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1 Introduction

Dynamic games are valuable tools for analyzing economic and social phenomena involving in-
tertemporal agent interactions. The structural estimation of dynamic games has received con-
siderable attention, particularly in the study of oligopoly competition dynamics (Ericson and
Pakes, 1995) with empirical applications across various industries.1 Furthermore, econometric
models of dynamic games have been applied to study dynamic interactions within households
(Eckstein and Lifshitz, 2015), long-term care decisions (Sovinsky and Stern, 2016), electoral
competition (Sieg and Yoon, 2017), and the ratification of international treaties (Wagner, 2016)
among other topics. Moreover, a substantial body of literature exists on dynamic discrete choice
models with social interactions, wherein agents do not exhibit forward-looking behavior (Brock
and Durlauf, 2007, Blume, Brock, Durlauf, and Ioannides, 2011).

In dynamic games, the model predictions heavily rely on two types of structural parameters:
those that capture dynamic state dependence, encompassing factors like costs of switching,
adjustment, investment, or entry and exit (referred to as the dynamic part of the parameters),
and those that represent the impact of other players’ actions on a player’s payoff, arising from
competition, spillovers, peer effects, or social interactions (referred to as the game part of the
structure). The identification of these parameters critically depends on the model’s assumptions
concerning the stochastic properties of variables known to the players but unobservable to the
researcher, which we can refer to as the specification of unobserved heterogeneity.

In dynamic models, it is widely acknowledged that neglecting or misspecifying persistent
unobserved heterogeneity can result in significant biases when estimating structural parameters
that capture genuine dynamics (Heckman, 1981). The presence of spurious dynamics due to un-
observed heterogeneity can become entangled with true dynamics arising from state dependence.
Similarly, within the literature on game estimation, it is well-known that disregarding correlated
unobserved heterogeneity across players can lead to substantial biases in estimating structural
parameters that capture strategic or social interactions among players (Bresnahan and Reiss,
1991, Blume, Brock, Durlauf, and Ioannides, 2011). This common unobserved heterogeneity can
become confounded with strategic, social, or peer effects.

In this paper, we investigate the identification of dynamic games in empirical applications
1Recent applications include industries such as automobiles (Hashmi and Biesebroeck, 2016), airlines (Aguir-

regabiria and Ho, 2012), pharmaceuticals (Ching, 2010, Gallant, Hong, and Khwaja, 2018), procurement auctions
(Jofre-Bonet and Pesendorfer, 2003, Groeger, 2014), construction materials (Ryan, 2012, Collard-Wexler, 2013),
hotels (Suzuki, 2013), microprocessors (Goettler and Gordon, 2011), hard drives (Igami, 2017), commercial ra-
dio (Sweeting, 2013, Jeziorski, 2014), movies (Einav, 2010, Takahashi, 2015), medical services (Dunne, Klimek,
Roberts, and Xu, 2013), shipbuilding (Kalouptsidi, 2014), fishing (Huang and Smith, 2014), and retail stores
(Aguirregabiria and Mira, 2007, Igami and Yang, 2016), among others.
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where players are observed playing the game across a large number of markets and a small
number of periods. We study the identification of these models when there exists time-invariant
unobserved heterogeneity at the market or player-market level which follows a nonparametric
distribution, thus adhering to a fixed effects panel data model.

We expand the application of the fixed effect conditional likelihood method, initially intro-
duced by Cox (1958), Rasch (1961), Andersen (1970), and Chamberlain (1980), to dynamic
discrete choice games. This method involves deriving sufficient statistics for the incidental pa-
rameters (representing the fixed effects) and maximizing the likelihood function of the data
conditional on these statistics. One notable advantage of this approach is its robustness against
misspecification of the distribution of unobserved heterogeneity, ensuring the robust estimation
of structural parameters. Furthermore, this method offers computational simplicity, adding to
its appeal.

For those versions of the model where the conditional likelihood method fails to identify all
the structural parameters in our model, we employ a functional differencing method as proposed
by Bonhomme, (2012). Specifically, we utilize a variant of the functional differencing technique
recently introduced by Dobronyi, Gu, and Kim (2021) which shares similarities with the approach
adopted by Honoré and Weidner (2020). This approach is based on deriving a comprehensive
set of moment conditions and moment inequalities that are implied by the fixed effects dynamic
model. Through our analysis, we demonstrate that this methodology successfully identifies
certain crucial parameters that remain unidentified when employing the conditional likelihood
method. By incorporating the functional differencing method into our study, we enhance the
identification of important structural parameters that would have otherwise been overlooked.

Our paper contributes to the literature on the identification and estimation of dynamic games
with unobserved heterogeneity. All previous studies in this field adopted a random effects ap-
proach, employing a finite mixture specification of the unobserved heterogeneity, and imposing
restrictions on the initial conditions, e.g., Aguirregabiria and Mira, (2007), Kasahara and Shi-
motsu (2009), Arcidiacono and Miller (2011), among others. In contrast, our research focuses
on the identification of structural parameters without enforcing restrictions on the distribution
of the unobserved heterogeneity or the initial conditions. By relaxing these assumptions, we
provide a more flexible framework for studying dynamic games with unobserved heterogeneity.

This paper also contributes to the literature on the identification and estimation of struc-
tural dynamic discrete choice models with fixed effects. We build upon and extend recent work
by Aguirregabiria, Gu, and Luo (2021) who investigate the identification of single-agent dy-
namic structural models. Extending the identification to games with multiple equilibria is not a
straightforward task because these game models do not yield a unique prediction for the prob-
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ability of a choice history; instead, they provide bounds. However, we develop a method for
obtaining sufficient statistics for the contribution of the incidental parameters to these bounds.
Moreover, we show that this approach leads to the partial identification of the structural pa-
rameters. To the best of our knowledge, our paper represents the first attempt to combine the
fixed effects - sufficient statistics approach with bounds and partial identification.

Our paper relates to Honoré and Kyriazidou (2019) and Honoré and De Paula (2021) who
present identification results for some panel data bivariate dynamic logit models. We extend their
findings by delving into models that incorporate contemporaneous effects between dependent
variables, forward-looking players, and multiple equilibria.

The rest of the paper is organized as follows. Section 2 describes the model and assumptions.
Section 3 presents our identification results. We distinguish two versions of the model depending
on whether players are myopic (section 3.1) or forward-looking (section 3.2). In section 4, we
illustrate our identification results with an empirical application. We summarize and conclude
in section 5.

2 Model

2.1 Framework

In our study, we specifically focus on two-player binary choice games. However, in Section 2.5,
we discuss various extensions that encompass scenarios with more than two choices or involve
more than two players. For our analysis, we assign indices i and j to represent the two players,
such that i, j ∈ {1, 2}. To capture the temporal dimension, we consider discrete-time and utilize
the index t, which ranges from 1 to T , to represent different periods. The game between the two
players takes place within a designated market. The definition of a market may vary depending
on the specific empirical application and can refer to a geographic location, a school, a family,
an industry, an election, and so on. To denote different markets, we employ the index m, with
m belonging to the set {1, 2, ...,M}. For the moment, for notational simplicity, we omit the
market subindex.

In each period t, the players in the game make a binary decision, which we represent using
the variables y1t ∈ {0, 1} and y2t ∈ {0, 1}. The objective of each player is to maximize their
expected and discounted intertemporal payoffs. This is expressed as: Et [

∑∞
s=0 δ

s
i Ui,t+s]. Here,

δi ∈ [0, 1] represents the discount factor of player i in market m. Uit represents the one-period
payoff for player i. The utility function has the following structure.

Uit = ui (yit, yjt, yi,t−1, yj,t−1) + εit (yit) . (1)
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ui(·) is a utility function that depends on the current and previous actions of the two players.
The arguments (yit, yjt) capture contemporaneous strategic effects between the players, indi-
cating how the choice of one player, j, may influence the payoff of the other player, i, in the
same period. The arguments (yi,t−1, yj,t−1) capture state dependence with respect to the lagged
value of the players’ actions. They represent factors such as adjustment costs or switching costs,
which influence a player’s current decision based on their previous action. The variables εit(0)

and εit(1) are observable to the players but unobservable to the researcher. They are indepen-
dently and identically distributed over (i,m, t, yi), following a type I Extreme Value distribution.
These unobservable terms capture the random shocks or idiosyncratic components that affect
the players’ payoffs and choices in each period.

We consider games of complete information. Following the majority of the empirical literature
on dynamic discrete games, we assume that players’ decisions are derived from a Markov Perfect
Equilibrium (MPE). This assumption implies that players’ strategies solely depend on state
variables that are relevant to their payoffs. In any given period t, player i bases her action
on the variables known to her which have an impact on her own payoff or the payoffs of other
players at period t. The vector of state variables that are relevant to the payoffs in this game
is denoted as (yt−1, εt), where yt−1 ≡ (y1,t−1, y2,t−1) and εt ≡ (ε1t(0), ε1t(1), ε2t(0), ε2t(1)). A
strategy function for player i can be represented as σi(yt−1, εt).

In this dynamic game, a Markov Perfect Equilibrium (MPE) consists of a pair of strategy
functions, one for each player, such that a player’s strategy maximizes her intertemporal payoff at
any state of the game while taking the other player’s strategy function as given. Let V σ

i (yt−1, εt)

represents player i’s value function for a given strategy of player j. The decision problem for
player i can be formulated using the following Bellman equation:2

V σ
i (yt−1, εt) = max

yit∈{0,1}

{
ui (yit, yjt,yt−1) + εit(yit) + δi

∫
V σ
i (yt, εt+1) g(εt+1) dεt+1

}
(2)

The integral accounts for the expectation over εt+1, and g(εt+1) is the density function of εt+1.
The model can be characterized by the following system of best-response equations:

y1t = 1
{
ũ1 (y2t,yt−1) + Ṽ1 (y2t)− ε1t ≥ 0

}
y2t = 1

{
ũ2 (y1t,yt−1) + Ṽ2 (y1t)− ε2t ≥ 0

} (3)

with εit ≡ εit(0) − εit(1). Here, ũi (yjt,yt−1) represents the utility difference ui (1, yjt,yt−1) −
2This Bellman equation accounts for the fact that the other player’s action, yjt, is equal to σj(yt−1, εt), which

is known to player i given the state (yt−1, εt).
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ui (0, yjt,yt−1). The term Ṽi (yjt) captures the difference in continuation values:

Ṽi (yjt) ≡ δi

∫ (
V σ
i (1, yjt, εt+1)− V σ

i (0, yjt, εt+1)
)
g(εt+1) dεt+1 (4)

Given (yt−1, εt), the model assumes that the realized values (y1t, y2t) represent a solution to the
system of equations presented in (3).

2.2 Structural and incidental parameters

Let us now provide the specification of the utility function ui. To differentiate between incidental
and interest parameters, we explicitly introduce the market subindex m. The parameters that
vary across markets are considered unrestricted and are treated as fixed effects or incidental
parameters. Our focus lies in examining the identification of parameters that vary across players
but are assumed to be constant across markets.

