2 9.8 5.8 5.3

3 (S,s) decision rules

3.1 Model

In this section, we study store managers’ inventory behavior through the eyes of (S, s) de-
cision rules. In its simplest form, this decision rule involves time-invariant threshold values.
When assuming lump-sum (fixed) ordering costs, quasi-K-concavity of the profit function
with respect to orders, and time-invariant expected demand, the profit-maximizing inven-
tory decision rule follows a (S, s) structure (Arrow et al., 1951; Scarf, 1959; Denardo, 1981).
The (S, s) rule is characterized by two threshold values: a lower threshold denoted as s,
which represents the stock level that triggers a new order (known as the "safety stock level"),
and an upper threshold denoted as S, which indicates the stock level to be achieved when
an order is placed. Thus, if kt represents the stock level at the beginning of day t, and yt

represents the orders placed on day t, the (S, s) rule can be defined as follows:

yt =

 S − kt if kt ≤ s

0 otherwise
(5)
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Hadley and Whitin (1963) and Blinder (1981) provide comparative statics for the thresholds
(S, s) as functions of the structural parameters in the firm’s profit function. They provide
the following results:

S = fS

(
de, γh,

γf

γc
,
γz

γc

)
, s = fs

(
de, γh,

γf

γc
,
γz

γc

)
, S − s = fS−s

(
de, γh,

γf

γc
,
γz

γc

)
+ − ? + + − − + + − + ?

(6)
where de represents expected demand, γh is the inventory holding cost per period and per
unit, γf is the fixed (lump-sum) ordering cost, γc is the unit ordering cost, and γz is the
stockout cost per period. These γ’s are the parameters in the structural model that we
estimate in Section 4. We investigate the predictions of equation (6) in Section 5.

The optimality of the (S, s) decision rule extends to models with state variables that
evolve over time according to exogenous Markov processes. Let zt denote the vector of
these exogenous state variables, which can include factors influencing demand, unit ordering
costs, wholesale prices, and the product’s retail price (when taken as given by the store
manager), as is the case in our problem. The optimal decision rule in this context follows a
(St, st) structure, where the thresholds St and st are time-invariant functions of these state
variables: St = S(zt) and st = s(zt).

In this section, our empirical approach is inspired by the work of Eberly (1994), Attanasio
(2000), and Adda and Cooper (2000). These studies utilize household-level data on durable
product purchases, specifically automobiles, to estimate (St, st) decision rules. In these de-
cision rules, the thresholds are functions of household characteristics, prices, and aggregate
economic conditions. This approach can be seen as a "semi-structural approach," where
the use of (St, st) rules is motivated by a dynamic programming model of optimal behavior.
However, the specification of the thresholds as functions of state variables does not explicitly
incorporate the structural parameters of the model.

In Section 4, we present a full structural approach that explicitly incorporates the struc-
tural parameters of the model. Furthermore, in Section 5, we utilize the estimated structural
model to conduct counterfactual policy experiments, which address the questions that moti-
vated this paper. However, before delving into the full structural analysis, we find it valuable
to explore the data using a more flexible empirical framework that remains consistent with
the underlying structural model. We investigate heterogeneity between store managers’ in-
ventory decisions by estimating (St, st) rules at the store-product level. These decision rules
are consistent with our structural model but they are more flexible. This allows us to gain
insights and assess the suitability of the (St, st) decision rules in capturing the inventory
behavior of store managers within the LCBO retail chain.
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Given that our dataset contains 677 daily observations for every store and product, and
that the ordering frequency in the data is high enough to include many orders per store-
product, we can estimate the parameters in the (St, st) decision rules at the store-product
level. In this section, we omit store and product sub-indexes in variables and parameters,
but it should be understood that these sub-indexes are implicitly present.

We consider the following specification for the (St, st) thresholds:8
St = exp{βS0 + βSd ln det + βSp ln pt + uSt }

st = exp{βs0 + βsd ln det + βsp ln pt + ust}

(7)

where pt is the product’s retail price, det is the expected demand, and ust and uSt represent state
variables which are known to the store manager but are unobservable to us as researchers.9

The vector of exogenous state variables is zt = (det , pt, u
s
t , u

S
t ). The β’s are reduced form

parameters which are constant over time but vary freely across stores and products and are
functions of the structural parameters that we present in our structural model in Section 4.

Our measure of expected demand is based on an LCBO report regarding the information
that headquarters use to construct order recommendations for each store (Liquor Control
Board of Ontario, 2016). Relying on this report, we assume that store managers obtain
predictions of demand for each product at their store using information on the product’s
retail price (pt), the average daily sales of the product over the last seven days, (that we
represent as Q[−7,−1]

t ), and seasonal dummies.
Since the observed quantity sold qt has discrete support {0, 1, 2, ...}, we consider that

demand has a Negative Binomial distribution where the logarithm of expected demand at
period t has the following form:

ln det = lnE
(
qt | pt, Q[−7,−1]

t

)
= α′ h

(
ln pt, lnQ

[−7,−1]
t

)
(8)

where qt is the quantity sold of the store-product at day t, α is a vector of parameters that
are constant over time but vary freely across store-products, and h

(
ln pt, lnQ

[−7,−1]
t

)
is a

vector of monomial basis in variables ln pt and lnQ
[−7,−1]
t .

8We attempted to incorporate demand volatility, represented by lnσ2
t , as an explanatory variable in the

decision rule. However, we encountered high collinearity between the time series of ln det (expected demand)
and lnσ2

t , making it challenging to estimate their separate effects on the thresholds. It is worth noting that
according to the Negative Binomial distribution, lnσ2

t = ln det + ln(1 + αdet ). Consequently, we can interpret
the effect of ln det on the (St, st) thresholds as the combined impact of both expected demand and volatility.

9For instance, ust and uSt may include shocks in fixed and variable ordering costs, or measurement error
in our estimate of expected demand.
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We denote equation (8) as the sales forecasting function. It deserves some explanation.
First, it is important to note that this is not a demand function. For this inventory decision
problem, managers do not need to know the demand function but only the best possible
predictor of future sales given the information they have. Second, this specification ignores
substitution effects between products within the same category or across categories. Ignoring
substitution effects in demand is fully consistent with LCBO’s report and with the firm’s price
setting, which completely ignores these substitution effects (see Aguirregabiria et al., 2016).10

In the Appendix (Section A.3), we present a summary of the estimation results of the sales
forecasting function for every store and every product in our working sample.

The (St, st) model in equations (5) and (7) implies that the decision of placing an order
(yt > 0) or not (yt = 0) has the structure of a linear-in-parameters binary choice model.

1{yt > 0} = 1{bs0 + bsk ln kt + bsd ln det + bsp ln pt + ũst ≥ 0}, (9)

where 1{.} is the indicator function; ũst ≡ ust/σus is the standardized version of ust , as σus
is the standard deviation of ust ; and there is the following relationship between βs and bs

parameters: bsk = −1/σus ; bs0 = βs0/σus ; bsd = βsd/σus ; and bsp = βsp/σus . These expressions
show that, given the parameters bs, we can identify the parameters βs and σus . We assume
that ũst has a Normal distribution, such that equation (9) is a Probit model, and we estimate
the parameters bs by maximum likelihood.

Our (St, st) model also implies that in days with positive orders (yt > 0) the logarithm
of the total quantity offered, ln(kt + yt), is equal to the logarithm of the upper-threshold,
ln(St), and this implies the following linear-in-parameters (censored) regression model:

ln(kt + yt) = βS0 + βSd ln det + βSp ln pt + uSt if yt > 0. (10)

Equation (10) includes the selection condition yt > 0. That is, the upper-threshold St is
observed only when an order is placed. This selection issue implies that OLS estimation
of equation (10) yields inconsistent estimates of the parameters and the threshold itself.
However, the (St, st) model implies an exclusion restriction that provides identification of
the parameters in equation (10). The inventory level kt affects the binary decision of placing
an order or not (as shown in equation (9)), but conditional on placing an order, it does not
affect the value of the upper-threshold in the right-hand-side of regression equation (10).

10Recent papers show that the pricing decisions of important multi-product firms do not internalize substi-
tution or cannibalization effects between the firm’s own products. See, for instance, Hortaçsu et al. (2021)’s
study of the pricing system of a large international airline company, DellaVigna and Gentzkow (2019) and
Hitsch et al. (2021) on uniform pricing at US retail chains, Cho and Rust (2010) on pricing of car rentals, or
Miravete et al. (2020) for liquor stores in Pennsylvania.
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Therefore, using (9) as the selection equation, we can identify the parameters βS in (10)
using a Heckman two-step approach.11

Part of the variation in parameter estimates across stores and products is attributable
to estimation error rather than genuine heterogeneity. For any given parameter bi,j, where
i and j represent store and product indices respectively, let b̂i,j denote its consistent and
asymptotically normal estimate, with an asymptotic variance of σ2

i,j. Using this asymptotic
distribution, we can establish a relationship between the variances of b̂i,j and bi,j across stores
and products: V ar(̂bi,j) = V ar(bi,j)+E(σ2

i,j), where E(σ2
i,j) represents the mean of asymptotic

variances σ2
i,j across stores and products. Since E(σ2

i,j) > 0, this equation demonstrates that
V ar(̂bi,j) overestimates the true dispersion V ar(bi,j). To mitigate this excess dispersion or
spurious heterogeneity arising from estimation error, we employ a shrinkage estimator. The
details of this estimator are described in section A.8 in the Appendix.

