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1 Introduction

Dynamic games are powerful tools for analyzing economic and social phenomena involving in-

tertemporal interactions between agents. The structural estimation of such games has garnered

significant attention, particularly in the study of oligopoly competition dynamics, following the

influential work of Ericson and Pakes (1995), with empirical applications spanning various in-

dustries.1 In addition, econometric models of dynamic games have been applied to a wide range

of contexts, such as dynamic interactions within households (Eckstein and Lifshitz, 2015), long-

term care decisions (Sovinsky and Stern, 2016), electoral competition (Sieg and Yoon, 2017),

and the ratification of international treaties (Wagner, 2016). Moreover, there is a substantial

body of literature on dynamic discrete choice models with social interactions where agents do not

exhibit forward-looking behavior, as explored by Brock and Durlauf (2007) and Blume, Brock,

Durlauf, and Ioannides (2011).

In dynamic games, model predictions are primarily driven by two types of structural pa-

rameters: those capturing dynamic state dependence –such as costs associated with switching,

adjustment, investment, or entry and exit (referred to as the dynamic parameters) –and those

representing the influence of other players’ actions on a player’s payoff, which arise from com-

petition, spillovers, peer effects, or social interactions (referred to as the game parameters).

The identification of these parameters is highly sensitive to the model’s assumptions about the

stochastic properties of variables that are observable to the players but unobservable to the

researcher, which we can refer to as unobserved heterogeneity.

In dynamic models, it is well-established that neglecting or misspecifying persistent unob-

served heterogeneity can lead to significant biases when estimating structural parameters that

reflect true dynamics (Heckman, 1981). Unobserved heterogeneity can create spurious dynamics

that become entangled with genuine state dependence. Similarly, failing to account for correlated

unobserved heterogeneity across players in the game estimation literature can result in substan-
1For a recent survey of this literature, see Aguirregabiria, Collard-Wexler, and Ryan (2021).
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tial biases when estimating parameters related to strategic or social interactions (Bresnahan and

Reiss, 1991, Blume, Brock, Durlauf, and Ioannides, 2011). In such cases, common-across-players

unobserved factors may become confounded with strategic, social, or peer effects.

In this paper, we study the identification of dynamic games in empirical settings where a few

players are observed over a few periods but across many markets. Our focus is on identifying

the model’s parameters when there is time-invariant unobserved heterogeneity at the market or

market-player level, which follows a nonparametric distribution with unrestricted support, and

thus, using a fixed effects panel data framework.

We begin by extending the application of the fixed-effect conditional likelihood method, orig-

inally introduced by Cox (1958), Rasch (1961), Andersen (1970), and Chamberlain (1980), to

dynamic discrete choice games. In cases where this method fails to identify all the structural

parameters in our model, we employ a functional differencing approach as proposed by Bon-

homme (2012). Specifically, we use a variant of the technique recently introduced by Dobronyi,

Gu, and Kim (2021), which derives a set of moment conditions and moment inequalities implied

by the fixed-effects dynamic model. Our analysis shows that this method successfully identifies

critical parameters that remain unidentified with the conditional likelihood approach alone. By

incorporating functional differencing, we enhance the identification of key structural parameters

that would otherwise be overlooked.

Our paper contributes to the literature on the identification and estimation of dynamic

games with unobserved heterogeneity. Previous studies in this field have used a random effects

approach, applying a finite mixture model for unobserved heterogeneity and imposing restric-

tions on the initial conditions (e.g., Aguirregabiria and Mira, 2007; Kasahara and Shimotsu,

2009; Arcidiacono and Miller, 2011, among others). In contrast, our research focuses on iden-

tifying structural parameters without imposing constraints on the distribution of unobserved

heterogeneity, its support, or the initial conditions. By relaxing these assumptions, we offer a

more flexible framework for studying dynamic games with unobserved heterogeneity.

This paper also contributes to the literature on the identification and estimation of struc-
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tural dynamic discrete choice models with fixed effects. We build upon and extend recent work

by Aguirregabiria, Gu, and Luo (2021) who investigate the identification of single-agent dy-

namic structural models. Extending the identification to games with multiple equilibria is not a

straightforward task because these game models do not yield a unique prediction for the prob-

ability of a choice history; instead, they provide bounds. However, we develop a method for

obtaining sufficient statistics for the contribution of the incidental parameters to these bounds.

Moreover, we show that this approach leads to the partial identification of the structural pa-

rameters. To the best of our knowledge, our paper represents the first attempt to combine the

fixed effects - sufficient statistics approach with bounds and partial identification.

Our paper relates to Honoré and Kyriazidou (2019) and Honoré and De Paula (2021) who

present identification results for some panel data bivariate dynamic logit models. We extend their

findings by delving into models that incorporate contemporaneous effects between dependent

variables, forward-looking players, and multiple equilibria.

The rest of the paper is organized as follows. Section 2 describes the model and assumptions.

Section 3 presents our identification results. We distinguish two versions of the model depending

on whether players are myopic (section 3.1) or forward-looking (section 3.2). In section 4, we

illustrate our identification results with an empirical application. We summarize and conclude

in section 5.

2 Model

2.1 Framework

We focus specifically on two-player binary choice games. For our analysis, we label the players

as i and j, where i, j ∈ {1, 2}. To represent the temporal dimension, we use discrete time with

the index t, ranging from 1 to T , for different periods. The game between the two players takes

place within a defined market, which can vary depending on the empirical application. A market
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could refer to a geographic area, a school, a family, an industry, an election, or other contexts.

We denote different markets using the index m, where m ∈ {1, 2, ...,M}. For simplicity, we

temporarily omit the market subindex in our notation.

In each period t, the players in the game make a binary decision, which we represent using

the variables y1t ∈ {0, 1} and y2t ∈ {0, 1}. The objective of each player is to maximize their

expected and discounted intertemporal payoffs. This is expressed as Et [
∑∞

s=0 δ
s
i Ui,t+s]. Here,

δi ∈ [0, 1] represents the discount factor of player i in market m. Uit represents the one-period

payoff for player i. The utility function has the following structure.

Uit = ui (yit, yjt, yi,t−1, yj,t−1) + εit (yit) . (1)

ui(·) is a utility function that depends on the current and previous actions of the two players.

The arguments (yit, yjt) capture contemporaneous strategic effects between the players, indi-

cating how the choice of one player, j, may influence the payoff of the other player, i, in the

same period. The arguments (yi,t−1, yj,t−1) capture state dependence with respect to the lagged

value of the players’ actions. They represent factors such as adjustment costs or switching costs,

which influence a player’s current decision based on their previous action. The variables εit(0)

and εit(1) are observable to the players but unobservable to the researcher. They are indepen-

dently and identically distributed over (i,m, t, yi), following a type I Extreme Value distribution.

These unobservable terms capture the random shocks or idiosyncratic components that affect

the players’ payoffs and choices in each period.

We consider games of complete information. Following the majority of the empirical literature

on dynamic discrete games, we assume that players’ decisions are derived from a Markov Perfect

Equilibrium (MPE). This assumption implies that players’ strategies solely depend on state

variables that are relevant to their payoffs. In any given period t, player i bases her action

on the variables known to her which have an impact on her own payoff or the payoffs of other

players at period t. The vector of state variables that are relevant to the payoffs in this game
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is denoted as (yt−1, εt), where yt−1 ≡ (y1,t−1, y2,t−1) and εt ≡ (ε1t(0), ε1t(1), ε2t(0), ε2t(1)). A

strategy function for player i can be represented as σi(yt−1, εt).

In this dynamic game, a Markov Perfect Equilibrium (MPE) consists of a pair of strategy

functions, one for each player, such that a player’s strategy maximizes her intertemporal payoff at

any state of the game while taking the other player’s strategy function as given. Let V σ
i (yt−1, εt)

represents player i’s value function for a given strategy of player j. The decision problem for

player i can be formulated using the following Bellman equation:

V σ
i (yt−1, εt) = max

yit∈{0,1}

{
ui (yit, yjt,yt−1) + εit(yit) + δi

∫
V σ
i (yt, εt+1) g(εt+1) dεt+1

}
, (2)

with yjt = σj(yt−1, εt). The integral accounts for the expectation over εt+1, and g(εt+1) is the

density function of εt+1.

The model can be characterized by the following system of best-response equations:

y1t = 1
{
ũ1 (y2t,yt−1) + Ṽ1 (y2t)− ε1t ≥ 0

}
y2t = 1

{
ũ2 (y1t,yt−1) + Ṽ2 (y1t)− ε2t ≥ 0

} (3)

with εit ≡ εit(0) − εit(1). Here, ũi (yjt,yt−1) represents the utility difference ui (1, yjt,yt−1) −

ui (0, yjt,yt−1). The term Ṽi (yjt) captures the difference in continuation values:

Ṽi (yjt) ≡ δi

∫ (
V σ
i (1, yjt, εt+1)− V σ

i (0, yjt, εt+1)
)
g(εt+1) dεt+1 (4)

Given (yt−1, εt), the model assumes that the realized values (y1t, y2t) represent a solution to the

system of equations presented in (3).

2.2 Structural and incidental parameters

Let us now provide the specification of the utility function ui. To differentiate between incidental

and interest parameters, we explicitly introduce the market subindex m. The parameters that

5



vary across markets are considered unrestricted and are treated as fixed effects or incidental

parameters. Our focus lies in examining the identification of parameters that vary across players

but are assumed to be constant across markets.

The utility difference ũim(yjmt,ym,t−1) ≡ uim(1, yjmt,ym,t−1) − uim(0, yjmt,ym,t−1) has the

following structure:

ũimt = αim + βi yim,t−1 + γi yjmt + λi yjm,t−1. (5)

Here, αim captures market and player characteristics that are not observable to the researcher. To

account for these unobservable factors, we define the vector αm ≡ (α1m, α2m), which represents

the fixed effects specific to market m. These fixed effects are referred to as the incidental

parameters of the model.

The term βi yim,t−1 captures state dependence with respect to the lagged value of the player’s

action. It incorporates factors such as adjustment costs or switching costs, influencing a player’s

current decision based on their previous action. The term γi yjmt captures contemporaneous

strategic effects between the players’ actions. It accounts for how the choice of one player,

j, may influence the payoff of the other player, i, in the same period. The term λi yjm,t−1

represents state dependence with respect to the lagged value of the other player’s action. It

captures the dynamic strategic interactions between the two players, reflecting how a player’s

previous choice may have an impact on the other player’s payoff. Together, these components

form the structure of the model, incorporating fixed effects, contemporaneous strategic effects,

and state dependence, to capture the dynamics of the two-player binary choice game.

By substituting the expression for the utility difference from equation (5) into the best

response equations in (3), we obtain the system of equations defining the econometric model in

this paper:

 y1mt = 1
{
α1m + β1 y1m,t−1 + γ1 y2mt + λ1 y2m,t−1 + Ṽ1m (y2mt)− ε1mt ≥ 0

}
y2mt = 1

{
α2m + β2 y2m,t−1 + γ2 y1mt + λ2 y1m,t−1 + Ṽ2m (y1mt)− ε2mt ≥ 0

} (6)
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It is important to note that the continuation values Ṽim(0) and Ṽim(1) are also incidental pa-

rameters since they are functions of αm.

2.3 Multiple equilibria and probabilities of game outcomes

The model presents two forms of the multiple equilibrium problem. First, given the model’s

primitives, there may exist multiple strategy functions that satisfy the system of best response

conditions characterizing the model’s Markov Perfect Equilibrium (MPE). These distinct strat-

egy functions imply different continuation value functions, Ṽ1m(.) and Ṽ2m(.). Second, even if

we fix the continuation value functions, Ṽ1m(.) and Ṽ2m(.), for some specific combinations of

the state variables, ym,t−1 and εmt, the model generates multiple predictions for the equilibrium

values of (y1mt, y2mt). This second issue parallels the multiple equilibria problem commonly ob-

served in static games of complete information, as discussed in seminal works such as Bresnahan

and Reiss (1991) and Tamer (2003).

