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Abstract. Firms make decisions under uncertainty and differ in their ability to collect and
process information. As a result, in changing environments, firms have heterogeneous
beliefs on the behaviour of other firms. This heterogeneity in beliefs can have impor-
tant implications on market outcomes, efficiency and welfare. This paper studies the
identification of firms’ beliefs using their observed actions—a revealed preference and
beliefs approach. I consider a general structural model of market competition where firms
have incomplete information and their beliefs and profits are nonparametric functions of
decisions and state variables. Beliefs may be out of equilibrium. The framework applies
both to continuous and discrete choice games and includes as particular cases models of
competition in prices or quantities, auction models, entry games and dynamic games of
investment decisions. I focus on identification results that exploit an exclusion restriction
that naturally appears in models of competition: an observable variable that affects
a firm’s cost (or revenue) but does not have a direct effect on other firms’ profits.
I present identification results under three scenarios—common in empirical industrial
organization—on the data available to the researcher.

Résumé. Identification des convictions des entreprises dans des modèles structurels de
concurrence commerciale. En matière de décision, les entreprises agissent dans l’incerti-
tude et diffèrent dans leurs capacités à recueillir et traiter l’information. Par conséquent,
dans des environnements en constante évolution, les convictions des entreprises
sur le comportement de leurs concurrents sont hétérogènes. Cette hétérogénéité peut
avoir des conséquences importantes sur les effets du marché, le rendement et le bien-
être. Grâce à une approche fondée sur les préférences et les croyances révélées, cet
article s’intéresse à l’identification des convictions des entreprises en fonction de leurs
actions observées. Nous considérons donc un modèle structurel général de concurrence
commerciale au sein duquel les entreprises disposent de données incomplètes et où
leurs convictions, de même que leurs profits, sont des fonctions non paramétriques des
décisions et des variables d’état. Les convictions peuvent se situer hors équilibre. Ce
cadre s’applique à la fois aux jeux à choix continus et aux jeux à choix discrets et
comprend, à titre de cas particuliers, des modèles de concurrence de prix ou de quantité,
des modèles d’enchères, des jeux d’entrée ainsi que des jeux dynamiques de décisions
d’investissement. L’attention est portée sur les résultats d’identification qui exploitent
une restriction d’exclusion apparaissant naturellement dans les modèles de concurrence :
une variable observable ayant une incidence sur les coûts (ou les recettes) des entreprises
mais n’entraînant aucun effet direct sur les profits de leurs concurrents. En matière de
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données mises à la disposition des chercheurs, les résultats d’identification sont présentés
sous trois scénarios, ce qui est habituel dans les organisations industrielles empiriques.

JEL classification: C57, D81, D83, D84, L13

1. IntroductionA

Afirm’s behaviour depends on its beliefs about the actions of other
firms in the same market. In a retail market, the choice of price

depends on beliefs about competitors’ prices. In a procurement auction, a
firm’s bid depends on its expectations about other firms’ bids. Managers form
their beliefs under uncertainty on demand, costs and competitors’ decisions.
These managers and their firms have different abilities to collect and process
information and, as a result, they are heterogeneous in their expectations. This
heterogeneity in beliefs can have important implications on firms’ performance
and survival in the market. Nevertheless, firms with different accuracy in
beliefs can survive in the same industry, for the same reasons as they can
coexist with different productivities.

The importance of firms’ heterogeneity in their ability to form
expectations—and the possibility of biased or non-equilibrium beliefs—has
been long recognized in economics, at least since the work of Simon (1958,
1959). However, in most fields in economics, the status quo has been to
assume rational expectations. In empirical industrial organization (IO), some
of the most commonly used structural models of oligopoly competition assume
complete information, perfect certainty and Nash equilibrium. For instance,
this is the case in models of price competition with differentiated product
(Berry et al. 1995, Berry and Haile 2014) and in empirical games of market
entry (Bresnahan and Reiss 1991, Ciliberto and Tamer 2009).1 Though there
is a substantial literature on structural models of incomplete information
in empirical IO, it is mostly concentrated in auctions (Guerre et al. 2000,
Athey and Haile 2002) and in discrete choice games, both static (Seim 2006,
Sweeting 2009, Bajari et al. 2010) and dynamic (Aguirregabiria and Mira 2007,
Igami 2017). Empirical applications to models of quantity or price competition
are not so common, though Armantier and Richard (2003) and Aryal and
Zincenko (2019) are good exceptions.