3.2 Estimation of (S,s) thresholds

Figure 2 presents the average estimates of parameters bs0, bsk, bsd, and bsp in the lower threshold
for each store, where the average is obtained over the five products in the working sample. We
sort stores from the lowest to the largest average estimate such that this curve is the inverse
CDF of the average estimate. The red-dashed band around the median of this distribution is
the 95% confidence band under the null hypothesis of homogeneity across stores.12 The signs
of the parameter estimates are for the most part consistent with the predictions of the model.
These distributions show that the parameter estimates vary significantly across stores. For
bs0, b

s
k,, bsd, and bsp, we have that 95%, 95%, 98%, and 95% of stores, respectively, lie outside

of the Bonferroni confidence interval.
Figure 3 presents the inverse CDF of the store-specific average of the parameters βS0 , βSd ,

and βSp in the upper threshold, as well as the Bonferroni 95% confidence interval under the
null hypothesis of homogeneity. As expected, we have strong evidence of heterogeneity in
our estimates. For βS0 , βSd , and βSp , approximately 96%, 97%, and 97% of stores lie outside
of the confidence bands, respectively.

11This exclusion restriction in (S, s) models have been pointed out by Bertola et al. (2005).
12The reported 95% confidence interval incorporates the Bonferroni correction for multiple testing. In this

context, the implicit null hypothesis is that every store does not differ significantly from the average store.
By applying the Bonferroni correction, we account for the increased probability of observing a significant
difference by chance when conducting multiple tests.
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Figure 2: Empirical Distribution (Inverse CDF) of Estimates bs for Lower s Threshold
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Figure 3: Empirical Distribution (Inverse CDF) of Estimates βS for Upper S Threshold
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Given that we have estimates at the store-product level, we can also explore the hetero-
geneity in these estimates within stores. Table 5 presents a decomposition of the variance of
parameter estimates into within-store (between products) and between-store variance. The
parameters associated with expected demand and the lower threshold inventory parameter
show a between-store variance that is at least as large as the within-store variance. For the
constant parameters and the price parameters, the variance is larger across products.

Table 5: Variance Decomposition of Parameter Estimates

Variance bs0 bsk bsd bsp βS
0 βS

d βS
p

Between-store Variance 69.41 0.02 0.28 8.54 110.18 0.27 12.01

Within-store Variance 81.01 0.02 0.07 9.78 183.81 0.11 19.35

The parameter estimates imply values for the (St, st) thresholds. In section A.5 in the
Appendix, we investigate heterogeneity across stores in the estimated thresholds. We find
strong between-store heterogeneity, especially in the lower threshold s.

4 Structural model

We propose and estimate a dynamic structural model of inventory management. A price-
taking store sells a product and faces uncertain demand. The store manager orders the
product from the retail chain’s warehouse, and any unsold product rolls over to the next
period’s inventory. The store-level profit function incorporates four store-specific costs as-
sociated with inventory management: per-unit inventory holding cost (γhi,j), stockout cost
(γzi,j), fixed ordering cost (γfi,j), and per-unit ordering cost (γci,j).

4.1 Non-separability of inventory decisions across products

At LCBO, store managers are responsible for making inventory decisions for thousands of
products. These decisions are not independent of each other due to various factors. Firstly,
when a product experiences a stockout, consumers may opt to substitute it with a similar
available product. As a result, the cost of a stockout for the store is influenced by the
availability of substitute products. Secondly, storage costs are affected by the total volume
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of items and units in the store, which means the inventory management of one product can
impact the storage costs of other products. Lastly, the store’s ordering cost is dependent on
the cost of filling a truck with units of multiple products and transporting them from the
warehouse to the store. The decision to order a truck and the cost associated with it are not
separable across products.

We can think of a model that fully accounts for the inter-dependence inventory decisions
across products. In this model, a store manager maximizes the aggregate profit from all
the products taking into account the substitutability of similar products under stockouts
and subject to two overall store-level constraints: the total storage capacity of the store and
the capacity of the delivery truck. Our store-product level model aligns with this multiple-
product inventory management framework.

By using duality theory, we can show that the marginal conditions for optimality in the
multiple-product model are equivalent to those in our single-product model, under appropri-
ate interpretations of our store-product level structural parameters. The inventory holding
cost parameter γhi,j represents the shadow price or Lagrange multiplier associated with the
storage capacity constraint at store i. Similarly, the fixed and unit ordering costs, γfi,j and
γci,j respectively, reflect the shadow prices of the truck’s capacity constraint at the extensive
and intensive margins. Lastly, the stockout cost parameter γzi,j accounts for the impact of
consumer substitution within the store when a stockout occurs for product j at store i.

In estimating our model, our approach is valid as long as these Lagrange multipliers do
not exhibit significant variation over time. For our counterfactual experiments, we assume
that these Lagrange multipliers remain constant in the counterfactual scenario.

To summarize, our approach does not assume the separability of inventory management
across products, as this would be an unrealistic assumption. Instead, we employ certain
assumptions and shortcuts to address the complexities of the joint inventory management
problem, while still maintaining a realistic framework that is consistent with the interdepen-
dencies among products.

4.2 Sequence of events and profit

For notational simplicity, we omit store and product indexes. Time is indexed by t. One
period is one day. Every day, the sequence of events is the following.

Step (i). The day begins with the store manager observing current stock (kt), the retail price
set by headquarters (pt), and her expectation about the mean and variance of the distribution
of log-demand: ln det and σ2

t , respectively. Given this information, the store manager orders
yt units of inventory from the distribution center. There is time-to-build in this ordering
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decision. More specifically, it takes one day for an order to be delivered to the store and
become available to consumers.13 The ordered amount yt is a discrete variable with support
set Y ≡ {0, 1, ..., J}.

Step (ii). Demand dt is realized. Demand has a Negative Binomial distribution with log-
expected demand and variance: ln det = η′0 seast + ηp ln pt + ηQ lnQ

[−7,−1]
t

σ2
t = det (1 + α det )

(11)

where η0, ηp, ηQ, and α are parameters; seast is a vector of seasonal dummies (i.e., weekend
dummy and main holidays dummy); Q[−7,−1]

t is the average daily sales of the product in the
store during the last seven days; and α denotes the over-dispersion parameter in the Negative
Binomial. We use Fdt to represent the distribution of dt conditional on (pt, Q

[−7,−1]
t , seast).

Importantly, the stochastic demand shock udt ≡ ln dt− ln det is unknown to the store manager
at the beginning of the day when she makes her ordering decision.

Step (iii). The store sells qt units of inventory, which is the minimum of supply and demand:

qt = min{ dt , kt } (12)

The store generates flow profits Πt. The profit function has the following form:

Πt = (pt − ct) min{dt, kt}+ γz1{dt > kt} − γh kt − γc yt − γf 1{yt > 0}+ σε εt(yt) (13)

where ct is the wholesale price, and γz, γh, γc, γf , and σε are store-product-specific structural
parameters. When γz > 0, the term γz ·1{dt > kt} captures the situation where the cost of a
stockout can be smaller than the revenue loss from excess demand because some consumers
substitute the product within the store. On the other hand, if γz < 0, this term can represent
an additional reputational cost of stockouts that goes beyond the lost revenue (see Anderson
et al., 2006). The term γh · kt represents the storage cost associated with holding kt units of
inventory at the store. Parameter γc denotes the per-unit cost incurred by the store manager
when placing an order, and γf represents the fixed ordering cost, including the transportation
cost from the warehouse to the store. The variable εt(yt) corresponds to a stochastic shock
with a mean of zero that affects ordering costs. More specifically, variables εt(0), εt(1),
..., εt(J) are i.i.d. with a Extreme Value type 1 distribution. Parameter σε represents the
standard deviation of the shocks in ordering costs.

13Based on the interviews we conducted with store managers, the most common delivery lag reported is
one day. Delivery lags exceeding three days were described as extremely rare.
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These γ parameters are the store manager’s perceived costs. For instance, the fixed order-
ing cost γf and the per-unit holding cost γh can be interpreted as the manager’s perception
of the shadow prices (or Lagrange multipliers) associated to the capacity constraints of a
delivery truck and of the store, respectively.

