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a b s t r a c t

We study the identification and estimation of structural parameters in dynamic panel
data logit models where decisions are forward-looking and the joint distribution of
unobserved heterogeneity and observable state variables is nonparametric, i.e., fixed-
effects model. We consider models with two endogenous state variables: the lagged
decision variable, and the time duration in the last choice. This class of models includes
as particular cases important economic applications such as models of market entry–
exit, occupational choice, machine replacement, inventory and investment decisions,
or dynamic demand of differentiated products. We prove the identification of the
structural parameters using a conditional likelihood approach. The structure of the model
implies that there is a sufficient statistic such that the likelihood function conditional
on this statistic no longer depends on the unobserved heterogeneity – neither through
the current utility nor through the continuation value of the forward-looking decision
problem – but still depends on the structural parameters. We apply this estimator to a
machine replacement model.

© 2020 Published by Elsevier B.V.

1. Introduction

Persistent unobserved heterogeneity is pervasive in empirical applications using panel data of individuals, households,
r firms. An important challenge in these applications consists of distinguishing between true dynamics due to state
ependence and spurious dynamics due to unobserved heterogeneity (Heckman, 1981). The identification of true dynamics,
hen persistent unobserved heterogeneity is present, should deal with two key econometric issues: the incidental
arameters problem, and the initial conditions problem.
The incidental parameters problem establishes that a simple dummy-variables estimator – that treats each individual

nobservable as a parameter to be estimated jointly with the parameters of interest – is inconsistent in most nonlinear
anel data models when T is fixed (Neyman and Scott, 1948; Lancaster, 2000). Given this issue, it would seem reasonable
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o consider a nonparametric (or a flexible) joint distribution of the unobserved heterogeneity and the observables
ariables, and construct a likelihood function that is integrated over unobservables. In this context, the initial conditions
roblem establishes that the joint distribution of the unobserved heterogeneity and the initial values of the observable
ariables is not nonparametrically identified, but the misspecification of this joint distribution can generate important
iases in the estimation of the parameters of interest (Heckman, 1981; Chamberlain, 1985, among others).
There are two main approaches to deal with this identification problem: random effects and fixed effects mod-

ls/methods. Random-effects models impose restrictions – parametric and finite mixture restrictions – on the joint
istribution of the unobserved heterogeneity and the initial conditions of the explanatory variables. Some of these
estrictions can provide identification of the parameters of interest and the distribution of the unobserved heterogeneity.
n contrast, fixed-effects methods focus on the identification of the parameters of interest and do not try to identify the
istribution of the unobserved heterogeneity. These methods are more robust because they are fully nonparametric in
he specification of the joint probability distribution of the unobserved heterogeneity and the initial conditions of the
xplanatory variables.2
A fixed effect conditional likelihood method (Cox, 1958; Rasch, 1961; Andersen, 1970; Chamberlain, 1980) is based

n the derivation of sufficient statistics for the incidental parameters (fixed effects) and the maximization of a likelihood
unction conditional on these sufficient statistics. This paper deals with this fixed effects – sufficient statistics – conditional
aximum likelihood approach (FE-CML hereinafter). We study the applicability of this approach to structural dynamic
iscrete choice models where agents are forward-looking. We consider that the researcher has data from a short panel
the number of periods T is fixed.3
There are nonlinear panel data models where the FE-CML approach cannot identify the structural parameters. In

eneral, a sufficient statistic of the incidental parameters always exists.4 The identification problem appears when the
inimal sufficient statistic is such that the likelihood conditional on this statistic does not depend on the structural
arameters. For instance, in a panel data binary choice model where the choice probability is given by a distribution
unction – F – evaluated at a linear index of the explanatory variables plus an individual fixed effect, Chamberlain (2010)
hows that if the explanatory variables have bounded support, then a necessary condition for the (point) identification of
he parameters of interest is that the distribution function F is logistic.5

Another example of panel data model where parameters may not be identified is a dynamic binary choice model with
fixed effect unobserved heterogeneity in the slope parameters (Browning and Carro, 2014).6 As we explain below, this
result has important implications for the identification of structural dynamic discrete choice models with fixed-effects
unobserved heterogeneity.

For non-structural (i.e., myopic) dynamic logit models with unobserved heterogeneity only in the intercept, Cham-
berlain (1985) and Honoré and Kyriazidou (2000) have shown that the FE-CML approach can identify the parameters of
interest.7 In contrast, all the methods and applications for structural dynamic discrete choice models have considered
random-effects models with a finite mixture distribution, e.g., Keane and Wolpin (1997), Aguirregabiria and Mira (2007),
Kasahara and Shimotsu (2009), Arcidiacono and Miller (2011), among many others. This random-effects approach imposes
important restrictions: the number of points in the support of the unobserved heterogeneity is finite and is typically
reduced to a small number of points; furthermore, the joint distribution of the unobserved heterogeneity and the initial
conditions of the observable state variables is restricted.

In this paper, we revisit the applicability of FE-CML methods to the identification and estimation of structural
dynamic discrete choice models. We follow the sufficient statistics approach to study the identification of payoff

2 See Arellano and Honoré (2001), and Arellano and Bonhomme (2012, 2017) for recent surveys on the econometrics of nonlinear panel data
models.
3 Among the class of fixed-effects estimators in short panels, the dummy-variables estimator is the simplest of these methods. However, as

mentioned above, this estimator is inconsistent in most nonlinear panel data models when T is fixed. Two-step bias reduction methods, both
nalytical and simulation-based, have been proposed to correct for the asymptotic bias of these dummy-variables fixed-effect estimators (e.g., Hahn
nd Newey, 2004; Browning and Carro, 2010; Hahn and Kuersteiner, 2011, among others). Another fixed-effect estimator is Manski’s maximum score
ethod (Manski, 1987). Honoré and Kyriazidou (2000) have developed a maximum score estimator for dynamic discrete choice models. Bonhomme

2012) presents a functional differencing approach that includes as particular cases different fixed effects estimators in the literature.
4 For instance, we could choose the complete choice history of an individual as a sufficient statistic. Obviously, the conditional likelihood function

based on this sufficient statistic depends neither on incidental nor on structural parameters. Though this is an extreme example, it illustrates that
the key identification problem is not finding a sufficient statistic for the incidental parameters but showing that there are sufficient statistics for
which the conditional likelihood still depends on the structural parameters.
5 Chamberlain (2010) considers the model where the time-varying unobservables are independently and identically distributed. Magnac (2004)

studies a two-period model where the two time-varying unobservables have a general joint distribution. Honoré and Tamer (2006) study partial
identification of the dynamic panel data Probit model and derive sharp bounds for the identified set of the parameter of interest.
6 Browning and Carro (2014) study the identification of this type of dynamic binary choice model with maximal heterogeneity in short panels. The

ixed-effects model (nonparametric specification of the unobserved heterogeneity) is not identified. To obtain identification, these authors consider
finite mixture specification of the heterogeneous parameters. Their approach is in the same spirit as Kasahara and Shimotsu (2009).
7 Chamberlain (1985) and Honoré and Kyriazidou (2000) consider discrete choice logit models where the explanatory variables are the dependent
ariable lagged one and two periods, i.e., AR(1) and AR(2) models. D’Addio and Honoré (2010) study more comprehensively the AR(2) model. They
o not incorporate time duration in the last choice as an explicit explanatory variable, though they interpret a non-zero value for the parameter
ssociated with the second lag as evidence consistent with duration dependence. In our model, we include both lagged decision and duration as
xplicit state variables.
281



V. Aguirregabiria, J. Gu and Y. Luo Journal of Econometrics 223 (2021) 280–311

f
h
d

n
h
—
b
t

m
o
t

o
u

p
f
r
v
o

f
e
w
2
m
1
e
m
A
p
(

S
i
c
r
r

2

c
u
s
t

V
s

unction parameters in structural dynamic logit models with a fixed-effects specification of the time-invariant unobserved
eterogeneity. We consider multinomial models with two types of endogenous state variables: the lagged value of the
ecision variable, and the time duration in the last choice.
The main challenge for the identification of this model comes from the fact that unobserved heterogeneity enters

ot only in current utility but also in the continuation value of the forward-looking decision problem. Unobserved
eterogeneity enters non-additively in the continuation value function and interacts with the observable state variables
even when this unobserved heterogeneity is additively separable in the one-period utility function.8 Identification can

e obtained if there is a sufficient statistic that controls for this continuation value and implies a conditional likelihood
hat still depends on the structural parameters.

We derive the minimal sufficient statistic and show that some structural parameters are identified. The forward-looking
odel where the only state variable is the lagged decision is identified under the same conditions as the myopic version
f the model. Instead, with duration dependence, there are some parameters identified in the myopic model but not in
he forward-looking model.

Based on our identification results, we consider a conditional maximum likelihood estimator, and a test for the validity
f a correlated random effects specification. We apply this estimator and the test to the bus engine model of Rust (1987)
sing both simulated and actual data.
In most empirical applications of structural models, the researcher is not only interested in the value of the structural

arameters but also in the effects of marginal changes of the explanatory variables or the structural parameters. The identi-
ication of marginal effects requires the identification of the distribution of the observed heterogeneity. Point identification
equires imposing restrictions on the joint distribution of unobserved heterogeneity and the initial conditions of the state
ariables. Alternatively, the researcher may prefer not to impose these restrictions and then set-identify the distribution
f the unobservables and the marginal effects (Chernozhukov et al., 2013). We discuss this problem in Section 3.7.
This paper contributes to the literature on structural dynamic discrete choice models. The structure of the payoff

unction and of the endogenous state variables that we consider in this paper includes as particular cases important
conomic applications in the literature of dynamic discrete choice structural models, such as market entry/exit models
ith either binary choices (Roberts and Tybout, 1997; Aguirregabiria and Mira, 2007) or multinomial choices (Sweeting,
013; Caliendo et al., 2019); occupational choice models (Miller, 1984; Keane and Wolpin, 1997); machine replacement
odels (Rust, 1987; Das, 1992; Kennet, 1993; Kasahara, 2009); inventory and investment decision models (Aguirregabiria,
999; Ryan, 2013; Kalouptsidi, 2014); demand of differentiated products with consumer brand switching costs (Erdem
t al., 2008) or storable products (Erdem et al., 2003; Hendel and Nevo, 2006); and dynamic pricing models with
enu costs (Willis, 2006), or with duration dependence due to inflation or other forms of depreciation (Slade, 1998;
guirregabiria, 1999; Kano, 2013); among others.9 Our paper also contributes to the literature on nonlinear dynamic
anel data models by providing new identification results for fixed effects dynamic logit models with duration dependence
Frederiksen et al., 2007).

The rest of the paper is organized as follows. Section 2 describes the class of models that we study in this paper.
ection 3 presents our identification results. Section 4 deals with estimation and inference. In Section 5, we illustrate our
dentification results in the context of Rust’s bus replacement model and data (Rust, 1987). Section 6 summarizes and
oncludes. Proofs of Lemmas and Propositions are in Appendix. Also in the Appendix, we show that our identification
esults extend to an extended version of our model where the endogenous state variables have a stochastic transition
ule.

. Model

Time is discrete and indexed by t that belongs to {1, 2, . . . ,∞}.10 Agents are indexed by i. In every period t , agent i
hooses a value of the discrete variable yit ∈ Y = {0, 1, . . . , J} to maximize her expected and discounted intertemporal
tility Et

[∑
∞

j=0δ
j
i Πi,t+j(yi,t+j)

]
, where δi ∈ (0, 1) is agent i’s time discount factor, and Πit (j) is her one-period utility if

he chooses action yit = j. This utility is a function of four types of state variables which are known to the agent at period
:

Πit (j) = α
(
j, ηi, zit

)
+ β (j, xit , zit) + εit (j). (1)

ariables zit and xit are observable to the researcher, and εit and ηi are unobservable. The vector zit contains exogenous
tate variables and it follows a Markov process with transition probability function fz(zi,t+1|zit ). The vector xit contains
endogenous state variables. We describe below the nature of these endogenous state variables and their transition rules.
Vectors zit and xit have supports Z and X , respectively. The unobservable variables {εit (j) : j ∈ Y} are i.i.d. over (i, t, j) with

8 In fact, before solving the model, we do not know how unobserved heterogeneity and state variables enter the continuation value function —
which is an endogenous object. Therefore, for fixed-effects estimation, it is as if we had a nonparametric specification of this function.
9 Note that most of the empirical applications cited above in this paragraph do not allow for time-invariant unobserved heterogeneity. This is still

a common restriction in empirical applications of dynamic structural models, and it is mostly justified by computational convenience. The exceptions,
within the cited papers, are Keane and Wolpin (1997), Erdem et al. (2003), Willis (2006), Aguirregabiria and Mira (2007), and Erdem et al. (2008).
10 The time horizon of the decision problem is infinite.
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n extreme value type I distribution. The vector ηi represents time-invariant unobserved heterogeneity from the point
f view of the researcher. Let θi ≡ (ηi, δi) represent the unobserved heterogeneity from individual i. The probability
istribution of θi conditional on the history of observable state variables {zit , xit : t = 1, 2, . . .} is unrestricted and
onparametrically specified, i.e., fixed effects model. Functions α (j, η, z) and β (j, x, z) are nonparametrically specified.
Our specification of the utility function represents a general semiparametric fixed-effect logit model. It extends Rust’s

odel in two directions (Rust, 1987, 1994). First, Rust assumes that all the unobservables satisfy the conditions of
dditive separability and conditional independence, and they have an extreme value distribution. While our time-varying
nobservables εit (j) satisfy these conditions, our time-invariant unobserved heterogeneity interacts, in an unrestricted
ay, with the exogenous state variables and the choice, and they do not satisfy the conditional independence assumption.
econd, we allow for unobserved heterogeneity in the discount factor.
The assumption of additive separability between ηi and the endogenous state variables in xit is key for the identification

esults in this paper. This condition does not imply that the conditional-choice value functions – that describe the solution
f the dynamic model – are additive separable between ηi and xit . In general, the solution of the dynamic programming
roblem implies a value function that is not additively separable in ηi and xit even when the utility function is additive
n these variables.

The model includes two types of endogenous state variables that correspond to two different types of state dependence,
it = (yi,t−1, dit ): (a) dependence on the lagged decision variable, yi,t−1; and (b) duration dependence, where dit ∈

1, 2, . . . ,∞} is the number of periods since the last change in choice. The lagged decision has an obvious transition
ule. The transition rule for the duration variable is di,t+1 = 1

{
yit = yi,t−1

}
dit + 1, where 1{.} is the indicator function.11

The term β (j, xit , zit) in the payoff function captures the dynamics, or structural state dependence, in the model.
e distinguish in this function two additive components that correspond to the two forms of state dependence in the
odel:

β (j, xit , zit) = 1{j = yi,t−1}βd (j, dit , zit) + 1{j ̸= yi,t−1}βy
(
j, yi,t−1, zit

)
. (2)

Function βd (j, dit , zit) captures duration dependence. For instance, in an occupational choice model, this term captures
he return on earnings of job experience in occupation j. Function βy

(
j, yi,t−1, zit

)
represents switching value (or switching

osts with negative sign). In an occupational choice model, this term represents the (negative) cost of switching from
ccupation yi,t−1 to occupation j. The additive separability between switching costs and returns to experience is not without
oss of generality. For instance, we are restricting the cost of switching occupations to not depend on experience in the
urrent job. However, this additive separability facilitates our analysis of identification and the model is still more general
han previous fixed-effects discrete choice models.

We impose a restriction on the structural function βd (j, d, zit) that plays a role in our identification results for this
unction. We assume that there is no duration dependence in choice alternative y = 0, i.e., βd (0, d, zit) = 0 for any
alue of d. Also, but without loss of generality, we set βy(j, j, zit ) = 0, i.e., the switching cost of no-switching is zero.12

ssumption 1 summarizes our basic conditions on the model. For the rest of the paper, we assume that this assumption
olds.

ssumption 1. (A) The time horizon is infinite and δi ∈ (0, 1). (B) The utility function has the form given by Eqs. (1)
nd (2). (C) βy(j, j, z) = 0, βd (0, d, z) = 0. (D) {εit (j) : j ∈ Y} are i.i.d. over (i, t, j) with an extreme value type I
istribution. (E) zit follows a time-homogeneous Markov process. (F) The probability distribution of θi ≡ (ηi, δi) conditional
n {zit : t = 1, 2, . . .} and on the initial condition xi1 is nonparametrically specified and completely unrestricted. ■

Assumption 1 implies that the model is stationary. Therefore, it rules out time trends and time dummies as explanatory
ariables. This setting can be unrealistic in some empirical applications. However, this stationarity assumption is the status
uo in applications of dynamic structural models with infinite horizon, which are common in industrial organization.
Since the model does not have duration dependence at choice alternative 0, it is convenient for notation to make

uration equal to zero at state yt−1 = 0. In other words, we consider the following modification in the transition rule for
uration:

di,t+1 =

{
1
{
yit = yi,t−1

}
dit + 1 if yit > 0

0 if yit = 0. (3)

For our identification results in forward-looking models with duration dependence, we also impose the following
assumption.

11 Note that these endogenous state variables follow deterministic transition rules. In the Appendix, we present a version of the model that allows
for stochastic transition rules for the endogenous state variables.
12 Given the payoff function in Eq. (2), the parameter βy(j, j) is completely irrelevant for an individual’s optimal decision. When yit = yi,t−1 = j,
e have that β (j, xit ) = βd (j, dit )+0 such that the term βy (j, j) never enters into the relevant payoff function. Therefore, βy (j, j) can be normalized
o zero without loss of generality.
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ssumption 2. For any j ∈ Y there is a finite value of duration, d∗

j < ∞, such that the marginal return of duration is zero
for values greater that d∗

j :
13

βd (j, d, z) = βd
(
j, d∗

j , z
)
foranyd ≥ d∗

j . ■ (4)

For the moment, we assume that the researcher knows the values of d∗

j . In Section 4, we show that these values {d∗

j }

re identified from the data.
The following are some examples of models within the class defined by Assumption 1.

a) Market entry–exit models. In its simpler version, there is only one market, and the choice variable is binary and
epresents a firm’s decision of being active in the market (yit = 1) or not (yit = 0), e.g., Dunne et al. (2013). The only
ndogenous state variable is the lagged decision, yi,t−1. The parameter −βy (1, 0, z) represents the cost of entry in the

market. Similarly, the parameter −βy (0, 1, z) represents the cost of exit from the market.
An extension of the basic entry model includes as an endogenous state variable the number of periods of experience

since last entry in the market, dit , which follows the transition rule di,t+1 = dit + 1 if yit = 1 and di,t+1 = 0 if yit = 0. The
parameter βd (1, d, z) represents the effect of market experience on the firm’s profit (Roberts and Tybout, 1997).