The utility difference ũim(yjmt,ym,t−1) ≡ uim(1, yjmt,ym,t−1) − uim(0, yjmt,ym,t−1) has the
following structure:

ũimt = αim + βi yim,t−1 + γi yjmt + λi yjm,t−1. (5)

Here, αim captures unobservable market and player characteristics that are not observable to the
researcher. To account for these unobservable factors, we define the vector αm ≡ (α1m, α2m),
which represents the fixed effects specific to market m. These fixed effects are referred to as
the incidental parameters of the model. The term βiyim,t−1 captures state dependence with
respect to the lagged value of the player’s action. It incorporates factors such as adjustment
costs or switching costs, influencing a player’s current decision based on their previous action.
The term γiyjmt captures contemporaneous strategic effects between the players’ actions. It
accounts for how the choice of one player, j, may influence the payoff of the other player, i,
in the same period. The term λiyjm,t−1 represents state dependence with respect to the lagged
value of the other player’s action. It captures the dynamic strategic interactions between the
two players, reflecting how a player’s previous choice may have an impact on the other player’s
payoff. Together, these components form the structure of the model, incorporating fixed effects,
contemporaneous strategic effects, and state dependence, to capture the dynamics of the two-
player binary choice game.

By substituting the expression for the utility difference from equation (5) into the best
response equations in (3), we obtain the system of equations defining the econometric model in
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this paper:
y1mt = 1

{
α1m + β1 y1m,t−1 + γ1 y2mt + λ1 y2m,t−1 + Ṽ1m (y2mt)− ε1mt ≥ 0

}
y2mt = 1

{
α2m + β2 y2m,t−1 + γ2 y1mt + λ2 y1m,t−1 + Ṽ2m (y1mt)− ε2mt ≥ 0

} (6)

It is important to note that the continuation values Ṽim(0) and Ṽim(1) are also incidental pa-
rameters since they are functions of αm

2.3 Multiple equilibria and probabilities of game outcomes

The model exhibits two forms of the multiple equilibrium problem. First, given the model’s
primitives, there can exist multiple strategy functions, denoted as σ1m(.) and σ2m(.), that satisfy
the system of best response restrictions characterizing the MPE of the model. Second, even if
we fix the continuation value functions, Ṽ1m(.) and Ṽ2m(.), there are specific combinations of the
state variables, ym,t−1 and εmt, for which the model generates multiple predictions regarding
the best response values of (y1mt, y2mt). This issue resembles the problem of multiple equilibria
observed in static games of complete information, as documented in seminal studies such as
Bresnahan and Reiss (1991) and Tamer (2003).

The model implies a partition of the space of the unobservables (ε1t, ε2t) such that each region
in the partition corresponds to a prediction (or multiple predictions) about players’ choices.
The form of this partition depends on the sign of the parameters γ1 and γ2. For the sake of
concreteness, here we assume that players’ decisions are strategic substitutes such that γ1 ≤ 0

and γ2 ≤ 0. Figure 1 represents the threshold values for ε1t and ε2t that define this partition. We
use this figure to describe the regions in the space of (ε1t, ε2t) associated with different outcomes
(y1t, y2t).

For each player i, we can define two threshold values of variable εit: a lower threshold eLit and
an upper threshold eUit with the following definitions:

eLit ≡ αi + Ṽi(1) + γi + βi yi,t−1 + λi yj,t−1

eUit ≡ αi + Ṽi(0) + βi yi,t−1 + λi yj,t−1

(7)

These four lines in the space of (ε1t, ε2t): two vertical lines associated to values eL1t and eU1t, and
two horizontal lines associated to values eL2t and eU2t. These four lines divide the space of (ε1t, ε2t)

into nine quadrangles. It is convenient to label these quadrangles using the cardinal directions,

6



i.e., Northwest (NW), North (N), Northeast (NE), etc.
The outcome of the game is (y1t, y2t) = (1, 1) if and only if ε1t ≤ eL1t and ε2t ≤ eL2t

which corresponds to the Southwest (SW) quadrangle. Similarly, the outcome of the game
is (y1t, y2t) = (0, 0) if and only if ε1t ≥ eU1t and ε2t ≥ eU2t which corresponds to the North-
east (NE) quadrangle. Therefore, the model provides unique predictions for the probabilities
P((y1t, y2t) = (1, 1)|yt−1,α) and P((y1t, y2t) = (0, 0)|yt−1,α). That is,

P(0, 0 | yt−1,α) =
1

1 + exp {eU1t}
1

1 + exp {eU2t}

P(1, 1 | yt−1,α) =
exp

{
eL1t
}

1 + exp {eL1t}
exp

{
eL2t
}

1 + exp {eL2t}

(8)

Figure 1: Regions in the Space of (ε1, ε2)
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The quadrangle in the center of Figure 1 – labeled as O – is associated with two possible
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outcomes or equilibria of the game: (y1t, y2t) = (1, 0) and (y1t, y2t) = (0, 1). This region with
multiple equilibria implies that the model does not have unique predictions on the probabilities
P(0, 1|yt−1,α) and P (1, 0|yt−1,α). However, the model establishes bounds on the values of these
probabilities.

The upper bound to the probability of outcome (1, 0) is given by the region up and to the
left of the blue right angle: quadrangles NW , N , W , and 0. The upper bound to the probability
of outcome (0, 1) is associated with the region down and to the right of the red right angle:
quadrangles 0, E, S, and SE. These bounds have a logit structure: they are the product of two
logit probabilities: 

U(0, 1|yt−1,α) ≡ 1

1 + exp {eL1t}
exp

{
eU2t
}

1 + exp {eU2t}

U(1, 0|yt−1,α) ≡
exp

{
eU1t
}

1 + exp {eU1t}
1

1 + exp {eL2t}

(9)

The lower bound to the probability of outcome (0, 1) is given by regions {E,E, SE}: the
upper bound excluding quadrangle O where multiple equilibria exist. Unfortunately, this sharp
lower bound does not have a logit structure. Without the logit structure, it is not possible to
derive sufficient statistics for α (Chamberlain, 2010). For this reason, we use non-sharp lower
bounds which have a logit structure. We consider two different lower bounds: a lower bound
using region {E, SE}, and another lower bound using region {S, SE}. These regions imply the
following (logit) lower bounds for the probability of outcome (0, 1):

L{E,SE}(0, 1|yt−1,α) ≡ 1

1 + exp {eU1t}
exp

{
eU2t
}

1 + exp {eU2t}

L{S,SE}(0, 1|yt−1,α) ≡ 1

1 + exp {eL1t}
exp

{
eL2t
}

1 + exp {eL2t}

(10)

The lower bound to the probability of outcome (1, 0) is given by regions {NW,N,W}: the
region for the upper bound excluding quadrangle O. Similarly, as before, the probability of this
sharp region does not have a logit structure. We use non-sharp lower bounds with a logit struc-
ture: a lower bound using region {NW,W}, and another lower bound using region {NW,N}.
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These regions imply the following (logit) lower bounds for the probability of outcome (1, 0):
L{NW,SW}(1, 0|yt−1,α) ≡

exp
{
eL1t
}

1 + exp {eL1t}
1

1 + exp {eL2t}

L{NW,N}(1, 0|yt−1,α) ≡
exp

{
eU1t
}

1 + exp {eLUt}
1

1 + exp {eU2t}

(11)

2.4 Different versions of the model

We classify different versions of the model based on three criteria that are essential for our
identification results.

a. Myopic versus forward-looking players: A player is considered myopic if her discount
factor δi is zero, indicating a lack of forward-looking behavior. On the other hand, if a player
has a non-zero discount factor, she is classified as forward-looking. In the case of myopic players,
the continuation value Ṽi is zero.

b. Contemporaneous strategic interactions: The presence and nature of contemporaneous
strategic interactions in the game depend on the values of parameters γ1 and γ2. Specifically,
the game can exhibit two-direction interactions if both γ1 and γ2 are non-zero. If one of these
parameters is zero, the interactions become one-directional. Lastly, if both parameters are zero,
there are no contemporaneous strategic interactions between the players.

b. Sequential versus simultaneous moves: Players can make their choices, y1t and y2t, either
simultaneously or sequentially in each period t. The choice between sequential and simultaneous
moves affects the set of equilibria that the model exhibits. The models without or with one-
direct contemporaneous interactions have a unique equilibrium, such that having sequential
or simultaneous moves does not affect the equilibrium outcome. In contrast, this assumption
matters in a game with two-direction interactions. In the case of simultaneous moves, the
model has multiple equilibria as described earlier. In a game with sequential moves, a unique
equilibrium exists. For instance, in a sequential move game where player 1 moves first, if we are
in region 0 of Figure 1, the outcome (1, 0) is the only equilibrium (known as Subgame Perfect
Nash equilibrium) for that specific region of (ε1t, ε2t). Player 1 knows that if she chooses y1t = 1,
player 2 will choose y2t = 0, and if she chooses y1t = 0, player 2 will choose y2t = 1. Consequently,
player 1’s choice determines the selection of either equilibrium (0, 1) or (1, 0). Player 1 chooses
the equilibrium that maximizes her profit. With γ1 ≤ 0, the equilibrium that yields the highest
profit for player 1 is (1, 0). Therefore, in the sequential move game, region 0 in the (ε1t, ε2t)

space is uniquely associated with outcome (1, 0).
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By considering these criteria, we can distinguish different versions of the model and explore
their implications for the identification of the structural parameters.

Table 1
Different Models and Summary of Identification Results

No Contemporaneous One-Direction Two-Direction Two-Direction
Interactions Interactions Interactions Interactions
γ1 = γ2 = 0 γ1 = 0 Sequential Move Simultaneous Move

MYOPIC PLAYERS

Point iden. β1, β2, λ1, λ2 Point iden. β1, β2, λ1, γ2 Point iden. β1, β2 Partial iden. β1, β2, γ1, γ2
Partial iden. γ1, γ2

FORWARD-LOOKING PLAYERS

Point iden. β1, β2 Point iden. β1, β2 Point iden. β1, β2 Partial iden. β1, β2
Partial iden. γ2

Table 1 provides an overview of the various versions of the model examined in this paper
and summarizes the identification results. The table highlights several key patterns emerging
from our findings. First, we observe that point identification of the dynamic parameters β1
and β2 is more general compared to the identification of strategic interactions γ1 and γ2. This
implies that we can obtain precise estimates for the dynamic parameters in a broader range of
scenarios. Second, we can achieve point identification only by imposing restrictions related to
myopic behavior, sequential moves, or the nature of strategic interactions. Third, it is noteworthy
that under the assumption of sequential moves, we achieve point identification for the dynamic
parameters β without the need to restrict players’ discount factors δ or strategic parameters γ.
This finding suggests that the sequential move framework alone can provide valuable information
for identifying dynamic parameters.

Overall, Table 1 highlights the varying identification outcomes across different versions of the
model and emphasizes the significance of incorporating specific assumptions to achieve precise
estimates for the parameters of interest.
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2.5 Extensions of the model

a. Strictly exogenous state variables xit.

b. Duration dependence.

c. Multinomial choice.

d. More than two players.