Price-cost margins. LCBO’s retail prices are a constant markup over their respective
wholesale prices. There are different markups for Ontario products (65.5% markup) and
non-Ontario products (71.5% markup) (see Aguirregabiria et al., 2016). A constant markup,
say τ , implies that the price-cost margin is proportional to the retail price: pt − ct = LI pt,
where LI represents the Lerner index that by definition is equal to τ

1+τ
. The Lerner index is

equal to 0.655
1+0.655

= 0.40 for Ontario products and to 0.715
1+0.715

= 0.42 for non-Ontario products.

Step (iv). Orders placed at the beginning of day t, yt, arrive to the store at the end of
the same day or at the beginning of t + 1. Inventory is updated according to the following
transition rule:

kt+1 = kt + yt − qt (14)

Finally, next period price pt+1 is realized according to a first order Markov process with
transition distribution function Fp(pt+1|pt).

4.3 Dynamic decision problem

A store manager chooses the order quantity yt to maximize her store’s expected and dis-
counted stream of current and future profits. This is a dynamic programming problem with
state variables xt ≡ (kt, pt, lnQ

[−7,−1]
t , seast) and εt ≡ (εt(0), εt(1), ..., εt(J)) and value func-

tion V (xt, εt). This value function is the unique solution of the following Bellman equation:

V (xt, εt) = max
yt∈Y

{ π(yt,xt) + σε ε(yt) + β E [V (xt+1, εt+1) | yt,xt] }, (15)

where β ∈ (0, 1) is the store’s one-day discount factor; π(yt,xt) is the expected profit function
up to the εt shock; and E[.|yt,xt] is the expectation over the i.i.d. distribution of εt+1, and over
the distribution of xt+1 conditional on xt. The latter distribution consists of the transition
probability Fp(pt+1|pt) and the distribution of demand dt conditional on xt which together
with equations (12) and (14) determines the distribution of (kt+1, pt+1, lnQ

[−7,−1]
t+1 , seast+1).

The solution of this dynamic programming problem implies a time-invariant optimal decision
rule: yt = y∗(xt, εt). This optimal decision rule is defined as the arg max of the expression
within brackets {} in the right-hand-side of equation (15).

For the solution and estimation of this model, we follow Rust (1987, 1994) and use the
integrated value function Vσ(xt) ≡ 1

σε

∫
V (xt, εt)dεt and the corresponding integrated Bellman
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equation. Given the Extreme Value distribution of the εt variables, the integrated Bellman
equation has the following form:

Vσ(xt) = ln

[∑
y∈Y

exp

(
π(y,xt)

σε
+ β E [Vσ(xt+1) | y,xt]

)]
. (16)

The expected profit function π(yt,xt) is linear in the parameters. That is,

π(yt,xt)

σε
= h(yt,xt)

′ γ, (17)

where γ is the vector of structural parameters γ ≡ (1/σε, γh/σε, γz/σε, γf/σε, γc/σε)′, and
h(yt,xt) is the following vector of functions of the state variables:

h(yt,xt)
′ = (LI pt E[min{dt, kt}|xt], − kt, E[1{dt > kt}|xt], − 1{yt > 0}, − yt) , (18)

where the expectation is taken over the distribution of demand conditional on xt.
We consider a discrete space for the state variables xt.14 Let X ≡ {x1,x2, ...,xL} be the

support set of xt. We can represent the value function Vσ(.) as a vector Vσ in the Euclidean
space RL, and the transition probability functions of xt for a given value of y as an L × L
matrix Fx(y). Taking this into account, as well as the linear-in-parameters structure of the
expected profit π(yt,xt), the integrated Bellman equation in vector form is:

Vσ = ln

[∑
y∈Y

exp (H(y) γ + β Fx(y) Vσ)

]
. (19)

where H(y) is a L× 5 matrix that in row r contains vector h(y,xr)′ for xr ∈ X .
The Conditional Choice Probability (CCP) function, P (y|xt), is an integrated version

of the decision rule y∗(xt, εt). For any y ∈ Y and xt ∈ X , the CCP P (y|xt) is defined
as
∫

1{y∗(xt, εt) = y}dG(εt), where G is the CDF of εt. For the Extreme Value type 1
distribution, the CCP function has the Logit form:

P (y|xt) =
exp{h(y,xt)

′ γ + β E [Vσ(xt+1) | y,xt]}∑J
j=0 exp{h(j,xt)′ γ + β E [Vσ(xt+1) | j,xt]}

, (20)

Following Aguirregabiria and Mira (2002), we can represent the vector of CCPs, P ≡
{P (y|x) : (y,x) ∈ Y ×X}, as the solution of a fixed-point mapping in the probability space:
P = ψ(P). Mapping ψ is denoted the policy iteration mapping, and it is the composition

14In the estimation, we discretize the state space using a k-means algorithm.
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of two mappings: ψ(P) ≡ λ(υ(P)). Mapping λ(V) is the policy improvement. It takes as
given a vector of values V and obtains the optimal CCPs as "best responses" to these values.
Mapping υ(P) is the valuation mapping. It takes as given a vector of CCPs P and obtains
the corresponding vector of values if the agent behaves according to these CCPs.15 In our
Logit model, the policy improvement mapping has the following vector form, for any y ∈ Y :

P(y) = λ(y,V) =
exp{H(y) γ + β Fx(y) V}∑J
j=0 exp{H(j) γ + β Fx(j) V}

. (21)

The valuation mapping has the following form:

V = υ(P) =

[
I− β

J∑
y=0

P(y) ∗ Fx(y)

]−1 [ J∑
y=0

P(y) ∗ (H(y) γ + euler − lnP(y))

]
, (22)

where euler is Euler’s constant, and ∗ is the element-by-element vector product.

4.4 Parameter estimates

For every LCBO store and product in our working sample, we estimate the store-product
specific parameters in vector γ using a Two-Step Pseudo Likelihood (2PML) estimator (Aguir-
regabiria and Mira (2002)). Given a dataset {yt,xt : t = 1, 2, ..., T} and arbitrary vectors of
CCPs and structural parameters (P, γ), define the pseudo (log) likelihood function:

Q(P, γ) =
T∑
t=1

lnψ (yt, xt ; P, γ) , (23)

where ψ(.) is the policy iteration mapping defined by the composition of equations (21) and
(22). Note that the likelihood function Q(P, γ) is a function of the store’s one-day discount
factor β. In the estimation, we fix the value16 of this discount factor equal to 0.95

1
365 . In

the first step of the 2PML method, we obtain a reduced form estimation of the vector of
CCPs P using a Kernel method. In the second step, the 2PML estimator is the vector γ̂ that
maximizes the pseudo-likelihood function when P = P̂. That is:

γ̂ = arg maxγ Q(P̂, γ) (24)

15See Puterman (2014) for a description of these three mappings in the context of a general dynamic
programming problem.

16We could eventually relax this assumption and treat β as a parameter to be estimated, and allow it to
vary across store managers in order to potentially capture different degrees of myopia or impatience.
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Aguirregabiria and Mira (2002) show that this estimator is consistent and asymptotically nor-
mal with the same asymptotic variance as the full maximum likelihood estimator. In section
A.6 in the Appendix, we provide further details on the implementation of this estimator.

In a similar vein to the estimation of (S, s) thresholds in section 3, a portion of the vari-
ation in parameter estimates γ̂i,j can be attributed to estimation error rather than genuine
heterogeneity. To address this issue and mitigate the excessive dispersion or spurious hetero-
geneity resulting from estimation error, we employ a shrinkage estimator. The details of this
estimator can be found in section A.8 in the Appendix.

Table 6 presents the medians from the empirical distributions (across stores and prod-
ucts) of our estimates of the four structural parameters, measured in dollar amounts.17 The
median values of the estimates are $0.0036 for the per-unit inventory holding cost, $0.0219 for
the stockout cost, $2.9658 for the fixed ordering cost, and $0.0341 for the per-unit ordering
cost. To have an idea of the importance of these dollar amounts, in Section 4.5 below we
provide measures of the implied magnitude of each cost relative to revenue. These magni-
tudes are consistent with other cost estimates in the inventory management literature (see
Aguirregabiria [1999], Bray et al. [2019]). Median standard errors and t-statistics in Table 6
show that the inventory holding cost and the fixed ordering cost are very precisely estimated
(median t-ratios of 5.32 and 12.65, respectively), while a substantial fraction of the estimates
of the stockout cost are quite imprecise (median t-ratio of 0.27).

Table 6: Structural Estimates of Cost Parameters (in Canadian Dollars)

Median Std. Dev. Median Median
Estimate Estimate S.e. t-stat.