The model can be extended to J markets (Sweeting, 2013; Caliendo et al., 2019). The two endogenous state variables are
the index of the market where the firm was active in the previous period (yi,t−1) and the number of periods of experience
in the current market (dit ). The parameter βy (j, k, z) represents the (negative) cost of switching from market k to market
j. There is no duration dependence if a firm is not active in any market (if j = 0), and the marginal return to experience
in market j is zero after d∗

j periods in the market.
(b) Occupational choice models (Miller, 1984; Keane and Wolpin, 1997). A worker chooses between J occupations and the
hoice alternative of not working (y = 0). There are costs of switching occupations such that a worker’s occupation in
he previous period – yit−1 – is a state variable of the model. There is (passive) learning that increases productivity in the
current occupation. There is no duration dependence if the worker is unemployed.
(c) Machine replacement models (Rust, 1987; Das, 1992; Kennet, 1993; Kasahara, 2009). The choice variable is binary and it
represents the decision of keeping a machine (yit = 1) or replacing it (yit = 0). The only endogenous state variable is
the number of periods since the last replacement – dit – that is, the machine age. The evolution of the machine age is
di,t+1 = dit + 1 if yit = 1 and di,t+1 = 0 if yit = 0. The parameter βd (1, d, z) represents the effect of age on the firm’s
profit, e.g., productivity declines and maintenance costs increase with age.14

More generally, the class of models in this paper includes binary choice models of investment in capital, inventory, or
capacity (Aguirregabiria, 1999; Ryan, 2013; Kalouptsidi, 2014), as long as the depreciation of the stock is deterministic.
(d) Dynamic demand of differentiated products (Erdem et al., 2003; Hendel and Nevo, 2006). A differentiated product has J
varieties and a consumer chooses which one, if any, to purchase. No purchase is represented by y = 0. Brand switching
costs imply that the brand in the previous purchase is a state variable (Erdem et al., 2008). For storable products,
the duration since last purchase, dit , represents (or proxies) the consumer’s level of inventory that is an endogenous
state variable. Function βd (j, d, z) captures the effect of inventory on the consumer’s utility, and function βy (j, y−d, z)
represents brand switching costs.
(e) Menu costs models of pricing (Slade, 1998; Aguirregabiria, 1999; Willis, 2006; Kano, 2013). A firm sells a product and
chooses its price to maximize intertemporal profits. The firm’s profit has two components: a variable profit that depends
on the real price (in logarithms), rit ; and a fixed menu cost that is paid only if the firm changes its nominal price. There
is a constant inflation rate, π , that erodes the log real price. Every period, the firm decides whether to keep its nominal
price (yit = 1) or to adjust it (yit = 0) such that current real price becomes r∗. Let dit represent the time duration since
the last nominal price change, such that dit ∈ {0, 1, 2, . . .} with di,t+1 = dit + 1 if yit = 1 and di,t+1 = 0 if yit = 0. There
is a simple relationship between this duration variable and the logarithm of real price: rit = r∗

− π dit . This model has a
similar structure as the machine replacement models described above. ■

We now derive the optimal decision rule and the conditional choice probabilities in this model. Agent i chooses yit to
maximize its expected and discounted intertemporal utility. Given the infinite horizon, and the time-homogeneity of the
utility and the transition probability functions, Blackwell’s Theorem establishes that the value function and the optimal
decision rule are time-invariant (Blackwell, 1965).

Let Vθi (yt , dt , zt) be the integrated (or smoothed) value function for agent type θi, as defined by Rust (1994).15 The
optimal choice at period t can be represented as:

yit = argmax
j∈Y

⎧⎨⎩ α
(
j, ηi, zit

)
+ β (j, xit , zit) + εit (j)

+δi E
[
Vθi

(
j, di,t+1, zi,t+1

)
| j, xit , zit

]
⎫⎬⎭ . (5)

Note that di,t+1 is a deterministic function of (j, xit ). Therefore, we can represent the continuation value E[Vθi

(
j, di,t+1, zi,t+1

)
| xit , zit ] using a function vθi (j, dt+1[j, xit ]), zit ) with dt+1[j, xit ] = 0 if j = 0 and dt+1[j, xit ] = 1{j = yit−1}dit + 1 if j > 0.

13 The assumption of no duration dependence in choice alternative y = 0 is equivalent to assuming d∗

0 = 1.
14 In some versions of this model, such as Rust (1987), the endogenous state variable represents cumulative usage of the machine and it can
ollow a stochastic transition rule. We consider this stochastic version of the model in Appendix.
15 The integrated value function is defined as the integral of the value function over the distribution of the i.i.d. unobservable state variables ε.
284
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he extreme value type I distribution of the unobservables ε implies that the conditional choice probability (CCP) function
as the following form:

Pθi (j | xit , zit) =
exp

{
α

(
j, ηi, zit

)
+ β (j, xit , zit) + vθi (j, dt+1[j, xit ], zit )

}∑
k∈Y exp

{
α

(
k, ηi, zit

)
+ β (k, xit , zit) + vθi (k, dt+1[k, xit ], zit )

} . (6)

The continuation value function vθi has two properties which play an important role in our identification results. These
properties establish conditions under which the continuation values do not depend on current endogenous state variables,
(yi,t−1, dit ).

Property 1. In a model without duration dependence (i.e., βd = 0), the continuation value of choosing alternative j becomes
vθi (j, zit ), which does not depend on the state variable, yit−1.

Property 2. Under Assumption 2, for j = yit−1 and any dit ≥ d∗

j − 1, the continuation value vθi (j, dt+1[j, yit−1, dit ], zit )
becomes vθi (j, d

∗

j , zit ).

3. Identification

3.1. Preliminaries

The researcher has a panel dataset of N individuals who are observed over T periods: {yit , xit , zit : i = 1, 2, . . . ,N ;

t = 1, 2, . . . , T }. We consider microeconometric applications where T is small — short panels.16 We are interested in the
identification of the functions βy and βd that represent the dependence of utility with respect to the endogenous state
variables.

For the rest of this section, we omit the individual subindex i in most of the expressions, and instead we include θ as
n argument (or subindex) in those functions that depend on the time-invariant unobserved heterogeneity, i.e., αθ (y, z)
nd vθ (x, z).
Similarly as in Honoré and Kyriazidou (2000), our sufficient statistics include the condition that the vector of exogenous

tate variables z remains constant over several consecutive periods in the sample. For notational simplicity, we omit z
s an argument in most of the expressions for the rest of this section. We use β to represent the vector of structural

parameters that define the functions βy and βd.17
In discrete choice models, we can only identify utility differences relative to the utility of a baseline choice alternative.

This implies that we cannot identify all the parameters in the functions βy and βd — regardless of whether the model
has fixed effects unobserved heterogeneity or not, or whether agents are myopic or forward-looking. Therefore, we
start by presenting a reparameterization of the model that defines the set of parameters in βy and βd that can be
identified in a version of the model without unobserved heterogeneity and with myopic agents. Lemma 1 presents this
reparameterization. The proof is in Appendix.

Lemma 1. The model can be represented using the following equation:

yt = argmax
j∈Y

⎧⎨⎩α̃θ(j) +

∑
k̸={0,j}

1{yt−1 = k} β̃y(j, k) + 1{yt−1 = j}̃βd(j, dt ) + ṽθ(j, dt+1) + εt (j)

⎫⎬⎭ (7)

with α̃θ(j) ≡ αθ(j) − αθ(0)+ βy(j, 0); β̃y(j, k) ≡βy(j, k)− βy(0, k)− βy(j, 0); β̃d(j, d) ≡βd(j, d)− βy(0, j)− βy(j, 0); and
vθ(j, dt+1) ≡vθ(j, dt+1) − vθ(0, 0) . ■

Lemma 1 establishes that in the best case scenario of a model without time invariant unobserved heterogeneity
and with myopic agents, the parameters {̃βy(j, k) : j, k ≥ 1, j ̸= k} and {̃βd(j, d) : j ≥ 1, d ≥ 1} represent all the
information that we can obtain about the functions βy and βd. Therefore, for the rest of the paper, we only consider these
structural parameters. These parameters have a clear economic interpretation. Parameter β̃y(j, k) represents the difference
in switching cost between a direct (one-period) switch from k to j and an indirect (two periods) switch via alternative 0.
Parameter β̃d(j, d) is the sum of two components: βd(j, d) is the return of d periods of experience in occupation/market
j; and the term −βy(j, 0) − βy(0, j) is the sum of the cost of entry into occupation/market j (−βy(j, 0)) and the cost of
exit from occupation/market j (−βy(0, j)). The sum of these two costs is typically described as the sunk cost of entry in
occupation/market j. Given the parameters β̃d(j, d), we can obtain the marginal return to experience βd(j, d)−βd(j, d− 1)
for values of experience d greater or equal than two, i.e., βd(j, d) − βd(j, d − 1) = β̃d(j, d) − β̃d(j, d − 1).

16 Note that T represents the number of periods with data on the decision variable and the state variables for all the individuals. The set of
observable state variables includes the endogenous state variables yi,t−1 and dit . Knowing the values of these state variables for the initial period
t = 1 (i.e., knowing yi0 and di1) may require data on the individual’s choices for periods before t = 1. Therefore, the time dimension T may not
orrespond to the actual time dimension of the required panel dataset.
17 Since (yt , xt ) has finite support, for a given value of z we can represent the structural functions βy (yt , yt−1, z) and βd (yt , dt , z) using a finite
vector of parameters.
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Given this description of the model, we can summarize our main identification results as follows. First, all the switching
ost parameters {̃βy(j, k) : j, k ≥ 1, j ̸= k} are identified regardless fixed effects unobserved heterogeneity or agents’
orward-looking behavior (see Propositions 1, 2 and 7–11). Though these parameters are always identified, the set of
hoice histories in the data that provide information about these parameters depends crucially on whether the model has
nobserved heterogeneity and/or agents are forward-looking. Second, all the return to experience parameters {̃βd(j, d) :

≥ 1, d ≥ 1} are identified in a model with unobserved heterogeneity when agents are myopic (see Propositions 3 and 9).
owever, without further restrictions, we cannot identify any return to experience parameter when agents are forward-
ooking (see Propositions 4 and 10). Third, in the forward-looking model, under the additional restriction of Assumption 2,
e can identify the returns to experience parameters {̃βd(j, d∗

j )− β̃d(j, d∗

j −1) : j ≥ 1} (see Propositions 5 and 11). Finally,
e show that the value of the parameters {d∗

j : j ≥ 1} in Assumption 2 is identified (see Proposition 6).

.2. A general description of the conditional likelihood approach

The data for an individual in the sample consist of the history of choices between periods 1 and T , {y1, y2, . . . , yT },
nd the initial values of the endogenous state variables, (y0, d1). We represent these data using the vector ỹ ≡

d1, y0; y1, y2, . . . , yT ) and we refer to this vector as an individual’s history. The model implies the following probability:

P (̃y | θ, β) =

T∑
t=1

exp
{̃
αθ (yt) + β̃ (yt , xt) + ṽθ (yt , dt+1)

}∑
j∈Y exp

{
α̃θ (j) + β̃ (j, xt) + ṽθ (j, dt+1)

}p (y0, d1 | θ) . (8)

In a fixed effects model, the probability distribution of the initial values of the endogenous state variables conditional on
the incidental parameters, p (y0, d1 | θ), is nonparametrically specified. Our identification results, for different versions of
the model, have the following common features. First, we show that the log-probability function lnP (̃y | θ, β) has the
following structure (up to a constant term that does not depend on the data ỹ):

lnP (̃y | θ, β) = U (̃y)′gθ + S (̃y)′β∗, (9)

where U (̃y) and S (̃y) are vectors of statistics (i.e., deterministic functions of the data ỹ), gθ is a vector of functions of θ,
and β∗ is a vector of linear combinations of the original vector of structural parameters β. This representation is such that
each of the vectors, U (̃y), gθ , S (̃y), and β∗, has elements which are linearly independent.18 The exact elements included in
these vectors depend on the version of the model. Based on this representation of the log-probability of a choice history,
we establish the following results. For notational simplicity, we use U and S to represent U (̃y) and S (̃y), respectively.
(i) Sufficiency. Definition: U is a sufficient statistic for θ if and only if, for any ỹ the probability P (̃y |θ, β,U) does not
depend on θ. We now show that, given the structure in Eq. (9), U is a sufficient statistic for θ. Since U is a deterministic
function ỹ, we have that: (a) lnP (̃y | θ, β,U) is equal to lnP (̃y| θ, β) − lnP (U | θ, β); and (b) P (U | θ, β) is the sum of
probabilities of all the possible histories ỹ′ with the same value U . Therefore, we have that lnP (̃y |θ, β,U) is equal to
lnP (̃y | θ, β) − ln[

∑
ỹ′: U (̃y′)=U P

(̃
y′

|θ, β
)
]. Combining this expression with the form of the log-probability in Eq. (9), we

have that:

lnP (̃y | θ, β,U) = U ′gθ + S ′β∗
− ln

⎛⎝ ∑
ỹ′: U (̃y′)=U

exp
{
U (̃y′)′gθ + S (̃y′)′β∗

}⎞⎠

= S ′β∗
− ln

⎛⎝ ∑
ỹ′: U (̃y′)=U

exp
{
S (̃y′)′β∗

}⎞⎠ .

(10)

Since the right hand side of Eq. (10) does not depend θ, we have that the structure of the log-probability in Eq. (9) implies
that U is a sufficient statistic for θ.

Eq. (8) implies that the term ln p (y0, d1 | θ) enters additively in the logarithm of the probability of an individual’s data.
Since the probability function p (y0, d1 | θ) is nonparametrically specified in a fixed effects model, any vector of sufficient
statistics for the incidental parameters θ should include the initial value of the endogenous state variables, (y0, d1).
(ii) Minimal sufficiency. U is a minimal sufficient statistic, that is, it does not contain redundant information. More formally,
let U be a matrix consisting of U (̃y)′ for all possible values of ỹ as row vectors. Then, U is minimal if and only if matrix U
is full-column rank.
(iii) Identification. Define the conditional log-likelihood function in the population, ℓ

(
β∗

)
≡ Ẽy

[
lnP

(̃
y | U, β∗

)]
. The vector

of parameters β∗ is point identified if the population likelihood is uniquely maximized at the true value of β∗. Lemma 2
establishes a necessary and sufficient condition for identification. Let K be the dimension of the vector of parametersβ∗.

18 Suppose that S and β are K × 1 vectors, and only K ∗ < K elements in S are linearly independent. Then, S = [Sa, Sb] where Sa contains K ∗

linearly independent elements, and Sb = A Sa where A is a (K − K ∗)× K ∗ matrix. This implies that S ′β = S ′
aβ

∗ with β∗
= [I

.

.

. A]
′β, such that Sa and

β∗ are vectors with linearly independent elements.
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Table 1
Definition of statistics for a choice history ỹ.
Name: Symbol Definition

Hits: T (j) ∑T
t=1 1{yt = j}

Dyad:D(j,k) ∑T
t=1 1{yt = j, yt−1 = k}

Histogram of states: H (j)(d)
∑T

t=1 1{yt−1 = j, dt = d}

Extended histogram of states: X (j)(d)
∑T

t=1 1{yt−1 = yt = j, dt = d}

Diff. final-initial states: ∆(j)(d) 1{yT = j, dT+1 = d} − 1{y0 = j, d1 = d}

Lemma 2. Given K + 1 histories, say {Aj : j = 0, 1, ..., K }, let S be a K × K matrix consisting of row vectors S(Aj)′ − S(A0)′ for
ll j = 1, ..., K . The vector β∗ is identified if and only if there exist K + 1 histories with the same value of the statistic U and
non-singular matrix S. ■

For example, if β∗ is a scalar such that K = 1, then this parameter is identified if and only if there are two histories,
and B, such thatU(A) = U(B) and S(A) ̸= S(B).
The derivation of these sufficient statistics should deal with two issues that do not appear in the previous literature on

E-CMLE of non-structural (or myopic) nonlinear panel data models. First, we consider models with duration dependence.
uration dependence reflects that the payoff and thus the choice probability depends on the number of periods since the
ast change in choice. In some applications, this may represent an important source of persistence. Second, we should take
nto account that unobserved heterogeneity enters into the continuation value function, vθ . This implies that the sufficient
tatistic U should control not only for α̃θ (yt) but also for the continuation values ṽθ (yt , dt+1). This is challenging because,
n general, these continuation values depend on the endogenous state variables. We cannot fully control for (or condition
n) the value of the state variables because the identification condition (iii) would not hold. Instead, we show that there
re states where the continuation value does not depend on current state variables once we condition on current choices.
The presentation of our identification results tries to emphasize both the links and extensions with previous results

n the literature. For this reason, we start presenting identification results for the binary choice model, that is the model
ore extensively studied in the literature of nonlinear dynamic panel data. For this binary choice model, we present
ew identification results for the myopic model with duration dependence and for the forward-looking model with and
ithout duration dependence. Then, we present our identification results for multinomial models.

.3. Some useful statistics

We show below that, in our model, the log-probability of a choice history, P (̃y | θ, β), can be written in terms of
everal sets of statistics or functions of ỹ: the initial and final choices, {y0, yT }; the initial and final durations, {d1, dT+1};
nd the statistics that we define below. Note that each of these statistics is for a single history ỹ.
Table 1 summarizes our definition of statistics.

it statistics. For any choice alternative j ∈ Y , the hit statistic T (j) represents the number of times that alternative j is
isited (or hit) between periods 1 and T in the choice history ỹ, i.e., T (j)

≡
∑T

t=1 1{yt = j}.
yad statistics. For any pair of choice alternatives j, k ∈ Y , the dyad statistic D(j,k) is the number of times that the sequence
f choices (j, k) is observed at two consecutive periods in the history ỹ, i.e., D(j,k)

≡
∑T

t=1 1{yt = j, yt−1 = k}.
istogram of states. For any choice alternative j ∈ Y and any duration d ≥ 0, the statistic H (j)(d) is the number of times
hat we observe state (yt−1, dt ) = (j, d) in a choice history ỹ, i.e., H (j)(d) ≡

∑T
t=1 1{yt−1 = j, dt = d}.

xtended histogram of states. For any choice alternative j ∈ Y and any duration d ≥ 0, the statistic X (j)(d) represents the
umber of times that we observe state (yt−1, dt ) = (j, d) and the individual decides to continue one more period in choice

j, i.e., X (j)(d) ≡
∑T

t=1 1{yt−1 = yt = j, dt = d}.
Difference between final and initial states. For any choice alternative j ∈ Y and any duration d ≥ 0, the statistic ∆(j)(d) is
defined as 1{yT = j, dT+1 = d} − 1{y0 = j, d1 = d}.