3 Identification

The sampling framework involves a random sample of M markets. Within each market, the
data consists of the observed sequence of choices made between periods 1 and T , as well as the
initial conditions (y1m0, y2m0). The number of markets M is large and T is small. To simplify
notation, we will omit the market subindex m for the remainder of this section. To represent
the complete history of choices within a market, we use the vector ỹ ≡ (y1t, y2t : t = 0, 1, ..., T ).

We use θ to represent the vector of structural parameters (β1, β2, γ1, γ2, λ1, λ2), and α to
represent the incidental parameters or fixed effects. The model is a fixed effects model in the
sense that the joint probability distribution of the incidental parameters and the initial conditions
(y10, y20) is nonparametrically specified. We are interested in the identification of the vector of
structural parameters θ

3.1 Myopic players

3.1.1 Model with no contemporaneous strategic interactions

Consider the myopic model (i.e., Ṽ1t = Ṽ2t = 0) under the condition that γ1 = γ2 = 0. The best
response equations for this model are:

y1t = 1 {α1 + β1 y1t−1 + λ1 y2t−1 − ε1t ≥ 0}

y2t = 1 {α2 + β2 y2t−1 + λ2 y1t−1 − ε2t ≥ 0}
(12)

This is an autoregressive bivariate logit model. Narendranthan, Nickell, and Metcalf (1985)
consider this model in their study of the joint dynamics of unemployment and sickness. They
present a proof for the identification of the parameters using the same conditional likelihood
approach as in our paper.3 Consequently, the identification of this model is a well-established

3See Honoré and Kyriazidou (2019) and Honoré and De Paula (2021) for their recent analysis of this model.
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result in the literature. We include this result as it serves as a straightforward example for
introducing notation and ensuring comprehensiveness.

The model implies the following expression for the probability of a market history:

P (ỹ | α,θ) =
2∏
i=1

T∏
t=1

exp { yit [αi + βi yit−1 + λi yjt−1] }
1 + exp {αi + βi yit− + λi yjt−1}

pα (y10, y20) (13)

where pα (y10, y20) represents the probability of the initial condition given α. The logit model
possesses a crucial property that enables an additive separability of the log-likelihood with
respect to the incidental parameters α and the structural parameters θ. We now illustrate this
separability and its significance in the identification results.

Define, for i ∈ {1, 2}, function σαi (y1, y2) ≡ − ln[1 + exp {αi + βi y1 + λi y2}], and let
σα (y1, y2) ≡ σα1 (y1, y2) + σα2 (y1, y2). Given a choice history ỹ, define the statistics:

• T
(1)
i ≡

∑T
t=1 yit is the number of times that player i chooses alternative 1.

• T (y1,y2) ≡
∑T

t=1 1{(y1t, y2t) = (y1, y2)} is the number of times the two players choose (y1, y2).

• C(y1,y2) ≡
∑T

t=1 1{(y1t, y2,t−1) = (y1, y2)} is the number of times that player 1 chooses
alternative y1 given that player 2 chose alternative y2 at previous period.

Then, the logarithm of the probability of a market history can be written as:

lnP (ỹ | α,θ) = ln pα (y10, y20) + α1 T
(1)
1 + α2 T

(1)
2

+
∑
y1,y2

σα (y1, y2) [T (y1,y2) + 1{(y10, y20) = (y1, y2)} − 1{(y1T , y2T ) = (y1, y2)}]

+ β1 C11 + λ1 C12 + λ2 C21 + β2 C22

(14)
Or using a more compact representation:

lnP (ỹ | α,θ) = s (ỹ)′ gα + c (ỹ)′ θ (15)

where s (ỹ) and c (ỹ) are vectors of statistics, gα is a vector of functions of the incidental
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parameters, and θ is the vector of structural parameters (β1, λ1, λ2, β2)
′. More specifically,4

s (ỹ) = [1, y10, y20, y10y20 ; 1, y1T , y2T , y1Ty2T ; T, T
(1)
1 , T

(1)
2 , T (1,1)

]′
gα = [lnp∗α + σ∗α ; −σ∗α ; σ∗α + (0, α1, α2, 0)]′

c (ỹ) = [C11, C12, C21, C22]
′

θ = [β1, λ1, λ2, β2]
′

(16)

Given (15) and (16) we can establish the following identification result.

PROPOSITION 1. In the myopic dynamic game without contemporaneous interactions in equa-
tion (12), the structural parameters β1, β2, λ1, and λ2 are point identified when T ≥ 3. �

Proof. Given that, P (ỹ | s (ỹ) ,α,θ) = P(ỹ | α,θ)
P(s(ỹ) | α,θ) , and using the additive structure in equation

(15), we have that:

lnP (ỹ | s (ỹ) , β) = c (ỹ)′ θ − ln
(∑

ỹ′:s(ỹ′)=s(ỹ) exp {c (ỹ′)′θ)}
)

(17)

This equation implies that vector s (ỹ) is a sufficient statistic for α. Furthermore, there are
pairs of market histories, say A and B, with s (A) = s (B) and c (A) 6= c (B) that identify the
structural parameters of the model.

Suppose that T = 3, let yt ≡ (y1t, y2t), and consider the following pair of histories: A =

{y0, a, b, y3} and B = {y0, b,a,y3}. We first verify that histories A and B have the same
sufficient statistic s. It is clear that the two histories have the same initial condition y0, and last
period choices, y3. And it is also clear that the frequency of choices in {a, b, y3} is the same
as in {b,a,y3} such that T (y1,y2)(A) = T (y1,y2)(B) for any pair (y1, y2) ∈ {0, 1}2. Therefore,
s (A) = s (B). Now, for a 6= b we have that c (A) 6= c (B) and the difference between the
log-probabilities of these histories identifies parameters of interest. Note that,

C11(A)− C11(B) = (a1 − b1) (y10 − y13)
C12(A)− C12(B) = (a1 − b1)y20 − (a2 − b2)y13 + a2b1 − a1b2
C21(A)− C21(B) = (a2 − b2)y10 − (a1 − b1)y23 + a1b2 − a2b1
C22(A)− C22(B) = (a2 − b2) (y20 − y23)

(18)

Using the expressions in (18), Table 2 presents four pairs of histories, with each pair identifying
one of the structural parameters. The corresponding parameter that is identified by lnP (A)−

4The functions of incidental parameters lnp∗
α and σ∗

α have the following definition lnp∗
α ≡ [ln pα(0, 0),

ln pα(1, 0) − ln pα(0, 0), ln pα(0, 1) − ln pα(0, 0), ln pα(1, 1) − ln pα(0, 1) − ln pα(1, 0) + ln pα(0, 0)], and σ∗
α ≡

[σα(0, 0), σα(1, 0)− σα(0, 0), σα(0, 1)− σα(0, 0), σα(1, 1)− σα(0, 1)− σα(1, 0) + σα(0, 0)].
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lnP (B). In cases 1 and 2, we identify the parameter βi by keeping constant the choice of the
other player – j 6= i – and comparing the frequency of the history where player i "switches"
– (0, 1, 0, 1) – with the frequency of the history where she "stays" – (0, 0, 1, 1). In cases 3 and
4, we compare the probability of history (0, 0, 0, 1) for player i when the other player chooses
alternative 1 at period t = 2 – (0, 0, 1, 0) – and when this choice is at period t = 1 – (0, 1, 0, 0).
There are other values for y0, a, b, and y3 that identify linear combinations of the several
parameters in θ. �

Table 2
Myopic dynamic game without contemporaneous effects
Examples of histories and identified parameters with T=3

A = {y0, a, b, y3}; B = {y0, b, a, y3}
y0 a b y3 lnP (A)− lnP (B)

Case 1:

(
0

0

) (
0

0

) (
1

0

) (
1

0

)
β1

Case 2:

(
0

0

) (
0

0

) (
0

1

) (
0

1

)
β2

Case 3:

(
0

0

) (
0

0

) (
0

1

) (
1

0

)
λ1

Case 4:

(
0

0

) (
0

0

) (
1

0

) (
0

1

)
λ2

3.1.2 Myopic players with one-direction strategic interactions

Now, we relax the condition of no contemporaneous strategic interactions and allow γ2 to be
different to zero: there is a contemporaneous effect of y1 on y2. We still keep the restriction
γ1 = 0 – no contemporaneous effect of y2 on y1, and include the restriction λ2 = 0. That is, the
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model is defined by the following best response functions:
y1t = 1 {α1 + β1 y1t−1 + λ1 y2t−1 − ε1t ≥ 0}

y2t = 1 {α2 + γ2 y1t + β2 y2t−1 − ε2t ≥ 0}
(19)

The log-probability of the market history ỹ ≡ (y1t, y2t : t = 0, 1, .., T ) has the following
structure:

lnP (ỹ|α,θ) = ln pα (y10, y20) + α1 T
(1)
1 + α2 T

(1)
2 +

T∑
t=1

σα1 (y1t−1, y2t−1) + σα2 (y1t, y2t−1)

+ β1 C11 + λ1 C12 + β2 C22 + γ2 T
(1,1)

(20)
with σα1(y1, y2) ≡ − ln[1+exp{α1+β1y1+λ1y2}] and σα2(y1, y2) ≡ − ln[1+exp{α2+γ2y1+β2y2}].
By comparing equations (20) and (14), we can find two important differences. Firstly, equation
(20) includes the term γ2T

(1,1), which is absent in (14). Secondly, in equation (20), the term
that depends on incidental parameters includes not only the sum

∑T
t=1σα1(y1,t−1, y2t−1) – which

is also present in equation (14) – but also the sum
∑T

t=1σα2(y1t, y2t−1), which did not appear in
equation (14). These differences have implications for parameter identification.

Similarly as for the previous model, we can rewrite the right hand side of equation (20) as
s (ỹ)′ gα +c (ỹ)′ θ∗, but now the vectors of statistics s (ỹ) and c (ỹ), and the vector of identified
parameters θ∗ are different. More specifically,5

s (ỹ) = [1, y10, y20, y10y20 ; 1,y1T , y2T , y1Ty2T ; T, , T
(1)
1 , T

(1)
2 , T (1,1) ; C12]

′

gα = [lnp∗α + σ∗α ; −σ∗α ; ;
σ∗α+

(0, α1, α2,−∆σα2 + γ2)
;

∆σα2

+λ1

]′
c (ỹ) = [C11, C22]

′

θ∗ = [β1, β2]
′

(21)
where lnp∗α and σ∗α have the same definition as in section 2.2 above, and ∆σαi is the incidental
parameter σαi(1, 1)− σαi(0, 1)− σαi(1, 0) + σαi(0, 0).

There are some fundamental differences with respect to the model without contemporaneous

5For this derivation, it is helpful to write
∑T
t=1σα2 (y1t, y2t−1) as

[∑T
t=1(1− y1t)(1− y2t−1)

]
σα2(0, 0)+[∑T

t=1y1t(1− y2t−1)
]
σα2(1, 0)+

[∑T
t=1(1− y1t)y2t−1

]
σα2(0, 1)+

[∑T
t=1y1ty2t−1

]
σα2(1, 1). Note that this

expression is equal to T σα2(0, 0)+T
(1)
1 [σα2(1, 0)− σα2(0, 0)]+

[
T

(1)
2 + y20 − y2T

]
[σα2(0, 1)− σα2(0, 0)]+ C12

[σα2(1, 1)− σα2(1, 0)− σα2(0, 1) + σα2(0, 0)].
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strategic interactions. First, the statistic C12 and the structural parameter λ1 appear in the log-
probability of a choice history through the term C12 (∆σα2+λ1). Without further restrictions we
have that the incidental parameter ∆σα2 is not zero. This implies that this sufficient statistics
approach cannot identify parameter λ1. Second, the statistic T (1,1) and the structural parameter
γ2 appear through the term T (1,1) (∆σα1 + γ2). Without further restrictions, the sufficient
statistics approach does not identify parameter γ2.