γh : Per-unit Inventory Holding Cost 0.0036 0.0029 0.0007 5.3259

γz: Stockout Cost 0.0219 0.3094 0.1465 0.2672

γf : Fixed Ordering Cost 2.9658 1.0847 0.2356 12.6557

γc: Per-Unit Ordering Cost 0.0341 0.0607 0.0274 1.4763

# of observed store-product pairs 3,076
# of store-product pairs with structural estimates 2,589

17More specifically, we first obtain the two-step PML estimate of the vector γ ≡ (1/σε, γh/σε, γz/σε,
γf/σε, γc/σε)′, and then we divide elements 2 to 5 of this vector by the first element to obtain estimates of
costs in dollar amount. We use the delta method to obtain standard errors.
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Figure 4: γ Estimates: Shrinkage Estimator
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4.5 Relative contribution of the different costs

In this section we assess the magnitude of the different inventory management costs relative
to store revenues. The purpose of this exercise is twofold. First, we want to evaluate whether
our parameter estimates imply realistic magnitudes for the realization of these costs. And
second, it is relevant to measure to what extent the heterogeneity in cost parameters that we
have presented above generates heterogeneity in profits across stores. Conditional on their
perception of cost parameters, store managers’ optimal behavior should compensate – at
least partly – for the differences in cost parameters such that heterogeneity in realized costs
should be smaller. We want to measure the extent of this compensating effect.

For each component of the inventory management cost, and for every store-product, we
calculate the ratio between the realized value of the cost during our sample period and
the realized value of revenue during the same period. More specifically, we calculate the
following ratios for every store-product: inventory holding cost to revenue; stockout cost to
revenue; fixed ordering cost to revenue; variable ordering cost to revenue; and total inventory
management cost to revenue. We have an empirical distribution over store-products for each
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of these ratios.
Table 7 presents the median and the standard deviation in these distributions. To evaluate

the magnitude of these ratios, it is useful taking into account that – according to the LCBO’s
annual reports – the total expenses to sales ratio of the retail chain is consistently around
16% each year.18 According to our estimate, the total inventory cost-to-revenue ratio for
the median store is approximately 1.37%. This would imply that the retail chain’s cost of
managing the inventories of their stores would represent around 10% of total costs, which
entails that non-inventory related costs would account for approximately 90% of total costs
(e.g. labor costs, fixed capital costs, delivery costs). This seems to be of the right order of
magnitude. Table 7 shows that the fixed ordering cost is the largest realized cost for store
managers at LCBO, followed by storage costs. Realized stockout costs are negligible. This
is due to a combination of a small parameter that captures the stockout cost, and infrequent
stockouts in our working sample.

Table 7: Realized Inventory Management Costs to Revenue Ratios

Median St. Dev.

Inventory Holding Cost to Revenue Ratio (%) 0.2863 0.2182
Stockout Cost to Revenue Ratio (%) 0.0005 0.0197

Fixed Ordering Cost to Revenue Ratio (%) 0.8731 0.7728
Variable Ordering Cost to Revenue Ratio (%) 0.2045 0.1895

Total Inventory Cost to Revenue Ratio (%) 1.3749 0.9235

In section A.9 in the Appendix, we present the empirical distribution across stores and
products of each of the four cost-to-revenue ratios. We also show the extent to which man-
agers’ inventory decisions compensate for the heterogeneity in the structural parameters.

4.6 Heterogeneity in cost parameters

Below, we investigate two potential sources for the large heterogeneity in our cost parameters:
(i) differences across stores, such as store type according to LCBO’s classification of stores,
physical area, total product assortment, distance to the warehouse, and consumer socioe-
conomic characteristics; and (ii) differences across local managers. Our goal in this section

18Of course, these expenses do not include the cost of merchandise.

27



is to separate the heterogeneity attributable to store characteristics, and the heterogeneity
stemming from the managers themselves. We proceed using a sequential approach. First, we
regress our parameter estimates on a set of store characteristics. Then, we take the residual
components from the first step and regress them on manager characteristics.

Table 8: Regressions on Store Characteristics

(γh) (γz) (γf ) (γc)
Est. Est. Est. Est.
(s.e.) (s.e.) (s.e.) (s.e.)

Store Class
AA 0.000554 -0.0216 -0.164 0.00302

(0.000411) (0.0194) (0.185) (0.00587)

A 0.000511 -0.0204 -0.203 0.00816
(0.000397) (0.0181) (0.178) (0.00572)

B -0.000415 -0.0237 0.108 0.00761
(0.000434) (0.0204) (0.190) (0.00590)

C -0.00209∗∗∗ -0.0531∗∗ 0.785∗∗∗ 0.00477
(0.000520) (0.0243) (0.221) (0.00657)

D -0.00334∗∗∗ -0.0379 1.223∗∗∗ 0.00479
(0.000564) (0.0262) (0.244) (0.00693)

ln(Product Assortment Size) 0.000336 -0.00932 -0.364∗∗∗ 0.00388∗
(0.000205) (0.00973) (0.0775) (0.00201)

ln(Population in City) -0.0000801∗∗ -0.00136 0.00948 0.000413
(0.0000381) (0.00220) (0.0186) (0.000483)

ln(Median Income in City) 0.000362 0.0493∗ -0.0577 0.00795
(0.000520) (0.0255) (0.212) (0.00646)

Location dummies (25 regions, 4 districts) YES YES YES YES
Product dummies (5 products) YES YES YES YES

R-squared 0.3954 0.1345 0.5265 0.0598
Observations 2,589 2,589 2,589 2,589
(1) Location dummies based on LCBO’s own division of Ontario into 25 regional markets and 4 districts.
(2) Robust standard errors clustered at the store level in parentheses
(3) * means p-value<0.10, ** means p-value<0.05, *** means p-value<0.01

First step: store characteristics. Table 8 presents estimation results from the first-
step regressions of each estimated cost parameter against store and location characteristics:
LCBO’s store type dummies (6 types); LCBO’s regional market dummies (25 regions); log-
arithm of the number of unique products offered by the store; logarithm of population in
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the store’s city; and logarithm of median income level in the store’s city. As we have cost
estimates at the store-product level, we also include product fixed effects.19

These store and location characteristics can explain an important part of the variation
across stores in inventory holding costs and fixed ordering costs: the R-squared coefficients for
these regressions are 0.39, and 0.53, respectively. Fixed ordering costs decline significantly
with the number of products in the store, which is consistent with economies of scope in
ordering multiple products. Inventory holding costs increase with assortment size and are
significantly higher for AAA stores relative to D stores. In contrast, only 6% of the variation
in unit ordering costs and 13% of the variation in stockout costs can be explained by these
store and location characteristics. These results are robust to other specifications of the
regression equation based on transformations of explanatory or/and dependent variables.

Second step: manager characteristics. Table 9 presents the estimation results from the
second-step regressions of cost parameters on manager characteristics (educational attain-
ment, years of experience at the LCBO, and other industry experience), after controlling for
the variation explained by store characteristics. The overall finding is that managers’ edu-
cation and experience have non-significant effects in these regressions. There are two main
reasons that can explain these negligible effects.

First, there is a substantial correlation between store characteristics and managers’ skills.
More skilled managers tend to be allocated to higher-class stores (positive assortative match-
ing). Therefore, in the first-step regression, where store characteristics are included, these
characteristics are also capturing the effect of managers’ skills. As a result, the direct effect
of managers’ skills in the second-step regressions becomes less apparent.

Second, the insignificant effect of managers’ skills on the estimated cost parameters aligns
with the interpretation that the residual component of these parameters is associated with
biased perceptions. More skilled managers may have a better measure of these costs, while
less skilled managers may have noisier estimates. However, this does not imply a larger or
smaller effect of managers’ skills on the mean value of cost parameters. Instead, the effect
would appear in the variance of the cost parameters, indicating differences in the precision
of their estimates. Indeed, when we regress the variance of the cost parameters on managers’
skills, we find evidence supporting this interpretation.

19Note that the store location dummies capture various factors, including the effect of the distance between
the store and the warehouse.
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Table 9: Regressions on Manager Characteristics

(res(γh)) (res(γz)) (res(γf )) (res(γc))
Est. Est. Est. Est.
(s.e.) (s.e.) (s.e.) (s.e.)

Educational Attainment
High School -0.0000165 0.000752 -0.0000456 0.000420

(0.000237) (0.0122) (0.0769) (0.00271)

University -0.0000801 0.00474 0.0194 -0.000213
(0.000170) (0.00794) (0.0577) (0.00183)

LCBO Experience 0.0000128∗∗ -0.000204 0.00228 -0.0000967
(0.00000627) (0.000270) (0.00223) (0.0000669)

Other Experience 0.0000156 0.000576 0.00471 -0.0000587
(0.0000125) (0.000475) (0.00437) (0.000115)

R-squared 0.0095 0.0051 0.0058 0.0038
Observations 2,589 2,589 2,589 2,589
(1) Robust standard errors clustered at the store level in parentheses
(2) * means p-value<0.10, ** means p-value<0.05, *** means p-value<0.01
(3) We use multiple imputation to account for missing values of our explanatory variables

In Section A.10 of the Appendix, we also examine how the variance of the cost parameters
depends on store characteristics. We find that the dispersion of the (second-step) manager
component of costs is larger on average for lower-class stores. Since managers in these stores
generally have lower levels of human capital (i.e. education and experience), we interpret the
second-step manager component as a biased perception of the true cost from the point of view
of store managers. That is, the (first-step) store component of the costs will be interpreted
as the true cost, and the manager component will be interpreted as deviations from this true
cost. In order to illustrate the interpretation of the residual component as manager bias, we
present in Section A.10 of the Appendix two granular examples in which pairs of stores –
located in close proximity to each other – are similar in size, sales, store classification, but
have very different levels of manager experience and estimates of the cost parameters.