The model implies a partition of the space of time-varying unobservables (ε1mt, ε2mt) such that

each region in the partition corresponds to a prediction (or multiple predictions) about players’

choices. For yj ∈ {0, 1}, let eyjimt represent the value of εimt that makes player i indifferent

between choosing action 0 or action 1. The model then defines this threshold value as follows:

e
yj
imt ≡ αim + Ṽim(yj) + γi yj + βi yim,t−1 + λi yjm,t−1 (7)

The sign of e1imt−e0imt corresponds to the sign of γi+Ṽim(1)−Ṽim(0). Notably, Ṽim(1)−Ṽim(0) can

be rewritten as Vim(1, 1)− Vim(0, 1)− Vim(1, 0) + Vim(0, 0), which captures the supermodularity

or submodularity of the value function in relation to both players’ actions. This implies that

the sign of this endogenous term matches the sign of the parameter γi. When γi ≥ 0 (or

γi ≤ 0), the dynamic game exhibits strategic complementarity (or substitutability), leading to

a supermodular (or submodular) value function. In this case, Vim(1, 1)− Vim(0, 1)− Vim(1, 0) +

Vim(0, 0) ≥ 0 (or ≤ 0), which ensures e1imt ≥ e0imt (or e1imt ≤ e0imt).
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These threshold values – two for each player– define two vertical lines and two horizontal lines

in the two-dimension space of (ε1mt, ε2mt). The space for the four possible equilibrium outcomes

for the players’ decisions – (0, 0), (0, 1), (1, 0), and (1, 1) – and the corresponding probabilities

of these outcomes, can be described using these threshold values. The form of this partition

depends on the sign of the parameters γ1 and γ2. Figure 1 represents the threshold values and

the regions for the different equilibrium outcomes for the case with γ1 ≤ 0 and γ2 ≤ 0. The

model provides unique predictions for the probabilities of outcomes (1, 1) and (0, 0):


P(0, 0 | ym,t−1,αm) =

1

1 + exp {e01mt}
1

1 + exp {e02mt}

P(1, 1 | ym,t−1,αm) =
exp {e11mt}

1 + exp {e11mt}
exp {e12mt}

1 + exp {e12mt}

(8)

The quadrangle in the center of Figure 1 is associated with two possible outcomes or equilibria

of the game: (1, 0) and (0, 1). This region with multiple equilibria implies that the model does

not have unique predictions on the probabilities of outcomes (0, 1) and (1, 0). However, the

model establishes bounds on the values of these probabilities.

The (sharp) upper bound to the probability of outcome (1, 0) is given by the region up and

to the left of the blue right angle. The upper bound to the probability of outcome (0, 1) is

associated with the region down and to the right of the red right angle. These upper bounds are

the product of two logit probabilities:


U(0, 1 | ym,t−1,αm) ≡ 1

1 + exp {e11mt}
exp {e02mt}

1 + exp {e02mt}

U(1, 0 | ym,t−1,αm) ≡ exp {e01mt}
1 + exp {e01mt}

1

1 + exp {e12mt}

(9)

The sharp lower bounds for the probabilities of outcomes (0, 1) and (1, 0) correspond to

the regions defined by the upper bounds, excluding the central quadrangle shown in Figure 1.
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Figure 1: Regions in the Space of (ε1, ε2)
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Unlike the upper bounds, these lower bounds are not simple products of logit probabilities but

rather sums of these products. This distinction has important implications for identifying the

structural parameters in this fixed effects model.

For this reason, we also consider non-sharp lower bounds that follow a logit probability

structure. For each outcome, (0, 1) and (1, 0), we can construct two non-sharp lower bounds

based on the product of logit probabilities. For outcome (0, 1), the two bounds are:


L0,0(0, 1 | ym,t−1,αm) ≡ 1

1 + exp {e01mt}
exp {e02mt}

1 + exp {e0mt}

L1,1(0, 1 | ym,t−1,αm) ≡ 1

1 + exp {e11mt}
exp {e12mt}

1 + exp {e12mt}

(10)
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The super-index in the names of these lower bounds, L0,0 and L1,1, reflect the beliefs to which

the players are best responding. In L0,0, both players are responding to the belief that their

opponent will choose action 0, while in L1,1, both players are responding to the belief that their

opponent will choose action 1.

Similarly, for the probability of outcome (1, 0), the non-sharp lower bounds based on the

product of logit probabilities are:


L0,0(1, 0 | ym,t−1,αm) ≡ exp {e01mt}

1 + exp {e01mt}
1

1 + exp {e02mt}

L1,1(1, 0 | ym,t−1,αm) ≡ exp {e11mt}
1 + exp {e11mt}

1

1 + exp {e12mt}

(11)

Again, the super-index in the names of these lower bounds reflect the beliefs to which the players

are best responding.

2.4 Different versions of the model

The identification results in this paper vary across different versions of the model, depending on

three key criteria.

a. Myopic versus forward-looking players: A player is considered myopic if her discount

factor, δi, is zero, meaning she does not take future periods into account when making decisions.

In contrast, a player with a non-zero discount factor is classified as forward-looking, indicating

that she considers future payoffs. For myopic players, the continuation value Ṽi is zero.

b. Strategic interactions – Contemporaneous versus lagged, and one- versus two-

directional: The scope and nature of contemporaneous strategic interactions between players

are governed by the parameters γ1 and γ2, while lagged strategic interactions are captured by

λ1 and λ2. Most empirical studies incorporate either contemporaneous or lagged interactions,

but not both. Following this approach, we explore two models: one without contemporaneous
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interactions but with lagged ones (i.e., γ1 = γ2 = 0), and another without lagged interactions

but with contemporaneous ones (i.e., λ1 = λ2 = 0). Identifying contemporaneous interactions is

more complex than identifying lagged ones. For these more challenging models, we differentiate

between cases where both γ1 and γ2 are non-zero, indicating two-directional interactions between

players, and cases where one of these parameters is zero, implying one-directional interactions.

b. Sequential versus simultaneous moves: In each period t, players make decisions either

simultaneously or sequentially. The nature of these moves affects the set of equilibria in the

model. For games without, or with one-directional, contemporaneous interactions, the equilib-

rium is unique, regardless of whether moves are sequential or simultaneous. However, in games

with two-directional interactions, this assumption becomes crucial. When moves are simulta-

neous, the model may have multiple equilibria. In contrast, sequential moves lead to a unique

equilibrium.

For instance, consider a sequential-move game where player 1 moves first. In the central

quadrangle of Figure 1, the unique equilibrium (known as the Subgame Perfect Nash equilibrium)

is (1, 0). Player 1 understands that if she chooses action 1, player 2 will choose 0, and if she

selects 0, player 2 will respond with 1. Hence, player 1’s choice determines whether equilibrium

(0, 1) or (1, 0) is selected. With γ1 ≤ 0, the equilibrium that maximizes player 1’s profit is (1, 0).

Therefore, in this sequential-move game, the central quadrangle of Figure 1 uniquely corresponds

to the outcome (1, 0).

Table 1 presents an overview of the different model versions analyzed in this paper, along

with a summary of the identification results. The table reveals several key patterns in our

findings. First, we observe that point identification of the dynamic parameters, β1 and β2, is

more general and attainable than the identification of the strategic interaction parameters, γ1

and γ2. This suggests that precise estimates of the dynamic parameters can be obtained in a

wider range of scenarios. Second, point identification is achievable only when certain restrictions

are imposed, such as assumptions regarding myopic behavior, sequential moves, or the structure
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Table 1: Different Models and Summary of Identification Results

No Contemporaneous One-Direction Two-Direction Two-Direction
Interactions Interactions Interactions Interactions
γ1 = γ2 = 0 γ1 = 0 Sequential Move Simultaneous Move

MYOPIC PLAYERS: Ṽimt = 0

Point identification Point identification Point iden. β1, β2 Partial identification
β1, β2, λ1, λ2 β1, β2, γ2 Partial iden. γ1, γ2 β1, β2, γ1, γ2

FORWARD-LOOKING PLAYERS: Ṽimt 6= 0

Point iden. β1, β2 Point iden. β1, β2 Point iden. β1, β2 Partial iden. β1, β2
Partial iden. γ2

of strategic interactions. Third, under the assumption of sequential moves, point identification

of the dynamic parameters β is possible without needing to impose restrictions on the players’

discount factors δ or the strategic parameters γ. This finding indicates that the sequential move

framework alone provides valuable identifying power for the dynamic parameters.

Overall, Table 1 underscores the varying identification outcomes across different model ver-

sions and highlights the trade-offs between robustness and precision in the identification process.

It also emphasizes the importance of incorporating specific assumptions to obtain precise pa-

rameter estimates.

3 Identification

The sampling framework involves a random sample of M markets. Within each market, the

data consists of the observed sequence of choices made between periods 1 and T , as well as the

initial conditions (y1m0, y2m0). The number of markets M is large and T is small. To simplify
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notation, we will omit the market subindex m for the remainder of this section. To represent

the complete history of choices within a market, we use the vector ỹ ≡ (y1t, y2t : t = 0, 1, ..., T ).

We use θ to represent the vector of structural parameters (β1, β2, γ1, γ2, λ1, λ2), and α to

represent the incidental parameters or fixed effects. The model is a fixed effects model in the

sense that the joint probability distribution of the incidental parameters and the initial conditions

(y10, y20) is nonparametrically specified. We are interested in the identification of the vector of

structural parameters θ

Before we present our identification results for different versions of the model, we describe

the different methods we use to establish them. We also present a novel Proposition 1 that is

key in implementing functional differencing to obtain our results.

a. Conditional likelihood without multiple equilibria. The versions of the model with-

out multiple equilibria imply the following expression for the probability of a market history

conditional of the fixed effects and the initial condition:

P (ỹ | y0,α,θ) =
2∏
i=1

T∏
t=1

Λ
(
yit|αi, yjt,yt−1,θ

)
(12)

where Λ
(
yit|αi, yjt, ,yt−1,θ

)
represents the logit probability of choice yit.

The logit model possesses a crucial property that enables an additive separability of the

log-likelihood with respect to the incidental parameters α and the structural parameters θ.

Specifically, the logarithm of the probability of a market history can be written as:

lnP (ỹ | y0, α,θ) = s (ỹ,y0)
′ gα + c (ỹ)′ θ (13)

where s (ỹ,y0) and c (ỹ) are vectors of statistics, gα is a vector of functions of the incidental

parameters, and θ is the vector of structural parameters. This structure has two key implications.

First, the vector of statistics s (ỹ,y0) is sufficient for the incidental parameters α: that is,

P (ỹ | s (ỹ,y0) , α,θ) = P (ỹ | s (ỹ,y0) ,θ). Second, a parameter in the vector θ is identified if
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the corresponding element in the vector c (ỹ) has variation across some market histories after

we condition on the vector of sufficient statistics s (ỹ,y0).

b. Functional differencing without multiple equilibria. Recent studies by Honoré and

Weidner (2020) and Dobronyi, Gu, and Kim (2021) have employed a functional differencing

approach inspired by Bonhomme (2012) to establish parameter identification in dynamic logit

models that cannot be identified using the conditional likelihood method. In this paper, we

apply a similar approach.

For models with a unique equilibrium –and thus unique predictions about the probability

of a market history– the following Proposition 1 is key. This proposition mirrors Proposition

2 in Aguirregabiria and Carro (2024), which establishes necessary and sufficient conditions for

identifying Average Marginal Effects in single-agent dynamic discrete choice models with fixed

effects. Similarly, we demonstrate that this result also holds for the identification of structural

parameters in dynamic games with fixed effects.

Proposition 1. Consider a fixed effects dynamic game with equilibrium uniqueness and rep-

resented by the probability function P (ỹ | y0,α,θ) in equation (12). The vector of structural

parameters θ is identified if and only if the following conditions hold:

i. There is a vector of weighting functions w(y0, ỹ,θ) mapping from {0, 1}2(T+1) × Θ to

Rdim(θ), which satisfies the following system of equations:

∑
ỹ∈Y2T

w(y0, ỹ,θ) P (ỹ | y0,α,θ) = 0 (14)

for every y0 ∈ {0, 1}2 and α ∈ R2.

ii. Given the vector of weighting functions w(y0, ỹ,θ), the following system of dim(θ) equa-
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tions has a unique solution in θ:

∑
(y0,ỹ)∈Y2(T+1)

w(y0, ỹ,θ) P (y0, ỹ) = 0 (15)

where P (y0, ỹ) represents the empirical distribution of (y0, ỹ) in the data.

The solution of the system of equations in (15) identifies the true value of θ. �

Proof of Proposition 1. See Appendix A.1. �

Proposition 1 imposes no restrictions on the distribution of the time-varying i.i.d. unobserv-

ables, εit. As a result, it applies to a broad class of fixed-effects dynamic discrete choice models,

extending beyond the logit class.