Proposition 2 establishes the point identification of dynamic parameters β1 and β2 in this
model.

PROPOSITION 2. In the myopic dynamic game with one-direction contemporaneous interac-
tions as in equation (19), the parameters β1 and β2 are point identified when T ≥ 3. �

Proof. Consider the same framework as in the proof of Proposition 1: T = 3 and the pair of
histories A = {y0, a, b, y3} and B = {y0, b,a,y3}. In the proof of Proposition 1, we showed
that these histories have the same value for the statistics y0, y3, and T (y1,y2). Now, in this
model with a contemporaneous effect, the sufficient statistic includes C12, so we need to impose
additional conditions on histories A and B such that C12(A) = C12(B). In the histories in
Table 2, we have that C12(A) = C12(B) for cases 1 and 2. Therefore, these two pairs of market
histories still identify the parameters β1 and β2, respectively, in this dynamic game. We present
this result in Table 3. �

Table 3
Myopic Game with One-Direction Strategic Interactions
Examples of histories and identified parameters with T=3
A = {y0, a, b, y3}; B = {y0, b, a, y3} with C12(A) = C12(B)

y0 a b y3 lnP (A)− lnP (B)

Case 1:

(
0

0

) (
0

0

) (
1

0

) (
1

0

)
β1

Case 2:

(
0

0

) (
0

0

) (
0

1

) (
0

1

)
β2

As explained above, the no identification of the parameters γ2 and λ1 is due to the fact that
they appear in the log-probability of a choice history only through the terms T (1,1) (∆σα1 + γ2)
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and C12 (∆σα2 + λ1), respectively. This feature of the model also provides conditions for the
identification of these parameters. The parameter γ2 is identified if and only if ∆σα1 is equal to
zero (or a constant) for any possible value of the incidental parameter α1. Remember that ∆σα1

is defined as σα1(1, 1) − σα1(0, 1) − σα1(1, 0) + σα1(0, 0), and σα1(y1, y2) is defined as − ln[1 +

exp {α1 + β1 y1 + λ1 y2}]. Taking this into account we have that ∆σα1 = 0 if and only if β1 = 0

or/and λ1 = 0. Following a similar argument, we have the parameter λ1 is identified if and only
if ∆σα2 = 0 for any value of α2, and this is the case if and only if γ2 = 0 or/and β2 = 0. We
summarize these identification results in the following Proposition 3.

PROPOSITION 3. Consider the myopic dynamic game with one-direction strategic interactions
described in equation (19). Using a sufficient-statistic approach: (A) a necessary and sufficient
condition for the identification of parameter γ2 is that β1 = 0 or/and λ1 = 0; (B) similarly, a
necessary and sufficient condition for the identification of parameter λ1 is that γ2 = 0 or/and
β2 = 0. �

Functional differencing approach
So far, our investigation has focused on identification results using a conditional likelihood–

sufficient statistics approach. However, recent studies by Honoré and Weidner (2020) and Do-
bronyi, Gu, and Kim (2021) have employed a functional differencing approach inspired by Bon-
homme (2012) to establish parameter identification in dynamic logit models that cannot be
identified using the conditional likelihood method. We now adopt the same approach, specif-
ically following the methodology outlined in Dobronyi, Gu, and Kim (2021). Our particular
interest lies in identifying the parameters γ2 and λ1 without imposing the restrictions stated in
Proposition 3.

The functional differencing approach, when employed without any further constraints, falls
short of achieving (point) identification for the parameters γ2 and λ1. However, by introducing
the condition that the fixed effects α1m and α2m are identical for both players, the functional
differencing approach successfully resolves the identification problem for these parameters. It is
important to note that the conditional likelihood approach, even with this additional restriction,
does not lead to the identification of γ2 and λ1, as evidenced by Proposition 4.

PROPOSITION 4. Consider the myopic dynamic game with one-direction strategic interactions
as described in equation (19) where the fixed effects of the two players are restricted to be the
same: α1m = α2m. The functional differenting approach implies moment conditions that point
identify all the structural parameters, β1, β2, λ1,and γ2. �

Proof: In Appendix A.1.
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3.1.3 Myopic players with two-direction strategic interactions

Consider the game with two-direction contemporaneous interactions such that γ1 6= 0 γ2 6= 0. In
this model, we eliminate the lagged strategic interactions between players such that λ1 = λ2 = 0.

y1t = 1 {α1 + γ1 y2t + β1 y1t−1 − ε1t ≥ 0}

y2t = 1 {α2 + γ2 y1t + β2 y2t−1 − ε2t ≥ 0}
(22)

For the rest of this section, we assume that the researcher knows the sign of parameters γ1 and
γ2. For concreteness, we consider that γ1 ≤ 0 and γ2 ≤ 0.

Two versions of the model are distinguished based on whether players move sequentially or
simultaneously. The difference between the sequential and the simultaneous move games is in
the set of equilibria. In the simultaneous move game, there is a quadrangle in the space of
(ε1t, ε2t) for which outcomes (0, 1) and (1, 0) are Nash equilibria. This quadrangle is:

{eL1t < ε1t ≤ eU1t & eL2t < ε2t ≤ eU2t} (23)

where eLit ≡ αi + γi + βiyi,t−1, and eU1t ≡ αi + βiyi,t−1. In the sequential move game, where player
1 moves first, the outcome (1, 0) is the unique equilibrium (Subgame Perfect Nash equilibrium)
associated with this region of (ε1t, ε2t). Player 1 is aware that if she chooses y1t = 1, player 2 will
choose y2t = 0, and if she chooses y1t = 0, then player 2 will choose y2t = 1. Therefore, player
1’s decision determines which of the two Nash equilibria, (0, 1) or (1, 0), is selected. Player 1
selects the equilibrium that maximizes its profit. Considering γ1 ≤ 0, the Nash equilibrium with
the highest profit for player 1 is (1, 0).

A. Sequential move

Suppose that player 1 moves first. The probability for outcomes (0, 0), (1, 0), and (1, 1) can be
represented using the following product of logit probabilities:

P(y1t, y2t;α) = Λ([2y1t − 1][α1 + γ1y2t + β1y1t−1]) Λ([2y2t − 1][α2 + γ2y1t + β2y2t−1]) (24)

In contrast, the probability of outcome (0, 1) cannot be represented as the product of logits.
This has implications for the derivation of a sufficient statistic for α.

Let ỹ be a choice history where every period’s outcome is an element of {(0, 0), (1, 0), (1, 1)},
i.e., it does not include outcome (0, 0). For this sequential move game, the log-probability of
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this choice history has the following structure:

lnP(ỹ|α,θ) = ln pα(y10, y20) + α1 T
(1)
1 + α2 T

(1)
2 +

T∑
t=1

σα1(y1t−1, y2t) + σα2(y1t, y2t−1)

+ β1 C11 + β2 C22 + (γ1 + γ2) T
(1,1)

(25)

with σαi(yi,t−1, yjt) = − ln[1+exp{αi+βiyi,t−1 +γiyjt}]. Similarly as for the previous models, we
can rewrite the right hand side of equation (25) as s (ỹ)′ gα + c (ỹ)′ θ∗, where now the vectors
of statistics and parameters have the following form:

lnP(ỹ|α,θ) =
[
1, y10, y20, y10y20, y1T , y2T , y1Ty2T , T, T

(1)
1 , T

(1)
2 , C12, C21

]′
gα

+ β1 C11 + β2 C22 + (γ1 + γ2) T
(1,1)

(26)

A preliminary examination of equation (26) might suggest that the parameter γ1 + γ2 is
identified, as it appears alongside the statistic T (1,1), which is not included in the vector of
sufficient statistics s(ỹ). However, due to the nature of the choice history ỹ, where (1−y1t)y2t = 0

for every t, it follows that
∑

t y2t =
∑

t y1ty2t, implying that T (1)
2 = T (1,1). Consequently,

given s(ỹ), the statistic T (1,1) lacks variation, thereby rendering this approach of using sufficient
statistics insufficient for identifying γ1 + γ2. Nonetheless, parameters β1 and β2 can still be
identified. This assertion is formalized in the following proposition.

PROPOSITION 5. In the myopic dynamic game without two-direction interactions and sequen-
tial move, the structural parameters β1 and β2 are point identified when T ≥ 3. �

Proof. The identification of β1 can be established by considering two distinct choice histories

(y0, y1, y2, y3) with T = 3. Let A =

(
0 0 1 1

0 0 0 0

)
and B =

(
0 1 0 1

0 0 0 0

)
. It can be readily

verified that A and B yield identical values for the sufficient statistics y0, y3, T
(1)
1 , T (1)

2 , C21, and
C12. Additionally, they share the same value for the statistic C22. However, while C11(A) = 1,
we have C11(B) = 0. This indicates that statistic lnP (A)− lnP (B) identifies β1.

To identify β2, let’s consider two choice histories: A =

(
1 1 1 1

0 0 1 1

)
and B =

(
1 1 1 1

0 1 0 1

)
.

In these histories, the values of the sufficient statistics y0, y3, T
(1)
1 , T (1)

2 , C21, and C12 are identical,
as well as the value of C11. However, it is noteworthy that C22(A) = 0 while C22(B) = 1.
Consequently, statistic lnP (A)− lnP (B) identifies β2. �
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Partial Identification of γ1, γ2

For (y1t, y2t) = (0, 1), we can consider the following logit form lower bound:

lnP((0, 1)|α,θ) ≥ σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β2y2t−1 + γ2

or
lnP((0, 1)|α,θ) ≥ σα1(y1t−1, 0) + σα2(0, y2t−1) + α2 + β2y2t−1

and the following logit form upper bound:

lnP((0, 1)|α,θ) ≤ σα1(y1t−1, 1) + σα2(0, y2t−1) + α2 + β2y2t−1

This gives us access to use Proposition 8 in the paper to partially identify γ1, γ2.

3.1.4 Sharp Identified set

Since the model is complete, the sharp identified set can be written as the collection of θ =

(β1, β2, γ1, γ2) such that for each value of (y10, y20), there exists a distribution G (allowed to vary
over (y10, y20)) such that, for all ỹ ∈ {0, 1}T ,

P(ỹ|y10, y20) =

∫
L(ỹ|α1, α2,θ)dG(α1, α2|y10, y20)

where L is the likelihood function given α1, α2,θ. Since model is complete, with the logit
distribution assumption, we have a likelihood funciton for given values of (α1, α2,θ). If we are
willing to take a fixed group of (α1, α2), we can use linear program to numerically compute the
identified set for θ. The approach taken in Dobroyni, Gu and Kim (2021) can in principle be
used to derive all moment equality conditions available from the model for θ. For example, we
can write the model as

P = H(θ)m̃

where P is the 2T choice probability vector and H(θ) is a matrix that only involves parameters,
and m̃ are a vector of moments of (A1, A2) := (exp(α1), exp(α2)) (i.e. entries of m̃θ takes the
form

∫
Aj1A

k
2dG(A1, A2,θ) for some measure of G). The left null space of H(θ) provides all

moment equality conditions available in the model for θ.