3.4. Binary choice models

Given the general representation of the model in Eq. (7), we can particularize it to the binary choice model to have:

yt = 1
{̃
αθ + yt−1β̃d(dt ) + ṽθ(dt + 1) + ε̃t ≥ 0

}
(11)

where α̃θ ≡ αθ(1)−αθ(0)+βy(1, 0), β̃d(d) = βd(1, d)−βy(1, 0)−βy(0, 1), ṽθ(d) ≡ vθ(1, d)−vθ(0, 0), and ε̃t ≡ εt (1)−εt (0).
We now present identification results for different versions of this model, starting with the myopic model without
duration dependence that has been studied by Chamberlain (1985) and Honoré and Kyriazidou (2000).
287



V. Aguirregabiria, J. Gu and Y. Luo Journal of Econometrics 223 (2021) 280–311

3

(

a
u

P
i

P
f

U
i

E
A

H
b

w
a

d

3

m

w
d
f
t

P
t

U
i

E
f

.4.1. Myopic dynamic model without duration dependence
Consider the model in Eq. (11) under the restrictions of myopic behavior (i.e., δ = 0) and no duration dependence

i.e., βd(1, d) = 0). These restrictions imply that the continuation values ṽθ(dt + 1) become zero, and the term β̃d(dt )
becomes equal to −βy(1, 0)−βy(0, 1). The parameter −βy(1, 0)−βy(0, 1) represents the sum of the costs of market entry
nd exit, or equivalently the sunk cost of entry. We use β̃y to denote this sunk cost parameter. We can present this model
sing the standard representation,

yt = 1
{̃
αθ + β̃y yt−1 + ε̃t ≥ 0

}
. (12)

Define function σθ(yt−1) ≡ − ln
(
1 + exp

{̃
αθ + β̃yyt−1

})
. The log-probability of the choice history ỹ is:

lnP (̃y | θ) = ln pθ(y0) +

T∑
t=1

yt
[̃
αθ + β̃yyt−1

]
+ (1 − yt−1) σθ(0) + yt−1 σθ(1). (13)

roposition 1 establishes (i) the sufficient statistic, (ii) minimal sufficiency, and (iii) identification for this model. The
dentification result in this Proposition was established in Chamberlain (1985).

roposition 1. In the myopic binary choice model without duration dependence, the log-probability of a choice history has the
orm lnP (̃y |θ, β) = U ′gθ + S ′β∗ with

U =
(
y0, yT , T (1)

)
; S = D(1,1) ; β∗

= β̃y. (14)

is a minimal sufficient statistic for θ. For T ≥ 3 – conditional on U – there is variation in S such that the parameter β̃y is
dentified. ■

xample 1. Suppose that T = 3 such that the history of an individual is {y0 | y1, y2, y3}. Consider the pair of histories
= (0 | 0, 1, 1) and B = (0 | 1, 0, 1). Applying Eq. (13) to these histories, we have that lnP (A) = ln pθ(0)+ 2α̃θ+ 2σθ(0)+

σθ(1)+ β̃y, and lnP (B) = ln pθ(0)+ 2α̃θ+ 2σθ(0)+ σθ(1), such that lnP (A) − lnP (B) = β̃y. Therefore, the parameter β̃y
is identified as lnP (0|0, 1, 1) − lnP (0|1, 0, 1). Intuitively, the sunk cost parameter is identified from the logarithm of
the ratio between the frequency of ‘‘stayers’’ – individuals with histories (0|0, 1, 1) – and the frequency of ‘‘switchers’’ —
individuals with histories (0|1, 0, 1). We can also obtain this identification result using the representation in Proposition 1.
The vector of sufficient statistics U consists of y0, y3, and y1 + y2 + y3. The identifying statistic S is y0y1+ y1y2+ y2y3.
istories A and B have the same value for the sufficient statistic vector, U(A) = U(B) = (y0, y3, y1 + y2 + y3) = (0, 1, 2),
ut they have different values for the identifying statistic, D(1,1)(A) = 1 and D(1,1)(B) = 0. ■

With T ≥ 3, the parameter β̃y is over-identified. For instance, following up with the case with T = 3 in Example 1,
e can consider the pair of histories (1 | 1, 0, 0) and (1 | 0, 1, 0), and it is simple to verify that β̃y can be also identified
s lnP(1|1, 0, 0) − lnP(1|0, 1, 0). Therefore, the model implies the testable over-identifying restriction lnP (0|0, 1, 1) −

lnP (0|1, 0, 1) = lnP (1|1, 0, 0)−lnP (1|0, 1, 0), which is an implication of the assumptions of stationarity and no duration
ependence.

.4.2. Forward-looking dynamic model without duration dependence
Consider a forward-looking version of the model in Eq. (11) but without duration dependence. We can represent this

odel as,

yt = 1{̃αθ + ṽθ + β̃y yt−1 + ε̃t ≥ 0} (15)

here ṽθ = vθ(1)− vθ(0), and we omit argument d in this subsection because there is no duration dependence. The only
ifference between this model and the myopic model is that now the fixed effect has two components: α̃θ that comes
rom current profit, and ṽθ that comes from the continuation values. However, from the point of view of identification,
he two models are observationally equivalent.

roposition 2. In the forward-looking binary choice model without duration dependence, the log-probability of a history has
he form lnP (̃y |θ, β) = U ′gθ + S ′β∗ with

U =
(
y0, yT , T (1)

)
; S = D(1,1) ; β∗

= β̃y. (16)

is a minimal sufficient statistic for θ. For T ≥ 3, conditional on U there is variation in S such that the parameter β̃y is
dentified. ■

xample 2. Example 1 applies to this model as well such that, with T = 3, the sunk cost parameter β̃y is identified
rom the logarithm of the ratio between the frequency of ‘‘stayers’’ and the frequency of ‘‘switchers’’. That is, β̃y =

lnP (0, 0, 1, 1) − lnP (0, 1, 0, 1) and also, β̃y = lnP (1, 1, 0, 0) − lnP (1, 0, 1, 0). ■
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.4.3. Myopic dynamic model with duration dependence
Consider the model in Eq. (11) with duration dependence but where agents are myopic. We can present this model

s

yt = 1
{̃
αθ + yt−1β̃d(dt ) + ε̃t ≥ 0

}
. (17)

or this model, the log-probability of the choice history ỹ = (y0, d1; y1, . . . , yT ) is:

lnP (̃y | θ) = ln pθ(y0, d1) +

T∑
t=1

yt
[̃
αθ + yt−1 β̃d(dt )

]
+ σθ(yt−1, dt ) (18)

here σθ(yt−1, dt ) ≡ − ln
(
1 + exp

{̃
αθ + yt−1 β̃d(dt )

})
, and we use σθ(0) to represents σθ(0, d).

Proposition 3 establishes the minimal sufficient statistic and the identification of structural parameters in this model.

roposition 3. In the myopic binary choice model with duration dependence under Assumption 1, the log-probability of a
hoice history has the form lnP (̃y | θ, β) = U ′gθ + S ′β∗ with⎧⎪⎪⎪⎨⎪⎪⎪⎩

U =
[
d1, y0, yT , {H (1)(d) : d ≥ 1}

]
S =

[
∆(1)(d) : 2 ≤ d ≤ T − 1

]
β∗

=
[̃
βd(d) : 1 ≤ d ≤ T − 2

]
.

(19)

is a minimal sufficient statistic for θ. Conditional on U, the elements in the vector of statistics S are linearly independent such
hat the structural parameters β∗ are identified. ■

For this model, the vector of sufficient statistics includes the histogram of durations {H (1)(d) : d ≥ 1}. Conditional on
hese statistics, the identification of the structural parameter β̃d(d) comes from the difference between the final and the
nitial value of duration, ∆(1)(d+1) = 1{dT+1 = d+1}− 1{d1 = d+1} for d ≥ 1. The identification result in Proposition 3
for the myopic model with duration dependence does not depend on Assumption 2.

Note that under the assumption of myopic individual behavior, we can identify the same duration dependence
parameters β̃d(d) regardless of whether the model has fixed effects unobserved heterogeneity or not. However, the set
of choice histories that contain identifying information about these parameters is substantially reduced when we have
unobserved heterogeneity.

Example 3(a). Suppose that T = 3 such that a choice history is {y0, d1 | y1, y2, y3}. Consider the histories A = {0, 0 |

0, 1, 1} and B = {0, 0 | 1, 0, 1}. Applying Eq. (18) to these histories, we have that lnP (A) = ln pθ(0, 0)+ 2α̃θ+ 2σθ(0)+
σθ(1, 1)+ β̃d(1), and lnP (B) = ln pθ(0, 0)+ 2α̃θ+ 2σθ(0)+ σθ(1, 1), such that lnP (A) − lnP (B) = β̃d(1). This implies that
the parameter β̃d(1) is identified from lnP (0, 0|0, 1, 1) − lnP (0, 0|1, 0, 1). We can also confirm this identification result
using the representation in Proposition 3. Histories A and B have the same value of the initial condition, (y0, d1) = (0, 0),
and of the final choice, y3 = 1. Under history A, the series of durations {d1, d2, d3} is {0, 0, 1}, and under history B the
evolution of durations is {0, 1, 0}. Therefore, the histogram of durations between periods 1 and 3 is the same under
the two histories such that they have the same value for the sufficient statistic vector, U(A) = U(B). However, the two
histories have different final durations d4. We have that d4 = 2 under history A, and it is equal to 1 under history B.
Therefore, we have that S(A)′β∗

= β̃d(1) and S(B)′β∗
= 0, and this implies that the parameter β̃d(1) is identified from

lnP (0, 0|0, 1, 1) − lnP (0, 0|1, 0, 1). ■

Example 3(b). Suppose that T ≥ 3, let n be any integer such that 1 ≤ n ≤ T − 2, and define a sub-history {y0, d1 |

y1, . . . , yn+2}. Consider the sub-histories A = {0, 0 | 0, 1n+1} and B = {0, 0 | 1n, 0, 1}, where 1n represents a sequence
of n ones. Applying Eq. (18) to these histories, we have that lnP (A) = (n + 1) α̃θ+

∑n
d=1 β̃d(d)+ 2σθ(0)+

∑n
d=1 σθ(1, d),

and lnP (B) = (n + 1) α̃θ+
∑n−1

d=1 β̃d(d) + 2σθ(0)+
∑n

d=1 σθ(1, d), such that lnP (A) − lnP (B) = β̃d(n). This implies that
the parameter β̃d(n) is identified from lnP(0, 0|0, 1n+1)− lnP(0, 0|1n, 0, 1). We can also confirm this identification result
using the representation in Proposition 3. Histories A and B have the same value of the initial condition, (y0, d1) = (0, 0),
and of the final choice, yn+2 = 1. Under history A, the series of durations {d1, d2, . . . , dn+2} is {0, 0, 1, . . . , n}, and under
history B the evolution of durations is {0, 1, . . . , n, 0}. The histogram of durations is the same under the two histories
such that U(A) = U(B). The two histories have different final durations dn+3. We have that dn+3 = n + 1 under history A,
and dn+3 = 1 under history B. This implies that S(A)′β∗

− S(B)′β∗
= β̃d(n). ■

3.4.4. Forward-looking dynamic model with duration dependence
Consider the general binary choice model in Eq. (11), with duration dependence and with forward-looking agents. For

this model, the log-probability of the choice history ỹ conditional on (y0, d1, θ) is:

lnP (̃y | θ) = ln pθ(y0, d1) +

T∑
yt

[̃
αθ + yt−1 β̃d(dt ) + ṽθ(dt + 1)

]
+ σθ(yt−1, dt ) (20)
t=1
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ith σθ(yt−1, dt ) ≡ − ln(1+ exp{̃αθ + yt−1 β̃d(dt ) + ṽθ(dt + 1)}), and σθ(0) ≡ σθ(0, d). Compared to Eq. (18), the forward
ooking model in Eq. (20) includes the additional term

∑T
t=1 yt ṽθ (dt + 1).

Proposition 4 establishes that under Assumption 1 – and without Assumption 2 – the CMLE approach does not provide
dentification of any structural parameter.

roposition 4. In the forward-looking binary choice model with duration dependence under Assumption 1, the log-probability
f a choice history has the form lnP (̃y| θ, β) = U ′gθ + S ′β∗, with

U =
[
d1, y0, {H (1)(d), ∆(1)(d) : d ≥ 1}

]
. (21)

is a minimal sufficient statistic for θ. The structural parameters βy and βdare not identified because U includes all the statistics
ssociated with these structural parameters. ■

In terms of the minimal sufficient statistic, the difference between this forward-looking model and its myopic
ounterpart is that now we need to control for the difference between final and initial duration, ∆(1)(d). These additional
tatistics are also the only statistics associated with the structural parameter β̃d(d). Therefore, after controlling for the
ector of sufficient statistics U , there is no variation left that can identify structural parameters in this model.

xample 4(a). Suppose that T = 3 such that a history is {y0, d1 | y1, y2, y3}. Consider histories A = {0, 0 | 0, 1, 1} and
= {0, 0 | 1, 0, 1}. Taking into account the form of the log-probability in Eq. (20), we have that lnP (A) = 2α̃θ+ β̃d(1)+

θ (1) + ṽθ (2) + 2σθ(0)+ σθ(1, 1), and lnP (B) = 2α̃θ+ 2 ṽθ (1) + 2σθ(0)+ σθ(1, 1), such that

lnP (A) − lnP (B) = β̃d(1) + ṽθ (2) − ṽθ (1) . (22)

he right-hand side includes the expected future return of a second year of experience, ṽθ (2)− ṽθ (1), which depends on
he incidental parameters. Therefore, lnP (A) − lnP (B) does not identify any structural parameter. In particular, it does
ot identify β̃d(1). ■

xample 4(b). Suppose that T ≥ 5, let n be any integer such that 2 ≤ n ≤ (T − 1)/2, and consider the sub-histories:
= {0, 0 | 1n−1, 0, 1n+1} and B = {0, 0 | 1n, 0, 1n}. Given the expression for the log-probability in Eq. (20), we have

that lnP (A) = 2nα̃θ+ 2
∑n−2

d=1 β̃d(d)+ β̃d(n− 1)+ β̃d(n)+ 2
∑n−1

d=1 ṽθ (d) + ṽθ (n)+ ṽθ (n + 1) + 2σθ(0)+ 2
∑n−1

d=1 σθ(1, d)+
σθ(1, n), and lnP (B) = 2nα̃θ+ 2

∑n−2
d=1 β̃d(d)+ 2β̃d(n− 1)+ 2

∑n
d=1 ṽθ (d) + 2σθ(0)+ 2

∑n−1
d=1 σθ(1, d)+ σθ(1, n), such that

lnP (A) − lnP (B) = β̃d(n) − β̃d(n − 1) + ṽθ (n + 1) − ṽθ (n) . (23)

his difference in log-probabilities depends on the incidental parameters through the continuation values. Though this
air of histories identifies the structural parameter β̃d(n) − β̃d(n − 1) in a myopic model with duration dependence, it

does not identify any structural parameter in the forward-looking model. ■

Examples 4(a) and 4(b), and more specifically Eqs. (22) and (23), suggest a restriction that provides identification of
the structural parameters. A sufficient condition for the identification of β̃d(n) − β̃d(n − 1) from lnP (A) − lnP (B) is that

θ (n + 1)− ṽθ (n) = 0 for any possible value of the incidental parameters.19 By Property 2, under Assumption 2 there is a
alue d∗ such that ṽθ (n + 1)− ṽθ (n) = 0 for any duration n greater or equal than d∗. This property provides identification

of some structural parameters. Proposition 5 establishes this result.

Proposition 5. In the forward-looking binary choice model with duration dependence under Assumptions 1 and 2, the
og-probability of a choice history has the form lnP (̃y | θ, β) = U ′gθ + S ′β∗ with⎧⎨⎩ U =

[
d1, y0, {H (1)(d), ∆(1)(d) : d ≤ d∗

− 1},
∑

d≥d∗H (1)(d),
∑

d≥d∗∆
(1)(d)

]
S = H (1)(d∗) + ∆(1)(d∗); β∗

= βd(1, d∗
− 1) − βd(1, d∗).

(24)

U is a minimal sufficient statistic for θ. Conditional on U, the statistic ∆(1)(d∗) has variation and the structural parameter
βd(1, d∗) − βd(1, d∗

− 1) is identified. ■

Example 5(a). Consider the data in Example 4(a) with T = 3 and histories A = {0, 0 | 0, 1, 1} and B = {0, 0 | 1, 0, 1}. We
have shown that lnP (A) − lnP (B) = β̃d(1)+ ṽθ (2) − ṽθ (1). Suppose that d∗

= 1 such that there is return for one period
of experience but not for additional experience, that is, β̃d(d) = β̃d(1) for d ≥ 1. Under this assumption, as established in
Property 2 of the model, we have that ṽθ (d) − ṽθ (1) = 0 for any d ≥ 1. Therefore, the parameter β̃d(1) is identified as

19 In principle, it would be sufficient that vθ (1, n + 1) − vθ (1, n) does not depend on θ, i.e., vθ (1, n + 1) − vθ (1, n) = f (n). If we could obtain
his type of condition, then lnP (A) − lnP (B) would identify the parameter β̃y + βd(1, n) + f (n) where f (n) would have an economic interpretation
as a continuation value. However, vθ (1, n) is a nonlinear function of θ, i.e., vθ (1, n) = ln(exp{δ vθ (0)}+ exp{δ[αθ + β̃y + βd(1, n) + vθ (1, n + 1)]}).
Given this structure, it seems that the only restrictions on the primitives of the model that can make vθ (1, n + 1) − vθ (1, n) independent of θ are
those that make it equal to zero.
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able 2
dentification of dynamic binary logit models.
Myopic model Forward-Looking model

Minimal
sufficient stat.

Identified
parameters

Identifying
statistics

Minimal
sufficient stat.

Identified
parameters

Identifying
statistics

Panel 1: Models without duration dependence

T (1), y0, yT β̃y D(1,1) T (1), y0, yT β̃y D(1,1)

Panel 2: Models with duration dependence

y0, d1, yT , β̃d(d) for ∆(1)(d) H (1)(d) : d ≤ d∗
−1; β̃d(n) H (1)(n) + ∆(1)(n)

H (1)(d) : d ≥ 1 1 ≤ d ≤ T − 2 2 ≤ d ≤ T − 1
∑
d≥d∗

H (1)(d); −β̃d(n − 1) for n ≥ d*

∆(1)(d) : d ≤ d∗
−1; for n ≥ d*∑

d≥d∗

∆(1)(d)

lnP (0, 0 | 0, 1, 1) − lnP (0, 0 |1, 0, 1). With d∗
= 1, the sufficient statistic is U = [d1, y0,

∑
d≥1H

(1)(d),
∑

d≥1∆
(1)(d)], or

aking into account that
∑

d≥1H
(1)(d) = T (1)

+ y0 − yT and
∑

d≥1∆
(1)(d) = yT − y0, we have that U = [d1, y0, yT , T (1)

]. The
dentifying statistic is S = ∆(1)(1) = yT 1{dT = 1} − y0 1{d1 = 1}. ■

xample 5(b). Consider the data in Example 4(b) with T ≥ 5, and sub-histories A = {0, 0 | 1n−1, 0, 1n+1} and B = {0, 0 |

n, 0, 1n} for n ≤ (T −1)/2. We have shown that lnP (A)− lnP (B) = β̃d(n)− β̃d(n−1)+ ṽθ (n + 1) − ṽθ (n). Suppose that
ssumption 2 holds, and consider values of n such that n ≥ d∗. Under these conditions, we have that ṽθ (n + 1)−ṽθ (n) = 0
uch that:

lnP (0, 0 | 1n−1, 0, 1n+1) − lnP (0, 0 | 1n, 0, 1n) = β̃d(n) − β̃d(n − 1). (25)

or n = d∗, we have that lnP (A) − lnP (B) identifies βd(1, d∗)− βd(1, d∗
− 1). For values of n strictly greater than d∗, the

odel implies that lnP (A)− lnP (B) = βd(1, n)−βd(1, n−1) = 0. As we show below, this restriction for n > d∗ provides
dentification of the parameter d∗. ■

In Examples 5(a) and 5(b), the parameter β∗ is identified because histories A and B have different values for the ∆(1)(d∗).
t is possible to obtain other examples where the identification of β∗ is based on two histories with different values for
he identifying statistic H (1)(d∗).20

In the forward-looking binary choice model with duration dependence, only β̃d(d∗) − β̃d(d∗
− 1) is identified. This

esult contrasts with the myopic model where, as shown in Examples 3(a) and 3(b), we can identify β̃d(d) for any duration
≤ d ≤ T − 2.
Table 2 summarizes the identification results for the binary choice model.