The system of equations in (14), described in condition (i), involves infinitely many restric-

tions – one for each value of α – but only a finite number of unknown weights, corresponding

to the 4T possible market histories. Given this, one might perceive that satisfying the necessary

and sufficient conditions for identification in condition (i) of Proposition 1 seems improbable.

In other words, a solution is only likely if a specific structure exists, where a finite-dimensional

vector of weights solves the system of infinite restrictions.

The propositions presented throughout this paper, which establish point identification of the

structural parameters, rely on such a specific structure. In particular, the logit model implies that

the system of equations in (14) can be expressed as a finite-order polynomial in the variables

eα1 and eα2 . This finding shows that a solution exists if and only if the coefficients of every

monomial term in this polynomial are set to zero. This property reduces the infinite system of

equations to a finite linear system with a finite number of unknowns. Moreover, if a solution

exists, it leads to a closed-form expression for the weights.
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3.1 Myopic players

3.1.1 Model with no contemporaneous strategic interactions

Consider the myopic model (i.e., Ṽ1t = Ṽ2t = 0) under the condition that γ1 = γ2 = 0. The best

response equations for this model are:

 y1t = 1 {α1 + β1 y1t−1 + λ1 y2t−1 − ε1t ≥ 0}

y2t = 1 {α2 + β2 y2t−1 + λ2 y1t−1 − ε2t ≥ 0}
(16)

This is an autoregressive bivariate logit model. Narendranthan, Nickell, and Metcalf (1985)

consider this model in their study of the joint dynamics of unemployment and sickness. They

present a proof for the identification of the parameters using the same conditional likelihood

approach as in our paper.2 Consequently, the identification of this model is a well-established

result in the literature. We include this result as it serves as a straightforward example for

introducing notation and ensuring comprehensiveness.

The model implies the following expression for the probability of a market history:

P (ỹ | y0,α,θ) =
2∏
i=1

T∏
t=1

exp { yit [αi + βi yit−1 + λi yjt−1] }
1 + exp {αi + βi yit− + λi yjt−1}

(17)

Define, for i ∈ {1, 2}, function σαi (y1, y2) ≡ − ln[1+exp {αi + βi y1 + λi y2}], and let σα (y1, y2) ≡

σα1 (y1, y2) + σα2 (y1, y2). Given a choice history ỹ, define the statistics:

• T
(1)
i ≡

∑T
t=1 yit is the number of times that player i chooses alternative 1.

• T (y1,y2) ≡
∑T

t=1 1{(y1t, y2t) = (y1, y2)} is the number of times the two players choose (y1, y2).

• C(y1,y2) ≡
∑T

t=1 1{(y1t, y2,t−1) = (y1, y2)} is the number of times that player 1 chooses

alternative y1 given that player 2 chose alternative y2 at previous period.
2See Honoré and Kyriazidou (2019) and Honoré and De Paula (2021) for their recent analysis of this model.
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Then, the logarithm of the probability of a market history can be written as:

lnP (ỹ | y0,α,θ) = α1 T
(1)
1 + α2 T

(1)
2 + β1 C11 + λ1 C12 + λ2 C21 + β2 C22

+
∑
y1,y2

σα (y1, y2) [T (y1,y2) + 1{(y10, y20) = (y1, y2)} − 1{(y1T , y2T ) = (y1, y2)}]

(18)

Or using the compact expression in equation (13), we have that:


s (y0, ỹ) = [1, y10, y20, y10y20 ; 1, y1T , y2T , y1Ty2T ; T, T

(1)
1 , T

(1)
2 , T (1,1)

]′
c (ỹ) = [C11, C12, C21, C22]

′

θ = [β1, λ1, λ2, β2]
′

(19)

Given (13) and (19) we can establish the following identification result.

Proposition 2. In the myopic dynamic game without contemporaneous interactions, as de-

scribed in equation (16), the conditional likelihood approach establishes that structural parameters

β1, β2, λ1, and λ2 are point identified when T ≥ 3. �

Proof of Proposition 2. See Appendix A.2. �

The proof of Proposition 1 demonstrates that s (ỹ) is a sufficient statistic for α. It also shows

that for each structural parameter — β1, β2, λ1, and λ2 — there exists a pair of market histories,

A = {y0,a, b,y3} and B = {y0, b,a,y3}, with a 6= b, such that the structural parameter is

identified by the log-odds ratio lnP(A) − lnP(B). Table 2 provides examples of history pairs

that identify each parameter for panels with T = 3.

3.1.2 Myopic players with one-direction strategic interactions

Now, we relax the condition of no contemporaneous strategic interactions and allow γ2 to be

different to zero: there is a contemporaneous effect of y1 on y2. We still keep the restriction
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Table 2: Myopic Dynamic Game Without Contemporaneous Effects

Pairs of Histories Identifying Structural Parameters (T=3)
A = {y0, a, b, y3}; B = {y0, b, a, y3}
y0 a b y3 lnP (A)− lnP (B)

Case 1:
(

0
0

) (
0
0

) (
1
0

) (
1
0

)
β1

Case 2:
(

0
0

) (
0
0

) (
0
1

) (
0
1

)
β2

Case 3:
(

0
0

) (
0
0

) (
0
1

) (
1
0

)
λ1

Case 4:
(

0
0

) (
0
0

) (
1
0

) (
0
1

)
λ2

γ1 = 0 – no contemporaneous effect of y2 on y1, and include the restriction λ2 = 0. That is, the

model is defined by the following best response functions:

 y1t = 1 {α1 + β1 y1t−1 + λ1 y2t−1 − ε1t ≥ 0}

y2t = 1 {α2 + γ2 y1t + β2 y2t−1 − ε2t ≥ 0}
(20)

The log-probability of the market history ỹ ≡ (y1t, y2t : t = 0, 1, .., T ) has the following structure:

lnP (ỹ|y0,α,θ) = α1 T
(1)
1 + α2 T

(1)
2 +

T∑
t=1

σα1 (y1t−1, y2t−1) + σα2 (y1t, y2t−1)

+ β1 C11 + λ1 C12 + β2 C22 + γ2 T
(1,1)

(21)

with σα1(y1, y2) ≡ − ln[1+exp{α1+β1y1+λ1y2}] and σα2(y1, y2) ≡ − ln[1+exp{α2+γ2y1+β2y2}].

By comparing equations (21) and (18), we can find two important differences. Firstly, equa-

tion (21) includes the term γ2T
(1,1), which is absent in (18). Secondly, in equation (21), the term

that depends on incidental parameters includes not only the sum
∑T

t=1σα1(y1,t−1, y2t−1) – which

is also present in equation (18) – but also the sum
∑T

t=1σα2(y1t, y2t−1), which did not appear in
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equation (18). These differences have implications for parameter identification.

Similarly as for the previous model, we can rewrite the right hand side of equation (21) as

s (y0, ỹ)′ gα + c (ỹ)′ θ∗, but now the vectors of statistics s (y0, ỹ) and c (ỹ), and the vector of

identified parameters θ∗ are different. More specifically,3


s (y0, ỹ) = [1, y10, y20, y10y20 ; 1,y1T , y2T , y1Ty2T ; T, , T

(1)
1 , T

(1)
2 , T (1,1) ; C12]

′

c (ỹ) = [C11, C22]
′

θ∗ = [β1, β2]
′

(22)

There are some fundamental differences with respect to the model without contemporaneous

strategic interactions. First, the statistic C12 and the structural parameter λ1 appear in the log-

probability of a choice history through the term C12 (∆σα2 + λ1). Without further restrictions,

we have that the incidental parameter ∆σα2 is not zero. This implies that this sufficient statistics

approach cannot identify parameter λ1. Second, the statistic T (1,1) and the structural parameter

γ2 appear through the term T (1,1) (∆σα1 + γ2). Without further restrictions, the sufficient

statistics approach does not identify parameter γ2.

Proposition 3 establishes the point identification of dynamic parameters β1 and β2 without

further restrictions, as well as necessary and sufficient conditions for the identification of γ2 and

λ1 when using a conditional likelihood approach.

Proposition 3. In the myopic dynamic game with one-direction contemporaneous interactions

described in equation (20), using a conditional likelihood approach and with T ≥ 3: (A) parame-

ters β1 and β2 are point identified; (B) a necessary and sufficient condition for the identification

of parameter γ2 is that β1 = 0 or λ1 = 0; (C) a necessary and sufficient condition for the

identification of parameter λ1 is that γ2 = 0 or β2 = 0. �

3For this derivation, it is helpful to write
∑T
t=1σα2 (y1t, y2t−1) as

[∑T
t=1(1− y1t)(1− y2t−1)

]
σα2(0, 0)+[∑T

t=1y1t(1− y2t−1)
]
σα2(1, 0)+

[∑T
t=1(1− y1t)y2t−1

]
σα2(0, 1)+

[∑T
t=1y1ty2t−1

]
σα2(1, 1). Note that this

expression is equal to T σα2(0, 0)+T
(1)
1 [σα2(1, 0)− σα2(0, 0)]+

[
T

(1)
2 + y20 − y2T

]
[σα2(0, 1)− σα2(0, 0)]+ C12

[σα2(1, 1)− σα2(1, 0)− σα2(0, 1) + σα2(0, 0)].
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Table 3: Myopic Dynamic Game Without Contemporaneous Effects

Examples of histories and identified parameters with T=3
A = {y0, a, b, y3}; B = {y0, b, a, y3} with C12(A) = C12(B)

y0 a b y3 lnP (A)− lnP (B)

Case 1:
(

0
0

) (
0
0

) (
1
0

) (
1
0

)
β1

Case 2:
(

0
0

) (
0
0

) (
0
1

) (
0
1

)
β2

Proof of Proposition 3: See Appendix A.3.

Suppose that T = 3 and consider the pair of histories A = {y0, a, b, y3} and B =

{y0, b,a,y3}. In this model with a contemporaneous effect, the sufficient statistic includes

C12, so a pair of identifying histories A and B should satisfy the condition C12(A) = C12(B).

Table 3 presents examples of pairs of histories A and B which identify parameters β1 and β2 as

the log-odds ratio lnP(A)− lnP(B).

Parameter γ2 appears in the log-probability of a choice history only through the term T (1,1)

(∆σα1 + γ2). This implies that this parameter is point-identified if and only if ∆σα1 is equal

to zero for any possible value of the incidental parameter α1. Remember that ∆σα1 is defined

as σα1(1, 1) − σα1(0, 1) − σα1(1, 0) + σα1(0, 0), and in turn σα1(y1, y2) is defined as − ln[1 +

exp {α1 + β1 y1 + λ1 y2}]. Taking this into account we have that ∆σα1 = 0 for every value of α1

if and only if β1 = 0 or λ1 = 0.

Parameter λ1 appears in the log-probability of a choice history only through the term C12

(∆σα2 +λ1). This parameter is point-identified using a sufficient statistics approach if and only

if ∆σα2 = 0 for every possible value of α2. This is the case if and only if γ2 = 0 or β2 = 0.

The functional differencing approach, when employed without any further constraints, falls

short of achieving (point) identification for the parameters γ2 and λ1. However, by introducing

the condition that the fixed effects α1m and α2m are identical for both players, the functional

20



differencing approach successfully resolves the identification problem for these parameters. It is

important to note that the conditional likelihood approach, even with this additional restriction,

does not lead to the identification of γ2 and λ1, as evidenced by Proposition 4.

Proposition 4. Consider the myopic dynamic game with one-direction strategic interactions as

described in equation (20) where the fixed effects of the two players are restricted to be the same:

α1m = α2m. The functional differenting approach implies moment conditions that point identify

all the structural parameters, β1, β2, λ1,and γ2. �

Proof of Proposition 4: See Appendix A.4.

3.1.3 Myopic players, two-direction strategic interactions, sequential move

Consider the game with two-direction contemporaneous interactions such that γ1 6= 0 and γ2 6= 0.

We eliminate the lagged strategic interactions between players such that λ1 = λ2 = 0.

 y1t = 1 {α1 + γ1 y2t + β1 y1t−1 − ε1t ≥ 0}

y2t = 1 {α2 + γ2 y1t + β2 y2t−1 − ε2t ≥ 0}
(23)

For the rest of this section, we assume that the researcher knows the sign of parameters γ1 and

γ2. For concreteness, we consider that γ1 ≤ 0 and γ2 ≤ 0.