We explore the interpretations of our cost parameters, and their impact on store-level
inventory outcomes, in the subsequent counterfactual experiments of Section 5.
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5 Counterfactual experiments

This section presents two sets of counterfactual experiments based on the model that we have
estimated in the previous section. First, we study the contribution to inventory management
outcomes from the heterogeneity in store managers’ perceptions of costs. Second, we evaluate
the effects of a counterfactual centralization of inventory management decisions at LCBO
headquarters. We present this counterfactual experiment under different scenarios on the
information that headquarters has about demand and costs at the store level.

5.1 Removing store managers’ idiosyncratic effects

Let γ̂i,j be the vector of estimates of cost parameters for product j and store i. Based on
the regressions in Tables 8 and 9, we decompose this vector into two additive and orthogonal
components: the part explained by store and location characteristics, that we represent as
γ̂stoi,j ; and the part explained by local managers, γ̂mani,j . Below, we construct a counterfactual
scenario that removes the idiosyncratic component γ̂mani,j from the inventory decision problem
for store i and product j. For every store-product (i, j) in our working sample, we implement
a separate counterfactual experiment for each of the four cost parameters, and one experiment
that shuts down together the manager component of the four cost parameters. This implies
a total number of 15, 850 experiments.

We implement each of these experiments by solving the dynamic programming problem
and obtaining the corresponding CCPs under the counterfactual values of the structural pa-
rameters. We use this vector of CCPs to calculate the corresponding ergodic distribution of
the state variables for the store-product.20 Finally, we use the vector of CCPs and the er-
godic distribution to calculate mean values of relevant outcome variables related to inventory
management. We compare these average outcomes with their corresponding values under the
factual values of structural parameters. In terms of outcome variables, we look at the same
descriptive statistics as those reported in Table 1 and Figure 1: stockout frequency, ordering
frequency, inventory to sales ratio, inventory to sales ratio after an order (i.e. S threshold),
and inventory to sales ratio before an order (i.e. s threshold).

Figures 5 (for stockout frequency), 6 (for ordering frequency), and 7 (for inventory-to-
sales ratio) summarize the results from these experiments. In each figure, the horizontal
axis measures the value of the corresponding parameter γmani,j , and the vertical axis mea-
sures the difference in the mean value of the outcome variable between the factual and the
counterfactual scenario. For instance, in Figure 5(a), the horizontal axis represents γh,mani,j ,

20Note that this ergodic distribution incorporates the seasonal effects in the demand part of the model, as
seasonal dummies are a component of the vector of state variables of the model.
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and the vertical axis measures ∆SOFi,j = SOF factual
i,j − SOF counter

i,j , where SOF is stockout
frequency.

Note that the counterfactual experiment of shutting down γh,mani,j to zero is equivalent to
a change in parameter γhi,j from the counterfactual value γh,stoi,j to the factual value γh,stoi,j +

γh,mani,j . Therefore, we can see the cloud of points in, say, Figure 5(a) as the results of many
comparative statics exercises, all of them consisting in changes in the value of parameter
γh. In these figures, there are multiple curves relating a change in γh with a change in
the outcome variable because store-products have different values of the other structural
parameters. However, each of these figures shows a monotonic relationship between a change
in a cost parameter and the corresponding change in an outcome variable.

Figure 5: Counterfactual Outcome: Stockout Frequency
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We compare the relationship between parameters and outcomes implied by these figures
with the theoretical predictions from the model as depicted in equation (6). More specifically,
note that S − s is negatively related to the ordering frequency (the larger the S − s, the
smaller the ordering frequency); s is negatively related to the stockout rate (the larger the
s, the smaller the stockout rate); and the levels of both S and s are positively related to the
inventory to sales ratio (the larger the S and s, the larger the ratio). The pattern in our
figures is fully consistent with Blinder’s theoretical predictions for this class of models.

Figure 5 depicts the relationship between cost parameters and the stockout frequency.
According to Blinder’s formula, the lower threshold s depends negatively on γh and γf , and
positively on γz, while the effect of γc is ambiguous. Panels (a) to (d) in Figure 5 confirm
the signs of these effects on the stockout frequency.

Figure 6: Counterfactual Outcome: Ordering Frequency
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In Figure 6, we present the relationship between cost parameters and the ordering fre-
quency. Blinder’s formula says that S − s depends negatively on γh and positively on γf .
Panels (a) and (c) confirm the sign of these effects on the ordering frequency. According to
Blinder, the sign of the effects of γz and γc on ordering frequency is ambiguous because they
affect the two thresholds S and s in the same direction. In Panel (b), we find a positive
relationship between the stockout cost γz and ordering frequency. Panel (d) shows that the
frequency of placing an order falls when the unit ordering cost increases.

Figure 7: Counterfactual Outcome: Inventory-to-sales Ratio
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Figure 7 illustrates the relationship between cost parameters and the inventory-to-sales
ratio. Blinder’s formula establishes that the two thresholds S and s depend negatively on
γh and positively γz. Panels (a) and (b) confirm these signs for the inventory-to-sales ratio.
However, according to Blinder’s formula, the sign of the effects of γf and γc on the inventory-

34



to-sales ratio is ambiguous. Panels (c) and (d) show negative effects of γf and γc on the
inventory-to-sales ratio.

Table 10: Removing the Manager Component of Cost Parameters

Parameters Shut Down
None γh γz γf γc All

Store-product level inventory outcomes Mean Mean Mean Mean Mean Mean
(st.dev) (st.dev) (st.dev) (st.dev) (st.dev) (st.dev)

Stockout Frequency 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
(0.0004) (0.0003) (0.0004) (0.0004) (0.0004) (0.0003)

Ordering Frequency 0.1776 0.1770 0.1776 0.1714 0.1729 0.1618
(0.1329) (0.1353) (0.1329) (0.1260) (0.1313) (0.1240)

Inventory to Sales Ratio 26.8373 23.3465 26.8376 27.8804 25.7753 22.1358
(21.1587) (13.3625) (21.1589) (25.1945) (19.1622) (11.8119)

Inventory to Sales Ratio After Order 31.6917 26.7060 31.6920 33.7313 29.6416 24.2525
(29.7575) (17.9471) (29.7576) (36.5440) (25.5906) (13.9094)

Inventory to Sales Ratio Before Order 22.6063 18.3920 22.6066 24.6034 20.9836 16.6467
(22.0222) (12.2635) (22.0224) (28.0980) (18.7917) (8.7038)

Change in Total Inventory Cost (%) – -4.1913 0.0005 1.5256 -4.5866 -12.0838
(11.7293) (0.0048) (24.1220) (11.4978) (17.5204)

It is of interest to measure the average effect across stores and products of shutting down
the store manager-specific component in costs. Table 10 presents these average effects for
each of the four cost parameters and for the combination of the four.21 Removing the manager
component in all four inventory costs generates a decrease in the mean ordering frequency of
1.6 percentage points, from 17.8% to 16.2%; a decrease in the inventory-to-sales ratio of 4.7

days of average sales, from 26.8 to 22.1 days; a decrease in the lower s threshold of 6 days,
from 22.6 to 16.6 days; and a decrease in the S − s gap of 1.5 days, from 9.1 to 7.6 days.

Store managers’ idiosyncratic perception of costs has a substantial effect on inventory
management at the aggregate firm level. It entails a 6-day decrease in waiting time between
two orders, an increase in the average order amount of 1.5 days of average sales, and a 21%

increase in the inventory-to-sales ratio, but a negligible effect on the frequency of stockouts.
21Note that, by construction, the manager component γman

i,j has mean zero and is orthogonal to the
store component γsto

i,j . Therefore, if the model implied a linear relationship between outcome variables and
structural parameters, then the average effect of shutting down the residual component would be zero. For
the same reason, a first-order linear approximation to this average effect is zero. However, the model implies
a nonlinear relationship between outcomes and structural parameters such that it is a relevant empirical
question to look at these average effects. In fact, we find that the effect is not negligible at all.
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Accordingly, if this idiosyncratic component is a biased perception, then it has a substantial
negative impact on the firm’s profit as it increases storage and ordering costs with almost no
effect on stockouts and revenue. The bottom row in Table 10 presents the effect of removing
γmani,j on total inventory management cost calculated using γstoi,j but not γmani,j . We find that,
on average, this cost declines by 12.1%. This substantial effect plays an important role in
the counterfactual experiment on centralization that we present in the next section.