B. Simultaneous move: Conditional likelihood - Bounds approach
Here we concentrate on the (point) identification of the switching cost parameters – β1 and β2
– and on the partial identification of all the parameters.
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The following Lemma 1 presents a property that plays a key role in our sufficient statistics
- bounds approach.

LEMMA 1. Suppose that the log-probability of a market history has lower and upper bounds
with the following structure: the lower bound is lnPL (ỹ | α,θ) = sL (ỹ)′ gα+ cL (ỹ)′ θ and the
upper bound is lnPU (ỹ | α,θ) = sU (ỹ)′ gα + cU (ỹ)′ θ, where sL (ỹ), sU (ỹ), cL (ỹ), and cU (ỹ)

are vectors of statistics, and gα is a vector of incidental parameters. Given this structure, the
logarithm of the probability of a market history ỹ (unconditional on α) has the following bounds:

h (sL (ỹ)) + cL (ỹ)′ β ≤ lnP (ỹ) ≤ h (sU (ỹ)) + cU (ỹ)′ θ (27)

where h (s) is a function (described in the Appendix) that depends on the vector of statistics s

and on the probability distribution of the incidental parameters α. Given two different histories,
say A and B.

(i) If sL (A) = sU (B) and cL (A) 6= cU (B), we have that:

[cL (A)− cU (B)]′ θ ≤ lnP (A)− lnP (B) (28)

(ii) If sU (A) = sL (B) and cU (A) 6= cL (B), we have that:

lnP (A)− lnP (B) ≤ [cU (A)− cL (B)]′ θ (29)

These inequalities imply partial identification of some structural parameters. �

Lemma 1 does not imply that sL (ỹ) or sU (ỹ) – or even the union of these two vectors of
statistics – are sufficient statistics for the incidental parameters in the probability P (ỹ | α,θ).
In general, this is not true for this model. However, the vectors sL (ỹ) and sU (ỹ) are suffi-
cient statistics for the the incidental parameters in the lower and in the upper bounds of this
probability, respectively. This property – together with the condition that there are histories
with sL (A) = sU (B) and with cL (A) 6= cU (B) – allow us to obtain partial identification of the
structural parameters.

The rest of this section describes the derivation of the expressions for the bounds, lnPL (ỹ | α,θ)

= sL (ỹ)′ gα+ cL (ỹ)′ θ and lnPU (ỹ | α,θ) = sU (ỹ)′ gα + cU (ỹ)′ β, and our (set) identification
results.

Given a market history ỹ, we can construct a lower bound and an upper bound for the
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log-probability of this history lnP (ỹ | α,θ). These bounds are:
lnPL (ỹ | α,θ) ≡ ln pα (y10, y20) +

∑T
t=1 lnL(yt|yt−1;α,θ)

lnPU (ỹ | α,θ) ≡ ln pα (y10, y20) +
∑T

t=1 lnU(yt|yt−1;α,θ)

(30)

For outcomes (0, 0) and (1, 1), the upper bounds and the lower bounds are the same and
they are the probabilities in equation (8). For outcomes (0, 1) and (1, 0), the upper bounds
U(yt|yt−1;α, β) are the ones in equation (9), and the lower bounds L(yt|yt−1;α,θ) come from
equations (10) and (11).

Lemma 2 presents bounds for the log-probability of a market history in our model, shows
that these bounds have the structure in Lemma 1, and provides the specific form of the vectors
of statistics sL, sU , cU , and cU .

LEMMA 2. For the myopic complete information dynamic game with contemporaneous effects
in equation (22), the log-probability of a market history has lower bounds lnPL{E,W} (ỹ | α,θ)

and lnPL{S,N} (ỹ | α,θ) and upper bound lnPU (ỹ | α,θ) which have the following expressions:

lnPL{E,W} (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
1 , T (1)

1 , C11, C12

]
g2
α

+ C11 β1 + C22 β2 + T
(1)
1 γ1 + T (1,1) γ2

lnPL{S,N} (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
2 , T (1)

2 , C21, C22

]
g2
α

+ C11 β1 + C22 β2 + T (1,1) γ1 + T
(1)
2 γ2

lnPU (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
2 , T (1)

1 , C21, C12

]
g2
α

+ C11 β1 + C22 β2 + T (1,1) [γ1 + γ2]

(31)

where g1
α and g2

α are vectors of incidental parameters which are defined in the Appendix, and
the vector of statistics s1 (ỹ) consists of T, y10, y20, y1T , y2T , T

(1)
1 , and T

(1)
2 . �

Combining the general identification approach in Lemma 1 with the specific expressions for
the bounds in Lemma 2, we can obtain the following identification results in Proposition 6.

PROPOSITION 6. Consider the myopic complete information dynamic game with contempo-
raneous effects in equation (22). Define the vector of statistics s1 (ỹ) ≡ [T, y10, y20, y1T , y2T ,
T

(1)
1 , T

(1)
2 ]. Let A and B be two market histories such that s1(A) = s1(B) and T

(1)
1 = T

(1)
2 . Let

∆(A,B, β1, β2) be lnP (A)− lnP (B)− [C11(A)− C11(B)] β1− [C22(A)− C22(B)] β2.
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(i) If C12(A) = C12(B) and C11(A) = C21(B), then:

∆(A,B, β1, β2) ≥
[
T

(1)
1 (A)− T (1,1)(B)

]
γ1 +

[
T (1,1)(A)− T (1,1)(B)

]
γ2 (32)

(ii) If C12(A) = C12(B) and C21(A) = C11(B), then:

∆(A,B, β1, β2) ≤
[
T (1,1)(A)− T (1)

1 (B)
]
γ1 +

[
T (1,1)(A)− T (1,1)(B)

]
γ2 (33)

(iii) If C21(A) = C21(B) and C22(A) = C12(B), then:

∆(A,B, β1, β2) ≥
[
T (1,1)(A)− T (1,1)(B)

]
γ1 +

[
T

(1)
2 (A)− T (1,1)(B)

]
γ2 (34)

(iv) If C21(A) = C21(B) and C12(A) = C22(B), then:

∆(A,B, β1, β2) ≤
[
T (1,1)(A)− T (1,1)(B)

]
γ1 +

[
T (1,1)(A)− T (1)

2 (B)
]
γ2 (35)

Based on these inequalities, we can find pairs of market histories – A and B – that set identify
the parameters β1, β2, γ1, and γ2. �

The following examples present specific pairs of market histories that point identify the
switching cost parameters and set identify the strategic interaction parameters.

EXAMPLE 8. Consider the pair of histories A = [(0, 0), (0, 0), (1, 1), (1, 1)] and B = [(0, 0),
(0, 1), (1, 0), (1, 1)]. These histories have the same value for the vector of statistics s1 (ỹ) =

[T, y10, y20, y1T , y2T , T
(1)
1 , T

(1)
2 ]. These histories also satisfy the condition T

(1)
1 = T

(1)
2 . Note

that C11(A) − C11(B) = 0 and C22(A) − C22(B) = 1 such that ∆ (A,B, β1, β22) = lnP (A)−
lnP (B)− β2. We now check conditions (i) to (iv) in Proposition 6.

Condition (i) holds because C12(A) = C12(B) = 1 and C11(A) = C21(B) = 1. It implies:

lnP (A)− lnP (B) ≥ β22 + γ1 + γ2 (36)

Condition (ii) holds because C12(A) = C12(B) = 1 and C21(A) = C11(B) = 1. It implies:

lnP (A)− lnP (B) ≤ β22 + γ1 (37)

Condition (iii) holds because C21(A) = C21(B) = 1 and C22(A) = C12(B) = 1. It implies:

lnP (A)− lnP (B) ≥ β22 + γ1 + γ2 (38)
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Note that – for this example – this inequality is equivalent to the one provided by condition (i).
Condition (iv) does not hold because C12(A) = 1 6= 0 = C22(B) . �

We can also consider the mirror version of the pair of histories in Example 8. That is,
consider A = [(0, 0), (0, 0), (1, 1), (1, 1)] and B = [(0, 0), (1, 0), (0, 1), (1, 1)]. It is simple to show
that this pair of histories imply the inequalities lnP (A)− lnP (B) ≥ β1 + γ1 + γ2 and lnP (A)−
lnP (B) ≤ β1 + γ2

These two examples may leave the impression that conditions (i) and (iii) generate always the
same lower bound. This is not the case. For instance, consider the pairs of histories A = [(0, 0),

(0, 0), (0, 1), (1, 0)] and B = [(0, 0), (0, 1), (0, 0), (1, 0)]. For these histories, we have that
C12(A) = 1 6= 0 = C12(B), and this implies that both condition (i) and condition (ii) fail. But
condition (iii) and (iv) are satisfied and imply informative bounds on the parameters.

3.2 Forward-looking players

3.2.1 Forward-looking players with one-direction strategic interactions

Consider the complete information game in equation (??). It is convenient to represent this
model as follows:

yit = 1 {α̃i + βi yi,t−1 + γ̃iα yjt − εit ≥ 0} (39)

where α̃i ≡ αi + ṽiα (0), and γ̃iα ≡ γi + ṽiα (1)− ṽiα (0). Given this representation, it should be
clear that it is not possible to point identify parameters γ1 and γ2 because they always appear
together with the incidental parameters ṽiα (1)− ṽiα (0).

Our purpose here is to study: (1) the point identification of the switching cost parameters
β1 and β2; (2) the partial identification of parameters γ1 and γ2; and (3) whether there are
triangular models – in the spirit of the models we studied in section 2.3 but now with forward-
looking players – where the γ parameters are point identified.

We start here with a forward-looking, complete information, triangular dynamic game. Con-
sider a version of the model with λ1 = γ1 = 0. Under these restrictions, the player 1’s payoff does
not depend on past, present, or future decisions of player 2. Therefore, the decision problem for
player 1 is a single-agent problem, and it can represented as:

y1t = 1
{
ε1t ≤ α1 + β1 y1t−1 + ṽ1α

}
(40)

This identification of this forward-looking dynamic logit model – with fixed effects unobserved
heterogeneity – has been established in Aguirregabiria, Gu, and Luo (2019). In this model:
the incidental parameter is α1 + ṽ1α; the vector of sufficient statistics is s (ỹ) = [y10, y1T , T

(1)
1 ];
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and the structural parameter β1 is identified from the maximization of the condtional likelihood
function.