Two versions of the model are distinguished based on whether players move sequentially or

simultaneously. The difference between the sequential and the simultaneous move games is in

the set of equilibria. In the simultaneous move game, there is a quadrangle in the space of

(ε1t, ε2t) for which outcomes (0, 1) and (1, 0) are Nash equilibria. This quadrangle is:

{e11t < ε1t ≤ e01t & e12t < ε2t ≤ e02t} (24)

where e1it ≡ αi + γi + βiyi,t−1, and e0it ≡ αi + βiyi,t−1. In the sequential move game, where player

1 moves first, the outcome (1, 0) is the unique equilibrium (Subgame Perfect Nash equilibrium)
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associated with this region of (ε1t, ε2t). Player 1 is aware that if she chooses y1t = 1, player 2 will

choose y2t = 0, and if she chooses y1t = 0, then player 2 will choose y2t = 1. Therefore, player 1’s

decision determines which of the two Nash equilibria, (0, 1) or (1, 0), is selected. Player 1 selects

the equilibrium that maximizes its payoff. Considering γ1 ≤ 0, the Nash equilibrium with the

highest payoff for player 1 is (1, 0).

Suppose that player 1 moves first. The probability for outcomes (0, 0), (1, 0), and (1, 1) can

be represented using the following product of logit probabilities:

P(y1t, y2t;α) = Λ([2y1t − 1][α1 + γ1y2t + β1y1t−1]) Λ([2y2t − 1][α2 + γ2y1t + β2y2t−1]) (25)

In contrast, the probability of the outcome (0, 1) cannot be expressed as a product of logits.

This feature affects both the derivation of a sufficient statistic for α and the implementation of

a functional differencing approach.

Let ỹ be a choice history where every period’s outcome is an element of {(0, 0), (1, 0), (1, 1)},

i.e., it does not include outcome (0, 1). For this sequential move game, the log-probability of

this choice history has the following structure:

lnP(ỹ|α,θ) = ln pα(y10, y20) + α1 T
(1)
1 + α2 T

(1)
2 +

T∑
t=1

σα1(y1t−1, y2t) + σα2(y1t, y2t−1)

+ β1 C11 + β2 C22 + (γ1 + γ2) T
(1,1)

(26)

with σαi(yi,t−1, yjt) = − ln[1+exp{αi+βiyi,t−1 +γiyjt}]. Similarly as for the previous models, we

can rewrite the right hand side of equation (26) as s (ỹ)′ gα + c (ỹ)′ θ∗, where now the vectors

of statistics and parameters have the following form:

lnP(ỹ|α,θ) =
[
1, y10, y20, y10y20, y1T , y2T , y1Ty2T , T, T

(1)
1 , T

(1)
2 , C12, C21

]′
gα

+ β1 C11 + β2 C22 + (γ1 + γ2) T
(1,1)

(27)

A preliminary examination of equation (27) might suggest that the parameter γ1 + γ2 is
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identified, as it appears alongside the statistic T (1,1), which is not included in the vector of

sufficient statistics s(ỹ). However, due to the nature of the choice history ỹ, which does not

include any outcome (y1t, y2t) = (0, 1), we have that (1 − y1t)y2t = 0 for every t, and it follows

that
∑

t y2t =
∑

t y1ty2t, implying that T (1)
2 = T (1,1). Consequently, given s(ỹ) (which includes

T
(1)
2 as an element), the statistic T (1,1) lacks variation, thereby rendering this approach of using

sufficient statistics insufficient for identifying γ1 + γ2. Nonetheless, parameters β1 and β2 can

still be point identified. This assertion is formalized in the following proposition.

Proposition 5. In the myopic dynamic game without two-direction interactions and sequential

move, the structural parameters β1 and β2 are point identified when T ≥ 3. �

Proof of Proposition 5. See Appendix A.5. �

Partial Identification of γ1, γ2

For (y1t, y2t) = (0, 1), we can consider the following logit form lower bound:

lnP((0, 1)|α,θ) ≥ σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β2y2t−1 + γ2

or

lnP((0, 1)|α,θ) ≥ σα1(y1t−1, 0) + σα2(0, y2t−1) + α2 + β2y2t−1

and the following logit form upper bound:

lnP((0, 1)|α,θ) ≤ σα1(y1t−1, 1) + σα2(0, y2t−1) + α2 + β2y2t−1

This gives us access to use Proposition 8 in the paper to partially identify γ1, γ2.
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3.1.4 Sharp Identified set

Since the model is complete, the sharp identified set can be written as the collection of θ =

(β1, β2, γ1, γ2) such that for each value of (y10, y20), there exists a distribution G (allowed to vary

over (y10, y20)) such that, for all ỹ ∈ {0, 1}T ,

P(ỹ|y10, y20) =

∫
L(ỹ|α1, α2,θ)dG(α1, α2|y10, y20)

where L is the likelihood function given α1, α2,θ. Since model is complete, with the logit

distribution assumption, we have a likelihood funciton for given values of (α1, α2,θ). If we are

willing to take a fixed group of (α1, α2), we can use linear program to numerically compute the

identified set for θ. The approach taken in Dobroyni, Gu and Kim (2021) can in principle be

used to derive all moment equality conditions available from the model for θ. For example, we

can write the model as

P = H(θ)m̃

where P is the 2T choice probability vector and H(θ) is a matrix that only involves parameters,

and m̃ are a vector of moments of (A1, A2) := (exp(α1), exp(α2)) (i.e. entries of m̃θ takes the

form
∫
Aj1A

k
2dG(A1, A2,θ) for some measure of G). The left null space of H(θ) provides all

moment equality conditions available in the model for θ.

3.1.5 Myopic players, two-direction strategic interactions, simultaneous move

Here we concentrate on the (point) identification of the switching cost parameters – β1 and β2

– and on the partial identification of all the parameters.

The following Lemma 1 presents a property that plays a key role in our sufficient statistics

- bounds approach.

Lemma 1. Suppose that the log-probability of a market history has lower and upper bounds
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with the following structure: the lower bound is lnPL (ỹ | α,θ) = sL (ỹ)′ gα+ cL (ỹ)′ θ and the

upper bound is lnPU (ỹ | α,θ) = sU (ỹ)′ gα + cU (ỹ)′ θ, where sL (ỹ), sU (ỹ), cL (ỹ), and cU (ỹ)

are vectors of statistics, and gα s a vector of incidental parameters. Given this structure, the

logarithm of the probability of a market history ỹ unconditional on α) has the following bounds:

h (sL (ỹ)) + cL (ỹ)′ β ≤ lnP (ỹ) ≤ h (sU (ỹ)) + cU (ỹ)′ θ (28)

where h (s) is a function (described in the Appendix) that depends on the vector of statistics s

and on the probability distribution of the incidental parameters α. Given two different histories,

say A and B.

i. If sL (A) = sU (B) and cL (A) 6= cU (B), then: [cL (A)− cU (B)]′ θ ≤ lnP (A)− lnP (B).

ii. If sU (A) = sL (B) and cU (A) 6= cL (B), then: lnP (A)− lnP (B) ≤ [cU (A)− cL (B)]′ θ.

These inequalities imply partial identification of some structural parameters. �

Proof of Lemma 1: See Appendix A.6. �

Lemma 1 does not imply that sL (ỹ) or sU (ỹ) – or even the union of these two vectors of

statistics – are sufficient statistics for the incidental parameters in the probability P (ỹ | α,θ).

In general, this is not true for this model. However, the vectors sL (ỹ) and sU (ỹ) are suffi-

cient statistics for the the incidental parameters in the lower and in the upper bounds of this

probability, respectively. This property – together with the condition that there are histories

with sL (A) = sU (B) and with cL (A) 6= cU (B) – allow us to obtain partial identification of the

structural parameters.

The rest of this section describes the derivation of the expressions for the bounds, lnPL (ỹ | α,θ)

= sL (ỹ)′ gα+ cL (ỹ)′ θ and lnPU (ỹ | α,θ) = sU (ỹ)′ gα + cU (ỹ)′ β, and our (set) identification

results.
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Given a market history ỹ, we can construct a lower bound and an upper bound for the

log-probability of this history lnP (ỹ | α,θ). These bounds are:

 lnPL (ỹ | α,θ) ≡ ln pα (y10, y20) +
∑T

t=1 lnL(yt|yt−1;α,θ)

lnPU (ỹ | α,θ) ≡ ln pα (y10, y20) +
∑T

t=1 lnU(yt|yt−1;α,θ)
(29)

For outcomes (0, 0) and (1, 1), the upper bounds and the lower bounds are the same and

they are the probabilities in equation (8). For outcomes (0, 1) and (1, 0), the upper bounds

U(yt|yt−1;α, β) are the ones in equation (9), and the lower bounds L(yt|yt−1;α,θ) come from

equations (10) and (11).

Lemma 2 presents bounds for the log-probability of a market history in our model, shows

that these bounds have the structure in Lemma 1, and provides the specific form of the vectors

of statistics sL, sU , cU , and cU .

Lemma 2. For the myopic complete information dynamic game with contemporaneous effects

in equation (23), the log-probability of a market history has lower bounds lnPL{E,W} (ỹ | α,θ)

and lnPL{S,N} (ỹ | α,θ) and upper bound lnPU (ỹ | α,θ) which have the following expressions:

lnPL{E,W} (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
1 , T (1)

1 , C11, C12

]
g2
α

+ C11 β1 + C22 β2 + T
(1)
1 γ1 + T (1,1) γ2

lnPL{S,N} (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
2 , T (1)

2 , C21, C22

]
g2
α

+ C11 β1 + C22 β2 + T (1,1) γ1 + T
(1)
2 γ2

lnPU (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
2 , T (1)

1 , C21, C12

]
g2
α

+ C11 β1 + C22 β2 + T (1,1) [γ1 + γ2]

(30)

where g1
α and g2

α are vectors of incidental parameters which are defined in the Appendix, and

the vector of statistics s1 (ỹ) consists of T, y10, y20, y1T , y2T , T
(1)
1 , and T (1)

2 . �

Proof of Lemma 2: See Appendix A.7. �
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Combining the general identification approach in Lemma 1 with the specific expressions for

the bounds in Lemma 2, we can obtain the following identification results in Proposition 6.

Proposition 6. Consider the myopic complete information dynamic game with contemporaneous

effects in equation (23). Define the vector of statistics s1 (ỹ) ≡ [T, y10, y20, y1T , y2T , T
(1)
1 , T

(1)
2 ].

Let A and B be two market histories such that s1(A) = s1(B) and T (1)
1 = T

(1)
2 . Let ∆(A,B, β1, β2)

be lnP (A)− lnP (B)− [C11(A)− C11(B)] β1− [C22(A)− C22(B)] β2.

i. If C12(A) = C12(B) and C11(A) = C21(B), then:

∆(A,B, β1, β2) ≥
[
T

(1)
1 (A)− T (1,1)(B)

]
γ1 +

[
T (1,1)(A)− T (1,1)(B)

]
γ2 (31)

ii. If C12(A) = C12(B) and C21(A) = C11(B), then:

∆(A,B, β1, β2) ≤
[
T (1,1)(A)− T (1)

1 (B)
]
γ1 +

[
T (1,1)(A)− T (1,1)(B)

]
γ2 (32)

iii. If C21(A) = C21(B) and C22(A) = C12(B), then:

∆(A,B, β1, β2) ≥
[
T (1,1)(A)− T (1,1)(B)

]
γ1 +

[
T

(1)
2 (A)− T (1,1)(B)

]
γ2 (33)

iv. If C21(A) = C21(B) and C12(A) = C22(B), then:

∆(A,B, β1, β2) ≤
[
T (1,1)(A)− T (1,1)(B)

]
γ1 +

[
T (1,1)(A)− T (1)

2 (B)
]
γ2 (34)

Based on these inequalities, we can find pairs of market histories – A and B – that set identify

the parameters β1, β2, γ1, and γ2. �

The following examples present specific pairs of market histories that point identify the

switching cost parameters and set identify the strategic interaction parameters.
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EXAMPLE: Consider the pair of histories A = [(0, 0), (0, 0), (1, 1), (1, 1)] and B = [(0, 0),

(0, 1), (1, 0), (1, 1)]. These histories have the same value for the vector of statistics s1 (ỹ) =

[T, y10, y20, y1T , y2T , T
(1)
1 , T

(1)
2 ]. These histories also satisfy the condition T

(1)
1 = T

(1)
2 . Note

that C11(A) − C11(B) = 0 and C22(A) − C22(B) = 1 such that ∆ (A,B, β1, β22) = lnP (A)−

lnP (B)− β2. We now check conditions (i) to (iv) in Proposition 6.