1 Berry and Haile (2014) assume complete information and perfect certainty, but
the supply side of their model allows for a general form of competition, not
necessarily Nash equilibrium. In their section 6, in the spirit of Bresnahan
(1982), they study the joint identification of marginal costs and the nature of
competition. I will comment on this in section 4.3.2 and example 6, when I
discuss the relationship between the identification of beliefs in my model of
incomplete information and the identification of the nature of competition in a
model of complete information.



Identification of firms’ beliefs 7

Most empirical applications of games of incomplete information assume
that firms have homogeneous beliefs that correspond to a Bayesian Nash
equilibrium. Nevertheless, recent papers in structural IO relax equilibrium
assumptions and present evidence of substantial heterogeneity and biases in
firms’ beliefs. As one would expect, biased beliefs are more likely in new
markets and after regulatory changes: for instance, after deregulation of the
US telecommunication industry (Goldfarb and Xiao 2011), the UK electricity
market (Doraszelski et al. 2018), the Texas electricity spot market (Hortaçsu
and Puller 2008 and Hortaçsu et al. 2019) or the Washington State liquor
market (Huang et al. 2018) and in the early years of the fast-food restaurant
industry in UK (Aguirregabiria and Magesan 2020) or China (Xie 2018). All
these papers use a revealed preference and beliefs approach to identify the
structural parameters in costs and demand together with firms’ subjective
beliefs. That is, a firm’s observed actions reveal information about its prefer-
ences (i.e., the structure of its profit function) and beliefs.2

Identification of beliefs using a revealed preference and beliefs (RP&B)
approach requires restrictions either on profit or on beliefs functions. The
papers mentioned above use different restrictions to identify subjective beliefs.
In this paper, I present a systematic analysis of the joint identification of firms’
beliefs and structural parameters in a general class of empirical games of
market competition. The analysis introduces minimum restrictions on prefer-
ences (profits) and beliefs which are nonparametric functions of firms’ actions
and state variables. I investigate the identification of beliefs under very weak
restrictions.

I present a framework where firms have incomplete information and their
beliefs on competitors’ behaviour are unrestricted (nonparametric) probability
functions on the space of competitors’ actions and conditional on observable
state variables. Beliefs may be out of equilibrium. Revenue and cost functions
are also nonparametrically specified. The framework applies both to contin-
uous and discrete choice games and includes as particular cases models of
competition in prices or quantities, auction models, entry games and dynamic
investment games. I focus on identification results that exploit an exclusion
restriction that naturally appears in models of competition: an observable
variable that affects a firm’s cost (or revenue) but does not have a direct
effect on other firms’ profits. Examples of this type of variable are firm-specific
input prices, total factor productivity and predetermined variables such as

2 Using observed behaviour to identify agents’ subjective beliefs was already
proposed by Frank Ramsey in his article titled “Truth and Probability”
(Ramsey 1926). Ramsey argues that probability is related to the knowledge
that each individual possesses, leading to the notion of subjective probability or
beliefs. Then, he explains how subjective beliefs can be inferred using observed
behaviour. On pages 174 and 175 in his article, Ramsey uses a simple example
to illustrate the identification of beliefs from observed actions.
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the firm’s previous period capital stock or incumbency status. I show the
identification power of this exclusion restriction under several scenarios on the
data available to the researcher: data only on firms’ choices and state variables,
as well as applications where the researcher has price and quantity data to
identify the revenue function or the cost function. Identification conditions
vary substantially when the model is static or dynamic, so I study separately
these two cases.

This paper relates to several literatures in empirical IO and econometrics.
As mentioned above, it belongs to a growing literature on structural models of
market competition where firms have biased beliefs (see the references above).

In the econometrics of games, several papers have studied identification
of models that allow for biased beliefs but impose other restrictions, such
as level-k rationality (An 2017), cognitive hierarchy (Brown et al. 2013) or
rationalizability (Aradillas-Lopez and Tamer 2008, Kline 2018). In this
paper, I do not impose these restrictions and show that they are testable.
An et al. (2018) show the identification subjective expectations in single-agent
dynamic structural models using a RP&B approach. The exclusion restriction
that these authors use is quite different from the one that I present in this
paper.

In experimental economics, a good number of papers have estimated agents’
beliefs in games played in laboratory experiments and have investigated strate-
gic uncertainty (Van Huyck et al. 1990, Heinemann et al. 2009). In
Aguirregabiria and Xie (2020), we propose a simple to implement experimental
design that generates an exclusion restriction that identifies agents’ beliefs in a
nonparametric model where agents can have other-regarding preferences (i.e.,
altruism or concerns for inequality).