We now establish the point identification of parameters β1 and β2. The best response of
player 2 in this triangular model is:

y2t = 1
{
ε2t ≤ α̃2 + λ2 y1,t−1 + β2 y2,t−1 + γ̃2α y1t

}
(41)

where α̃2 ≡ α2 + ṽ2α (0), and γ̃2α ≡ γ2 + ṽ2α (1) − ṽ2α (0). Given equations (40) and (41), the
log-probability of the market history ỹ ≡ (y1t, y2t : t = 0, 1, .., T ) has the following structure:

lnP (ỹ|α, β) = ln pα (y10, y20) + α1 T
(1)
1 + α2 T

(1)
2 + γ̃2α T

(1,1) +
T∑
t=1

σα1 (y1t−1) + σα2 (y1t, y2t−1)

+ β1 C11 + β2 C22

(42)
where σα1(y1) ≡ − ln[1 + exp{α1 + β1 y1}] and σα2(y1, y2) ≡ − ln[1 + exp{α2 + γ̃2α y1 + β2 y2}].
We can rewrite this equation for the log-probability of a market history as lnP (ỹ | α,θ) as s (ỹ)′

gα + c (ỹ)′ β∗, with

s (ỹ)′ = [1, y10, y20, y10y20 ; 1, y1T , y2T , y1Ty2T ; T , T (1)
1 , T (1)

2 , T (1,1) ; C12]

c (ỹ)′ = [C11, C22]

θ∗′ = [β1, β2]

(43)

PROPOSITION 7. For the forward-looking dynamic game with one-direction strategic inter-
actions as described in equations (40) and (41): (A) The vector s (ỹ) = [1, y10, y20, y10y20,
y1T , y2T , y1Ty2T , T , T

(1)
1 , T (1)

2 , T (1,1), C12]
′ is a minimal sufficient statistic for α such that

lnP (ỹ | u (ỹ) , α,θ) does not depend on α. (B) lnP (ỹ | c (ỹ) , β) = s (ỹ)′ θ∗− ln(
∑

ỹ′:s(ỹ′)=s(ỹ) exp {c(ỹ′)′θ∗})
with c (ỹ) = [C11, C22]

′ and θ∗ = [β1, β2]
′. (C) For T ≥ 3, there are histories ỹ such that

lnP (ỹ | s (ỹ) , β) identifies the vector of parameters of interest θ∗. �

EXAMPLE 10. The same histories in Example 3 that – in the myopic, complete information,
triangular model – identify parameters β1 and β2, still identify these parameters in the forward-
looking version of the model. More specifically: the pair of histories A = {(0, 0), (0, 0), (1, 0),
(1, 0)} and B = {(0, 0), (1, 0), (0, 0), (1, 0)} identifies β1; and the pair of histories A = {(0, 0),
(0, 0), (0, 1), (0, 1)} and B = {(0, 0), (0, 1), (0, 0), (0, 1)} identifies β2. �
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3.2.2 Forward-looking players with two-direction strategic interactions

We consider now the forward-looking dynamic game where we do not restrict the parameters γ1
or γ2 to be zero. 

y1t = 1
{
ε1t ≤ α̃1 + β1 y1,t−1 + γ̃1α y2t

}
y2t = 1

{
ε2t ≤ α̃2 + β2 y2,t−1 + γ̃2α y1t

} (44)

where α̃i ≡ αi + ṽiα (0), and γ̃iα ≡ γi + ṽiα (1)− ṽiα (0).
The model has a similar structure as the myopic. The main difference is that now the

random variables (γ̃1α, γ̃2α) replace the parameters (γ1, γ2). Therefore, the expressions of the
lower and upper bounds for the log-probability of a market history are very similar to the ones
in Lemma 2 for the myopic model, but replacing (γ1, γ2) with (γ̃1α, γ̃2α). Though this different is
coneptually simple, it has substantial implications on the identification of the γ parameters. More
specifically, we cannot point identify the switching cost parameters. Proposition 8 establsihes
that these parameters are partially identified.

Proposition 8. Consider the forward-looking complete information dynamic game with contem-
poraneous effects in equation (44). Under conditions β1 ≥ 0, β2 ≥ 0, γ̃1α ≤ 0, and γ̃2α ≤ 0,
there are market histories that provide informative bounds on the parameters β1 and β2. These
parameters are partially identified. �

Proof of Proposition 8. Denote the following terms:

σα1(y1t−1, y2t) = − ln{1 + exp(α̃1 + β1y1t−1 + γ̃1αy2t)}

σα2(y1t, y2t−1) = − ln{1 + exp(α̃2 + β2y2t−1 + γ̃2αy1t}

∆σα1(1, 0) = σα1(1, 0)− σα1(0, 0)

∆σα1(0, 1) = σα1(0, 1)− σα1(0, 0)

∆σα2(1, 0) = σα2(1, 0)− σα2(0, 0)

∆σα2(0, 1) = σα2(0, 1)− σα2(0, 0)

∆2σα1 = σα1(1, 1)− σα1(1, 0)− σα1(0, 1) + σα1(0, 0)

∆2σα2 = σα2(1, 1)− σα2(1, 0)− σα2(0, 1) + σα2(0, 0)

Under the conditions of Proposition 8, we have (i) ∆σα1(1, 0) ≤ 0, (ii) ∆σα1(0, 1) ≥ 0, (iii)
∆σα2(1, 0) ≥ 0 and ∆σα2(0, 1) ≤ 0, (iv) ∆2σα1 ≥ 0 and, (v) ∆2σα2 ≥ 0. For each choice history
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ỹ, we have the following lower and upper bound:

lnPU(ỹ|α, β) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1,1), T (1,1)]′g2α + [T
(1)
2 , T

(1)
1 , C21, C12]g

3
α

+ C11β1 + C22β2

lnPL{E,W}(ỹ|α, β) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1)
1 , T (1,1)]′g2α + [T

(1)
1 , T

(1)
1 , C11, C12]g

3
α

+ C11β1 + C22β2

lnPL{S,N}(ỹ|α, β) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1,1), T
(1)
2 ]′g2α + [T

(1)
2 , T

(1)
2 , C21, C22]g

3
α

+ C11β1 + C22β2

lnPL{E,N}(ỹ|α, β) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1,1), T (1,1)]′g2α

+ [T (1,1), T (1,1), R
(1,1)
1 , R

(1,1)
2 ]g3α

+ C11β1 + C22β2

lnPL{S,W}(ỹ|α, β) = lnPα(y10, y20) + s1(ỹ)′g1α + [y10 − y1T , y20 − y2T , T (1)
1 , T

(1)
2 ]′g2α

+ [T
(1)
1 + T

(1)
2 − T (1,1), T

(1)
1 + T

(1)
2 − T (1,1), C11 + C21 −R(1,1)

1 , C12 + C22 −R(1,1)
2 ]g3α

+ C11β1 + C22β2

where s1(ỹ) = [T, T
(1)
1 , T

(1)
2 ], g1α = [σα1(0, 0) + σα2(0, 0), α1 + ∆σα1(1, 0), α2 + ∆σα2(0, 1)]′, g2α =

[∆σα1(1, 0),∆σα2(0, 1), γ̃1α, γ̃2α]′, and g3α = [∆σα1(0, 1),∆σα2(1, 0),∆2σα1 ,∆
2σα2 ]

′

The grouping of the gjα with j = {1, 2, 3} terms are such that terms in g1α can be any sign
for {α1, α2} ∈ R2. Terms in g2α are all negative. And all terms in g3α are positive.

We first present bounds constructed using the differences of the logrithm of the probability
of a pair of choice history that satisfy certain conditions, i.e. ln P (A)

P (B)
= lnP (A) − lnP (B). We

then generalize to bounds constructed from
∑
λ∈SU P (λ)∑
λ′∈SL P (λ′)

, where the set SU and SL are some
set of choice histories (not necessarily a singleton) that satisfy certain conditions. We focus on
upper bound, because the result of lower bound from such sequences are providing symmetric
information (i.e. the lower bound of P (A)

P (B)
is providing equivalent information from the upper

bound of P (B)
P (A)

).
For a pair of choice histroies A and B, define

∆(A,B, β1, β2) = lnP (A)− lnP (B)− [C11(A)− C11(B)]β1 − [C22(A)− C22(B)]β2

Define the statistics s1(ỹ) = [T, T
(1)
1 , T

(1)
2 ]

[1] Using upper bound and L{E,W}:

∆(A,B, β1, β2) ≤ 0
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provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A) − y20(B), (iii) s1(A) =

s1(B), (iv) element-wise, [y10(A) − y1T (A), y20(A) − y2T (A), T (1,1)(A), T (1,1)(A)] − [y10(B) −
y1T (B), y20(B)−y2T (B), T

(1)
1 (B), T (1,1)(B)] ≥ 0, (v) element-wise, [T

(1)
2 (A), T

(1)
1 (A), S21(A), S12(A)]−

[T
(1)
1 (B), T

(1)
1 (B), S11(B), S12(B)] ≤ 0.

[2] Using upper bound and L{S,N}:

∆(A,B, β1, β2) ≤ 0

provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A) − y20(B), (iii) s1(A) =

s1(B), (iv) element-wise, [y10(A) − y1T (A), y20(A) − y2T (A), T (1,1)(A), T (1,1)(A)] − [y10(B) −
y1T (B), y20(B)−y2T (B), T (1,1)(B), T

(1)
2 (B)] ≥ 0, (v) element-wise, [T

(1)
2 (A), T

(1)
1 (A), C21(A), C12(A)]−

[T
(1)
2 (B), T

(1)
2 (B), C21(B), C22(B)] ≤ 0.

[3] Using upper bound and L{E,N}:

∆(A,B, β1, β2) ≤ 0

provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A) − y20(B), (iii) s1(A) =

s1(B), (iv) element-wise, [y10(A) − y1T (A), y20(A) − y2T (A), T (1,1)(A), T (1,1)(A)] − [y10(B) −
y1T (B), y20(B)−y2T (B), T (1,1)(B), T (1,1)(B)] ≥ 0, (v) element-wise, [T

(1)
2 (A), T

(1)
1 (A), C21(A), C12(A)]−

[T (1,1)(B), T (1,1)(B), R
(1,1)
1 (B), R

(1,1)
2 (B)] ≤ 0.

[4] Using upper bound and L{S,W}:

∆(A,B, β1, β2) ≤ 0

provided the following conditions hold: (i) y10(A) = y20(B), (ii) y20(A) − y20(B), (iii) s1(A) =

s1(B), (iv) element-wise, [y10(A) − y1T (A), y20(A) − y2T (A), T (1,1)(A), T (1,1)(A)] − [y10(B) −
y1T (B), y20(B)−y2T (B), T

(1)
1 (B), T

(1)
2 (B)] ≥ 0, (v) element-wise, [T

(1)
2 (A), T

(1)
1 (A), S21(A), S12(A)]−

[T
(1)
1 (B)+T

(1)
2 (B)−T (1,1)(B), T

(1)
1 (B)+T

(1)
2 (B)−T (1,1)(B), C11(B)+C21(B)−R(1,1)

1 (B), C12(B)+

C22(B)−R(1,1)
2 (B)] ≤ 0.