.5. Identification of d∗ in the forward-looking model

We have assumed so far that the value of d∗ is known to the researcher. We now establish the identification of d∗. Let
be any duration such that 2n+1 ≤ T . Consider the pair of histories An = {0, 0 | 1n−1, 0, 1n+1} and Bn = {0, 0 | 1n, 0, 1n}.

We have that:⎧⎪⎪⎪⎨⎪⎪⎪⎩
For n > d∗, U(An) = U(Bn), and lnP (An) − lnP (Bn) = ∆βd(n) = 0.

For n = d∗, U(An) = U(Bn), and lnP (An) − lnP (Bn) = ∆βd(d∗) ̸= 0.

For n < d∗, U(An) ̸= U(Bn).

(26)

ote that lnP (An)− lnP (Bn) identifies the parameter β̃d(n)− β̃d(n−1) only if n ≥ d∗. Given a dataset with T time periods,
e can construct histories An and Bn only if 2n + 1 ≤ T . Putting these two conditions together, the identification of the
alue of d∗ requires that T ≥ 2d∗

+1 or equivalently, d∗
≤ (T −1)/2. Under this condition, we can describe the parameter

∗ as the maximum value of n such that lnP (An) − lnP (Bn) ̸= 0. This condition uniquely identifies d∗.

roposition 6. Consider the forward-looking binary choice model with duration dependence under Assumptions 1 and 2. For
ny duration n with 2n + 1 ≤ T , define the pair of histories An = {0, 0 | 1n−1, 0, 1n+1} and Bn = {0, 0 |1n, 0, 1n}. Then, if
∗

≤ (T − 1)/2, we have that the value of d∗ is point identified as:

d∗
= max {n : lnP (An) − lnP (Bn) ̸= 0} ■ (27)

20 For instance, consider the histories A = {0, 0 | 1, 0, 1, 1, 1, 1} and B = {0, 0 | 1, 1, 0, 1, 1, 1}. The sequences of durations under these histories
re d(A) = {0, 1, 0, 1, 2, 3} and d(B) = {0, 1, 2, 0, 1, 2}, respectively. We have that ∆(1)(2)(A) = ∆(1)(2)(B) = 0, but H (1)(2)(A) = 1 and H (1)(2)(B) = 2
uch that – when d∗

= 2 – the parameter β∗ is identified from the frequencies of these two histories.
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xample 6. Suppose that T = 7. Consider the following three pairs of histories: A1 = {0, 0 | 0, 1, 1} and B1 =

{0, 0 | 1, 0, 1}; A2 = {0, 0 | 1, 0, 1, 1, 1} and B2 = {0, 0 | 1, 1, 0, 1, 1}; and A3 = {0, 0| 1, 1, 0, 1, 1, 1, 1} and B3 =

{0, 0 |1, 1, 1, 0, 1, 1, 1}.21 Without knowing the true value of d∗, all we can say is that:⎧⎪⎪⎪⎨⎪⎪⎪⎩
lnP (A1) − lnP (B1) = β̃d(1) + ṽθ (2) − ṽθ (1) .

lnP (A2) − lnP (B2) = β̃d(2) − β̃d(1) + ṽθ (3) − ṽθ (2) .

lnP (A3) − lnP (B3) = β̃d(3) − β̃d(2) + ṽθ (4) − ṽθ (3) .

(28)

Given that T = 7, to identify d∗ we need to assume that d∗
∈ {1, 2, 3}. The following table describes the pattern of the

log-probability differences lnP (A1) − lnP (B1), lnP (A2) − lnP (B2), and lnP (A3) − lnP (B3) for each of the three possible
values of d∗.

True d∗ ln
[
P (A1)

P (B1)

]
ln

[
P (A2)

P (B2)

]
ln

[
P (A3)

P (B3)

]
d∗

= 1 ̸= 0 0 0
d∗

= 2 any value ̸= 0 0
d∗

= 3 any value any value ̸= 0

We can distinguish between these different patterns and therefore we can identify d∗. ■

3.6. Multinomial choice models

3.6.1. Multinomial myopic model without duration dependence
Consider the general multinomial choice model in Eq. (7) but particularized to the case with myopic agents, ṽθ (j, d) =

0, and without duration dependence, β̃d(j, d) = 0. We have:

yt = argmax
j∈Y

⎧⎨⎩α̃θ(j) +

∑
k̸=0

1{yt−1 = k} β̃y(j, k) + εt (j)

⎫⎬⎭ . (29)

he log-probability of the choice history ỹ = {y0, y1, . . . , yT } conditional on θ is:

lnP (̃y|θ) = ln pθ(y0) +

T∑
t=1

∑
j̸=0

1{yt = j}
[̃
αθ(j) + β̃y(j, yt−1)

]
+

T∑
t=1

σθ(yt−1) (30)

here σθ(yt−1) ≡ − ln
[
1 +

∑
j̸=0 exp{̃αθ(j) + β̃y(j, yt−1)}

]
. Proposition 7 presents our identification result for this model.

roposition 7. In the myopic multinomial model without duration dependence under Assumption 1, the log-probability has
he form lnP (̃y | θ, β) = U ′gθ + S ′β∗ with⎧⎪⎪⎪⎨⎪⎪⎪⎩

U =
[
y0, yT , {T (j)

: j ≥ 1}
]
.

S =
[
D(j,k)

: j, k ≥ 1
]
.

β∗
=

[̃
βy(j, k) : j, k ≥ 1

]
.

(31)

is a minimal sufficient statistic for θ. Conditional on U, the elements in the vector of statistics S are linearly independent such
hat the vector of parameters β∗ is identified. ■

The following example presents a pair of histories that identifies β̃y(j, k).

xample 7. Suppose that T = 3 and consider the following two realizations of the history (y0| y1, y2, y3): A = {0 | 0, k, j}
nd B = {0 | k, 0, j} with j, k ̸= 0. Using the formula for the log-probability of a choice history in Eq. (30), we have
hat lnP (A) = ln pθ(0)+ α̃θ(k)+ α̃θ(j)+ 2σθ(0)+ σθ(k)+ β̃y(k, 0)+ β̃y(j, k), and lnP (B) = ln pθ(0)+ α̃θ(k)+ α̃θ(j)+ 2σθ(0)+
θ(k)+ β̃y(k, 0)+ β̃y(0, k)+ β̃y(j, 0), such that lnP (A)− lnP (B) identifies the parameter β̃y(k, j)− β̃y(0, j)− β̃y(k, 0) which
s equal to β̃y(k, j) because, by definition, β̃y(0, j) = 0 and β̃y(0, k) = 0. We can also obtain this identification result by
sing the representation in Proposition 7. Histories A and B have the same value for the initial condition, y0, the final

21 Note that the pair of histories A1 and B1 may come from periods t = 0 to t = 3 or from any other sequence of four consecutive periods within
he original history of length T = 7. The same comment applies to the pair of histories A and B .
2 2
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hoice, y3, and the statistics T (j) and T (k), such that U(A) = U(B). The identifying statistics D(y−1,y) take the following
alues: D(j,k)(A) = 1, D(j,k)(B) = 0, D(j,0)(A) = 0, D(j,0)(B) = 1, D(0,k)(A) = 0, D(0,k)(B) = 1, and D(y,y−1)(A) = D(y,y−1)(B) = 0

for any other pair (y, y−1). Therefore, S(A)′β∗
− S(B)′β∗

= [D(j,k)(A) − D(j,k)(B)] β̃y(j, k)+ [D(j,0)(A) − D(j,0)(B)] β̃y(j, 0)+
[D(0,k)(A) − D(0,k)(B)] βy(0, k) = β̃y(k, j). A particular case of this example is when j = k, such that A = {0| 0, j, j} and
B = {0 | j, 0, j}. In this case, lnP (A) − lnP (B) identifies the sunk cost for choice j, −βy(0, j) − βy(j, 0). ■

3.6.2. Multinomial forward-looking model without duration dependence
Consider the general multinomial choice model in Eq. (7) with forward-looking agents but without duration depen-

dence, β̃d(j, d) = 0. We can represent this model as:

yt = argmax
j∈Y

⎧⎨⎩α̃θ(j) + ṽθ(j) +

∑
k̸=0

1{yt−1 = k} β̃y(j, k) + εt (j)

⎫⎬⎭ . (32)

The log-probability of the choice history ỹ conditional on θ has a similar form as in the myopic model, but now the
incidental parameter θ enters through the function α̃θ(j) + ṽθ(j).

lnP (̃y|θ) = ln pθ(y0) +

T∑
t=1

∑
j̸=0

1{yt = j}
[̃
αθ(j) + ṽθ(j) + β̃y(j, yt−1)

]
+

T∑
t=1

σθ(yt−1) (33)

here σθ(yt−1) ≡ − ln
[
1 +

∑
j̸=0 exp{̃αθ(j) + ṽθ(j) + β̃y(j, yt−1)}

]
. Therefore, the identification of the structural parame-

ers is the same as in the myopic model without duration dependence.

roposition 8. In the multinomial forward-looking model without duration dependence under Assumption 1, the log-probability
f a choice history has the following form lnP (̃y | θ, β) = U ′gθ + S ′β∗ with U = [y0, yT , {T (j)

: j ≥ 1}], S = [D(j,k)
: j, k ≥ 1],

nd β∗
= [̃βy(j, k) : j, k ≥ 1]. U is a minimal sufficient statistic for θ.Conditional on U, the elements in the vector of statistics

are linearly independent such that the vector of parameters β∗ is identified. ■

xample 8. Example 7 also applies to the forward-looking model. With T = 3, we have that the parameter β̃y(j, k) is
dentified from lnP (0|0, k, j) − lnP (0 | k, 0, j). ■

.6.3. Multinomial myopic model with duration dependence
Consider the multinomial choice model in Eq. (7) with duration dependence but with myopic agents. We can represent

his model as follows:

yt = argmax
j∈Y

⎧⎨⎩α̃θ(j) +

∑
k̸={0,j}

1{yt−1 = k} β̃y(j, k) + 1{yt−1 = j}̃βd(j, dt ) + εt (j)

⎫⎬⎭ . (34)

he log-probability of a choice history ỹ conditional on θ is:

lnP (̃y|θ) = ln pθ(y0, d1) +

T∑
t=1

∑
j̸=0

1{yt = j} α̃θ(j) +

T∑
t=1

σθ(yt−1, dt )

+

T∑
t=1

∑
j̸=0

⎡⎣ ∑
k̸={0,j}

1{yt = j,yt−1 = k} β̃y(j, k) + 1{yt = yt−1 = j} β̃d(j, dt )

⎤⎦
(35)

here σθ(yt−1, dt ) ≡ − ln[1+
∑

j̸=0 exp{̃αθ(j)+
∑

k̸={0,j}1{yt−1 = k}̃βy(j, k)+ 1{yt−1 = j}̃βd(j, dt )}]. Proposition 9 presents
dentification results.

roposition 9. In the multinomial myopic model with duration dependence under Assumption 1, the log-probability of a choice
istory has the form lnP (̃y| θ, β) = U ′gθ + S ′β∗ with⎧⎪⎪⎪⎨⎪⎪⎪⎩

U =
[
d1, y0, yT , {H (j)(d) : j ≥ 1, d ≥ 1}

]
.

S =
[
D(j,k)

: j, k ≥ 1, k ̸= j; ∆(j)(d) : j ≥ 1; d ≥ 2
]
.

β∗
=

[̃
βy(j, j) : j ≥ 1, k ̸= j; β̃d(j, d) : j ≥ 1; d ≥ 1

]
.

(36)

is a minimal sufficient statistic for θ. Conditional on U, the elements in the vector of statistics S are linearly independent such
hat the vector of parameters β∗ is identified. ■
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The following examples present choice histories that identify β̃y(j, k) and β̃d(j, d).

xample 9(a). Suppose that T = 3 such that a choice history is (y0, d1 | y1, y2, y3). For j, k ̸= 0 and j ̸= k, consider
he pair of histories A = {0, 0| 0, j, k} and B = {0, 0 | j, 0, k}. Using the expression for the log-probability of a choice
istory in Eq. (35) we have that lnP (A) = ln pθ(0, 0)+ α̃θ(j)+ α̃θ(k)+ 2σθ(0)+ σθ(j, 1)+ β̃y(k, j), and lnP (B) = ln pθ(0, 0)+
θ(j)+ α̃θ(k)+ 2σθ(0)+ σθ(j, 1), such that lnP (A) − lnP (B) = β̃y(k, j). Therefore, the parameter β̃y(k, j) is identified from
nP (0, 0 | 0, j, k) − lnP (0, 0 | j, 0, k). We can also obtain this identification result by using Proposition 9. The initial
ondition, (d1, y0) = (0, 0), and the final choice, y3 = k, are the same in the two histories. The histories also have the
ame histogram for the states (yt−1, dt ): the state (0, 0) occurs twice, state (j, 1) occurs once, and the other possible states
ever happen. Therefore, we have that U(A) = U(B). As for the values of the identifying statistics in the vector S, we
ave that: D(j,k)

= 1 under history A and D(j,k)
= 0 under history B; since d1 = 0 and d4 = 1 in both histories, we have

hat for any d ≥ 2 the statistics ∆(k)(d) ≡ 1{y3 = k, d4 = d} − 1{y0 = k, d1 = d} are zero for both A and B. Therefore,
(A)′β∗

− S(B)′β∗
= β̃y(k, j). ■

xample 9(b). Suppose that T ≥ 5, let n be any integer such that 2 ≤ n ≤ (T − 1)/2, and define a sub-history {y0, d1 |

y1, . . . , y2n+1}. Consider the sub-histories A = {0, 0 | jn−1, 0, jn+1} and B = {0, 0 | jn, 0, jn}, where jn represents a sequence
of n consecutive values of the choice alternative j. Applying Eq. (35) to these histories, we have that lnP (A) = ln pθ(0, 0)+
2n α̃θ(j)+ 2σθ(0)+ 2[

∑n−1
d=1 σθ(j, d)]+ σθ(j, n)+ 2[

∑n−2
d=1 β̃d(j, d)]+ β̃d(j, n−1)+ β̃d(j, n), and lnP (B) = ln pθ(0, 0)+ 2n α̃θ(j)+

2σθ(0)+ 2[
∑n−1

d=1 σθ(j, d)]+ σθ(j, n)+ 2[
∑n−2

d=1 β̃d(j, d)]+ 2β̃d(j, n − 1), such that lnP (A) − lnP (B) = β̃d(j, n) − β̃d(j, n − 1).
herefore, the marginal return of going from n − 1 to n periods of experience in alternative j, βd(j, n) − βd(j, n − 1),
s identified from lnP (0, 0|jn−1, 0, jn+1) − lnP (0, 0|jn, 0, jn). We can also obtain this identification result using the
epresentation of the log-probability in Proposition 9. Histories A and B have the values for the vector of sufficient statistics
: the initial condition, (y0, d1) = (0, 0), the final choice, y2n+1 = j, and the histogram of states (yt−1, dt ). As for the
dentifying statistics, we have that the dyad statistics D(j,k) are the same in the two histories (D(j,j)

= 2n − 2, D(j,0)
= 1,

(0,j)
= 2, and for the rest of the dyads D(j,k)

= 0), but the statistic ∆(j)(n + 1) is equal to 1 for history A and it is zero
or history B, the statistic ∆(j)(n) is equal to 0 for history A and it is one for history B. Therefore, S(A)′β∗

− S(B)′β∗
=

d(j, n) − βd(j, n − 1). ■

.6.4. Multinomial forward-looking model with duration dependence
Consider the general multinomial choice model in Eq. (7) with duration dependence and forward-looking agents. The

og-probability of a choice history ỹ conditional on θ is:

lnP (̃y|θ) = ln pθ(y0, d1) +

T∑
t=1

∑
j̸=0

1{yt = j} [̃αθ(j) + ṽθ(j, dt+1)] +

T∑
t=1

σθ(yt−1, dt )

+

T∑
t=1

∑
j̸=0

⎡⎣ ∑
k̸={0,j}

1{yt = j,yt−1 = k} β̃y(j, k) + 1{yt = yt−1 = j} β̃d(j, dt )

⎤⎦ .

(37)

n this multinomial choice model, it is possible to identify switching cost parameters without imposing Assumption 2.
roposition 10 establishes the identification of switching costs parameters.

roposition 10. In the multinomial forward-looking model with duration dependence under Assumption 1, the log-probability
f a choice history has the form lnP (̃y | θ, β) = U ′gθ + S ′β∗ with⎧⎪⎪⎪⎨⎪⎪⎪⎩

U =
[
d1, y0, yT , {H (j)(d), ∆(j)(d) : j ≥ 1, d ≥ 1}

]
.

S =
[
D(j,k)

: j, k ≥ 1, j ̸= k
]
.

β∗
=

[̃
βy(k, j) : j, k ≥ 1, j ̸= k

]
.

(38)

is a minimal sufficient statistic for θ. Conditional on U, the elements in the vector of statistics S are linearly independent such
hat the vector of parameters β∗ is identified. The duration dependence parameters β̃d(j, d) are not identified. ■

Now, in contrast to the result in Proposition 9, the vector of sufficient statistics U includes also the statistics {∆(j)(d) :

≥ 1, d ≥ 1}. This implies that, without additional restrictions, we cannot identify the duration dependence parameters
d(j, d). However, the dyad statistics D(j,k) are not part of the sufficient statistic U and they still provide identification of
he parameters β̃y(k, j). Example 10 presents a pair of histories that identifies β̃y(k, j).

xample 10. Consider the same data and histories as in Example 9(a) but now in a forward-looking model. That is, T = 3
nd the pair of histories is A = {0, 0 | 0, j, k} and B = {0, 0 | j, 0, k} with j, k ̸= 0 and j ̸= k. Using the expression for the
og-probability of a choice history in Eq. (37) we have that lnP A = ln p (0, 0)+ α̃ (j)+ α̃ (k)+ 2σ (0)+ σ (j, 1)+ ṽ (j, 1)
( ) θ θ θ θ θ θ
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dentification of dynamic multinomial logit models.
Myopic model Forward-Looking model

Minimal
sufficient stat.

Identified
parameters

Identifying
statistics

Minimal
sufficient stat.