5.2 Centralizing inventory decision-making

We now address the main question that motivates this paper: would the LCBO retail chain
benefit from managing the stores’ inventories at the headquarter level, as opposed to allowing
heterogeneous store managers to have autonomy in their inventory decisions? To answer this
question, we need to establish some conditions on the headquarters’ information about store-
level demand, inventories, and cost parameters. The experiments that we present below are
based on the following conditions.

First, based on the institutional details we describe in Section 2.1, we consider that head-
quarters process store-product level transactions data with a one-week delay. Transmission
of information from stores to headquarters occurs in real time, without any substantial de-
lay. However, it takes time to process that information to generate headquarters demand
predictions and ordering recommendations. Though a fully automated inventory manage-
ment system is possible, human supervision can add value by accounting for soft information
(Cimini et al., 2019). Accordingly, in the counterfactual centralized system, we replace state
variable Q[−7,−1]

t with the one-week lag of this variable, i.e., Q[−14,−8]
t .

Second, to compare profits between the centralized and decentralized structures, we must
take a stance on what are the "true" cost parameters. We assume that the true cost parame-
ters are γstoi,j which are determined by store and location characteristics. Under the centralized
system, the headquarters know these costs and take inventory decisions for every store based
on these costs. In contrast, we interpret γmani,j as store managers’ behavioral biases and not
as "true" costs. Under the decentralized system, store managers make decisions as if the
cost parameters were γstoi,j + γmani,j , but our measure of their profits is based only on γstoi,j .
The evaluation of profits under this assumption provides an upper bound for the (profit)
gains from centralization. Alternatively, we could assume that γmani,j is a true component of
profit that is known to the store manager but unknown to the headquarters. This alternative
assumption would provide a lower bound for the gains from centralization.

Based on these assumptions, this counterfactual experiment measures the following trade-
off in the choice between centralized and decentralized inventory management. A negative
aspect of decentralization is that store managers have different skills and behavioral biases
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as captured by the idiosyncratic components γmani,j . These biases should have a negative
effect on LCBO profits. The positive aspect of decentralization is that store managers have
just-in-time information about demand, sales, and inventories, while the firm’s headquarters
process this information with one week delay. This just-in-time information should have a
positive effect on LCBO profits.

Table 11: Decentralized vs. Centralized Profits: Average Daily Profit Per-Store Per-Product

Mean Pct. 10% Pct. 25% Median Pct. 75% Pct. 90%

Centralized Solution ($) 53.72 10.54 20.29 44.06 80.34 109.21

Decentralized Solution ($) 52.81 10.16 19.64 43.34 79.66 108.04

Gains in Profit from Decentralization ($) -0.91 -3.10 -1.58 -0.66 -0.05 0.80

Gains in Profit from Decentralization (%) -1.97 -6.09 -3.81 -2.09 -0.19 1.85

Change in Inventory Cost from Decentralization (%) 22.99 -8.06 -2.59 3.72 21.99 62.66

1% change in profit per store-product is approximately $17 million in total annual profit for LCBO.

Figure 8: Change in Daily Profit From Decentralization ($)
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We depict the results of this experiment in Table 11, and Figures 8 and 9. Similarly as for
the counterfactuals in section 5.1, we evaluate the effects using the ergodic distributions of
the state variables under the factual and counterfactual scenarios. Table 11 presents means,
medians, and several percentiles for the profit per store-product under the centralized and
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Figure 9: Change in Daily Inventory Cost From Decentralization (%)
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decentralized systems and for the gains from decentralization. To have a better perspective
of the implications of these effects, it is useful to take into account that a 1% change in profit
per store-product represents approximately $17 million in total annual profit for LCBO in
year 2012.22 At the aggregate level, decentralization has a negative impact on LCBO profits.
It implies a 2% decline in profits, which represents $34 million in annual profits for the retail
chain. The effect on the median store is also negative: −2.1%. This relatively modest effect
is the result of combining two large effects with opposite signs. The one-week delay in the
processing of information in the centralized system has a non-negligible negative impact on
profits at every store. However, this negative effect of the centralized system is more than
compensated by the large increase in profits due to reducing ordering and storage costs when
removing store managers’ biased perceptions of costs. This is illustrated in the bottom row
of Table 11: on average, decentralization increases total inventory costs by 23%.

The evidence on the mean and median effects in Table 11 is not necessarily sufficient
for a retail chain to adopt a centralized inventory management system. A retail chain may
need to assess the distributional effects of the gains/losses across its stores before adopting
a substantial organizational change, and not simply rely on the average effect. Table 11 and
Figure 8 show significant heterogeneity in the impact of decentralization, with a considerable
amount of stores benefiting from the decentralized structure: the 90th percentile store has
a gain in profit of 1.8%, which is not negligible. Therefore, although centralization would
generate positive gains in total profits for the retail chain relative to the existing decentralized

22According to the 2012-2013 LCBO annual report, the annual profit (net income) of the company was
$1.7 billion. Therefore, 1% of this profit is $17 million.
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structure, the distributional effects of these gains are important to assess.
Figure 9 provides a closer look at the heterogeneous effect from (de)centralization. It

presents the empirical distribution of the percentage change in average daily inventory costs.
The median of this distribution presents a positive increase in costs (i.e., 3.7%), but most
striking is the long right tail of this distribution, which implies a 23% increase in average
inventory costs.

6 Conclusion

Retail chains are complex organizations with various divisions and teams, each having its
own decision-making authority. Store managers, in particular, play a crucial role within
certain retail chains. These managers have the advantage of collecting and processing timely
information specific to their individual stores. This store-level information is more consistent
and manageable compared to information at the chain-wide level. However, the transfer and
processing of this information from stores to headquarters can introduce delays ranging from
days to weeks, which can negatively impact decision-making and overall profitability.

On the other hand, store managers exhibit heterogeneous skills, motivations, and levels
of effort. A centralized decision-making system that selectively utilizes the most competent
managers within the organization can help mitigate the negative effects stemming from the
variation in managers’ skills.

In this paper, we examine the trade-off between centralized and decentralized decision-
making in the context of inventory management within a large retail chain. Leveraging a
unique dataset containing daily information on inventories, sales, prices, and stockouts at
the individual store and product level, we estimate a dynamic structural model to capture
store managers’ inventory decisions. Using revealed preference as a guiding principle, we ob-
tain separate estimates for each store and product regarding four cost parameters: per unit
inventory holding cost, stockout cost, fixed ordering costs, and per unit ordering costs. Our
analysis reveals significant heterogeneity across stores in these cost parameters. While ob-
servable store and location characteristics account for part of this heterogeneity, a substantial
portion can be attributed to idiosyncratic information and perceptions of store managers.

We utilize the estimated model to conduct a counterfactual experiment, evaluating the
impact of centralizing inventory management at LCBO. In this experiment, we assume that
the idiosyncratic cost component associated with store managers represents a behavioral bias
rather than true costs. This assumption allows us to provide an upper-bound estimate for
the gains from centralization. Our findings indicate that a centralized inventory management
system would lead to a modest 2% increase in LCBO’s annual profit. This outcome arises
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from the combination of two opposing effects. The negative effect on profits due to the loss
of just-in-time information from store managers is outweighed by the significant reduction
in ordering and storage costs resulting from the elimination of behavioral biases and skill
heterogeneity among store managers (averaging at 23% reduction overall and 3.7% reduction
for the median store).

Furthermore, the effects of centralization are highly heterogeneous across stores within the
retail chain, with a substantial number of stores experiencing significant losses from adopting
centralization. This distributional effect has important implications for the decision-making
process when considering organizational changes aimed at maximizing overall company profit
(Inderst et al., 2007).

Our empirical findings highlight the advantages of a hybrid inventory management system
that combines decentralized decision-making with centralized control. By assigning decision
rights to high-skilled store managers and utilizing a centralized system for stores where skill
levels are lower, we can eliminate subjective biases while retaining the benefits of just-in-
time local information for some of the stores. The structural model presented in this paper
provides a useful tool for determining the specific allocation of decision rights across stores.
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A Appendix

A.1 Correlations between inventory outcomes

Figure 10 below, presents five scatter plots at the store level: (a) stockout frequency against
ordering frequency; (b) stockout frequency against inventory-to-sales ratio; (c) stockout fre-
quency against inventory-to-sales ratio after an order is received; (d) stockout frequency
against inventory-to- sales ratio before an order is placed; and (e) inventory-to-sales ratio
after an order is received against inventory-to-sales ratio before an order is placed. The
simple correlations in these figures provide preliminary descriptive evidence on the possible
sources of structural heterogeneity, such as heterogeneity across stores in storage cost, stock-
out cost, ordering cost, or demand uncertainty, which are structural parameters in our model
in Section 4.