For each combination of the upper and lower bound, the conditions (i) and (ii) imposed on A
and B makes sure to cancel out lnPα(y10, y20), and condition (iii) makes sure to cancel the terms
in front of g1α that we can not determine its sign and condition. Condition (iv) takes advantage
of the fact that all elements in g2α ≤ 0 under the conditions of Proposition 8 those terms can be
replaced by 0 in the upper bound of lnP (A)− lnP (B). Finally, condition (v) takes advantage
of the fact that all elements in g3α ≥ 0 under the conditions of Proposition 8 such that those
terms can be replaced by 0 in the upper bound of lnP (A)− lnP (B). �
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EXAMPLE 11. A = [(0, 1), (1, 1), (0, 0), (0, 0)] and B = [(0, 1), (1, 0), (0, 1), (0, 0)]. For this
pair, we have T (1)

1 (A) = T
(1)
1 (B) = T

(1)
2 (A) = T

(1)
2 (B) = 1, T (1,1)(B) = 0, T (1,1)(A) = 1,

C11(A) = C11(B) = 0, C22(B) = 0 6= 1 = C22(A), and C12(A) = C12(B) = 1 and C21(B) = 1

and C21(A) = 0. Therefore lnP (A)− lnP (B) ≤ β2

Other example. A = [(1, 0), (1, 1), (0, 0), (0, 0)] and B = [(1, 0), (0, 1), (1, 0), (0, 0)]. For this
pair, we have T (1)

1 (A) = T
(1)
1 (B) = T

(1)
2 (A) = T

(1)
2 (B) = 1, T (1,1)(B) = 0 and T (1,1)(A) = 1,

C11(B) = 0 6= 1 = C11(A), C22(A) = C22(B) = 0, C12(B) = 1, C12(A) = 0, C21(A) = 1 =

C21(B), which leads to lnP (A)− lnP (B) ≤ β1. �

4 Empirical application

TBW

5 Conclusions

TBW
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A APPENDIX

A.1 Proof of Proposition 4

Consider the model with myopic players and one-direction strategic interactions where we assume
there is only market level unobserved heterogeneity, i.e. α1 = α2. Consider the case y0 =

{y10, y20} = {0, 0} and T = 2, such that we have 16 possible choice histories. The choice
probabilities conditional on the market level unobserved heterogeneity can be represented using
the expressions in the following table:

{y11, y21} {y12, y22} P (ỹ) {y11, y21} {y12, y22} P (ỹ)

{0, 0} {0, 0}
(

1
1+A

)4
{0, 0} {1, 0} 1

1+A
1

1+A
A

1+A
1

1+AC

{0, 1} {0, 0} 1
1+A

A
1+A

1
1+AB12

1
1+AB22

{0, 1} {1, 0} 1
1+A

A
1+A

AB12

1+AB12

1
1+ACB22

{1, 0} {0, 0} A
1+A

1
1+A

1
1+AB11

1
1+A {1, 0} {1, 0} A

1+A
1

1+AC
AB11

1+AB11

1
1+A

{1, 1} {0, 0} A
1+A

AC
1+AC

1
AB11B12

1
AB22

{1, 1} {1, 0} A
1+A

AC
1+AC

AB11B12

1+AB11B12

1
ACB22

{0, 0} {0, 1}
(

1
1+A

)3
A

1+A {0, 0} {1, 1} 1
1+A

1
1+A

A
1+A

AC
1+AC

{0, 1} {0, 1} 1
1+A

A
1+A

1
1+AB12

AB22

1+AB22
{0, 1} {1, 1} 1

1+A
A

1+A
AB12

1+AB12

ACB22

1+ACB22

{1, 0} {0, 1} A
1+A

1
1+AC

1
1+AB11

A
1+A {1, 0} {1, 1} A

1+A
1

1+AC
AB11

1+AB11

AC
1+AC

{1, 1} {0, 1} A
1+A

AC
1+AC

1
1+AB11B12

AB22

1+AB22
{1, 1} {1, 1} A

1+A
AC

1+AC
AB11B12

1+AB11B12

ACB22

1+ACB22

where A = exp(α), B11 = exp(β1), B12 = exp(λ1), B22 = exp(β2) and C = exp(γ2).
Define g(α,θ) as the minimum common denominator (MCD) of all the ratios in the table

above. It is simple to verify that this MCD has the following expression.

g(α,θ) ≡ (1+A)4 (1+AC)2 (1+AB11) (1+AB12) (1+AB22) (1+AB11B12) (1+ACB22) (45)

By definition of MCD, we have that P (ỹ|α,θ) g(α,θ) is a polynomial function of A with its
coefficients being polynomials of (B11, B12, B22, C). It is also straightforward to verify that for
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any α ∈ R, we have that 1/g(α,θ) ∈ (0, 1]. Taking these properties into account, we can write:

P (ỹ | θ, y0) =

∫
P (ỹ | α,θ, y0) f(α | y0) dα =

∫
P (ỹ | α,θ, y0) g(α,θ) q(α | θ, y0) dα (46)

where f is the distribution of the market level fixed effect, and q(α | θ, y0) = f(α|y0)
g(α,θ)

. Function
q(α | θ, y0) is a positive Borel measure on the support [0,∞). Though q is not a probability
measure, it is simple to construct a probability measure by dividing q by its integral over α,∫
q(α | θ, y0) dα. Since 1/g(α,θ) is finite everywhere on the support of α, this integral exists

and is finite.
Given equation (46) and after some calculations, we can write the following system of 16

equations relating probabilities of choice histories with the vector of parameters θ and moments
in the distribution of A. Using matrix notation, this system is:

Pỹ = G(θ) mA (47)

where Pỹ is the 16× 1 vector with the empirical probabilities of all the possible choice histories;
G(θ) is a 16× 12 matrix with its elements only involving {B11, B12, B22, C}; and mA is a 12× 1

vector with the power moments of the measure q, that is:

mA ≡
∫ (

1 A A2 . . . A11
)′

q(α | θ) dα (48)

Given the system of equations in (47), we can construct a moment condition for θ by finding
a vector v ∈ R16 – that may depend on θ – such that v′G(θ) = 0. By definition, the collection
of vectors v satisfying this condition is nothing but the elements in the left null space of the
matrix G(θ). Hence, we can just take all elements in a basis that spans the left null space of
G(θ).

In our specific case here with T = 2, the rank of G(θ) is 4, hence the dimension of the left
null space of G(θ) is 4, and we can find 4 linearly independent moment conditions for θ. In
particular, two of them take the form:

−B11 P(1,0),(0,1) + P(1,0),(1,0) = 0

−C P(1,0),(0,0) −B11 C P(1,0),(0,1) + C P(0,0),(1,0) + P(0,0),(1,1) = 0
(49)

These two moment conditions identify B11 and C, or what is equivalent, β1 and γ2. We have
two more moment conditions for the identification of λ1 and β2. They have a more complivated
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form which is the following:

B22(C − 1)

B22 − C
(P(1,0),(0,0) − P(0,1),(0,0))−B22 P(1,1),(0,0)

+
B12C −B22C +B2

22 −B12B22C

B22(B22 − C)
P(0,1),(0,1)

+
B11B22(C − 1)

B22 − C
P(1,0),(0,1) −B11B12 P(1,1),(0,1) + P(0,1),(1,0) + P(0,1),(1,1) = 0

(50)

and

B11B12(C − 1)2

C(B22 − C)(B11B12 −B22C)(B22 − 1)
(P(1,0),(0,0) − P(0,1),(0,0))−

B11B12(C − 1)

B22C2 −B11B12C
P(1,1),(0,0)

− B11B12(B12C −B22C −B3
22C +B2

22 +B2
22C

2 − 2B12B22C +B12B
2
22C)

B2
22C(B22 − C)(B11B12 −B22C)(B22 − 1)

P(0,1),(0,1)

+
B2

11B12(C − 1)2

C(B22 − C)(B11B12 −B22C)(B22 − 1)
P(1,0),(0,1)

− B11B12

B22C
P8 +

B11(B22C − 1)(B12 −B22C)

B22C(B11B12 −B22C)(B22 − 1)
P(0,1),(1,0) + P(1,1),(1,0) = 0

(51)

A.2 Proof of Lemma 1

Given the structure for the lower bound – lnPL (ỹ | α,θ) = s′Lgα+ c′Lθ – and for the upper
bound – lnPU (ỹ | α,θ) = s′Ugα + c′Uθ – we have that:

exp {s′Lgα + c′Lθ} ≤ P (ỹ | α) ≤ exp {s′Ugα + c′Uθ} (A.1.1)

Integrating the inequalities in (A.1.1) over the distribution of α we have that the inequalities
still hold and they take the following form:

[∫
exp {s′Lgα} f(α) dα

]
exp {c′Lθ} ≤ P (ỹ) ≤

[∫
exp {s′Ugα} f(α) dα

]
exp {c′Uθ} (A.1.2)
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Define h (s) as ln
[∫

exp {s′gα} f(α) dα
]
. Then, we have that:

h (sL) + c′Lβ ≤ lnP (ỹ) ≤ h (sU) + c′Uθ (A.1.3)

A.3 Proof of Lemma 2

For the derivations below, we use the following definitions: σα1(y1t−1, y2t) ≡ − ln[1+exp{α1 +β1

y1t−1 + γ1y2t}] and σα2(y1t, y2t−1) ≡ − ln[1 + exp{α2 + β2 y2t−1 + γ2y1t}], and

s1 (ỹ)′ g1
α ≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(0, 1)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

(A.1)

where ∆σα1(1, 0) ≡ σα1(1, 0)− σα1(0, 0); and ∆σα2(0, 1) ≡ σα2(0, 1)− σα2(0, 0).
We also define the vector of incidental parameters:

g2
α ≡

[
∆σα1(0, 1), ∆σα2(1, 0), ∆2σα1, ∆2σα2

]′
(A.2)

where ∆σα1(0, 1) ≡ σα1(0, 1)− σα1(0, 0); ∆σα2(1, 0) ≡ σα2(1, 0)− σα2(0, 0); ∆2σα1 ≡ σα1(1, 1)−
σα1(1, 0)− σα1(0, 1)+ σα1(0, 0); and ∆2σα2 ≡ σα2(1, 1)− σα2(1, 0)− σα2(0, 1)+ σα2(0, 0).

And the statistics R(1,1)
1 ≡

∑T
t=1 y1t−1 y1t y2t and R

(1,1)
2 ≡

∑T
t=1 y2t−1 y1t y2t.