Identified
parameters

Identifying
statistics

Panel 1: Models without duration dependence

T (j), ∆(j)
: j ≥ 1 β̃y(j, k) D(k,j)

: T (j), ∆(j)
: j ≥ 1 β̃y(j, k) D(k,j)

:

j, k ≥ 1 j, k ≥ 1 j, k ≥ 1 j, k ≥ 1

Panel 2: Models with duration dependence
For any j ≥ 1 For any j ≥ 1 For any j ≥ 1 For any j ≥ 1 For any j ≥ 1 For any j ≥ 1
∆(j), β̃y(j, k) : j ̸= k D(j,k)

: j ̸= k H (j)(d) : d ≤ d∗

j − 1; β̃y(j, k) : j ̸= k D(j,k)
: j ̸= k

H (j)(d) : d ≥ 1 and and
∑
d≥d∗

j

H (j)(d); and and

β̃d(j, d) : ∆(j)(d) : ∆(j)(d) : d ≤ d∗

j − 1; β̃d(j, d) H (j)(d) + ∆(j)(d)
d ≥ 1 d ≥ 1

∑
d≥d∗

j

∆(j)(d) −β̃d(j, d − 1) d ≥ d∗

j

d ≥ d∗

j

+ ṽθ(k, 1)+ β̃y(k, j), and lnP (B) = ln pθ(0, 0)+ α̃θ(j)+ α̃θ(k)+ 2σθ(0)+ σθ(j, 1)+ ṽθ(j, 1)+ ṽθ(k, 1), such that lnP (A) −

nP (B) = β̃y(k, j). Therefore, in this forward-looking model we can still identify the switching cost parameter β̃y(k, j)
rom lnP (0, 0 | 0, j, k) − lnP (0, 0 |j, 0, k). ■

For the identification of duration dependence parameters, we impose the restriction in Assumption 2. Proposition 11
resents this identification result.

roposition 11. In the multinomial forward-looking model with duration dependence under Assumptions 1 and 2, the
og-probability of a choice history has the form lnP (̃y | θ, β) = U ′gθ + S ′β∗ with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

U =

⎡⎢⎣ d1, y0, yT ,{
H (j)(d), ∆(j)(d) : j ≥ 1, 1 ≤ d ≤ d∗

j − 1
}
,{∑

d≥d∗
j
H (j)(d),

∑
d≥d∗

j
∆(j)(d) : j ≥ 1

}
⎤⎥⎦ .

S =
[
D(j,k)

: j, k ≥ 1, j ̸= k; H (j)(d∗

j ) + ∆(j)(d∗

j ) : j ≥ 1
]
.

β∗
=

[̃
βy(k, j) : j, k ≥ 1, j ̸= k; βd(j, d∗

j − 1) − βd(j, d∗

j ) : j ≥ 1
]
.

(39)

is a minimal sufficient statistic for θ. Conditional on U, the elements in the vector S are linearly independent such that the
ector of parameters β∗is identified. ■

xample 11. Suppose that T ≥ 2d∗

j + 1, and let n be any integer such that d∗

j ≤ n ≤ (T − 1)/2. Consider the pair
f choice histories A = {0, 0 | jn−1, 0, jn+1} and B = {0, 0 | jn, 0, jn}. Applying Eq. (37) to these histories, we have

that lnP (A) = ln pθ(0, 0)+ αθ(0)+ 2n αθ(j)+ 2σθ(0)+ 2[
∑n−1

d=1 σθ(j, d)]+ σθ(j, n)+ 2βy(j, 0)+ βy(0, j)+ 2[
∑n−2

d=1 βd(j, d)]+

βd(j, n−1)+ βd(j, n)+ vθ(0)+ 2[
∑d∗

j −1
d=1 vθ(j, d)]+ 2(n−d∗

j +1) vθ(j, d∗

j ), and lnP (B) = ln pθ(0, 0)+ αθ(0)+ 2n αθ(j)+ 2σθ(0)+

[
∑n−1

d=1 σθ(j, d)]+ σθ(j, n)+ 2βy(j, 0)+ βy(0, j)+ 2[
∑n−2

d=1 βd(j, d)]+ 2βd(j, n− 1)+ vθ(0)+ 2[
∑d∗

j −1
d=1 vθ(j, d)]+ 2(n− d∗

j + 1)
θ(j, d∗

j ), such that lnP (A)−lnP (B) = βd(j, n)−βd(j, n−1). Therefore, the marginal return of experience βd(j, n)−βd(j, n−1)
s identified for any value n ≥ d∗

j . We can also obtain this result using the conditions in Proposition 11. The two choice
istories have the same value for the sufficient statistic U , and for n ≥ d∗

j we have that ∆(j)(n) is equal to 0 for history A
nd equal to 1 for history B. ■

Table 3 summarizes the identification results for the multinomial model.

.7. Identification of the distribution of unobserved heterogeneity

In empirical applications of dynamic structural models, the answer to some important empirical questions requires the
dentification of the distribution of the unobserved heterogeneity. For instance, the researcher can be interested in the
verage marginal effects

∫
[∂Pθ

(
y| x, β∗

)
/∂x] f (θ) dθ or

∫
[∂Pθ

(
y| x, β∗

)
/∂β∗

] f (θ) dθ, where f (θ) is the density function
f the unobserved heterogeneity.
Without further restrictions, the density function f (θ) is not (nonparametrically) point identified. This is the initial

onditions problem. In this section, we briefly describe this identification problem, and two possible approaches that the
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esearcher can take to deal with this problem after the structural parameters β∗ have been identified: (a) nonparametric
inite mixture; and (b) set identification.

Let f (θ | x1) be the density function of θ conditional on the initial value of the state variables x1 ≡ (y0, d1). After the
dentification of the structural parameters, β∗, the model implies the following restrictions for the identification of f (θ |

1). For any choice history ỹ, we have that:

P (̃y|x1) =

∫ [
T∏

t=1

P
(
yt | xt , β∗, θ

)]
f (θ|x1) dθ. (40)

he probabilities of choice histories P (̃y|x1) are identified from the data. Also, for a fixed value of θ, the probabilities(
yt |xt , β∗, θ

)
are also known to the researcher after the identification of the structural parameters β∗. Eq. (40) can be

een as a system of linear equations (with a potentially infinite dimension), and the identification of the density function
(θ|x1) is equivalent to finding a unique solution to this system.
Let |Θ| be the dimension of the support of θ. This dimension can be infinite. Eq. (40) can be written in vector form as,

Px1 = Lx1 fx1 . (41)

he term Px1 is a vector of dimension (J + 1)T × 1 with the probabilities of all the possible choice histories with initial
onditions x1. The term Lx1 is a matrix with dimension (J + 1)T × |Θ| such that each row contains the probabilities
T
t=1P

(
yt | xt , β∗, θ

)
for a given choice history and for every value of θ. Finally, the term fx1 is a |Θ| × 1 vector with the

robabilities f (θ|x1). Given this representation, it is clear that fx1 is point-identified if and only if matrix Lx1 is full column
ank.

If the distribution of θ is continuous, then |Θ| = ∞ and Lx1 cannot be full-column rank. In fact, the number of rows in
atrix Lx1 – the number of possible choice histories, (J + 1)T – provides an upper bound to the dimension of the support

Θ| for which the density is nonparametrically (point) identified.
The researcher may be willing to impose the restriction that the support of θ is discrete, and choose the points in the

upport of the fixed effects, such that matrix Lx1 is full column rank. Under this condition, fx1 can be identified as the
inear projection:

fx1 =
[
L′

x1Lx1
]−1 L′

x1Px1 . (42)

ote that the identification of β∗ is still based on a fixed-effects model that is robust to this finite-mixture restriction on
he distribution of the unobservables. However, under this approach, the point identification of marginal effects depends
n this restriction on the points of support of the unobserved heterogeneity.
Alternatively, the researcher may prefer not to impose this finite support restriction and set-identify the distribution

f the unobservables. This is the approach in Chernozhukov et al. (2013).
Finally, we would like to comment on a practical issue in the identification of the finite-mixture model described above.

or the evaluation of the choice probabilities P
(
yt | xt , β∗, θ

)
in matrix Lx1 , the vector of unobserved heterogeneity θ is

ultidimensional. That is, we need to choose a grid of points for the parameters α̃θ(j) but also for the continuation values
θ(j, d).
The selection of this grid of points is relatively simple in the forward-looking model without duration dependence. In

his version of the model, the unobserved heterogeneity enters through the term τθ(j) ≡ α̃θ(j) + ṽθ(j). Therefore, for this
odel we need to fix a grid of points for the J incidental parameters {τθ(j) : j > 1}. Using a grid of κ points for each
arameter τθ(j) we have that the dimension of the density vector fx1 is |Θ| = κ J that should be smaller that (J + 1)T such
hat the order condition of identification holds.

This problem becomes more complicated in the forward-looking model with duration dependence. In this model,
nobserved heterogeneity enters through the term τθ(j, d) ≡ α̃θ(j)+ ṽθ(j, d). Therefore, we need to fix a grid of points for
he JT incidental parameters {τθ(j, d) : j > 1; 1 ≤ d ≤ T }. Using a grid of κ points for each parameter τθ(j, d), we have
hat the dimension of fx1 is |Θ| = κ JT that should be smaller than (J + 1)T . This condition imposes a strong restriction on
he dimension of unobserved heterogeneity, κ .

However, this approach is not taking into account that the continuation values ṽθ(j, d) are endogenous objects that
an be obtained given α̃′

θs and β∗ by solving the Bellman equation of the model. Taking into account this structure of the
odel, we can reduce substantially the dimensionality of θ. Given a value of the J incidental parameters {̃αθ(j) : j > 1},
e can solve the Bellman equation to obtain all the continuation values ṽθ(j, d). Therefore, the dimension of θ in the
tructural model with duration dependence is also equal to the dimension of {̃αθ(j) : j > 1}, as in the model without
uration dependence.

. Estimation and inference

Since the identification is based on the conditional MLE approach, the estimator for the structural parameters of interest
ill be an Andersen (1970) type of estimator. We illustrate the estimator for the forward-looking multinomial choice
odel with duration dependence under Assumptions 1 and 2, since estimators for the structural parameters in the other
odels can be defined in a similar fashion.
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.1. Estimation of β∗ (given d∗)

Let β∗ be the vector of identified structural parameters. Let Ui and Si be the vectors of sufficient and identifying
tatistics, respectively, for observation i. The conditional MLE for β∗ is defined as the maximizer of the conditional
og-likelihood function:

LN (β∗) =

N∑
i=1

Li(β∗) =

N∑
i=1

S ′

iβ
∗
− ln

⎛⎝ ∑
ỹ:U (̃y)=Ui

exp
{
S (̃y)′β∗

}⎞⎠ (43)

here the condition {̃y : U (̃y) = Ui} represents all the choice histories with the same value of U as observation i. This
og-likelihood function is globally concave in β∗, and therefore the computation of the CMLE is straightforward using
ewton–Raphson or BHHH algorithm. Under the condition that the spaces of the structural parameters β∗ and of the
ncidental parameters θ are bounded, and using standard arguments (Newey and McFadden, 1994), we have

√
N (̂β

∗
− β∗) ⇒ N (0, J(β∗)−1). (44)

he consistent estimator for the Fisher information is JN (̂β
∗
) = −N−1 ∑N

i=1 ∇ββLi (̂β
∗
).

The main cost in the computation of this estimator comes from the calculation of the statistics U (̃y) and S (̃y) for every
possible choice history ỹ (in the sample or not), and from the calculation of the sums of the terms exp

{
S (̃y)′β∗

}
over

all these possible histories. The number of possible histories increases exponentially with the number of time periods, T .
For instance, if the number of choice alternatives is six, the number of possible choice histories is close to 8,000 when
T = 5 but it becomes larger than 60 million when T = 10. An approach to deal with this computational burden consists
of splitting the original histories in the data into shorter sub-histories. In the new transformed dataset, we have more
individual histories but with a shorter time dimension, and we treat two histories from the same individual as if they
were from different individuals. This approach is perfectly feasible for the estimation of our model. The Conditional MLE
applied to the transformed data has the same asymptotic properties as described above but it implies a loss of efficiency
(a larger asymptotic variance) due to the splitting of the original histories.

4.2. Joint estimation of β∗ and d∗

We describe here a CML estimator for the joint estimation of (d∗, β∗) in the case of the binary choice model with
forward-looking agents. Let d∗

0 represent the true value of the parameter d∗. And let β∗

0 be the true value of the parameter
βd(d∗

0) − β̃d(d∗

0 − 1). We use d∗ and β∗ to represent arbitrary values of these parameters. We are interested in the joint
estimation of (d∗

0, β
∗

0 ) from the maximization of the conditional likelihood function. We consider a profiling method. First,
for every guess of d∗, we estimate the structural parameter β∗ using a constrained CML estimator. Second, given the CML
estimates β̂∗(d∗) for d∗

= 1, 2, ..., T −2 obtained in the first stage, we construct a concentrated likelihood function where
the only unknown parameter is d∗, and use a BIC-based method to estimate d∗

0. Finally, given the BIC estimator d̂∗ in stage
two and the profile estimates β̂∗(1), . . . , β̂∗(T − 2) in stage one, we obtain the estimator of β∗

0 as β̂∗ (̂d∗).
Let LT be the equal to ⌞(T − 1)/2⌟ where ⌞.⌟ represent the floor function. For any integer n such that 2 ≤

n ≤ LT , define the pair of histories An = {0, 0 | 1n−1, 0, 1T−n} and Bn = {0, 0 | 1n, 0, 1T−n−1}. Then, Ui =

{̃yi ∈ An ∪ Bn for some 2 ≤ n ≤ LT }. Given this statistic, the conditional likelihood function is:

LN (ν) =

LT∑
n=2

N∑
i=1

1{̃yi = An} ln
[

exp {ν(n)}
1 + exp {ν(n)}

]
+ 1{̃yi = Bn} ln

[
1

1 + exp {ν(n)}

]
(45)

here ν(n) is a parameter that represents the value β̃d(n) − β̃d(n − 1)+
∫
[̃vθ(n + 1) − ṽθ(n)] f (θ) dθ, and ν is the vector

f parameters {ν(n) : n = 2, 3, . . . , L}. The unconstrained likelihood function LN (ν) is globally concave in each of the
arameters ν(n). It is straightforward to show that the unconstrained CML estimator of ν(n) is ν̂(n) = ln P̂ (An)− ln P̂ (Bn),
here P̂ (An) and P̂ (Bn) are the sample frequencies N−1∑N

i=11{̃yi = An} and N−1∑N
i=11{̃yi = Bn}, respectively. However,

he model imposes nontrivial constraints on ν(n), which leads to a constrained CMLE. In particular, the model implies the
ollowing relationship between the parameters ν(n) and the structural parameters (d∗, β∗).

ν(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
unrestricted if n < d∗.

β∗ if n = d∗.

0 if n > d∗.

(46)

For a given value of d∗, let ν̂c
d∗ be the constrained estimator of ν that imposes the restriction in Eq. (46) such that:

c
d∗ (n) = ν̂(n) (unconstrained) for n ≤ d∗; and ν̂c

d∗ (n) = 0 (constrained) for n > d∗. Furthermore, the estimator of the
tructural parameter β∗ is β̂∗(d∗) = ν̂(d∗).
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We now consider the estimation of d∗. Let ℓN (d∗) be the concentrated likelihood function ℓN (d∗) ≡ LN (̂νc
d∗ ), i.e., the

alue of the likelihood given a value of d∗ and where the parameters ν have been estimated under the model restriction
n Eq. (46). By definition, we have that:

ℓN (d∗) = N
d∗∑
n=2

P̂ (An) ln
[

P̂ (An)

P̂ (An) + P̂ (Bn)

]
+ P̂ (Bn) ln

[
P̂ (Bn)

P̂ (An) + P̂ (Bn)

]

+ N
LT∑

n=d∗+1

P̂ (An) ln
[
1
2

]
+ P̂ (Bn) ln

[
1
2

]
.

(47)

he following Proposition 12 establishes some properties of this concentrated likelihood function.

roposition 12. (A) As N → ∞, N−1ℓN (d∗) converges uniformly in d∗ to its population counterpart ℓ0(d∗). (B) ℓ0(d∗

0) > ℓ0(d∗)
or any d∗ < d∗

0, and ℓ0(d∗

0) = ℓ0(d∗) for any d∗ > d∗

0. Therefore, d
∗

0 is point identified as the minimum value of d∗that maximizes
he concentrated likelihood function: d∗

0 = min{n : n ∈ argmax2≤d∗≤LT ℓ0(d∗)}. ■

Given this result, a possible estimator for d∗

0 would be the sample analog d̂∗ = min{n : n ∈ argmax2≤d∗≤L ℓN (d∗)}.
owever, this estimator has an important limitation in finite samples. Though the population likelihood function ℓ0(d∗) is
lat for values of d∗ greater than the true d∗

0, in a finite sample this likelihood increases with d∗ and reaches its maximum
t the largest possible value of d∗. This is because any value of d∗ smaller than LT implies restrictions on the parameters
(n), i.e., ν(n) = 0 for n > d∗. The larger the value of d∗, the smaller the number of these restrictions and the larger the
alue of the likelihood in a finite sample.
To deal with this problem, we consider an estimator of d∗

0 that maximizes the Bayesian Information Criterion (BIC). This
riterion function introduces a penalty that increases with the number of free parameters {v(n)} in the model. In this
odel, the number of free parameters is equal to d∗. The BIC function is defined as:

BICN (d∗) = ℓN (d∗) −
d∗

2
ln(N). (48)

Our estimator of d∗

0 is defined as the value of d∗ that maximizes BICN (d∗).

Proposition 13. Consider the estimator d̂∗

N = argmax2≤d∗≤LT BICN (d∗). As N → ∞, P(d̂∗

N = d∗

0) → 1. ■

The joint estimation of (d∗, β∗) has the analogy of model selection where d∗ determines the model dimension and β∗

s the parameter of interest. We can use standard inference for the CML estimator for β∗ in this joint estimation method
ince Proposition 13 shows that d̂∗

N is a consistent estimator for d∗

0. This is in the same spirit as consistent model selection:
he asymptotic property of the estimator for parameters in the selected model is unaffected (see Pötscher, 1991). However,
ötscher (1991) also points out that inference for parameters post model selection can be problematic in finite samples
f the parameter is too close to zero and the true model is not selected with probability close to one. In our Monte Carlo
xperiments, we find that the probability of selecting the true d∗

0 is very close to 1.22

. Empirical application

We revisit the model and data in the seminal article by Rust (1987). The model belongs to the class of machine
eplacement models that we have briefly described in Section 2. The superintendent of maintenance at the Madison
Wisconsin) Metropolitan Bus Company has a fleet of N buses indexed by i. For every bus i and at every period t , the
uperintendent decides whether to keep the bus engine (yit = 1) or to replace it (yit = 0). In Rust’s model, if the engine is
eplaced, the payoff is equal to −RC+εit (0), where RC is a parameter that represents the replacement cost. If the manager
ecides to keep the engine, the payoff is equal to −c0 − c1(mit ) + εit (1), where mit is a state variable that represents the
ngine’s cumulative mileage, and c0 + c1(mit ) is the maintenance cost.
We incorporate two modifications to this model. First, we replace cumulative mileage mit with duration since last

eplacement, dit . The transition rule for this state variable is dit+1 = yit [dit + 1], such that dit ∈ {0, 1, 2, . . .}. Using
ust’s data, the correlation between the variables mit and dit is 0.9552. Second, we allow for time-invariant unobserved

heterogeneity in the replacement cost, RCi, and in the constant term in the maintenance cost function, c0i. Using our
notation, the payoff function is αi(0) + εit (0) if yit = 0 – replace the engine – and it is αi(1) + βd(1, dit ) + εit (1) if yit = 1
– keep the engine – where αi(0) = −RCi, αi(1) = −c0i, and βd(1, dit ) = −c1(dit ).