Condition (i) holds because C12(A) = C12(B) = 1 and C11(A) = C21(B) = 1. It implies:

lnP (A)− lnP (B) ≥ β22 + γ1 + γ2 (35)

Condition (ii) holds because C12(A) = C12(B) = 1 and C21(A) = C11(B) = 1. It implies:

lnP (A)− lnP (B) ≤ β22 + γ1 (36)

Condition (iii) holds because C21(A) = C21(B) = 1 and C22(A) = C12(B) = 1. It implies:

lnP (A)− lnP (B) ≥ β22 + γ1 + γ2 (37)

Note that – for this example – this inequality is equivalent to the one provided by condition (i).

Condition (iv) does not hold because C12(A) = 1 6= 0 = C22(B) . �

We can also consider the mirror version of the pair of histories in Example 8. That is,

consider A = [(0, 0), (0, 0), (1, 1), (1, 1)] and B = [(0, 0), (1, 0), (0, 1), (1, 1)]. It is simple to show

that this pair of histories imply the inequalities lnP (A)− lnP (B) ≥ β1 + γ1 + γ2 and lnP (A)−

lnP (B) ≤ β1 + γ2

These two examples may leave the impression that conditions (i) and (iii) generate always the

same lower bound. This is not the case. For instance, consider the pairs of histories A = [(0, 0),

(0, 0), (0, 1), (1, 0)] and B = [(0, 0), (0, 1), (0, 0), (1, 0)]. For these histories, we have that

C12(A) = 1 6= 0 = C12(B), and this implies that both condition (i) and condition (ii) fail. But
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condition (iii) and (iv) are satisfied and imply informative bounds on the parameters.

3.2 Forward-looking players

3.2.1 Forward-looking players with one-direction strategic interactions

Consider the complete information game in equation (6). It is convenient to represent this model

as follows:

yit = 1 {α̃i + βi yi,t−1 + γ̃iα yjt − εit ≥ 0} (38)

where α̃i ≡ αi + ṽiα (0), and γ̃iα ≡ γi + ṽiα (1)− ṽiα (0). Given this representation, it should be

clear that it is not possible to point identify parameters γ1 and γ2 because they always appear

together with the incidental parameters ṽiα (1)− ṽiα (0).

Our purpose here is to study: (1) the point identification of the switching cost parameters

β1 and β2; (2) the partial identification of parameters γ1 and γ2; and (3) whether there are

triangular models – in the spirit of the models we studied in section 2.3 but now with forward-

looking players – where the γ parameters are point identified.

We start here with a forward-looking, complete information, triangular dynamic game. Con-

sider a version of the model with λ1 = γ1 = 0. Under these restrictions, the player 1’s payoff does

not depend on past, present, or future decisions of player 2. Therefore, the decision problem for

player 1 is a single-agent problem, and it can represented as:

y1t = 1

{
ε1t ≤ α1 + β1 y1t−1 + ṽ1α

}
(39)

This identification of this forward-looking dynamic logit model – with fixed effects unobserved

heterogeneity – has been established in Aguirregabiria, Gu, and Luo (2021). In this model: the

incidental parameter is α1 + ṽ1α; the vector of sufficient statistics is s (ỹ) = [y10, y1T , T
(1)
1 ]; and

the structural parameter β1 is identified from the maximization of the conditional likelihood

function.
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We now establish the point identification of parameters β1 and β2. The best response of

player 2 in this triangular model is:

y2t = 1

{
ε2t ≤ α̃2 + λ2 y1,t−1 + β2 y2,t−1 + γ̃2α y1t

}
(40)

where α̃2 ≡ α2 + ṽ2α (0), and γ̃2α ≡ γ2 + ṽ2α (1) − ṽ2α (0). Given equations (39) and (40), the

log-probability of the market history ỹ ≡ (y1t, y2t : t = 0, 1, .., T ) has the following structure:

lnP (ỹ|α, β) = ln pα (y10, y20) + α1 T
(1)
1 + α2 T

(1)
2 + γ̃2α T

(1,1) +
T∑
t=1

σα1 (y1t−1) + σα2 (y1t, y2t−1)

+ β1 C11 + β2 C22

(41)

where σα1(y1) ≡ − ln[1 + exp{α1 + β1 y1}] and σα2(y1, y2) ≡ − ln[1 + exp{α2 + γ̃2α y1 + β2 y2}].

We can rewrite this equation for the log-probability of a market history as lnP (ỹ | α,θ) as s (ỹ)′

gα + c (ỹ)′ β∗, with


s (ỹ)′ = [1, y10, y20, y10y20 ; 1, y1T , y2T , y1Ty2T ; T , T (1)

1 , T (1)
2 , T (1,1) ; C12]

c (ỹ)′ = [C11, C22]

θ∗′ = [β1, β2]

(42)

Proposition 7. For the forward-looking dynamic game with one-direction strategic interactions

as described in equations (39) and (40):

A. Vector s (ỹ) = [1, y10, y20, y10y20, y1T , y2T , y1Ty2T , T, T
(1)
1 , T

(1)
2 , T (1,1), C12]

′ is a minimal suf-

ficient statistic for α such that lnP (ỹ | u (ỹ) , α,θ) does not depend on α.

B. lnP (ỹ | c (ỹ) , β) = s (ỹ)′ θ∗− ln(
∑

ỹ′:s(ỹ′)=s(ỹ) exp {c(ỹ′)′θ∗}) with c (ỹ) = [C11, C22]
′ and

θ∗ = [β1, β2]
′.

C. For T ≥ 3, there are histories ỹ such that lnP (ỹ | s (ỹ) , β) identifies the vector of param-

eters θ∗. �
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EXAMPLE. The same histories in Example 3 that – in the myopic, complete information,

triangular model – identify parameters β1 and β2, still identify these parameters in the forward-

looking version of the model. More specifically: the pair of histories A = {(0, 0), (0, 0), (1, 0),

(1, 0)} and B = {(0, 0), (1, 0), (0, 0), (1, 0)} identifies β1; and the pair of histories A = {(0, 0),

(0, 0), (0, 1), (0, 1)} and B = {(0, 0), (0, 1), (0, 0), (0, 1)} identifies β2. �

3.2.2 Forward-looking players with two-direction strategic interactions

Consider he forward-looking dynamic game where we do not restrict any γ parameter to be zero.

y1t = 1

{
ε1t ≤ α̃1 + β1 y1,t−1 + γ̃1α y2t

}
y2t = 1

{
ε2t ≤ α̃2 + β2 y2,t−1 + γ̃2α y1t

} (43)

where α̃i ≡ αi + ṽiα (0), and γ̃iα ≡ γi + ṽiα (1)− ṽiα (0).

The model has a similar structure as the myopic. The main difference is that now the

random variables (γ̃1α, γ̃2α) replace the parameters (γ1, γ2). Therefore, the expressions of the

lower and upper bounds for the log-probability of a market history are very similar to the ones

in Lemma 2 for the myopic model, but replacing (γ1, γ2) with (γ̃1α, γ̃2α). Though this different is

coneptually simple, it has substantial implications on the identification of the γ parameters. More

specifically, we cannot point identify the switching cost parameters. Proposition 8 establsihes

that these parameters are partially identified.

Proposition 8. Consider the forward-looking complete information dynamic game with con-

temporaneous effects in equation (43). Under conditions β1 ≥ 0, β2 ≥ 0, γ̃1α ≤ 0, and γ̃2α ≤ 0,

there are market histories that provide informative bounds on the parameters β1 and β2. These

parameters are partially identified. �

Proof of Proposition 8: See Appendix A.8.
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EXAMPLE A = [(0, 1), (1, 1), (0, 0), (0, 0)] and B = [(0, 1), (1, 0), (0, 1), (0, 0)]. For this pair,

we have T (1)
1 (A) = T

(1)
1 (B) = T

(1)
2 (A) = T

(1)
2 (B) = 1, T (1,1)(B) = 0, T (1,1)(A) = 1, C11(A) =

C11(B) = 0, C22(B) = 0 6= 1 = C22(A), and C12(A) = C12(B) = 1 and C21(B) = 1 and

C21(A) = 0. Therefore lnP (A)− lnP (B) ≤ β2

Other example. A = [(1, 0), (1, 1), (0, 0), (0, 0)] and B = [(1, 0), (0, 1), (1, 0), (0, 0)]. For this

pair, we have T (1)
1 (A) = T

(1)
1 (B) = T

(1)
2 (A) = T

(1)
2 (B) = 1, T (1,1)(B) = 0 and T (1,1)(A) = 1,

C11(B) = 0 6= 1 = C11(A), C22(A) = C22(B) = 0, C12(B) = 1, C12(A) = 0, C21(A) = 1 =

C21(B), which leads to lnP (A)− lnP (B) ≤ β1. �

4 Empirical application

4.1 Framework and model

Let firms i = 1, 2, . . . , N represent the manufacturers in an industry, each producing a single

product. These firms compete by setting prices across M distinct geographic markets, indexed

by m. Let pimt denote the price set by firm i in market m at week t, and let pmt represent the

vector of prices across all firms in market m at time t. Each firm selects prices to maximize its

expected intertemporal profits.

A firm’s profit in a given market consists of two components: its variable profit function,

πimt(pmt), which represents revenue minus variable costs and depends on the prices set by all

firms; and its price adjustment cost, represented by acimt(pimt, pim,t−1), which depends on the

firm’s current and previous period prices. Price adjustment costs encompass a broad range of

expenses, including the costs of acquiring and processing information needed to set prices, atten-

tion costs, reputational costs, the expenses involved in communicating new prices to consumers,

and fixed costs related to inventory and promotional efforts associated with a price change.

The magnitude of price adjustment costs significantly influences the speed at which inflation-

ary shocks are passed through to prices (Rotemberg, 1982; Nakamura and Steinsson, 2008) and
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affects the welfare cost of inflation. Additionally, oligopolistic competition and its interaction

with price adjustment costs can play a substantial role in amplifying price stickiness (Wang and

Werning, 2022; Mongey, 2021).

In many industries, including the one relevant to this application, firms’ pricing choices al-

ternate between two levels: a regular (or high) price and a promotional (or low) price. While

these high and low price levels can vary among firms, they remain stable over extended pe-

riods—typically months or even years. Given these established price levels, firms compete by

deciding whether to set the high or low price at any given time. Our focus is on this high-low

pricing competition, treating each firm’s high and low price levels as predetermined.

Let yimt ∈ {0, 1} denote an indicator of whether a firm chooses a low or promotional price

in market m at time t. Likewise, let ymt denote the vector of these indicators across all firms in

market m at time t. For convenience, we keep using πimt(ymt) and acimt(yimt, yim,t−1) to denote

the variable profit and price adjustment cost functions, respectively.

In our application, we focus on a duopoly industry, N = 2. Consistent with our notation in

previous sections, ũimt denotes the difference in firm i’s payoff between choosing y = 1 and y = 0

—- specifically, the differential profit from setting a promotion price. According to discussion

above:

ũimt = πimt(1, yjmt)− πimt(0, yjmt) + acimt(1, yim,t−1)− acimt(0, yim,t−1)

= αimt + γimt yjmt + βimt yim,t−1,
(44)

with: 
αimt ≡ πimt(1, 0)− πimt(0, 0) + acimt(1, 0)− acimt(0, 0)

γimt ≡ πimt(1, 1)− πimt(0, 1)− πimt(1, 0) + πimt(0, 0)

βimt ≡ acimt(1, 1)− acimt(0, 1)− acimt(1, 0) + acimt(0, 0)

(45)

Here, αimt represents the profit difference when the competitor opts for a high price, γimt captures

the complementarity, or supermodularity, of the variable profit function with respect to the

prices of the two firms, and βimt reflects the supermodularity of the firm’s price adjustment cost
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function with respect to the its prices at two consecutive periods.

For identifying the adjustment cost parameters β, our econometric model imposes the re-

strictions αimt = αim − εimt, γimt = γim, and βimt = βi. This means that demand and marginal

cost functions must remain stable over time, except for an i.i.d. additive shock εimt, and that the

price adjustment cost function should remain stable over time and across markets. Naturally,

the assumption of time-invariance for demand and marginal costs is more plausible with shorter

panel durations.

In this application, the panel data spans more than two years (128 weeks) with weekly

observations. To enhance the plausibility of the time-invariance condition, we partition this long

time series into shorter subperiods, each lasting 8 weeks. Thus, our time-invariance restriction

requires that demand and marginal costs remain constant (up to the i.i.d. shock) within each

8-week period.