The identification of subjective beliefs in games also relates to the identifi-
cation of structural games with multiple equilibria in the data. In both cases,
we are interested in identifying the variation in players’ behaviour that comes
from variation in beliefs, keeping preferences constant. Recent contributions
include De Paula and Tang (2012), Otsu et al. (2016) and Aguirregabiria and
Mira (2019).

Finally, as I describe in section 3, the identification of firms’ beliefs on
competitors’ strategies relates to the traditional IO literature on identification
of the nature of competition, pioneered by Bresnahan (1982). In contrast to the
traditional approach, the model in this paper acknowledges that firms’ beliefs
are endogenous objects that depend on all the state variables affecting demand
and costs. I show that the exclusion restrictions typically used to identify the
form of competition (or the so-called conjectural variation parameters) cannot
identify firms’ beliefs.

I have organized the rest of the paper as follows. Sections 2 and 3 present
general frameworks—static and dynamic, respectively—that include as par-
ticular cases most models of competition in empirical applications in IO.
Section 4 presents our main results on the identification of firms’ beliefs using
a RP&B approach. I summarize and conclude in section 5.
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2. Static games
2.1. Basic framework
Consider N firms competing in a market. Firms are indexed by i. The profit
function of firm i is Πi(ai, a−i, εi, x), where ai ∈ A is the action of firm i
and a−i = (aj : j �= i)∈ AN−1 is the vector with the actions of the other firms.
The decision variable, ai, can be either discrete or continuous, and it can
represent—among other possibilities—a firm’s level of output, its price, the
binary indicator of entry in a market, the firm’s number of stores or its
investment in R&D. The vector x∈X represents variables that are known by
all the firms. The term εi ∈R is private information of firm i. For instance, this
private information can be a component of the firm’s cost, or a private signal
about the state of the demand. I denote εi as the “type” of firm i. The vector
of firms’ types (ε1, ε2,…, εN ) is drawn from a distribution with cumulative dis-
tribution function F (ε1, ε2,…, εN |x). I use Fi(εi|x) to represent the marginal
distribution function of εi. The primitives of the game are Π′s, A, X and F .

Firms simultaneously decide their actions to maximize their respective
expected profits. Under the standard solution concept of Bayesian Nash equi-
librium (BNE), the primitives of the model are assumed common knowledge—
that is, every firm knows that every firm knows these primitives. The model
that I consider here does not impose this restriction. This model assumes that
each firm knows only its own profit function, the vector of variables x and its
private information εi. For instance, some firms may not know the distribution
function F , or the profit functions of other firms. Furthermore, the fact that
x is known to all the firms might not be common knowledge.

A firm does not know the private information of its competitors and
therefore it does not know their actions. Firms form probabilistic beliefs about
the actions of competitors. Let bi(a−i|εi, x) be a probability density function
that represents firm i’s beliefs. This is a probability function in the space
of the actions of firms other than i and conditional on firm i′s information.
We use Bi(a−i|εi, x) to denote the distribution function associated with the
density bi(a−i|εi, x). Given its beliefs, a firm’s expected profit is

Πe
i (ai, εi, x, bi)=

∫
a−i

Πi(ai, a−i, εi, x)bi(a−i|εi, x)da−i. (1)

The integral is over the Lebesgue measure on AN−1, which can be either
continuous or discrete.

A key condition in this model is that firms maximize their (subjective)
expected profits. The following assumption establishes this condition.

Assumption 1. A firm—given its subjective beliefs—chooses its strategy
function σi(εi, x, bi) to maximize its expected profit. That is,

σi(εi, x, bi)=arg max
ai∈A

Πe
i (ai, εi, x, bi). (2)

In other words, a firm’s strategy is a best response to its beliefs. �
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The belief-based best response model that I consider in this paper is general
and has a long tradition in economics. However, it rules out some forms of
strategic behaviour such as reinforcement learning (RL). Models of RL do not
incorporate agents’ beliefs or the maximization of expected payoff. Instead,
they formalize the following principle: actions that have yielded payoffs above
(below) the agent’s aspiration level are more (less) likely to be chosen in the
future. RL is common in computer science, it has also a tradition in economics
(Erev and Roth 1998, Börgers and Sarin 2000).

It is convenient to represent a firm’s strategy as a cumulative distribution
function. Let pi (ai|x) be the probability density function of choice variable
ai conditional on x, that is, the so called conditional choice probability (CCP)
function. We use Pi (ai|x) to denote the cumulative distribution function
associated to pi. According to the model, this distribution comes from firm
i’s best response and satisfies the following equation. For any value a0 ∈A,

Pi

(
a0|x) ≡Pr

(
σi(εi, x, bi)≤a0|x; bi

)
=

∫
1

{
σi(εi, x, bi)≤a0}

dFi(εi|x). (3)

In this framework, the payoff functions {Πi} and the distribution of private
signals F (.|x) are primitives of the model. The predictions of the model are the
choice probabilities. The belief functions {bi} are endogenous outcomes of the
model. However, the model is incomplete in the sense that it does not specify
how these beliefs are determined. Instead, it specifies a general framework
that includes as particular cases many different models for the determination
of beliefs such as Bayesian Nash equilibrium, cognitive hierarchy models and
many others.