In Section 5.1, we present evidence from several Monte Carlo experiments using this model. The purpose of conducting
these experiments is threefold. First, we want to show that the FE-CMLE can provide precise and robust estimates of
structural parameters, even when the sample size is not large. Second, we want to measure the bias of misspecifying
the distribution of the unobserved heterogeneity. And third, we want to study the power of a Hausman test – based

22 For example, for DGP 1 with Sample B – described in Table 5 – d̂∗ agrees with the true d∗ 99% of the times.
N 0
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Table 4
Description of DGPs in the Monte Carlo experiments.
Parameter/Constant DGP 1 DGP 2 DGP 3 DGP 4

αi(0) = −RCi
Random draws from: ∞ types Two types Two types One type

N(µ, σ 2) RC1 = 4.5, RC2 = 9 RC1 = 8, RC2 = 9 RC = 8
µ = 8, σ = 2 λ1 = λ2 = 0.5 λ1 = λ2 = 0.5

αi(1) = −c0i = 0
Parameters and βd(1, d) = β = 1 for d ≤ d∗

constants common in d∗
= 3

the four DGPs Discount factor (δ) = 0.95
Initial (y0, d1) = (0, 0)
Maximum T = 25
N (number of buses) = 1000
# simulated samples = 1000

on the comparison of the FE-CMLE and a Correlated Random Effects MLE – to reject specifications that wrongly ignore
unobserved heterogeneity, or that misspecify its probability distribution. In Section 5.2, we use Rust’s dataset to implement
the FE-CMLE method, our procedure to estimate d∗, and Hausman test.

5.1. Monte Carlo experiments

We present experiments using simulated data from four different Data Generating Processes (DGPs). Table 4 describes
these DGPs. The difference between the four DGPs is in the specification of the distribution of the unobserved heterogene-
ity for the replacement cost RCi. In DGP 1, the distribution of the replacement cost is normal with mean 8 and standard
deviation 2. In DGPs 2 and 3, this distribution only has two types. Finally, in DGP 4 there is no unobserved heterogeneity.

For each of these DGPs, we do not estimate the model using the whole sample of T = 25 periods. Instead, we construct
hree samples: sample A, from period 1 to 7; sample B, from period 1 to 14; and Sample C, from period 8 to 21. Therefore,
e present results from 12 Monte Carlo experiments — three samples for each of four DGPs. We analyze the effect of

ncreasing the number of time periods T , by comparing the experiments with sample A (with T = 7) and sample B (with
T = 14). We study the effect of the initial conditions problem by comparing the experiments for sample B (where at
t = 1 all the buses have the same initial condition, (yi0, di1) = (0, 0)) and sample C, that is subject to the initial conditions
problem.

The structural parameter of interest is parameter β in the maintenance cost function, βd(d) = β d. We apply four
estimators to each of the samples: the FE-CMLE using the true value of d∗ (that we denote as CMLE-true-d*); FE-CMLE
using the BIC estimator of d∗ (that we denote as CMLE-BIC-d*); an MLE that imposes the restriction of no unobserved
heterogeneity (that we denote as MLE-noUH), and an MLE that assumes that there are two types of replacement costs
and ignores the potential initial conditions problem (that we denote as MLE-2types). We compare the bias and variance
f these estimators.23
We also implement two Hausman tests: a test of the null hypothesis of no unobserved heterogeneity, that compares

stimators CMLE-BIC-d* and MLE-noUH; and a test of the null hypothesis of two-types, that compares estimators CMLE-
IC-d* and MLE-2types. We present the results of the experiments with DGP 1 in Table 5. The results with the other DGPs
re presented in the Appendix.24
Table 5 displays results from DGP 1 — with normally distributed replacement costs. The MLEs are substantially biased,

specially in sample C (with the initial conditions problem) and sample B (with large T ). When T increases, there are
ultiple spells per bus and this implies a stronger correlation between observed durations and unobserved heterogeneity.
his generates a larger bias for the MLE of a misspecified model. In contrast, the biases of the CMLEs (either with true or
stimated d∗) are negligible. The BIC method provides precise estimates of d∗: in all our DGPs, the estimated value of d∗

is equal to its true value for more than 95% of the Monte Carlo replications. As a result, the bias of the CMLE estimator of
β with estimated d∗ is very similar to the bias of the CMLE with true d*. As expected, the CMLEs have larger variance than

23 The code for this experiment is in Matlab. For the two ML estimators, we use the Nested Fixed Point Algorithm. The maximization of the
log-likelihood function applies a quasi-Newton method (procedure fminunc) using the true value of the vector of parameters as the starting value.
For the MLE with 2-types, during the search algorithm we often get a singular Hessian matrix. When this happens, we switch to the BHHH method.
24 The MLE-noUH estimates a logit model where the error term is αi + εit . Therefore, the MLE-noUH estimates the parameter β/(1 + σ ) where
is the standard deviation of αi . In contrast, the other estimators, FE-CMLE and MLE-2types, control for αi such that they estimate the parameter

β . This implies that there are two sources of discrepancy between the MLE-noUH and the other estimators: the bias due to ignoring unobserved
eterogeneity; and the different scaling. Since our model includes only one parameter, we cannot control for the different scaling by reporting
stimates of ratios relative to a baseline parameter, say β/β1 . Nevertheless, the Hausman test that compares the MLE-noUH and the FE-CMLE is still
valid test of the null hypothesis of no unobserved heterogeneity because under the null hypothesis we have that σ = 0 such that there are no
ifferent scales.
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able 5
onte Carlo experiments with DGP 1 (Normal RCs).
Estimator
of β

Sample A (t = 1 to 7) Sample B (t = 1 to 14) Sample C (t = 8 to 21)

Estimate(1) Estimate(1) Estimate(1)

Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0073 1.0086 0.1436 0.9990 1.0003 0.0801 0.9954 0.9978 0.0731
CMLE-BIC-d* 1.0073 1.0086 0.1436 0.9935 1.0001 0.1054 0.9873 0.9971 0.1146
MLE-2types 0.9778 0.9765 0.0528 0.8956 0.8962 0.0325 0.8565 0.8554 0.0308
MLE-noUH 0.6204 0.6191 0.0295 0.5842 0.5835 0.0232 0.5444 0.5439 0.0229

Testing null
hypothesis

Frequency of Ho rejection
with significance level

Frequency of Ho rejection
with significance level

Frequency of Ho rejection
with significance level

1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.541 0.777 0.874 0.999 1.000 1.000 1.000 1.000 1.000
Two types 0.008 0.042 0.096 0.125 0.308 0.429 0.281 0.515 0.658

Note (1): Mean, median, and standard deviation of estimated parameter over the 1000 replications.

the MLEs, and the CMLE with estimated d∗ has larger variance than the CMLE with true d∗. However, the CMLE-BIC-d*
has a Mean Squared Error that is substantially smaller than the one of the MLE-noUH – in the three samples – and of the
MLE-2types — in samples B and C. In sample A, the MLE-2types has a MSE comparable to that of the CMLE. That is, in a
DGP without an initial conditions problem – and with one duration spell for most of the buses – a misspecified random
effects model with only two types has good properties. This is no longer the case in samples B and C.

The Hausman test has very strong power to reject the model without unobserved heterogeneity.25 It has also
substantial power to reject the model with two types in samples B and C. However, the rejection rates for the model
with two types in sample A are practically equal to the nominal size or significance level of the test.

5.2. Estimation using Rust’s dataset

In Rust’s dataset, the full sample contains a total of 124 buses that are classified in eight groups according to bus size
and engine manufacturer. For the estimation of the structural model, Rust focuses on groups 1 to 4 — which account for
104 buses. We use this sample of 104 buses. For every bus in the sample, the choice history starts with the actual initial
condition of the engine — the month in which the engine was installed. For our analysis, we assume the frequency of the
superintendent’s decisions to be at the annual level.

Table 6 presents the empirical distribution of the choice histories for the 104 buses. The panel is unbalanced: buses are
observed for 2, 4, 6, or 10 years. The observations from all these buses contribute to the Maximum Likelihood estimation
of the model without unobserved heterogeneity — that we report in Table 7.

However, not all these choice histories contribute to the conditional maximum likelihood estimation. For instance,
the 45 buses without any engine replacement do not contribute to the conditional likelihood function. More generally,
a choice history contributes to the conditional likelihood function if there exists other possible choice history – in the
sample or not – with the same value for the sufficient statistic U and a different value for the identifying statistic S. The
hird column of Table 6 indicates whether a choice history contributes or not to the CML estimation of the model. The
umber of buses that contribute to the CMLE is 46.
Table 7 presents ML estimates of the model with three different specifications of the maintenance cost function βd(d)

according to: the value of the parameter d∗ (at which function βd(d) becomes flat); and the functional for durations
smaller than d∗, i.e., linear, quadratic, and square-root. We report estimates of the replacement cost parameter and of the
parameter β∗

d ≡ βd(d∗)−βd(d∗
−1). We consider a model with two unobserved types. However, for all the specifications,

we always converge to a model with a single type. We have tried thousands of initial values for the vector of parameters
(i.e., RC1, RC2, λ, and βd), and we have also estimated the model using grid search. Regardless of the computational strategy,
we always converge to the same estimate with only one type. The specification of the function βd(d) that provides the
maximum value of the likelihood function is the square-root function with a value d∗ equal to six. For this specification,
the estimate of the replacement cost parameter is R̂C = 10.8566 (s.e. = 1.5247), and the estimate of the parameter of
β∗

d is β̂∗

d = 0.3054 (s.e. = 0.0496).
Table 8 presents estimates of the parameter β∗

d ≡ βd(d∗) − βd(d∗
− 1) using the CMLE and under different values

f d∗. We report the value of the concentrated log-likelihood function and of the BIC function for d∗
= 3 and d∗

= 4.
ccording to the BIC function, the estimate of d∗ is d̂∗ = 3, and the corresponding estimator of β∗

d is β̂∗

d = 1.7009 (s.e.
= 1.0244). Note also that for d∗

= 3, the estimate of β∗

d is significantly different from zero for a significance level of
0% parameter (p-value = 0.0968). In contrast, for d∗

= 4, this parameter is not significantly different from zero for any
tandard significance level (p-value = 0.8446). Therefore, the estimates d̂∗ = 3 and β̂∗

d = 1.7009 are consistent with the
definition of d∗ as the maximum duration with βd(d) − βd(d − 1) different from zero.

25 Though the distribution of types in DGP 1 is continuous, the level of unobserved heterogeneity is modest. In the distribution of RCi , the coefficient
of variation is only 25%. Continuous distributions with higher variance imply higher rejection rates of the model with only two types.
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Table 6
Bus engine replacement (Rust, 1987)
Empirical distribution of histories with replacement.
Choice history Absolute Does the history

Frequency contribute to the CMLE?

With 0 replacements (45)
11 15 NO
1111 4 NO
111111 21 NO
1111111111 5 NO

With 1 replacement & T=6 (27)
110111 2 YES
111011 7 YES
111101 7 YES
111110 11 NO

With 1 replacement & T=10 (31)
1101111111 1 YES
1110111111 4 YES
1111011111 2 YES
1111101111 7 YES
1111110111 7 YES
1111111011 5 YES
1111111101 3 YES
1111111110 2 NO

With 2 replacements & T=10 (1)
1101110111 1 YES

Total 104 Sample size
for CMLE = 46

Table 7
Bus engine replacement (Rust, 1987).
Maximum likelihood estimates

Model RC β∗

d ≡ −∆βd(d∗)

βd(d) d∗ R̂C se
(
R̂C

)
β̂∗

d se
(
β̂∗

d

)
log-likelihood

Square root 3 28.2218 6.9110 2.0110 0.5149 −162.7081
βd(d) = β

√
d 4 16.5364 3.0438 0.7777 0.1546 -160.7515

5 12.8403 1.9959 0.4486 0.0774 −158.5760
6 10.8566 1.5247 0.3054 0.0496 −158.2108∗∗

7 9.6817 1.2821 0.2317 0.0372 −158.7021
8 8.9953 1.1623 0.1909 0.0313 −159.4693
9 8.6517 1.1183 0.1682 0.0285 −160.0868

Linear 3 18.2995 4.1695 2.0388 0.4977 −162.7529
βd(d) = β d 4 11.4552 1.9053 0.8418 0.1566 −160.9650

5 9.2473 1.2769 0.5103 0.0817 −158.8536
6 7.9817 0.9809 0.3623 0.0548 −158.8132
7 7.1859 0.8219 0.2856 0.0434 −159.7641
8 6.7030 0.7411 0.2448 0.0388 −160.9912
9 6.4612 0.7114 0.2259 0.0379 −161.9368

Square 3 13.1481 2.7300 2.1006 0.4804 −162.8699
βd(d) = β d2 4 8.7707 1.2806 0.9603 0.1628 −161.4943

5 7.3081 0.8850 0.6257 0.0921 −159.4992
6 6.3777 0.6844 0.4709 0.0673 −160.0882
7 5.7404 0.5689 0.3905 0.0583 −161.9366
8 5.3323 0.5072 0.3535 0.0578 −164.0680
9 5.1227 0.4837 0.3515 0.0636 −165.6751

Table 9 compares the CMLE estimate of the parameter β∗

d with the corresponding MLE using the estimates in Table 7.
iven the very small sample size and the corresponding large standard error of the CMLE estimates, we cannot reject the
ull hypothesis of no unobserved heterogeneity — despite that the magnitude of the difference between MLE and CMLE
stimates is substantial and it generates important differences in the distribution of durations.
301



V. Aguirregabiria, J. Gu and Y. Luo Journal of Econometrics 223 (2021) 280–311

c
i
s
u

t
T
t
(

h
t
t

A

P

w
s

Table 8
Bus engine replacement (Rust, 1987).
Fixed-Effects-Conditional maximum likelihood

d∗ β∗

d p-value concentrated BIC(d∗)

β̂∗

d se
(
β̂∗

d

)
H0 : β∗

d = 0 log-likelihood

3 1.7009 1.0244 0.0968 −102.1215 −108.2378
4 0.1178 0.6009 0.8446 −102.1020 −110.2571

Table 9
Bus engine replacement (Rust, 1987).
Hausman test of unobserved heterogeneity

Model β̂∗

d (se) β̂∗

d (se) Hausman p-value
MLE CMLE

Square root 0.4548 (0.0739) 1.7009 (1.0244) 1.4873 0.2226
Linear 0.3623 (0.0549) 1.7009 (1.0244) 1.7123 0.1907
Square 0.3476 (0.0512) 1.7009 (1.0244) 1.7494 0.186

6. Conclusions

This paper presents the first identification results of structural parameters in forward-looking dynamic discrete
hoice models where the joint distribution of time-invariant unobserved heterogeneity and endogenous state variables
s nonparametrically specified. This unobserved heterogeneity can have multiple components and can have continuous
upport. The dependence between the unobserved heterogeneity and the initial values of the state variables is also
nrestricted.
We consider models with two endogenous state variables: the lagged decision variable, and the time duration in

he last choice. We show that structural parameters that capture switching costs are identified under mild conditions.
he identification of structural parameters that capture duration dependence require additional restrictions. In particular,
o obtain identification of these parameters, we assume that the marginal return of an additional period of experience
duration) becomes equal to zero after a finite number of periods.

Based on our identification results, we propose tests for the validity of restricted models without unobserved
eterogeneity or with a parametric specification of the correlated random effects. Our Monte Carlo experiments show
hat the Conditional MLE provides precise estimates of structural parameters and the specification test has strong power
o reject misspecified correlated random effects models.

ppendix A. Proofs

roof of Lemma 1. We choose alternative j = 0 as the baseline. We can write the optimal decision using utilities in
deviations with respect to alternative 0. That is,

yt = argmax
j∈Y

{
αθ(j) − αθ(0) + βy(j, yt−1) − βy(0, yt−1)

+1{yt−1 = j} βd(j, dt ) + vθ(j, dt+1) − vθ(0, 0) + εt (j)

}
(A.1)

here we have imposed the restriction that βd(0, dt ) = 0, that comes from Assumption 1. For the term related to the
witching cost, we have that βy(j, yt−1) − βy(0, yt−1) = 1{yt−1 = 0} βy(j, 0)+

∑
k̸=0 1{yt−1 = k} [βy(j, k) − βy(0, k)], and

given that 1{yt−1 = 0} = 1 −
∑

k̸=0 1{yt−1 = k} we can write this expression as:

βy(j, yt−1) − βy(0, yt−1) = βy(j, 0) +

∑
k̸=0

1{yt−1 = k}[βy(j, k) − βy(0, k) − βy(j, 0)]. (A.2)

As for the term associated to the return of experience, 1{yt−1 = j} βd(j, dt ), note that it appears multiplied by the dummy
variable 1{yt−1 = j}. This dummy variable also appears associated to the parameter −βy(0, j) − βy(j, 0) in Eq. (A.2) (note
that βy(j, j) = 0). Therefore, we cannot separately identify the parameter −βy(0, j) − βy(j, 0) and the parameters in
the duration dependence function βd(j, dt ). To avoid this perfect collinearity problem, we can put together the terms
1{yt−1 = j} [−βy(0, j) − βy(j, 0)] and 1{yt−1 = j} βd(j, dt ). That is,

βy(j, yt−1) − βy(0, yt−1) + 1{yt−1 = j} βd(j, dt ) =

1{yt−1 = j}
[
βd(j, dt ) − βy(0, j) − βy(j, 0)

]
+

∑
1{yt−1 = k}

[
βy(j, k) − βy(0, k) − βy(j, 0)

]
.