4.2 Data and Estimates

The dataset comes from A.C. Nielsen scanner panel data for the ketchup product category in

the geographic market of Sioux Falls, South Dakota. It contains price data from 45 participating

stores and covers a 128-week period from mid-1986 to mid-1988.4 For our analysis, a period is a

week. As mentioned above, we partition the price time of each store into shorter subperiods, each

lasting 8 weeks, and treat each subperiod-store as a different market. The number of markets is

M = 45 ∗ (128/8) = 720.

There are four brands in this market: three national brands, Heinz, Hunt’s, and Del Monte;

and a store brand. Here we focus on competition between the two leading brands, Heinz and

Hunt’s, which account for 69% and 18% of the market, respectively.

Table 4 presents estimates of the price adjustment cost parameters, βHeinz and βHunts, for the

model where firms are forward-looking and the strategic interaction parameters are not restricted
4Our sample comes from Erdem, Imai, and Keane (Erdem, Imai, and Keane). We thank the authors for

sharing the data with us.
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Table 4: Estimates of Price Adjustment Cost Parameters
95% Confidence Intervals

Parameter FE – SS No Unob. Het. Dummy Variables

βHeinz [0.3253 , 0.5215] [0.8145 , 0.8806] [0.6412 , 0.7074]

βHunts [0.2628 , 0.4571] [0.7543 , 0.8173] [0.6167 , 0.6658]

to be zero. In this version of the model, and with Fixed Effects unobserved heterogeneity, the β

parameters are partially identified but not point identified.

We present three sets of 95% confidence interval estimates for the parameters: (1) our suf-

ficient statistics-based bounds method; (2) a bounds method that assumes no time-invariant

unobserved heterogeneity; and (3) a bounds method that accounts for time-invariant unob-

served heterogeneity by including market dummies (i.e., using a dummy variable estimator).

Confidence intervals are computed using the bootstrap inference method of Cox and Shi (2023).

The estimates indicate that failing to account for persistent unobserved heterogeneity, or at-

tempting to control for it using the inconsistent dummy variable approach, leads to a substantial

overestimation of price adjustment costs. Our Fixed Effect-Sufficient Statistics estimates reveal

that price adjustments costs are statistically significant. There is also a small but statistically

insignificant difference in the magnitude of price adjustment costs between the two firms.

5 Conclusions

This paper provides a comprehensive study on the identification of dynamic games with fixed

effects, introducing a flexible framework that accommodates unobserved heterogeneity across

markets and players without imposing parametric or support restrictions. The model accounts

for forward-looking players and multiple equilibria, offering a more robust approach for empirical

researchers studying markets with intertemporal dependencies and strategic decision-making.

A key contribution of this paper is the development of an identification method that extends
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the Conditional Likelihood-Sufficient Statistics approach to models involving multiple equilibria

and partial identification. We demonstrate that there exist sufficient statistics for the lower and

upper bounds of market histories and that they can be combined to achieve partial identification

of structural parameters, thus broadening the applicability of these techniques in dynamic game

settings.

Furthermore, the paper advances the use of functional differencing methods in dynamic

structural models. For certain versions of the model, this approach improves point identification

of structural parameters that remain unidentified under the conditional likelihood approach

alone.

An important outcome of these constructive identification results is the implication for es-

timation methods. Specifically, these results facilitate estimation techniques that avoid the

complex solution of the dynamic game or the computation of present values in players’ dynamic

programming problems. In these fixed effects models, controlling for unobserved heterogeneity

involves differencing out the continuation value component in the players’ intertemporal payoffs.

As a result, estimating dynamic games using these fixed effects methods becomes computation-

ally comparable to estimating a single-agent static fixed effect discrete choice model.

The empirical application of these methods underscores their practical relevance in real-world

market contexts. By analyzing panel data on supermarket prices that follow a High-Low pricing

pattern, we illustrate how the identification results can be applied effectively to estimate firms’

price adjustment costs. This practical demonstration strengthens the theoretical contributions

and provides clear guidelines for future empirical work in dynamic market settings.
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A APPENDIX

A.1 Proof of Proposition 1

(A) Sufficient condition. Multiplying equation (14) times p∗(α|y0) P(y0), integrating over

α, and taking into account that
∫
P(ỹ|y0,α,θ) p∗(α|y0) dα is equal to P(ỹ|y0,θ), we obtain:

∑
y0,ỹ

w (y0, ỹ,θ) P(y0, ỹ | θ) = 0 (46)

Evaluated at the true value of θ, the model probability P(y0, ỹ | θ) becomes the data frequency

P(y0, ỹ). Thus, condition (ii) in Proposition 1 implies the point identification of θ.

(B) Necessary condition. The frequencies P(y0, ỹ) contain all the information in the data

about the vector of structural parameters. Given that we do not impose any restriction on the

weights w (y0, ỹ,θ), condition (ii) in Proposition 1 describes, w.l.o.g., necessary conditions for

the identification of θ. Therefore, we need to establish that condition (i) is necessary to obtain

the system of equations (15) in condition (ii).

We need to prove that, if equation
∑̃
y

w (y0, ỹ,θ) P(ỹ | y0) = 0 holds, then equation (14)

should hold for every value α. The proof is by contradiction.

Suppose that:

a. Equation
∑̃
y

w (y0, ỹ,θ) P(ỹ | y0) = 0 holds for any distribution p∗(α|y0) in the DGP.

b. There is a value α = c and a value of y0 such that equation (15) does not hold:

∑
ỹ

w(y0, ỹ,θ) P (ỹ | y0, c) 6= 0.

We show below that condition (b) implies that there is a density function p∗(α|y0) (in fact, a

continuum of density functions) such that condition (a) does not hold.
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W.l.o.g., consider distributions of α with only two points support, c and c′ with p∗(c|y0) = q.

Define the following function d(y0,α) that measures the extent in which equation (15) is not

satisfied:

d(y0,α) ≡
∑
ỹ

w(y0, ỹ) P (ỹ | y0,α) (47)

Condition (b) implies that d(y0, c) 6= 0. For notational simplicity but w.l.o.g., consider that the

initial condition y0 has binary support {0, 1}. By definition, we have that:

∑
ỹ

w(y0, ỹ) P (ỹ | y0) = q d(y0, c) + (1− q) d(y0, c
′)

By definition, each value d(y0,α) is for a particular value of α, and therefore, it does not depend

on the distribution of α. More specifically, d(y0, c) and d(y0, c
′) do not depend on the value of

q. Therefore, there always exists (a continuum of) values of q such that the right-hand side of

(A.1) is different from zero, and condition (a) does not hold. �

A.2 Proof of Proposition 2

Given that, P (ỹ | s (ỹ) ,α,θ) = P (ỹ | α,θ) /P (s (ỹ) | α,θ), and using the structure of P (ỹ | α,θ)

in equation (13), we have that:

lnP (ỹ | s (ỹ) , β) = c (ỹ)′ θ − ln
(∑

ỹ′:s(ỹ′)=s(ỹ) exp {c (ỹ′)′θ)}
)

(48)

This equation implies that vector s (ỹ) is a sufficient statistic for α. Furthermore, there are

pairs of market histories, say A and B, with s (A) = s (B) and c (A) 6= c (B) that identify the

structural parameters of the model.

Suppose that T = 3, let yt ≡ (y1t, y2t), and consider the following pair of histories: A =

{y0, a, b, y3} and B = {y0, b,a,y3}. We first verify that histories A and B have the same

sufficient statistic s. It is clear that the two histories have the same initial condition y0, and last
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period choices, y3. And it is also clear that the frequency of choices in {a, b, y3} is the same

as in {b,a,y3} such that T (y1,y2)(A) = T (y1,y2)(B) for any pair (y1, y2) ∈ {0, 1}2. Therefore,

s (A) = s (B). Now, for a 6= b we have that c (A) 6= c (B) and the difference between the

log-probabilities of these histories identifies parameters of interest. Note that,



C11(A)− C11(B) = (a1 − b1) (y10 − y13)

C12(A)− C12(B) = (a1 − b1)y20 − (a2 − b2)y13 + a2b1 − a1b2

C21(A)− C21(B) = (a2 − b2)y10 − (a1 − b1)y23 + a1b2 − a2b1

C22(A)− C22(B) = (a2 − b2) (y20 − y23)

(49)

Using the expressions in (49), Table 2 presents four pairs of histories, with each pair identifying

one of the structural parameters. The corresponding parameter that is identified by lnP (A)−

lnP (B). In cases 1 and 2, we identify the parameter βi by keeping constant the choice of the

other player – j 6= i – and comparing the frequency of the history where player i "switches"

– (0, 1, 0, 1) – with the frequency of the history where she "stays" – (0, 0, 1, 1). In cases 3 and

4, we compare the probability of history (0, 0, 0, 1) for player i when the other player chooses

alternative 1 at period t = 2 – (0, 0, 1, 0) – and when this choice is at period t = 1 – (0, 1, 0, 0).

There are other values for y0, a, b, and y3 that identify linear combinations of the several

parameters in θ. �

A.3 Proof of Proposition 3

Consider the same framework as in the proof of Proposition 1: T = 3 and the pair of histories

A = {y0, a, b, y3} and B = {y0, b,a,y3}. In the proof of Proposition 1, we showed that these

histories have the same value for the statistics y0, y3, and T (y1,y2). Now, in this model with

a contemporaneous effect, the sufficient statistic includes C12, so we need to impose additional

conditions on histories A and B such that C12(A) = C12(B). In the histories in Table 2, we

have that C12(A) = C12(B) for cases 1 and 2. Therefore, these two pairs of market histories still
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identify the parameters β1 and β2, respectively, in this dynamic game. We present this result in

Table 3. �

A.4 Proof of Proposition 4

Consider the model with myopic players and one-direction strategic interactions where we assume

there is only market level unobserved heterogeneity, i.e. α1 = α2. Consider the case y0 =

{y10, y20} = {0, 0} and T = 2, such that we have 16 possible choice histories. The choice

probabilities conditional on the market level unobserved heterogeneity can be represented using

the expressions in the following table:

{y11, y21} {y12, y22} P (ỹ) {y11, y21} {y12, y22} P (ỹ)

{0, 0} {0, 0}
(

1
1+A

)4
{0, 0} {1, 0} 1

1+A
1

1+A
A

1+A
1

1+AC

{0, 1} {0, 0} 1
1+A

A
1+A

1
1+AB12

1
1+AB22

{0, 1} {1, 0} 1
1+A

A
1+A

AB12

1+AB12

1
1+ACB22

{1, 0} {0, 0} A
1+A

1
1+AC

1
1+AB11

1
1+A {1, 0} {1, 0} A

1+A
1

1+AC
AB11

1+AB11

1
1+AC

{1, 1} {0, 0} A
1+A

AC
1+AC

1
AB11B12

1
AB22

{1, 1} {1, 0} A
1+A

AC
1+AC

AB11B12

1+AB11B12

1
ACB22

{0, 0} {0, 1}
(

1
1+A

)3
A

1+A {0, 0} {1, 1} 1
1+A

1
1+A

A
1+A

AC
1+AC

{0, 1} {0, 1} 1
1+A

A
1+A

1
1+AB12

AB22

1+AB22
{0, 1} {1, 1} 1

1+A
A

1+A
AB12

1+AB12

ACB22

1+ACB22

{1, 0} {0, 1} A
1+A

1
1+AC

1
1+AB11

A
1+A {1, 0} {1, 1} A

1+A
1

1+AC
AB11

1+AB11

AC
1+AC

{1, 1} {0, 1} A
1+A

AC
1+AC

1
1+AB11B12

AB22

1+AB22
{1, 1} {1, 1} A

1+A
AC

1+AC
AB11B12

1+AB11B12

ACB22

1+ACB22

where A = exp(α), B11 = exp(β1), B12 = exp(λ1), B22 = exp(β2) and C = exp(γ2).

Define g(α,θ) as the minimum common denominator (MCD) of all the ratios in the table
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above. It is simple to verify that this MCD has the following expression.

g(α,θ) ≡ (1+A)4 (1+AC)2 (1+AB11) (1+AB12) (1+AB22) (1+AB11B12) (1+ACB22) (50)

By definition of MCD, we have that P (ỹ|α,θ) g(α,θ) is a polynomial function of A with its

coefficients being polynomials of (B11, B12, B22, C). It is also straightforward to verify that for

any α ∈ R, we have that 1/g(α,θ) ∈ (0, 1]. Taking these properties into account, we can write:

P (ỹ | θ, y0) =

∫
P (ỹ | α,θ, y0) f(α | y0) dα =

∫
P (ỹ | α,θ, y0) g(α,θ) q(α | θ, y0) dα (51)

where f is the distribution of the market level fixed effect, and q(α | θ, y0) = f(α|y0)
g(α,θ)

. Function

q(α | θ, y0) is a positive Borel measure on the support [0,∞). Though q is not a probability

measure, it is simple to construct a probability measure by dividing q by its integral over α,∫
q(α | θ, y0) dα. Since 1/g(α,θ) is finite everywhere on the support of α, this integral exists

and is finite.