The strongest correlation appears in Panel (e), for the relationship between our measures
of the thresholds S and s.23 This positive correlation can be explained by store heterogeneity
in stockout costs and/or storage costs: a higher stockout cost (storage cost) implies higher
(lower) values of both s and S. In contrast, a higher lump-sum ordering cost implies a lower s
but a negligible effect on S. Therefore, the positive correlation between the lower and upper
thresholds we observe seems more compatible with store heterogeneity in stockout and/or
storage costs rather than with heterogeneity in ordering costs. We confirm this conjecture in
the estimation of the structural model in Section 4.

Panel (a) shows a negative relationship between the stockout frequency and the ordering
frequency. As one would expect, stores placing orders more frequently tend to have lower
stockout rates. Panels (b) and (c) show a small negative relationship between stockout rates
and the inventory to sales ratio overall and after an order is received, respectively. These
findings are what we would expect: stores that have lower inventory-on-hand on average
experience higher stockout rates, and stores that order up to a smaller threshold S also
experience higher stockout rates. Relatedly, panel (d) shows a small negative relationship
between stockout rates and our measure of the threshold s. Again, this is what we would
expect, as stores with a lower safety stock level are more likely to experience higher stockout
rates.

23For the interpretation of this empirical evidence, it is useful to take into the comparative statics of the
(S, s) thresholds as functions of the structural parameters in the profit function. We present these comparative
statics in equation (6) in Section 3.1, based on results in Hadley and Whitin (1963) and Blinder (1981).
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Figure 10: Inventory Scatter Plots
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(b) Stockouts and Inventory
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(c) Stockouts and Inventory,
After Order
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(d) Stockouts and Inventory,
Before Order
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(e) Inventory Before and
After Order
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A.2 Correlations between manager and store characteristics

Figure 11 presents correlations between education and experience of managers and store
classification. Across all three panels, there seems to be a small positive relationship between
store classification and manager characteristics. However the strongest relationship is in
Panel (c), where higher educational attainment is associated with higher store classification.

Figure 11: Manager Characteristics and Store Classification
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A.3 Estimates of Sales Forecasting Equation

Table 12 summarizes our estimation results of the sales forecasting function. For each store
and product, we estimate a Negative Binomial regression function using Maximum Likeli-
hood. The set of explanatory variables includes the logarithm of retail price, the logarithm of
the store-product sales in the last week, and two seasonal dummies: a weekend dummy, and a
holiday dummy for a major holiday. For each product, Table 12 reports the three quartiles in
the distribution across stores of parameter estimates and their respective standard errors for
the coefficient of log-price, the coefficient of log-lagged-weekly-sales, and the over-dispersion
parameter in Negative Binomial model. Given our interest in the forecasting power of this
equation, we also report the three quartiles of McFadden’s Pseudo R-squared coefficient (i.e.,
one minus the ratio between the log-likelihoods of the estimated model and a model only
with a constant term).

The estimates of for the lagged-sales coefficient show very substantial time persistence
for all products and most stores. Standard errors show that this parameter is estimated
with enough precision. The estimates for the log-price coefficient are mostly negative and
large in absolute value, though they are not precisely estimated as LCBO changes prices
quite infrequently. The estimate of the over-dispersion parameter is substantially smaller
than one for almost all the stores and products, which implies evidence of over-dispersion
and the rejection of the Poisson regression model. The magnitude of the Pseudo R-squared
coefficient is on average around 6% for the median store, which seems small. However, it is
important to note that the uncertainty about daily sales of a single product and store can
be substantially larger than the uncertainty about aggregate sales at monthly level or over
products or/and stores.
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Table 12: Sales Forecasting Equation – Negative Binomial Model

1st Quartile 2nd Quartile 3rd Quartile
Est. Est. Est.

(st.err.) (st.err.) (st.err.)
SKU #67 – Smirnoff Vodka

ln(p) -1.9740 -0.6215 0.3442
(2.1803) (1.0068) (1.1901)

ln(Q) 0.3168 0.5202 0.6352
(0.0784) (0.0687) (0.0567)

α 0.2569 0.3344 0.5130
(0.0336) (0.1439) (0.2490)

Pseudo-R2 0.0633 0.0852 0.1034
SKU #117 – Bacardi Superior White Rum

ln(p) -4.9425 -2.4639 -0.7968
(3.5171) (2.6876) (1.4862)

ln(Q) 0.2901 0.4855 0.6233
(0.0925) (0.0811) (0.0552)

α 0.2246 0.2967 0.4746
(0.0532) (0.0401) (0.0795)

Pseudo-R2 0.0565 0.0840 0.1015
SKU #340380 – Two Oceans Sauvignon Blanc

ln(p) -6.1316 -4.7974 -3.3746
(0.9763) (0.6034) (0.6559)

ln(Q) 0.1208 0.2760 0.4100
(0.0801) (0.0802) (0.0882)

α 0.4366 0.6963 1.2437
(0.0421) (0.1397) (0.1145)

Pseudo-R2 0.0361 0.0534 0.0710
SKU #550715 – Forty Creek Select Whisky

ln(p) -4.4488 -2.2356 -0.5021
(3.4604) (3.9153) (2.3409)

ln(Q) 0.1275 0.2772 0.4409
(0.0890) (0.0848) (0.0723)

α 0.1507 0.2112 0.3286
(0.0182) (0.0577) (0.0291)

Pseudo-R2 0.0469 0.0727 0.0880
SKU #624544 – Yellow Tail Shiraz Red

ln(p) -4.5672 -3.1739 -2.2505
(1.1090) (1.6732) (1.5370)

ln(Q) 0.2080 0.4003 0.5749
(0.0762) (0.0772) (0.0625)

α 0.3849 0.5730 0.9906
(0.0333) (0.0425) (0.1443)

Pseudo-R2 0.0299 0.0491 0.0642
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A.4 Stockouts at the Warehouse Level

Table 13: Warehouse Stockout Events

Days with a % of total days
warehouse stockout in sample

SKU # 67 3 0.4 %
SKU # 117 1 0.1 %

SKU # 340380 1 0.1 %
SKU # 550715 1 0.1 %
SKU # 624544 1 0.1 %

Figure 12: Total Daily Deliveries
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Figure 13: Daily Number of Stores Receiving Deliveries
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A.5 Store heterogeneity in estimated (S,s) thresholds

We investigate the heterogeneity across stores in the estimated thresholds. For each store-
product pair, we begin by obtaining the log-lower-threshold and the log-upper-threshold eval-
uated at the mean value of log-price and retail-specific mean value of log-expected-demand.
We denote these log-thresholds as log-s0 and log-S0, respectively. Figure 14 presents the
inverse CDF of the store-specific average estimates of log-s0 and log-S0 and the Bonferroni
95% confidence band under the null hypothesis of store homogeneity. These distributions
show very significant differences in store level estimates. For the log-lower-threshold, 98% of
stores lie outside the confidence bands and therefore have different values of store level log-
thresholds. For the upper-log-threshold, only 3% of stores lie within the confidence bands,
which entails that 97% of stores have different values of store level log-thresholds.

In addition to this between-store heterogeneity, we also observe significant positive cor-
relation between the two log-thresholds. This confirms our previous conjecture from Figure
10, in which we observed a positive correlation between the inventory to sales ratio before
and after an order is placed. Again, this correlation can be explained by differences across
stores in stockout costs or/and inventory holding costs.

Given that we have estimates at the store-product level, we can also explore within-store
heterogeneity. Table 14 below presents a variance decomposition of the log-thresholds s0

50



and S0. More specifically, we are interested in disentangling how much of the differences we
observe in Figure 14 is attributable to variation across stores, and how much is because of
differences across products. Table 14 presents an interesting finding: for the lower threshold,
between-store variance is significantly larger than within-store variance, while the opposite
is true for the upper threshold. That is, the order-up-to quantity seems to be relatively
homogeneous across stores, while the safety stock level seems to vary significantly.

Figure 14: Optimal Thresholds
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Table 14: Variance Decomposition of Log-thresholds

Variance Log-s0 Log-S0

Between-store Variance 1.03 0.38

Within-store Variance 0.48 0.66

A.6 Details on estimation method of structural parameters

(i) Nonparametric estimation of CCP function. In the first step of the 2PML method,
we use the following Kernel method for the estimation of the CCP function. For every
(y,x) ∈ Y × X :
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P̂ (y|x) =

∑T
t=1 1{yt = y}KT (xt − x)∑T

t=1KT (xt − x)
(25)

whereKT (u) is the Kernel function 1/(1+
√
T ||u||) with ||.|| being the Euclidean distance.