(A.3)
k̸={0,j}
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lugging Eq. (A.3) into Eq. (A.1), we have the following reparameterization of the model:

yt = argmax
j∈Y

⎧⎨⎩α̃θ(j) +

∑
k̸={0,j}

1{yt−1 = k} β̃y(j, k) + 1{yt−1 = j}̃βd(j, dt ) + ṽθ(j, dt+1) + εt (j)

⎫⎬⎭ (A.4)

here α̃θ(j) ≡αθ(j) − αθ(0)+ βy(j, 0); β̃y(j, k) ≡βy(j, k)− βy(0, k)− βy(j, 0);̃βd(j, d) ≡βd(j, dt )− βy(0, j)− βy(j, 0);
nd̃vθ(j, dt+1) ≡ vθ(j, dt+1) − vθ(0, 0). ■

emma 3 and Proof. The proofs of the Propositions exploit some properties or relationships between the statistics. We
ummarize these properties in the following Lemma.

emma 3. For any history ỹ and choice alternative j > 0, the following properties apply: (i) H (j)(0) = 0; (ii) X (j)(0) = 0; (iii)∑
d≥1 H

(j)(d) =T (j)
+ 1{y0 = j} − 1{yT = j}; (iv)

∑
d≥1 X

(j)(d) = D(j,j); (v) for d ≥ 1, X (j)(d) = H (j)(d + 1) + ∆(j)(d + 1); (vi)

d≥1 ∆(j)(d) = 1{yT = j} − 1{y0 = j}; and (vii)
∑

k̸=j D
(j,k)

= T (j)
− D(j,j). ■

Proof of Lemma 3.
(i) For any j > 0, we have that 1{yt−1 = j, dt = 0} = 0 because yt−1 > 0 implies dt > 0. Therefore, H (j)(0) =∑T
t=1 1{yt−1 = j, dt = 0} = 0.
(ii) For any j > 0, we have that 1{yt−1 = yt = j, dt = 0} = 0 because yt−1 > 0 implies dt > 0. Therefore, X (j)(0) =∑T
t=1 1{yt−1 = yt = j, dt = 0} = 0.
(iii) For any j > 0,

∑
d≥1 H

(j)(d) =
∑

d≥1
∑T

t=1 1{yt−1 = j, dt = d} =
∑T

t=1 1{yt−1 = y} = T (j)
+1{y0 = j}− 1{yT = j}.

(iv) For any j > 0,
∑

d≥1 X
(j)(d) =

∑T
t=1

∑
d≥1 1{yt−1 = yt = j, dt = d} =

∑T
t=1 1{yt−1 = yt = j} = D(j,j).

(v) First, note that yt−1 = j > 0 implies dt ≥ 1. Therefore, for any j > 0 and d ≥ 1, the event {yt−1 = yt = j, dt = d}
is equivalent to the event {yt = j, dt+1 = d + 1} for any 1 ≤ t ≤ T . Therefore, X (j)(d) =

∑T
t=1 1{yt = j, dt+1 = d + 1} =∑T+1

t=2 1{yt−1 = j, dt = d + 1} = H (j)(d + 1)− 1{y0 = j, d1 = d + 1}+ 1{yT = j, dT+1 = d + 1} = H (j)(d + 1) + ∆(j)(d + 1).
(vi) For any j > 0,

∑
d≥1 ∆(j)(d) =

∑
d≥1 1{yT = j, dT+1 = d} − 1{y0 = j, d1 = d} = 1{yT = j} − 1{y0 = j}.

(vii) For any j ≥ 1,
∑

k̸=j D
(k,j)

=
∑T

t=1
∑

k̸=j 1{yt−1 = k, yt = j} =
∑T

t=1 1{yt = j} − 1{yt−1 = yt = j} = T (j)
−D(j,j). ■

roof of Proposition 1. From Eq. (13) we have that lnP (̃y | θ) =
∑T

t=1yt
[̃
αθ + β̃yyt−1

]
+ (1−yt−1) σθ(0)+yt−1 σθ(1)+y0

n pθ(1) + (1 − y0) ln pθ(0), and we can write this expression as σθ(0) + ln pθ(0) +

[∑T
t=1yt

]
α̃θ+

[∑T
t=1ytyt−1

]
β̃y+∑T

t=1yt−1

]
σ̃θ+ y0 ln p̃θ , where σ̃θ ≡ σθ(1) − σθ(0) and ln p̃θ ≡ ln pθ(1) − ln pθ(0). Remember that by definition the

tatistic T (1) is equal to
∑T

t=1yt , and the statistic D(1,1) is equal to
∑T

t=1yt−1yt . Also, not that
∑T

t=1yt−1 = T (1)
+ y0 − yT .

herefore, we can write lnP (̃y | θ) as T (1) [̃αθ + σ̃θ]+ D(1,1) β̃y+ [y0 − yT ] σ̃θ+ y0 ln p̃θ . Or equivalently,

lnP (̃y|θ) = y0 [ln p̃θ + σ̃θ] + yT [−σ̃θ] + T (1) [̃αθ + σ̃θ]

+ D(1,1) β̃y

(A.5)

here we have omitted the term T σθ(0)+ ln pθ(0) because it is constant over all the histories. We can write Eq. (A.5) as
′gθ + S ′β∗ with U = (y0, yT , T (1)), gθ = (ln p̃θ + σ̃θ , −σ̃θ, α̃θ + σ̃θ)′, S = D(1,1), and β∗

= β̃y. For T ≥ 3, it is always possible
o find a pair of histories, A and B, with the same values for the initial condition y0, the final choice yT , and the number
f 1′s T (1), but with D(1,1)

A ̸= D(1,1)
B such that β̃y is identified as [lnP(A) − lnP(B)]/[D(1,1)

A − D(1,1)
B ]. See Example 1. ■

roof of Proposition 2. The only difference between the expression for lnP (̃y |θ) in this forward-looking model and in
he myopic model of Proposition 1 is that now α̃θ + ṽθ replaces α̃θ in the vector gθ . This does not have any influence in
he sufficient statistic U or the identifying statistic S. ■

roof of Proposition 3. The log-probability of this model is:

lnP (̃y|θ) =

T∑
t=1

yt
[̃
αθ + yt−1 β̃d(dt )

]
+ σθ(yt−1, dt ) + ln pθ(y0, d1). (A.6)

e can write this log-probability as α̃θ

∑T
t=1 yt+

∑
d≥1[

∑T
t=1 ytyt−1 1{dt = d}] β̃d(d)+ σθ(0)

∑T
t=1(1 − yt−1)+

d≥1[
∑T

t=1 yt−1 1{dt = d}] σθ(1, d)+ ln pθ(y0, d1). Using the definition of the statistics in Table 1, this expression
ecomes: T (1)α̃ +

∑
X (1)(d) β̃ (d)+ [T −

(
T (1)

+ y − y
)
] σ (0)+

∑
H (1)(d) σ (1, d)+ ln p (y , d ). We have that
θ d≥1 d 0 T θ d≥1 θ θ 0 1
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d≥1 H
(1)(d) = T (1)

+ y0 − yT by Lemma 3(iii). We obtain:

lnP (̃y|θ) = ln pθ(y0, d1) + (yT − y0) α̃θ +

∑
d≥1

H (1)(d) [̃αθ + σ̃θ(d)]

+

∑
d≥1

X (1)(d) β̃d(d)
(A.7)

here σ̃θ(d) ≡ σθ(1, d) − σθ(0) and we have omitted the term T σθ(0) because T is constant over all the histories. Now,
emma 3(v) establishes that X (1)(d) = H (1)(d + 1) + ∆(1)(d + 1). Then, we have that,

lnP (̃y|θ) = ln pθ(y0, d1) + (yT − y0) α̃θ +

∑
d≥1

H (1)(d)
[̃
αθ + σ̃θ(d) + β̃d(d − 1)

]
+

∑
d≥2

∆(1)(d) β̃d(d − 1)
(A.8)

ith β̃d(0) ≡ 0, just for notational convenience and without loss of generality. We can write Eq. (A.8) as U ′gθ + S ′β∗ with
= (d1, y0, yT , H (1)(d) : d ≥ 1), S = (∆(1)(d) : 2 ≤ d ≥ T − 1), and β∗

= (̃βd(d) : 1 ≤ d ≤ T − 2). ■

roof of Proposition 4. The log-probability of this model is:

lnP (̃y|θ) = ln pθ(y0, d1) +

T∑
t=1

yt
[̃
αθ + yt−1 β̃d(dt ) + ṽθ (dt + 1)

]
+ σθ(yt−1, dt ). (A.9)

omparing this log-probability with the one for the myopic model with duration, we can see that the only difference is in
he term

∑T
t=1 yt ṽθ (dt + 1), that can be written as

∑
d≥0

ṽθ (d + 1) (
∑T

t=1 yt 1{dt = d}). Then, taking into account (A.8),
e have:

lnP (̃y|θ) = ln pθ(y0, d1) + (yT − y0) α̃θ +

∑
d≥1

H (1)(d)
[̃
αθ + σ̃θ(d) + β̃d(d − 1)

]
+

∑
d≥2

∆(1)(d) β̃d(d − 1) +

∑
d≥0

[
T∑

t=1

yt1{dt = d}

]
ṽθ (d + 1) .

(A.10)

or the statistic
∑T

t=1 yt 1{dt = d} we can distinguish two cases: (a) if d = 0, then
∑T

t=1 yt 1{dt = 0} =
∑T

t=1 yt
1 − yt−1) = T (1)

− D(1,1); and (b) if d ≥ 1, then
∑T

t=1 yt 1{dt = d} =
∑T

t=1 yt yt−1 1{dt = d} = X (1)(d). Therefore,

∑
d≥0

[
T∑

t=1

yt 1{dt = d}

]
ṽθ (d + 1) =

[
T (1)

− D(1,1)] ṽθ (1) +

∑
d≥1

X (1)(d) ṽθ (d + 1)

= T (1) ṽθ (1) +

∑
d≥1

X (1)(d) [̃vθ (d + 1) − ṽθ (1)]
(A.11)

here, for the second equality, we have applied Lemma 3(iv), D(1,1)
=

∑
d≥1 X

(1)(d). Then, plugging (A.11) into (A.10), we
ave:

lnP (̃y|θ) = ln pθ(y0, d1) + (yT − y0) α̃θ +

∑
d≥1

H (1)(d)
[̃
αθ + σ̃θ(d) + β̃d(d − 1)

]
+

∑
d≥2

∆(1)(d) β̃d(d − 1) + T (1) ṽθ (1) +

∑
d≥1

X (1)(d) [̃vθ (d + 1) − ṽθ (1)] .
(A.12)

rom Lemma 3(iii), we have that T (1)
=

∑
d≥1 H

(1)(d)+ (yT −y0); and from Lemma 3(v) X (1)(d) = H (1)(d+1)+ ∆(1)(d+1).
olving these expressions in (A.12), we have that:

lnP (̃y|θ) = ln pθ(y0, d1) + (yT − y0) [̃αθ + ṽθ (1)] +

∑
d≥1

H (1)(d)
[̃
αθ + σ̃θ(d) + ṽθ (1) + β̃d(d − 1)

]
+

∑[
H (1)(d) + ∆(1)(d)

]
[̃vθ (d) − ṽθ (1)] +

∑
∆(1)(d) β̃d(d − 1).

(A.13)
d≥1 d≥2
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aking into account that, by Lemma 3(iii), yT − y0 =
∑

d≥1∆
(1)(d), we have:

lnP (̃y|θ) = ln pθ(y0, d1) +

∑
d≥1

H (1)(d)
[̃
αθ + σ̃θ(d) + ṽθ (d) + β̃d(d − 1)

]
+

∑
d≥1

∆(1)(d)
[̃
αθ + ṽθ (d) + β̃d(d − 1)

]
.

(A.14)

e can present this equation as follows:

lnP (̃y|θ) = ln pθ(y0, d1) +

∑
d≥1

H (1)(d)
[
gθ,1(d) + β̃d(d − 1)

]
+

∑
d≥1

∆(1)(d)
[
gθ,2(d) + β̃d(d − 1)

]
(A.15)

ith gθ,1(d) ≡ α̃θ + σ̃θ(d)+ ṽθ (d);and gθ,2(d) ≡ α̃θ + ṽθ (d). Therefore, the vector of sufficient statistics U is [y0, d1, {H (1)(d),
(1)(d) : d ≥ 1}]. All the statistics associated to the parameters β̃d are also part of U . Therefore, the parameters β̃d are not

dentified. ■

roof of Proposition 5. Let gθ,1(d) and gθ,2(d) be the functions defined in the proof of Proposition 4. Under Assumption 2,
e have that ṽθ (d) = ṽθ (d∗) and σ̃θ(d) = σ̃θ(d∗) for any d ≥ d∗. This implies that gθ,1(d) = gθ,1(d∗) and gθ,2(d) = gθ,2(d∗)

or any d ≥ d∗. Under Assumption 2, we can re-write Eq. (A.15) as:

lnP (̃y|θ) = ln pθ(y0, d1) +

∑
1≤d≤d∗−1

H (1)(d) gθ,1(d) +

[∑
d≥d∗

H (1)(d)

]
gθ,1(d∗)

+

∑
1≤d≤d∗−1

∆(1)(d) gθ,2(d) +

[∑
d≥d∗

∆(1)(d)

]
gθ,2(d∗)

+

∑
d≥2

[
H (1)(d) + ∆(1)(d)

]
β̃d(d − 1).

(A.16)

nder Assumption 2, we have that β̃d(d − 1) = β̃d(d∗) for any d ≥ d∗
+ 1. This implies that we can represent

d≥2[H
(1)(d) + ∆(1)(d)] β̃d(d − 1) as the sum of three terms:∑
d≥2

[H (1)(d) + ∆(1)(d)] β̃d(d − 1) =

∑
2≤d≤d∗−1

[H (1)(d) + ∆(1)(d)] β̃d(d − 1)

+
[
H (1)(d∗) + ∆(1)(d∗)

] [̃
βd(d∗

− 1) − β̃d(d∗)
]

+

[∑
d≥d∗

H (1)(d) + ∆(1)(d)

]
β̃d(d∗).

(A.17)

lugging Eq. (A.17) into (A.16), we get:

lnP (̃y|θ) = ln pθ(y0, d1)

+

∑
1≤d≤d∗−1

H (1)(d)
[
gθ,1(d) + β̃d(d − 1)

]
+

[∑
d≥d∗

H (1)(d)

] [
gθ,1(d∗) + β̃d(d∗)

]

+

∑
1≤d≤d∗−1

∆(1)(d)
[
gθ,2(d) + β̃d(d − 1)

]
+

[∑
d≥d∗

∆(1)(d)

] [
gθ,2(d∗) + β̃d(d∗)

]
+

[
H (1)(d∗) + ∆(1)(d∗)

] [̃
βd(d∗

− 1) − β̃d(d∗)
]
.

(A.18)

q. (A.18) implies that the vector of sufficient statistics U is [d1, y0, {H (1)(d), ∆(1)(d) : d ≤ d∗
−1},

∑
d≥d∗H (1)(d),

∑
d≥d∗∆

(1)

d)], the identifying statistic is S = H (1)(d∗)+ ∆(1)(d∗), and it identifies the parameter β∗
= βd(1, d∗

− 1)− βd(1, d∗). ■

roof of Propositions 7 and 8. For this model, the log probability is ln pθ(y0)+
∑T

t=1
∑

j̸=01{yt = j} α̃θ(j) +
∑T

t=1∑ ˜ ∑T ∑J

j̸=0 k̸=01{yt = j, yt−1 = k} βy(j, k)+ t=1 j=01{yt−1 = j} σθ(j). Using the definitions of our statistics, we have
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lnP (̃y|θ) = ln pθ(y0) +

J∑
j=1

T (j) α̃θ(j) +

∑
j̸=0

∑
k̸=0

D(j,k)β̃y(j, k) +

J∑
j=0

[
T (j)

− ∆(j)] σθ(j) (A.19)

here ∆(j)
≡ 1{yT = j} − 1{y0 = j}. Note that T (0)

= T −
∑J

j=1T
(j), and ∆(0)

= 1 −
∑J

j=1∆
(j), such that:

lnP (̃y|θ) = ln pθ(y0) +

J∑
j=1

T (j) [̃αθ(j) + σ̃θ(j)] +

J∑
j=1

∆(j) [−σ̃θ(j)]

+

∑
j̸=0

∑
k̸=0

D(j,k) β̃y(j, k)

(A.20)

ith σ̃θ(j) ≡ σθ(j) − σθ(0). Note that we have omitted the term (T − 1) σθ(0) because it does not vary over the different
istories. ■

roof of Proposition 9. For this model, the log probability of a choice history is ln pθ(y0, d1)+
∑J

j=1
∑T

t=11{yt = j} α̃θ(j)+
J
j=1

∑
k̸={0,j}

∑T
t=11{yt−1 = j, yt = k} β̃y(k, j) +

∑J
j=1

∑
d≥1

∑T
t=11{yt−1 = yt = j, dt = d} β̃d(j, d)+

∑T
t=11{yt−1 = 0}

θ(0)+
∑J

j=1
∑

d≥1
∑T

t=11{yt−1 = j, dt = d} σθ(j, d). Note that 1{yt−1 = 0} = 1 −
∑J

j=1
∑

d≥11{yt−1 = j, dt = d}, such that
he last two terms can be written as T σθ(0)+

∑J
j=1

∑
d≥1

∑T
t=11{yt−1 = j, dt = d} σ̃θ(j, d), with σ̃θ(j, d) = σθ(j, d)− σθ(0).

sing the definition of the statistics in Table 1, we can write this log-probability as follows:

lnP (̃y|θ) = ln pθ(y0, d1) +

J∑
j=1

T (j) α̃θ(j) +

J∑
j=1

∑
d≥1

H (j)(d) σ̃θ (j, d)

+

J∑
j=1

∑
k̸={0,j}

D(j,k) β̃y(j, k) +

J∑
j=1

∑
d≥1

X (j)(d) β̃d(j, d).

(A.21)

y Lemma 3(iii), T (j)
= ∆(j)

+
∑

d≥1 H
(j)(d). And by Lemma 3(v), we have that X (j)(d) = H (j)(d + 1) − ∆(j)(d + 1). Plugging

his expressions into Eq. (A.21), we have that:

lnP (̃y|θ) = ln pθ(y0, d1) +

J∑
j=1

∑
d≥1

H (j)(d) [̃αθ(j) + σ̃θ (j, d)]

+

J∑
j=1

[1{yT = j} − 1{y0 = j}] α̃θ(j)

+

J∑
j=1

∑
k̸={0,j}

D(j,k)β̃y(j, k) +

J∑
j=1

∑
d≥1

[
H (j)(d + 1) + ∆(j)(d + 1)

]
β̃d(j, d),

(A.22)

r

lnP (̃y|θ) = ln pθ(y0, d1) +

J∑
j=1

∑
d≥1

H (j)(d)
[̃
αθ(j) + σ̃θ (j, d) + β̃d(j, d − 1)

]
+

J∑
j=1

[1{yT = j} − 1{y0 = j}] α̃θ(j)

+

J∑
j=1

∑
k̸={0,j}

D(j,k) β̃y(j, k) +

J∑
j=1

∑
d≥1

∆(j)(d) β̃d(j, d − 1),

(A.23)

here we adopt the notation β̃d(j, 0) = 0. This expression implies that lnP (̃y |θ, β) = U ′gθ + S ′β∗, with U = [d1, y0,
T , {H (j)(d) : j ≥ 1, d ≥ 1}], S = [D(j,k)

: j, k ≥ 1, j ̸= k; ∆(j)(d) : j ≥ 1; d ≥ 2], and β∗
= [̃βy(k, j) : j, k ≥ 1, j ̸= k;

d(j, d) : j ≥ 1; d ≥ 1]. ■

roof of Proposition 10. The expression of the log-probability is similar as in Proposition 9 but now we have the
dditional term

∑T
ṽ (y , d ) that can be written as

∑J ∑ ∑T 1{y = j, d = d} ṽ (j, d). Note that the statistic
t=1 θ t t+1 j=1 d≥1 t=1 t t+1 θ
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t=11{yt = j, dt+1 = d} can be written as H (j)(d) + ∆(j)(d), such that

∑T
t=1̃vθ(yt , dt+1) =

∑J
j=1

∑
d≥1[H

(j)(d) + ∆(j)(d)]
θ(j, d). Using Eq. (A.23) from the proof of Proposition 9, and adding this additional term associated to the continuation
alues, we have

lnP (̃y|θ) = ln pθ(y0, d1) +

J∑
j=1

∑
d≥1

H (j)(d)
[̃
αθ(j) + σ̃θ (j, d) + ṽθ(j, d) + β̃d(j, d − 1)

]
+

J∑
j=1

[1{yT = j} − 1{y0 = j}] α̃θ(j)

+

J∑
j=1

∑
k̸={0,j}

D(j,k) β̃y(j, k) +

J∑
j=1

∑
d≥1

∆(j)(d)
[̃
βd(j, d − 1) + ṽθ(j, d)

]
.