Given equation (51) and after some calculations, we can write the following system of 16

equations relating probabilities of choice histories with the vector of parameters θ and moments

in the distribution of A. Using matrix notation, this system is:

Pỹ = G(θ) mA (52)

where Pỹ is the 16× 1 vector with the empirical probabilities of all the possible choice histories;

G(θ) is a 16× 12 matrix with its elements only involving {B11, B12, B22, C}; and mA is a 12× 1

vector with the power moments of the measure q, that is:

mA ≡
∫ (

1 A A2 . . . A11

)′
q(α | θ) dα (53)

Given the system of equations in (52), we can construct a moment condition for θ by finding
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a vector v ∈ R16 – that may depend on θ – such that v′G(θ) = 0. By definition, the collection

of vectors v satisfying this condition is nothing but the elements in the left null space of the

matrix G(θ). Hence, we can just take all elements in a basis that spans the left null space of

G(θ).

In our specific case here with T = 2 and (y10, y20) = (0, 0), the rank of G(θ) is 4, hence the

dimension of the left null space of G(θ) is 4, and we can find 4 linearly independent moment

conditions for θ. In particular, they take the form

−C P(1,0),(0,0) −B11 C P(1,0),(0,1) + C P(0,0),(1,0) + P(0,0),(1,1) = 0 (54)

B22 − 1

B22 − C
(P(1,0),(0,0) − P(0,1),(0,0))−

B22

C
P(1,1),(0,0) −

B12(B22 − 1)

B22(B22 − C)
P(0,1),(0,1)

−B11 −B22 + C −B11C

B22 − C
P(1,0)(0,1) −

B11B12

C
P(1,1),(0,1) + P(1,0),(1,0) + P(1,0),(1,1) = 0

(55)

B22(C − 1)

B22 − C
(P(1,0),(0,0) − P(0,1),(0,0))−B22 P(1,1),(0,0)

+
B12C −B22C +B2

22 −B12B22C

B22(B22 − C)
P(0,1),(0,1)

+
B11B22(C − 1)

B22 − C
P(1,0),(0,1) −B11B12 P(1,1),(0,1) + P(0,1),(1,0) + P(0,1),(1,1) = 0

(56)
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and

B11B12(C − 1)2

C(B22 − C)(B11B12 −B22C)(B22 − 1)
(P(1,0),(0,0) − P(0,1),(0,0))−

B11B12(C − 1)

B22C2 −B11B12C
P(1,1),(0,0)

− B11B12(B12C −B22C −B3
22C +B2

22 +B2
22C

2 − 2B12B22C +B12B
2
22C)

B2
22C(B22 − C)(B11B12 −B22C)(B22 − 1)

P(0,1),(0,1)

+
B2

11B12(C − 1)2

C(B22 − C)(B11B12 −B22C)(B22 − 1)
P(1,0),(0,1)

− B11B12

B22C
P(1,1),(0,1) +

B11(B22C − 1)(B12 −B22C)

B22C(B11B12 −B22C)(B22 − 1)
P(0,1),(1,0) + P(1,1),(1,0) = 0

(57)

For general T > 2, then if we keep (y10, y20) = (0, 0), the matrix G(θ) is going to be of dimension

2T × (8T − 4), which implies we will have 2T − (8T − 4) number of moment conditions to

overidentify the parameter θ.

A.5 Proof of Proposition 5

The identification of β1 can be established by considering two distinct choice histories (y0, y1, y2, y3)

with T = 3. Let A =

0 0 1 1

0 0 0 0

 and B =

0 1 0 1

0 0 0 0

. It can be readily verified that

A and B yield identical values for the sufficient statistics y0, y3, T
(1)
1 , T (1)

2 , C21, and C12. Ad-

ditionally, they share the same value for the statistic C22. However, while C11(A) = 1, we have

C11(B) = 0. This indicates that statistic lnP (A)− lnP (B) identifies β1.

To identify β2, let’s consider two choice histories: A =

1 1 1 1

0 0 1 1

 andB =

1 1 1 1

0 1 0 1

.

In these histories, the values of the sufficient statistics y0, y3, T
(1)
1 , T (1)

2 , C21, and C12 are iden-

tical, as well as the value of C11. However, it is noteworthy that C22(A) = 0 while C22(B) = 1.

Consequently, statistic lnP (A)− lnP (B) identifies β2. �

43



A.6 Proof of Lemma 1

Given the structure for the lower bound – lnPL (ỹ | α,θ) = s′Lgα+ c′Lθ – and for the upper

bound – lnPU (ỹ | α,θ) = s′Ugα + c′Uθ – we have that:

exp {s′Lgα + c′Lθ} ≤ P (ỹ | α) ≤ exp {s′Ugα + c′Uθ} (A.1.1)

Integrating the inequalities in (A.1.1) over the distribution of α we have that the inequalities

still hold and they take the following form:

[∫
exp {s′Lgα} f(α) dα

]
exp {c′Lθ} ≤ P (ỹ) ≤

[∫
exp {s′Ugα} f(α) dα

]
exp {c′Uθ} (A.1.2)

Define h (s) as ln
[∫

exp {s′gα} f(α) dα
]
. Then, we have that:

h (sL) + c′Lβ ≤ lnP (ỹ) ≤ h (sU) + c′Uθ (A.1.3)

A.7 Proof of Lemma 2

For the derivations below, we use the following definitions: σα1(y1t−1, y2t) ≡ − ln[1+exp{α1 +β1

y1t−1 + γ1y2t}] and σα2(y1t, y2t−1) ≡ − ln[1 + exp{α2 + β2 y2t−1 + γ2y1t}], and

s1 (ỹ)′ g1
α ≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(0, 1)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

(A.1)

where ∆σα1(1, 0) ≡ σα1(1, 0)− σα1(0, 0); and ∆σα2(0, 1) ≡ σα2(0, 1)− σα2(0, 0).

We also define the vector of incidental parameters:

g2
α ≡

[
∆σα1(0, 1), ∆σα2(1, 0), ∆2σα1, ∆2σα2

]′
(A.2)
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where ∆σα1(0, 1) ≡ σα1(0, 1)− σα1(0, 0); ∆σα2(1, 0) ≡ σα2(1, 0)− σα2(0, 0); ∆2σα1 ≡ σα1(1, 1)−

σα1(1, 0)− σα1(0, 1)+ σα1(0, 0); and ∆2σα2 ≡ σα2(1, 1)− σα2(1, 0)− σα2(0, 1)+ σα2(0, 0).

And the statistics R(1,1)
1 ≡

∑T
t=1 y1t−1 y1t y2t and R

(1,1)
2 ≡

∑T
t=1 y2t−1 y1t y2t.

(a) Lower Bound lnPL{E,W} (ỹ | α,θ). To obtain this lower bound, we use the bounds L{E,SE}(0, 1|yt−1;α) ≡

[1 − Λ(α1 + β1 y1t−1)] Λ(α2 + β2 y2t−1) and L{W,NW}(1, 0|yt−1;α) ≡ Λ(α1 + β1 y1t−1 + γ1)

[1− Λ(α2 + β2 y2t−1 + γ2)] for the choice probabilities. Then,

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β1 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β1 y1t−1)] + ln Λ (α2 + β2 y2t−1))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β1 y1t−1 + γ1) + ln [1− Λ (α2 + β2 y2t−1 + γ2)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β1 y1t−1 + γ1) + ln Λ (α2 + β2 y2t−1 + γ2))

(A.3)

Using the definitions σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 0) + σα2(0, y2t−1) + α2 + β2 y2t−1]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1 + α2 + β2 y2t−1 + γ2]

(A.4)
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Grouping terms, we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y2t [α2 + β2 y2t−1]

+
T∑
t=1

y1t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1]

+
T∑
t=1

y1ty2t [γ2]

(A.5)

Using the definitions of the statistics T (1)
1 , T (1)

2 ,T (1,1), C11, and C12, we have the following ex-

pression for the lower bound lnPL{E,W} (ỹ | α,θ):

lnP (ỹ | α,θ) ≥ lnPL{E,W} (ỹ | α,θ)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T
(1)
1 ∆σα1(0, 1) + T

(1)
1 ∆σα2(1, 0)

+ C11 ∆2σα1 + C12 ∆2σα2

+ C11 β1 + C22 β2 + T
(1)
1 γ1 + T (1,1) γ2

(A.6)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{E,W} (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
1 , T (1)

1 , C11, C12

]
g2
α

+ C11 β1 + C22 β2 + T
(1)
1 γ1 + T (1,1) γ2

(A.7)

(b) Lower Bound lnPL{S,N} (ỹ | α,θ). To obtain this lower bound, we use the bounds L{S,SE}(0, 1|yt−1;α) ≡

[1 − Λ(α1 + β1 y1t−1 + γ1)] Λ(α2 + β2 y2t−1 + γ2) and L{N,NW}(1, 0|yt−1;α) ≡ Λ(α1 + β1 y1t−1)
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[1− Λ(α2 + β2 y2t−1)]. Then,

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β1 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β1 y1t−1 + γ1)] + ln Λ (α2 + β2 y2t−1 + γ2))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β1 y1t−1) + ln [1− Λ (α2 + β2 y2t−1)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β1 y1t−1 + γ1) + ln Λ (α2 + β2 y2t−1 + γ2))

(A.8)

Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β2 y2t−1 + γ2]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1) + α1 + β1 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1 + α2 + β2 y2t−1 + γ2]

A.9

Grouping terms, we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y1t [α1 + β1 y1t−1]

+
T∑
t=1

y2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β2 y2t−1 + γ2]

+
T∑
t=1

y1ty2t [γ1]

(A.10)

Using the definitions of the statistics T (1)
1 , T (1)

2 ,T (1,1), C11, and C12, we have the following ex-
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pression for the lower bound lnPL{S,N} (ỹ | α,θ):

lnP (ỹ | α,θ) ≥ lnPL{S,N} (ỹ | α,θ)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T
(1)
2 [∆σα1(0, 1) + ∆σα2(1, 0)]

+ C21 ∆2σα1 + C22 ∆2σα2

+ C11 β1 + C22 β2 + T (1,1) γ1 + T
(1)
2 γ2

(A.11)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{S,N} (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
2 , T (1)

2 , C21, C22

]
g2
α

+ C11 β1 + C22 β2 + T (1,1) γ1 + T
(1)
2 γ2

(A.12)

(c) Lower Bound lnPL{E,N} (ỹ | α,θ). To obtain this lower bound, we use the bounds L{E,SE}(0, 1|yt−1;α) ≡

[1−Λ(α1+β1 y1t−1)] Λ(α2+β2 y2t−1) and L{N,NW}(1, 0|yt−1;α) ≡ Λ(α1+β1 y1t−1) [1−Λ(α2+β2

y2t−1)] for the choice probabilities. Then,

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β1 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β1 y1t−1)] + ln Λ (α2 + β2 y2t−1))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β1 y1t−1) + ln [1− Λ (α2 + β2 y2t−1)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β1 y1t−1 + γ1) + ln Λ (α2 + β2 y2t−1 + γ2))

(A.13)
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Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 0) + σα2(0, y2t−1) + α2 + β2 y2t−1]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1) + α1 + β1 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1 + α2 + β2 y2t−1 + γ2]

(A.14)

Grouping terms, we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1ty2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y2t [α2 + β2 y2t−1]

+
T∑
t=1

y1t [α1 + β1 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + γ1 + γ2]

(A.15)

Using the definitions of the statistics T (1)
1 , T (1)

2 ,T (1,1), C11, and C12, we have the following ex-

49



pression for the lower bound lnPL{E,N} (ỹ | α,θ):

lnP (ỹ | α,θ) ≥ lnPL{E,N} (ỹ | α,θ)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T (1,1) [∆σα1(0, 1) + ∆σα2(1, 0)]

+ R
(1,1)
1 ∆2σα1 +R

(1,1)
2 ∆2σα2

+ C11 β1 + C22 β2 + T (1,1) [γ1 + γ2]