(ii) Discretization of state variables. This estimation method applies to models where
the vector of state variables x has discrete support. In principle, our state variables have
continuous support. We have applied a K-means clustering method for the discretization of
the exogenous state variables. We apply this method separately for each store-product. More
specifically, we apply K-means to discretize variables pt and lnQ

[−7,−1]
t . For every store and

product pair, we cluster these variables using a k-means algorithm with a squared Euclidean
distance metric, and using Arthur and Vassilvitskii (2007)’s k-means++ cluster initialization.
For both variables, we impose the number of clusters to be 2. For the endogenous state
variable kt, along with the choice variable yt, we choose a set of fixed grid points. Specifically,
we allow kt to take values between 0 and 100 with an interval of 2, and yt to take values
between 0 and 48 with an interval of 6. The latter preserves an important aspect of the nature
of orders being placed by store managers at LCBO: most orders are placed in multiples of 6,
and most order sizes are smaller or equal to 48 24. Table 15 below presents the frequency of
orders in the choice set. Overall, the grid points in the choice space represent approximately
98% of orders that we observe in the data.

Table 15: Frequency of Orders

0 6 12 18 24 30 36 42 48

Frequency of orders (in %) 84.29 0.17 10.05 0.04 2.63 0.01 0.91 0.01 0.41

Finally, in Table 16 below, we present a variance decomposition of the state space. Our
goal is to assess whether the discretization of the state space is such that it captures most of
the variation we observe in the data. The discretization of variables p and lnQ preserves most
of their sample variation, with discretized variance representing approximately 99% and 89%
of overall variance, respectively. However, for variable k, the discretization is significantly
restrictive. The variance of the discretized variable represents only approximately 20% of the
overall variance.

24Note that ln de and σ2 are indirectly clustered through lnQ and p, as the sales forecasting equation
determines the space of the variables ln de and σ2
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Table 16: State Space Variance Decomposition

Overall Variance Between (Discretized) Variance Within (Residual) Variance Between Variance %

k 4, 055.56 835.20 2, 256.29 20.59

p 51.03 51.00 0.03 99.93

lnQ 1.30 1.16 0.14 89.36

(iii) Computing time. Most of the computing time in the implementation of this two-
step estimator comes from the calculation of present values, and more specifically from the
inversion of matrix I − β

∑J
y=0 P(y) ∗ Fx(y) that has dimension |X | × |X |. Nevertheless,

the computing time to obtain the 2PML for one store-product – using standard computer
equipment – was around 20 seconds, and the total computing time for the approximately
634× 5 = 3, 160 store-products in our working sample was less than 18 hours.

A.7 Empirical distribution of parameter estimates

Figure 15 plots the empirical density across stores and products of our raw estimates of
the four structural parameters, measured in dollar amounts. These empirical densities show
substantial heterogeneity across stores and products in the four parameter estimates.
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Figure 15: γ Estimates
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A.8 Shrinkage estimator

To correct for excess dispersion, we consider the following shrinkage estimator (see Gu and
Koenker [2017]):

γ̂∗i,j = ¯̂γ +

(
1−

σ̂2
i,j

V ar(γ̂)

)1/2 (
γ̂i,j − ¯̂γ

)
where γ̂i,j is the original parameter estimate; σ̂i,j is its standard error, and ¯̂γ and V ar(γ̂)

represent the mean and variance, respectively, in the empirical distribution of γ̂i,j across stores
and products. This estimator generates a distribution of estimates across stores-products that
corrects for the spurious heterogeneity due to estimation error. By construction, we have that
V ar(γ̂∗ij) = V ar(γ̂ij)− E(σ2

ij).

A.9 Heterogeneity in realized inventory management costs

In Figure 16, the blue curves represent the CDFs across stores and products of each of the
four cost-to-revenue ratios. These distributions show the following ranges between percentiles
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5% and 95%: [0.1%, 0.7%] for the inventory holding cost; [0.0%, 0.03%] for the stockout cost;
[0.4%, 2.75%] for the fixed ordering cost; and [0.05%, 0.6%] for the variable ordering cost. We
can see that the realized fixed ordering costs are not only the costs with larger contribution
to the firms’ profit, but also with larger heterogeneity across stores.

The dispersion across stores in these cost-to-revenue ratios is the combination of dispersion
in structural parameters and dispersion in decision and state variables affecting these costs. In
particular, managers’ optimal inventory decisions can partly compensate for the heterogeneity
in the structural parameters. For instance, the inventory holding cost to revenue ratio for
store i and product j is γhi,j k̄i,j/r̄i,j. A store-product with large per-unit inventory holding
cost, γhi,j, will tend to keep smaller levels of inventory than a store-product with a small value
of this parameter such that the difference between these stores in the ratio γhi,j k̄i,j/r̄i,j will
be smaller than the difference between their per unit inventory holding cost. To measure
the magnitude of this behavioural response by store managers, the red curves in Figure 16
present the CDFs of the cost ratios when we replace the store-product specific structural
parameters by their means across products, but we keep the values of decisions and state
variables. That is, for the inventory holding cost ratio, the red curve is the CDF of variable
γ̄hi k̄i,j/r̄i,j. For each of the four inventory ratios, the counterfactual CDFs in the red curves
are steeper than the factual CDFs in the blue curves. Store managers with a perception of
higher inventory costs make decisions that entail lower costs of managing their inventories
relative to revenue.
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Figure 16: Empirical CDFs of Realized Inventory Management Costs to Revenue Ratios
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(c) Fixed Ordering Cost to Revenue
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(d) Variable Ordering Cost to Revenue
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A.10 Dispersion of cost parameters

In Table 17, we explore how the dispersion of the manager component of costs depends on
store and location characteristics. Consistent with the interpretation of managers’ biased
perception of true costs, we find that managers in high-type stores have a smaller dispersion
in this component of costs.

Table 17: Regression of Cost Dispersion on Store Characteristics

(|res(γh)|) (|res(γz)|) (|res(γf )|) (|res(γc)|)
Est. Est. Est. Est.
(s.e.) (s.e.) (s.e.) (s.e.)

Store Class
AA 0.000822∗∗∗ 0.0210∗∗ 0.0149 0.00154

(0.000212) (0.00975) (0.0589) (0.00349)

A 0.000793∗∗∗ 0.0343∗∗∗ -0.0271 0.00295
(0.000167) (0.00928) (0.0583) (0.00341)

B 0.000690∗∗∗ 0.0359∗∗∗ -0.00822 0.00179
(0.000193) (0.0112) (0.0656) (0.00354)

C 0.000529∗∗ 0.0270∗ 0.0814 0.00149
(0.000241) (0.0139) (0.0831) (0.00393)

D 0.0000842 0.0263∗ 0.120 0.000249
(0.000265) (0.0153) (0.0989) (0.00411)

ln(Product Assortment Size) 0.000138 0.00490 -0.0536 0.00204∗
(0.000109) (0.00616) (0.0367) (0.00121)

ln(Population in City) 0.0000201 0.000206 0.0150 0.000304
(0.0000198) (0.00118) (0.00925) (0.000301)

ln(Median Income in City) -0.000583∗∗ -0.000222 0.176∗ 0.00133
(0.000287) (0.0157) (0.106) (0.00410)

Location dummies (25 regions, 4 districts) YES YES YES YES
Product dummies (5 products) YES YES YES YES

R-squared 0.1038 0.0403 0.0712 0.0215
Observations 2,589 2,589 2,589 2,589
(1) Location dummies based on LCBO’s own division of Ontario into 25 regional markets and 4 districts.
(2) Robust standard errors clustered at the store level in parentheses
(3) * means p-value<0.10, ** means p-value<0.05, *** means p-value<0.01
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A.11 Manager bias: granular examples

The first pair of LCBO stores we explore in Table 18 is store #452 (1138 Avenue Road)
and store #572 (1245 Dupont Street), both located in the Toronto-North area. Although
both stores are of type "A" and have similar average weekly sales, their managers have very
different years of experience at LCBO and significantly different estimates of cost parameters.
Specifically, the manager of store #572 has an additional 16 years of experience at LCBO,
a 29% higher average holding cost, a 65% lower average stockout cost, a 13% higher average
fixed ordering cost, and a 19% lower average unit ordering cost. The second pair of stores we
examine is store #538 (122 Rideau Street) and store #547 (111 Albert Street), both located
in the Ottawa-Central area. Again, although the two stores are of type "B" and have similar
average weekly sales, the managers have very different experience levels and significantly
different cost estimates. Store #547 has 34 fewer years of experience, a 34% lower average
holding cost, a 27% higher average stockout cost, a 39% higher fixed ordering cost, and a
(mere) 1% lower average unit ordering cost.

Table 18: Manager Biases in Cost Parameters

Store Type Average Weekly Sales Manager Years at LCBO γ̂h γ̂z γ̂f γ̂c

Store #452 A 92, 422 13 0.003347 0.097933 2.17968 0.061739
Store #572 A 80, 376 29 0.004344 0.033821 2.45856 0.050037

Store # 538 B 44, 254 35 0.006972 0.099627 2.05306 0.047136
Store # 547 B 37, 888 1 0.004608 0.126806 2.86206 0.046638
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