(A.24)

y Lemma 3(vi), 1{yT = j} − 1{y0 = j} =
∑

d≥1 ∆(j)(d), and we have

lnP (̃y|θ) = ln pθ(y0, d1) +

J∑
j=1

∑
d≥1

H (j)(d)
[
gθ,1(j, d) + β̃d(j, d − 1)

]
+

J∑
j=1

∑
d≥1

∆(j)(d)
[
gθ,2(j, d) + β̃d(j, d − 1)

]
+

J∑
j=1

∑
k̸={0,j}

D(j,k) β̃y(j, k)

(A.25)

ith gθ,1(j, d) ≡ α̃θ(j)+σ̃θ (j, d)+ṽθ(j, d), and gθ,2(j, d) ≡ α̃θ(j)+ ṽθ(j, d). This expression implies that the vector of sufficient
tatistics is U = [d1, y0, yT , {H (j)(d), ∆(j)(d) : j ≥ 1, d ≥ 1}], the vector of identifying statistics is S = [D(j,k)

: j, k ≥ 1, j ̸= k],
nd the vector of identified parameters is β∗

= [̃βy(k, j) : j, k ≥ 1, j ̸= k]. ■

roof of Proposition 11. Let gθ,1(j, d) and gθ,2(j, d) be the functions defined in the proof of Proposition 10. Under
ssumption 2, we have that ṽθ (j, d) = ṽθ(j, d∗

j ) and σ̃θ(j, d) = σ̃θ(j, d∗

j ) for any d ≥ d∗

j . This implies that gθ,1(j, d) =

θ,1(j, d∗

j ) and gθ,2(j, d) = gθ,2(j, d∗

j ) for any d ≥ d∗

j . Under Assumption 2, we can re-write Eq. (A.25) as:

lnP (̃y|θ) = ln pθ(y0, d1) +

J∑
j=1

∑
1≤d≤d∗

j −1

H (j)(d) gθ,1(j, d) +

J∑
j=1

⎡⎢⎣∑
d≥d∗

j

H (j)(d)

⎤⎥⎦ gθ,1(j, d∗

j )

+

J∑
j=1

(j)∑
1≤d≤d∗

j −1

∆(j)(d) gθ,2(j, d) +

J∑
j=1

⎡⎢⎣∑
d≥d∗

j

∆(j)(d)

⎤⎥⎦ gθ,2(j, d∗

j )

+

J∑
j=1

∑
d≥1

[
H (j)(d) + ∆(j)(d)

]
β̃d(j, d − 1) +

J∑
j=1

∑
k̸={0,j}

D(j,k) β̃y(j, k).

(A.26)

nder Assumption 2, we have that β̃d(j, d − 1) = β̃d(j, d∗

j ) for any d ≥ d∗

j + 1. This implies that we can represent

d≥1[H
(j)(d) + ∆(j)(d)] β̃d(j, d − 1) as the sum of three terms:∑
d≥1

[
H (j)(d) + ∆(j)(d)

]
β̃d(j, d − 1) =

∑
1≤d≤d∗

j −1

[
H (j)(d) + ∆(j)(d)

]
β̃d(j, d − 1)

+
[
H (j)(d∗

j ) + ∆(j)(d∗

j )
] [̃

βd(j, d∗

j − 1) − β̃d(j, d∗

j )
]

+

⎡⎢⎣∑
d≥d∗

H (j)(d) + ∆(j)(d)

⎤⎥⎦ β̃d(j, d∗

j ).

(A.27)
j
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lugging Eq. (A.27) into (A.26), we get:

lnP (̃y|θ) = ln pθ(y0, d1)

+

J∑
j=1

∑
1≤d≤d∗

j −1

H (j)(d)
[
gθ,1(j, d) + β̃d(j, d − 1)

]
+

J∑
j=1

⎡⎢⎣∑
d≥d∗

j

H (j)(d)

⎤⎥⎦[
gθ,1(j, d∗

j ) + β̃d(j, d∗

j )
]

+

J∑
j=1

∑
1≤d≤d∗

j −1

∆(j)(d)
[
gθ,2(j, d) + β̃d(j, d − 1)

]
+

J∑
j=1

⎡⎢⎣∑
d≥d∗

j

∆(j)(d)

⎤⎥⎦[
gθ,2(j, d∗

j ) + β̃d(j, d∗

j )
]

+
[
H (j)(d∗

j ) + ∆(j)(d∗

j )
] [̃

βd(j, d∗

j − 1) − β̃d(j, d∗

j )
]
+

J∑
j=1

∑
k̸={0,j}

D(j,k) β̃y(j, k).

(A.28)

q. (A.28) implies that the vector of sufficient statistics U is [d1, y0, yT , {H (j)(d), ∆(j)(d) : j ≥ 1, 1 ≤ d ≤ d∗

j −1},
∑

d≥d∗
j
H (j)(d),

(j)
d≥d∗

j
∆(j)(d)], the vector of identifying statistics is S = [D(j,k)

: j, k ≥ 1, j ̸= k; H (j)(d∗

j ) + ∆(j)(d∗

j )], and the vector of

dentified parameters is β∗
= [̃βy(k, j) : j, k ≥ 1, j ̸= k; β̃d(j, d∗

j − 1) − β̃d(j, d∗

j )]. ■

roof of Proposition 12. It is clear that P̂ (An) →p P0 (An) and P̂ (Bn) →p P0 (Bn) such that the concentrated likelihood
unction N−1ℓN (d∗) converges uniformly to the function:

ℓ0(d∗) =

d∗∑
n=2

P0 (An) ln
[

P0 (An)

P0 (An) + P0 (Bn)

]
+ P0 (Bn) ln

[
P0 (Bn)

P0 (An) + P0 (Bn)

]

+

LT∑
n=d∗+1

P0 (An) ln
[
1
2

]
+ P0 (Bn) ln

[
1
2

]
.

(A.29)

emma. Consider the function f (q) = p1 ln(q) + p2 ln(1 − q) where p1, p2, q ∈ (0, 1). This function is uniquely maximized at
q = p1/[p1 + p2].

Taking into account this Lemma, we have that for any value of n:

P0 (An) ln
[

P0 (An)

P0 (An) + P0 (Bn)

]
+ P0 (Bn) ln

[
P0 (Bn)

P0 (An) + P0 (Bn)

]
(A.30)

≥ P0 (An) ln
[
1
2

]
+ P0 (Bn) ln

[
1
2

]
,

and the inequality is strict if and only if P0 (An) = P0 (Bn). Given this result, it is straightforward to show that: ℓ0(d∗

0) > ℓ0(d∗)
for any d∗ < d∗

0; and ℓ0(d∗

0) = ℓ0(d∗) for any d∗ > d∗

0. ■

Proof of Proposition 13. Let n be a value of the parameter d∗ different to the true value d∗

0. Given our BIC function, we
favor d̂∗

N = n over d̂∗

N = d∗

0 if and only if BICN (n) > BICN (d∗

0) and this is equivalent to:

2
[
ℓN (n) − ℓN (d∗

0)
]

>
[
n − d∗

0

]
ln(N). (A.31)

We show below that, as N → ∞, P(2
[
ℓN (n) − ℓN (d∗

0)
]

>
[
n − d∗

0

]
ln(N)) → 0, and therefore, P(d̂∗

N = d∗

0) → 1.
First, we show that P(d̂∗

N > d∗

0) → 0 as N → ∞. By definition,

P
(
d̂∗

N > d∗

0

)
= P

(
∃n > d∗

0 : 2
[
ℓN (n) − ℓN (d∗

0)
]

>
[
n − d∗

0

]
ln(N)

)
(A.32)

Proposition 12 implies that, for any n ≥ d∗

0, N
−1ℓN (n) →p ℓ0(d∗

0) and 2[ℓN (n) − ℓN (d∗

0)] →d χ2
n−d∗

0
= Op(1). Therefore,

P
(
d̂∗

N > d∗

0

)
= P

(
Op(1) >

[
n − d∗

0

]
ln(N)

)
that goes to zero as N → ∞.

Now, we show that P(d̂∗

N < d∗

0) → 0 as N → ∞. We need to prove that, for any n < d∗

0, the probability that
2
[
ℓN (d∗

0) − ℓN (n)
]

<
[
d∗

0 − n
]
ln(N) goes to zero as N → ∞. We can write

2
[
ℓN (d∗

0) − ℓN (n)
]

= 2
[
ℓN (d∗

0) − ℓN (d∗

0 − 1)
]
+

d∗
0−1∑

2 [ℓN (j) − ℓN (j − 1)] . (A.33)

j=n+1
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ince β0(d∗

0) ̸= 0, classical results imply that: (a) there exist constants c and C such that cN ≤ 2
[
ℓN (d∗

0) − ℓN (d∗

0 − 1)
]

≤

N; and (b)
∑d∗

0−1
j=n+1 2 [ℓN (j) − ℓN (j − 1)] = Op(N) for all n < d∗

0, therefore P(2
[
ℓN (d∗

0) − ℓN (n)
]

<
[
d∗

0 − n
]
ln(N)) → 0 as

→ ∞. ■

ppendix B. Model with stochastic transition of the endogenous state variables

Consider a model with the same structure as the model in Section 2 and Assumption 1 but now the vector of
ndogenous state variables is xt = (xyt , xdt ) and variables xyt and xdt are stochastic versions of the variables yt−1 and dt ,
espectively. We now describe precisely the stochastic process of these variables.

The support of state variable xyt is the choice set Y , and its transition rule is xyt+1 = fy(yt , ξ
y
t+1) where ξ

y
t+1 is i.i.d. over

ime and independent of xt . The support of state variable xdt is the set of natural numbers, {0, 1, 2, . . .}, and its transition
ule is xdt+1 = 1{yt > 0}[ 1

{
yt = xyt

}
xdt + 1 + ξ d

t+1], where ξ d
t+1 has support {0, 1, 2, . . .}, and it is i.i.d. over time and

ndependent of xt . Importantly, the stochastic shocks ξ
y
t+1 and ξ d

t+1 are not known to the agent when she makes her
ecision at period t . This model becomes our model in the main text when these shocks have a degenerate probability
istribution with p(ξ y

t+1 = 0) = p(ξ d
t+1 = 0) = 1.

Assumption 1′ is simply an extension of our Assumption 1 to this stochastic version of the model. We omit the
xogenous state variables zt for notational simplicity.

ssumption 1′. (A) The time horizon is infinite and δ ∈ (0, 1). (B) The utility function is Πt (j) = αθ (j) + 1{j = xyt }
d
(
j, xdt

)
+ 1{j ̸= xyt } βy

(
j, xyt

)
+ εt (j). (C) βy(j, j) = 0, βd

(
0, xd

)
= 0. (D) {εt (j) : j ∈ Y} are i.i.d. over (i, t, j) with an

extreme value type I distribution. (E) zt follows a time-homogeneous Markov process. (F) The probability distribution
of θ conditional on {zt , xt : t = 1, 2, . . .} is nonparametrically specified and completely unrestricted. (G) xyt ∈ Y , and
xyt+1 = fy(yt , ξ

y
t+1)where ξ

y
t+1 is i.i.d. over time and independent of xt ; xdt ∈ {0, 1, . . . ,∞}, and xdt+1 = 1{yt > 0}[

1
{
yt = xyt

}
xdt + 1 + ξ d

t+1], where ξ d
t+1has support {0, 1, . . . ,∞}, and it is i.i.d. over time and independent of xt . ■

The model has the following integrated Bellman equation:

Vθ (xt) = ln

⎛⎝∑
j∈Y

exp
{

αθ (j) + β (j, xt) + δ Eξt+1

[
Vθ

(
fy(j, ξ

y
t+1), 1

{
j = xyt

}
xdt + 1 + ξ d

t+1

)] }⎞⎠
where Eξt+1 (.) is the expectation over the distribution of (ξ y

t+1, ξ d
t+1). Let vθ(j, xt ) be the continuation value function δ

Eξt+1 [Vθ

(
fy(j, ξ

y
t+1), 1

{
j = xyt

}
xdt + 1 + ξ d

t+1

)
]. Under our assumptions on the distribution of (ξ y

t+1, ξ
d
t+1), the continuation

value function has very similar properties as in the model with a deterministic transition of the endogenous state variables.
More specifically, the model also has Property 1 and Property 2.

Property 1. In a model without duration dependence (i.e., βd = 0), the continuation value of choosing alternative j becomes
vθi (j), which does not depend on the state variable, xyt . Note that the continuation value function becomes vθ(j) = δ

ξt+1 [Vθ(fy(j, ξ
y
t+1))].

roperty 2. In the model with duration dependence, if yt = j = xyt , then the continuation value becomes vθ(j, xdt +1). Under
Assumption 2, if yt = j = xyt the continuation value function is such that vθ(j, xdt + 1) = vθ(j, d∗

j ) for any xdt ≥ d∗

j − 1.

Appendix C. Monte Carlo experiments for DGPs 2, 3, and 4

Table A.1 presents results under DGP 2, with two types of replacement costs, RC1 = 4.5 and RC2 = 9, with equal
probabilities. In this case, the MLE-2types and our CMLEs are consistent estimators. Both estimators have negligible finite-
sample biases in the three samples. As expected, the MLE-2types has smaller variance, especially in sample A. In the three
samples, the MLE-noUH is still extremely biased and the Hausman test that compares this estimator with CMLE-BIC-d*
has strong power to reject the model without unobserved heterogeneity. For the rejection of the true model with two
types, Hausman test exhibits a rejection rate that is practically identical to the nominal size or significance level.

Table A.2 deals with DGP 3, that has also two types of replacement costs, but now these types are very similar: RC1 = 8
and RC2 = 9, with equal probabilities. The main purpose of the experiments with this DGP is to investigate the bias of the
MLE-noUH and the power of this Hausman test in an scenario with a very modest amount of unobserved heterogeneity.
Even in this scenario, for samples B and C, the bias of theMLE-noUH is approximately 5% of the true value of the parameter,
and the Hausman test rejects the null hypothesis of no unobserved heterogeneity with probability that is more than twice
the nominal size of the test.

Finally, Table A.3. presents results of experiments under DGP 4 where there is not unobserved heterogeneity and
RC = 8. The purpose of these experiments is to study possible biases in the size of Hausman test for the null hypothesis
of no unobserved heterogeneity. We can see that, for the three samples, the size of this test is very close to the nominal

size.
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able A.1
onte Carlo experiments with DGP 2 (Two types: RC = 4.5, 9).
Estimator
of β

Sample A (t = 1 to 7) Sample B (t = 1 to 14) Sample C (t = 8 to 21)

Estimate(1) Estimate(1) Estimate(1)

Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0094 1.0060 0.1598 1.0027 1.0033 0.0813 0.9992 0.9948 0.0813
CMLE-BIC-d* 1.0094 1.0060 0.1598 0.9952 1.0025 0.1216 0.9886 0.9941 0.1384
MLE-2types 1.0018 0.9990 0.0513 1.0007 1.0001 0.0289 0.9954 0.9941 0.0288
MLE-noUH 0.5556 0.5557 0.0229 0.5283 0.5284 0.0156 0.5009 0.5004 0.0146

Testing null
hypothesis

Frequency of Ho rejection
with significance level

Frequency of Ho rejection
with significance level

Frequency of Ho rejection
with significance level

1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.590 0.820 0.902 1.000 1.000 1.000 1.000 1.000 1.000
Two types 0.005 0.044 0.094 0.005 0.054 0.096 0.005 0.047 0.107

Note (1): Mean, median, and standard deviation of estimated parameter over the 1000 replications.

Table A.2
Monte Carlo experiments with DGP 3 (Two types: RC = 8, 9).
Estimator
of β

Sample A (t = 1 to 7) Sample B (t = 1 to 14) Sample C (t = 8 to 21)

Estimate(1) Estimate(1) Estimate(1)

Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0088 1.0058 0.1371 1.0014 1.0035 0.0744 0.9978 0.9957 0.0726
CMLE-BIC-d* 1.0088 1.0058 0.1371 0.9905 1.0026 0.1313 0.9923 0.9941 0.1040
MLE-2types 1.0111 1.0064 0.0626 1.0026 1.0012 0.0374 0.9990 0.9982 0.0389
MLE-noUH 0.9628 0.9609 0.0451 0.9576 0.9564 0.0317 0.9501 0.9492 0.0334

Testing null
hypothesis

Frequency of Ho rejection
with significance level

Frequency of Ho rejection
with significance level

Frequency of Ho rejection
with significance level

1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.014 0.057 0.117 0.031 0.088 0.163 0.032 0.121 0.187
Two types 0.014 0.051 0.104 0.008 0.053 0.100 0.009 0.065 0.115

Note (1): Mean, median, and standard deviation of estimated parameter over the 1000 replications.

Table A.3
Monte Carlo experiments with DGP 4 (No UH, RC = 8).
Estimator
of β

Sample A (t = 1 to 7) Sample B (t = 1 to 14) Sample C (t = 8 to 21)

Estimate(1) Estimate(1) Estimate(1)

Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0030 1.0029 0.1237 0.9979 0.9942 0.0660 0.9994 0.9994 0.0660
CMLE-BIC-d* 1.0030 1.0029 0.1237 0.9900 0.9937 0.1140 0.9889 0.9986 0.1201
MLE-2types 1.0203 1.0156 0.0513 1.0070 1.0063 0.0312 1.0079 1.0061 0.0318
MLE-noUH 1.0011 1.0004 0.0414 1.0001 0.9990 0.0293 1.0017 1.0005 0.0302

Testing null
hypothesis

Frequency of Ho rejection
with significance level

Frequency of Ho rejection
with significance level

Frequency of Ho rejection
with significance level

1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.007 0.045 0.094 0.009 0.05 0.097 0.014 0.052 0.108
Two types 0.008 0.056 0.104 0.012 0.063 0.109 0.019 0.053 0.107

Note (1): Mean, median, and standard deviation of estimated parameter over the 1000 replications.
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