(A.16)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{E,N} (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T (1,1), T (1,1), R(1,1)

1 , R(1,1)
2

]
g2
α

+ C11 β1 + C22 β2 + T (1,1) [γ1 + γ2]
(A.17)

(d) Lower Bound lnPL{S,W} (ỹ | α,θ). To obtain this lower bound, we use the bounds L{S,SE}(0, 1|yt−1;α) ≡

[1−Λ(α1 +β1 y1t−1 +γ1)] Λ(α2 +β2 y2t−1 +γ2) and L{W,NW}(1, 0|yt−1;α) ≡ Λ(α1 +β1 y1t−1 +γ1)

[1− Λ(α2 + β2 y2t−1 + γ2)] for the choice probabilities. Then,

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β1 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β1 y1t−1 + γ1)] + ln Λ (α2 + β2 y2t−1 + γ2))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β1 y1t−1 + γ1) + ln [1− Λ (α2 + β2 y2t−1 + γ2)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β1 y1t−1 + γ1) + ln Λ (α2 + β2 y2t−1 + γ2))

(A.18)
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Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β2 y2t−1 + γ2]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1 + α2 + β2 y2t−1 + γ2]

(A.19)

Grouping terms, we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

[σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y2t [α2 + β2 y2t−1 + γ2]

+
T∑
t=1

y1t [α1 + β1 y1t−1 + γ1]

+
T∑
t=1

[y1t + y2t − y1ty2t] [σα1(y1t−1, 1)− σα1(y1t−1, 0) + σα2(1, y2t−1)− σα2(0, y2t−1)]

(A.20)

Using the definitions of the statistics T (1)
1 , T (1)

2 ,T (1,1), C11, and C12, we have the following ex-
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pression for the lower bound lnPL{S,W} (ỹ | α,θ):

lnP (ỹ | α,θ) ≥ lnPL{S,W} (ỹ | α,θ)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) [σα1(1, 0)− σα1(0, 0)] + (y20 − y2T ) [σα2(0, 1)− σα2(0, 0)]

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+
[
T

(1)
1 + T

(1)
2 − T (1,1)

]
[∆σα1(0, 1) + ∆σα2(1, 0)]

+
[
C11 + C21 −R(1,1)

1

]
∆2σα1 +

[
C12 + C22 −R(1,1)

2

]
∆2σα2

+ C11 β1 + C22 β2 + T
(1)
1 γ1 + T

(1)
2 γ2

(A.21)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{S,W} (ỹ | α,θ) = s1 (ỹ)′ g1
α

+
[
T

(1)
1 + T

(1)
2 − T (1,1), T (1)

1 + T
(1)
2 − T (1,1), C11 + C21 −R(1,1)

1 , C12 + C22 −R(1,1)
2

]
g2
α

+ C11 β1 + C22 β2 + T
(1)
1 γ1 + T

(1)
2 γ2

(A.22)

(e) Upper Bound lnPU (ỹ | α,θ). For the upper bounds, we use the bounds for the choice prob-

abilities U(0, 1|yt−1;α) ≡ [1− Λ (α1 + β1 y1t−1 + γ1)] Λ (α2 + β2 y2t−1) and U(1, 0|yt−1;α) ≡

Λ (α1 + β1 y1t−1) [1− Λ (α2 + β2 y2t−1 + γ2)]. Then,

lnP (ỹ | α,θ) ≤ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β1 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β1 y1t−1 + γ1)] + ln Λ (α2 + β2 y2t−1))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β1 y1t−1) + ln [1− Λ (α2 + β2 y2t−1 + γ2)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β1 y1t−1 + γ1) + ln Λ (α2 + β2 y2t−1 + γ2))

(A.23)
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Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α,θ) ≤ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 1) + σα2(0, y2t−1) + α2 + β2 y2t−1]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 0) + σα2(1, y2t−1) + α1 + β1 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1 + α2 + β2 y2t−1 + γ2]

(A.24)

Grouping terms, we have:

lnP (ỹ | α,θ) ≤ ln pα (y10, y20)

+
T∑
t=1

(1− y2t) σα1(y1t−1, 0) + (1− y1t) σα2(0, y2t−1)

+
T∑
t=1

y2t σα1(y1t−1, 1) + y2t [α2 + β2 y2t−1]

+
T∑
t=1

y1t σα2(1, y2t−1) + y1t [α1 + β1 y1t−1]

+
T∑
t=1

y1ty2t [γ1 + γ2]

(A.25)

Using the definitions of the statistics T (1)
1 , T (1)

2 ,T (1,1), C11, and C12, we have the following ex-
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pression for the upper bound lnPU (ỹ | α,θ):

lnP (ỹ | α,θ) ≤ lnPU (ỹ | α,θ)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T
(1)
2 ∆σα1(0, 1) + T

(1)
1 ∆σα2(1, 0)

+ C21 ∆2σα1 + C12 ∆2σα2

+ C11 β1 + C22 β2 + T (1,1) [γ1 + γ2]

(A.26)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPU (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
2 , T (1)

1 , C21, C12

]
g2
α

+ C11 β1 + C22 β2 + T (1,1) [γ1 + γ2]
(A.27)
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A.8 Proof of Proposition 8

Denote the following terms:

σα1(y1t−1, y2t) = − ln{1 + exp(α̃1 + β1y1t−1 + γ̃1αy2t)}

σα2(y1t, y2t−1) = − ln{1 + exp(α̃2 + β2y2t−1 + γ̃2αy1t}

∆σα1(1, 0) = σα1(1, 0)− σα1(0, 0)

∆σα1(0, 1) = σα1(0, 1)− σα1(0, 0)

∆σα2(1, 0) = σα2(1, 0)− σα2(0, 0)

∆σα2(0, 1) = σα2(0, 1)− σα2(0, 0)

∆2σα1 = σα1(1, 1)− σα1(1, 0)− σα1(0, 1) + σα1(0, 0)

∆2σα2 = σα2(1, 1)− σα2(1, 0)− σα2(0, 1) + σα2(0, 0)

Under the conditions of Proposition 8, we have (i) ∆σα1(1, 0) ≤ 0, (ii) ∆σα1(0, 1) ≥ 0, (iii)

∆σα2(1, 0) ≥ 0 and ∆σα2(0, 1) ≤ 0, (iv) ∆2σα1 ≥ 0 and, (v) ∆2σα2 ≥ 0. For each choice history
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ỹ, we have the following lower and upper bound:

lnPU(ỹ) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1,1), T (1,1)]′g2α + [T
(1)
2 , T

(1)
1 , C21, C12]g

3
α

+ C11β1 + C22β2

lnPL{E,W}(ỹ) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1)
1 , T (1,1)]′g2α + [T

(1)
1 , T

(1)
1 , C11, C12]g

3
α

+ C11β1 + C22β2

lnPL{S,N}(ỹ) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1,1), T
(1)
2 ]′g2α + [T

(1)
2 , T

(1)
2 , C21, C22]g

3
α

+ C11β1 + C22β2

lnPL{E,N}(ỹ) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1,1), T (1,1)]′g2α

+ [T (1,1), T (1,1), R
(1,1)
1 , R

(1,1)
2 ]g3α

+ C11β1 + C22β2

lnPL{S,W}(ỹ) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1)
1 , T

(1)
2 ]′g2α

+ [T
(1)
1 + T

(1)
2 − T (1,1), T

(1)
1 + T

(1)
2 − T (1,1), C11 + C21 −R(1,1)

1 , C12 + C22 −R(1,1)
2 ]g3α

+ C11β1 + C22β2

where s1(ỹ) = [T, T
(1)
1 , T

(1)
2 ], g1α = [σα1(0, 0) + σα2(0, 0), α1 + ∆σα1(1, 0), α2 + ∆σα2(0, 1)]′, g2α =

[∆σα1(1, 0),∆σα2(0, 1), γ̃1α, γ̃2α]′, and g3α = [∆σα1(0, 1),∆σα2(1, 0),∆2σα1 ,∆
2σα2 ]

′

The grouping of the gjα with j = {1, 2, 3} terms are such that terms in g1α can be any sign

for {α1, α2} ∈ R2. Terms in g2α are all negative. And all terms in g3α are positive.

We first present bounds constructed using the differences of the logrithm of the probability

of a pair of choice history that satisfy certain conditions, i.e. ln P (A)
P (B)

= lnP (A) − lnP (B). We

then generalize to bounds constructed from
∑
λ∈SU P (λ)∑
λ′∈SL P (λ′)

, where the set SU and SL are some

set of choice histories (not necessarily a singleton) that satisfy certain conditions. We focus on

upper bound, because the result of lower bound from such sequences are providing symmetric

information (i.e. the lower bound of P (A)
P (B)

is providing equivalent information from the upper
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bound of P (B)
P (A)

).

For a pair of choice histroies A and B, define

∆(A,B, β1, β2) = lnP (A)− lnP (B)− [C11(A)− C11(B)]β1 − [C22(A)− C22(B)]β2

Define the statistics s1(ỹ) = [T, T
(1)
1 , T

(1)
2 ]

[1] Using upper bound and L{E,W}:

∆(A,B, β1, β2) ≤ 0

provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A) − y20(B), (iii) s1(A) =

s1(B), (iv) element-wise, [y10(A) − y1T (A), y20(A) − y2T (A), T (1,1)(A), T (1,1)(A)] − [y10(B) −

y1T (B), y20(B)−y2T (B), T
(1)
1 (B), T (1,1)(B)] ≥ 0, (v) element-wise, [T

(1)
2 (A), T

(1)
1 (A), S21(A), S12(A)]−

[T
(1)
1 (B), T

(1)
1 (B), S11(B), S12(B)] ≤ 0.

[2] Using upper bound and L{S,N}:

∆(A,B, β1, β2) ≤ 0

provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A) − y20(B), (iii) s1(A) =

s1(B), (iv) element-wise, [y10(A) − y1T (A), y20(A) − y2T (A), T (1,1)(A), T (1,1)(A)] − [y10(B) −

y1T (B), y20(B)−y2T (B), T (1,1)(B), T
(1)
2 (B)] ≥ 0, (v) element-wise, [T

(1)
2 (A), T

(1)
1 (A), C21(A), C12(A)]−

[T
(1)
2 (B), T

(1)
2 (B), C21(B), C22(B)] ≤ 0.

[3] Using upper bound and L{E,N}:

∆(A,B, β1, β2) ≤ 0

provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A) − y20(B), (iii) s1(A) =

s1(B), (iv) element-wise, [y10(A) − y1T (A), y20(A) − y2T (A), T (1,1)(A), T (1,1)(A)] − [y10(B) −
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y1T (B), y20(B)−y2T (B), T (1,1)(B), T (1,1)(B)] ≥ 0, (v) element-wise, [T
(1)
2 (A), T

(1)
1 (A), C21(A), C12(A)]−

[T (1,1)(B), T (1,1)(B), R
(1,1)
1 (B), R

(1,1)
2 (B)] ≤ 0.

[4] Using upper bound and L{S,W}:

∆(A,B, β1, β2) ≤ 0

provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A) − y20(B), (iii) s1(A) =

s1(B), (iv) element-wise, [y10(A) − y1T (A), y20(A) − y2T (A), T (1,1)(A), T (1,1)(A)] − [y10(B) −

y1T (B), y20(B)−y2T (B), T
(1)
1 (B), T

(1)
2 (B)] ≥ 0, (v) element-wise, [T

(1)
2 (A), T

(1)
1 (A), S21(A), S12(A)]−

[T
(1)
1 (B)+T

(1)
2 (B)−T (1,1)(B), T

(1)
1 (B)+T

(1)
2 (B)−T (1,1)(B), C11(B)+C21(B)−R(1,1)

1 (B), C12(B)+

C22(B)−R(1,1)
2 (B)] ≤ 0.

For each combination of the upper and lower bound, the conditions (i) and (ii) imposed on A

and B makes sure to cancel out lnPα(y10, y20), and condition (iii) makes sure to cancel the terms

in front of g1α that we can not determine its sign and condition. Condition (iv) takes advantage

of the fact that all elements in g2α ≤ 0 under the conditions of Proposition 8 those terms can be

replaced by 0 in the upper bound of lnP (A)− lnP (B). Finally, condition (v) takes advantage

of the fact that all elements in g3α ≥ 0 under the conditions of Proposition 8 such that those

terms can be replaced by 0 in the upper bound of lnP (A)− lnP (B). �
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