(a) Lower Bound lnPL{E,W} (ỹ | α,θ). To obtain this lower bound, we use the bounds L{E,SE}(0, 1|yt−1;α) ≡
[1 − Λ(α1 + β1 y1t−1)] Λ(α2 + β2 y2t−1) and L{W,NW}(1, 0|yt−1;α) ≡ Λ(α1 + β1 y1t−1 + γ1)

[1− Λ(α2 + β2 y2t−1 + γ2)] for the choice probabilities. Then,

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β1 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β1 y1t−1)] + ln Λ (α2 + β2 y2t−1))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β1 y1t−1 + γ1) + ln [1− Λ (α2 + β2 y2t−1 + γ2)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β1 y1t−1 + γ1) + ln Λ (α2 + β2 y2t−1 + γ2))

(A.3)
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Using the definitions σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 0) + σα2(0, y2t−1) + α2 + β2 y2t−1]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1 + α2 + β2 y2t−1 + γ2]

(A.4)
Grouping terms, we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y2t [α2 + β2 y2t−1]

+
T∑
t=1

y1t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1]

+
T∑
t=1

y1ty2t [γ2]

(A.5)

Using the definitions of the statistics T (1)
1 , T (1)

2 ,T (1,1), C11, and C12, we have the following ex-
pression for the lower bound lnPL{E,W} (ỹ | α,θ):

lnP (ỹ | α,θ) ≥ lnPL{E,W} (ỹ | α,θ)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T
(1)
1 ∆σα1(0, 1) + T

(1)
1 ∆σα2(1, 0)

+ C11 ∆2σα1 + C12 ∆2σα2

+ C11 β1 + C22 β2 + T
(1)
1 γ1 + T (1,1) γ2

(A.6)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{E,W} (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
1 , T (1)

1 , C11, C12

]
g2
α

+ C11 β1 + C22 β2 + T
(1)
1 γ1 + T (1,1) γ2

(A.7)
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(b) Lower Bound lnPL{S,N} (ỹ | α,θ). To obtain this lower bound, we use the bounds L{S,SE}(0, 1|yt−1;α) ≡
[1 − Λ(α1 + β1 y1t−1 + γ1)] Λ(α2 + β2 y2t−1 + γ2) and L{N,NW}(1, 0|yt−1;α) ≡ Λ(α1 + β1 y1t−1)

[1− Λ(α2 + β2 y2t−1)]. Then,

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β1 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β1 y1t−1 + γ1)] + ln Λ (α2 + β2 y2t−1 + γ2))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β1 y1t−1) + ln [1− Λ (α2 + β2 y2t−1)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β1 y1t−1 + γ1) + ln Λ (α2 + β2 y2t−1 + γ2))

(A.8)
Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β2 y2t−1 + γ2]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1) + α1 + β1 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1 + α2 + β2 y2t−1 + γ2]

A.9
Grouping terms, we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y1t [α1 + β1 y1t−1]

+
T∑
t=1

y2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β2 y2t−1 + γ2]

+
T∑
t=1

y1ty2t [γ1]

(A.10)

Using the definitions of the statistics T (1)
1 , T (1)

2 ,T (1,1), C11, and C12, we have the following ex-
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pression for the lower bound lnPL{S,N} (ỹ | α,θ):

lnP (ỹ | α,θ) ≥ lnPL{S,N} (ỹ | α,θ)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T
(1)
2 [∆σα1(0, 1) + ∆σα2(1, 0)]

+ C21 ∆2σα1 + C22 ∆2σα2

+ C11 β1 + C22 β2 + T (1,1) γ1 + T
(1)
2 γ2

(A.11)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{S,N} (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
2 , T (1)

2 , C21, C22

]
g2
α

+ C11 β1 + C22 β2 + T (1,1) γ1 + T
(1)
2 γ2

(A.12)

(c) Lower Bound lnPL{E,N} (ỹ | α,θ). To obtain this lower bound, we use the bounds L{E,SE}(0, 1|yt−1;α) ≡
[1−Λ(α1+β1 y1t−1)] Λ(α2+β2 y2t−1) and L{N,NW}(1, 0|yt−1;α) ≡ Λ(α1+β1 y1t−1) [1−Λ(α2+β2

y2t−1)] for the choice probabilities. Then,

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β1 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β1 y1t−1)] + ln Λ (α2 + β2 y2t−1))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β1 y1t−1) + ln [1− Λ (α2 + β2 y2t−1)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β1 y1t−1 + γ1) + ln Λ (α2 + β2 y2t−1 + γ2))

(A.13)
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Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 0) + σα2(0, y2t−1) + α2 + β2 y2t−1]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1) + α1 + β1 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1 + α2 + β2 y2t−1 + γ2]

(A.14)
Grouping terms, we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1ty2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y2t [α2 + β2 y2t−1]

+
T∑
t=1

y1t [α1 + β1 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + γ1 + γ2]

(A.15)

Using the definitions of the statistics T (1)
1 , T (1)

2 ,T (1,1), C11, and C12, we have the following ex-
pression for the lower bound lnPL{E,N} (ỹ | α,θ):

lnP (ỹ | α,θ) ≥ lnPL{E,N} (ỹ | α,θ)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T (1,1) [∆σα1(0, 1) + ∆σα2(1, 0)]

+ R
(1,1)
1 ∆2σα1 +R

(1,1)
2 ∆2σα2

+ C11 β1 + C22 β2 + T (1,1) [γ1 + γ2]

(A.16)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPL{E,N} (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T (1,1), T (1,1), R(1,1)

1 , R(1,1)
2

]
g2
α

+ C11 β1 + C22 β2 + T (1,1) [γ1 + γ2]
(A.17)
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(d) Lower Bound lnPL{S,W} (ỹ | α,θ). To obtain this lower bound, we use the bounds L{S,SE}(0, 1|yt−1;α) ≡
[1−Λ(α1 +β1 y1t−1 +γ1)] Λ(α2 +β2 y2t−1 +γ2) and L{W,NW}(1, 0|yt−1;α) ≡ Λ(α1 +β1 y1t−1 +γ1)

[1− Λ(α2 + β2 y2t−1 + γ2)] for the choice probabilities. Then,

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β1 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β1 y1t−1 + γ1)] + ln Λ (α2 + β2 y2t−1 + γ2))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β1 y1t−1 + γ1) + ln [1− Λ (α2 + β2 y2t−1 + γ2)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β1 y1t−1 + γ1) + ln Λ (α2 + β2 y2t−1 + γ2))

(A.18)
Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α2 + β2 y2t−1 + γ2]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1 + α2 + β2 y2t−1 + γ2]

(A.19)
Grouping terms, we have:

lnP (ỹ | α,θ) ≥ ln pα (y10, y20)

+
T∑
t=1

[σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

y2t [α2 + β2 y2t−1 + γ2]

+
T∑
t=1

y1t [α1 + β1 y1t−1 + γ1]

+
T∑
t=1

[y1t + y2t − y1ty2t] [σα1(y1t−1, 1)− σα1(y1t−1, 0) + σα2(1, y2t−1)− σα2(0, y2t−1)]

(A.20)
Using the definitions of the statistics T (1)

1 , T (1)
2 ,T (1,1), C11, and C12, we have the following ex-
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pression for the lower bound lnPL{S,W} (ỹ | α,θ):

lnP (ỹ | α,θ) ≥ lnPL{S,W} (ỹ | α,θ)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) [σα1(1, 0)− σα1(0, 0)] + (y20 − y2T ) [σα2(0, 1)− σα2(0, 0)]

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+
[
T

(1)
1 + T

(1)
2 − T (1,1)

]
[∆σα1(0, 1) + ∆σα2(1, 0)]

+
[
C11 + C21 −R(1,1)

1

]
∆2σα1 +

[
C12 + C22 −R(1,1)

2

]
∆2σα2

+ C11 β1 + C22 β2 + T
(1)
1 γ1 + T

(1)
2 γ2

(A.21)
Finally, using the definitions of s1 (ỹ)′ g1

α and g2
α, we get:

lnPL{S,W} (ỹ | α,θ) = s1 (ỹ)′ g1
α

+
[
T

(1)
1 + T

(1)
2 − T (1,1), T (1)

1 + T
(1)
2 − T (1,1), C11 + C21 −R(1,1)

1 , C12 + C22 −R(1,1)
2

]
g2
α

+ C11 β1 + C22 β2 + T
(1)
1 γ1 + T

(1)
2 γ2

(A.22)

(e) Upper Bound lnPU (ỹ | α,θ). For the upper bounds, we use the bounds for the choice prob-
abilities U(0, 1|yt−1;α) ≡ [1− Λ (α1 + β1 y1t−1 + γ1)] Λ (α2 + β2 y2t−1) and U(1, 0|yt−1;α) ≡
Λ (α1 + β1 y1t−1) [1− Λ (α2 + β2 y2t−1 + γ2)]. Then,

lnP (ỹ | α,θ) ≤ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) (ln [1− Λ (α1 + β1 y1t−1)] + ln [1− Λ (α2 + β22 y2t−1)])

+
T∑
t=1

(1− y1t) y2t (ln [1− Λ (α1 + β1 y1t−1 + γ1)] + ln Λ (α2 + β2 y2t−1))

+
T∑
t=1

y1t (1− y2t) (ln Λ (α1 + β1 y1t−1) + ln [1− Λ (α2 + β2 y2t−1 + γ2)])

+
T∑
t=1

y1ty2t (ln Λ (α1 + β1 y1t−1 + γ1) + ln Λ (α2 + β2 y2t−1 + γ2))

(A.23)
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Using the definitions of σα1(y1t−1, y2t) and σα2(y1t, y2t−1), we have:

lnP (ỹ | α,θ) ≤ ln pα (y10, y20)

+
T∑
t=1

(1− y1t) (1− y2t) [σα1(y1t−1, 0) + σα2(0, y2t−1)]

+
T∑
t=1

(1− y1t) y2t [σα1(y1t−1, 1) + σα2(0, y2t−1) + α2 + β2 y2t−1]

+
T∑
t=1

y1t (1− y2t) [σα1(y1t−1, 0) + σα2(1, y2t−1) + α1 + β1 y1t−1]

+
T∑
t=1

y1ty2t [σα1(y1t−1, 1) + σα2(1, y2t−1) + α1 + β1 y1t−1 + γ1 + α2 + β2 y2t−1 + γ2]

(A.24)
Grouping terms, we have:

lnP (ỹ | α,θ) ≤ ln pα (y10, y20)

+
T∑
t=1

(1− y2t) σα1(y1t−1, 0) + (1− y1t) σα2(0, y2t−1)

+
T∑
t=1

y2t σα1(y1t−1, 1) + y2t [α2 + β2 y2t−1]

+
T∑
t=1

y1t σα2(1, y2t−1) + y1t [α1 + β1 y1t−1]

+
T∑
t=1

y1ty2t [γ1 + γ2]

(A.25)

Using the definitions of the statistics T (1)
1 , T (1)

2 ,T (1,1), C11, and C12, we have the following ex-
pression for the upper bound lnPU (ỹ | α,θ):

lnP (ỹ | α,θ) ≤ lnPU (ỹ | α,θ)

≡ ln pα (y10, y20) + T [σα1(0, 0) + σα2(0, 0)]

+ (y10 − y1T ) ∆σα1(1, 0) + (y20 − y2T ) ∆σα2(0, 1)

+ T
(1)
1 [α1 + ∆σα1(1, 0)] + T

(1)
2 [α2 + ∆σα2(0, 1)]

+ T
(1)
2 ∆σα1(0, 1) + T

(1)
1 ∆σα2(1, 0)

+ C21 ∆2σα1 + C12 ∆2σα2

+ C11 β1 + C22 β2 + T (1,1) [γ1 + γ2]

(A.26)

Finally, using the definitions of s1 (ỹ)′ g1
α and g2

α, we get:

lnPU (ỹ | α,θ) = s1 (ỹ)′ g1
α +

[
T

(1)
2 , T (1)

1 , C21, C12

]
g2
α

+ C11 β1 + C22 β2 + T (1,1) [γ1 + γ2]
(A.27)
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