2.2. Additional assumptions
I focus on models where a firm’s action ai is a single variable that can be either
continuous or discrete. If the decision is continuous, then A=R. If the decision
is discrete, then it is ordered and A = {0, 1,…, J}, e.g., number of products,
stores, etc.3 The framework imposes some restrictions on the marginal profit
function to guarantee that a firm’s best response function is strictly monotonic
in εi. For the rest of this subsection, I present assumptions such that: (i)
these marginal conditions of optimality are necessary and sufficient such that
they fully characterize a firm’s optimal best response function and (ii) we
can obtain a simple characterization of the optimal decision rule using the
cumulative choice probability function Pi (ai|x).

Let ΔΠi(ai, a−i, εi, x) be the marginal profit function. Here the concept of
marginal profit is broad and depends on the decision variables ai. If the deci-
sion variable is continuous, such as output or price, the marginal profit is at
the intensive margin and it corresponds to the mathematical concept of partial
derivative: ΔΠi(ai, a−i, εi, x)≡ ∂Πi(ai, a−i, εi, x)/∂ai. If the decision variable

3 Note that any binary choice (e.g., a market entry decision) is a particular case
of ordered discrete choice variable.
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is discrete—such as entry decision, number of stores or number of products—
the marginal profit is at the extensive margin and corresponds to a difference
function: ΔΠi(ai, a−i, εi, x)≡ Πi(ai, a−i, εi, x) −Πi(ai −1, a−i, εi, x).

The following assumption provides sufficient conditions for the monotonic-
ity of a firm’s best response function with respect to its type εi.

Assumption 2. For any value of (ai, a−i, εi, x), the marginal profit function
ΔΠi(ai, a−i, εi, x) is (A) additively separable in the private information εi

such that

ΔΠi(ai, a−i, εi, x)=Δπi(ai, a−i, x)−εi and (4)

(B) Δπi(ai, a−i, x) is strictly decreasing in the own action ai. For discrete
choice models, and without loss of generality, I adopt the notational convention
of Δπi(0, a−i, x)=+∞ and Δπi(J +1, a−i, x)=−∞. �

The strict monotonicity of the marginal profit with respect to the own
action—assumption 2(B)—holds in most models of market competition. For
models of competition in price or quantity, a downward sloping demand curve
and a non-decreasing marginal costs are sufficient conditions for the mono-
tonicity of the marginal profit with respect to the own action.

The additivity of the private information in assumption 2(A) is not without
loss of generality. The following example presents a simple model to illustrate
some restrictions imposed by this assumption.

Example 1. Consider a model of Cournot competition in an homogeneous
product industry. Variable ai ∈ R+ represents firm i’s amount of output. The
inverse demand function is linear: p=α−β

∑N
j=1 aj . Parameters α and β are

the true demand parameters. Firms do not know these parameters. Instead,
each firm receives a private and independent signal (αi, βi) about the value
of these parameters. The cost function of firm i is: γiai + δia

2
i , where γi and

δi are private information of this firm. Therefore, the profit function is Πi =
(αi −βi

∑N
j=1aj) ai −γiai − δia

2
i and the marginal profit function is

ΔΠi =Πi(ai)−Πi(ai −1)=αi −βi

N∑
j=1

aj −βiai −γi − δiai. (5)

This expression shows that the private information variables αi and γi enter
additively in the marginal profit. However, this is not the case for the private
information variables βi and δi which interact with the own output and with
the output of other firms. Therefore, for this model, assumption 2(A) restricts
private information to enter in the intercept of the demand curve (αi) or/and
in the linear term of cost function (γi). It does not allow private information
in the slope of the demand (βi) or in the quadratic term of the cost function
(δi). �

For all the identification results in this paper, assumption 2(A) can be re-
placed with the weaker condition that ΔΠi =Δπi(ai, a−i, x)−gi(ai, a−i, x)εi,
where function gi(ai, a−i, x) is positive valued and known to the researcher.
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For notational simplicity, I use assumption 2(A) instead of this weaker version.4
See Athey (2001) or Athey and Bagwell (2001) for more general results that
require monotonicity but not additivity in εi.

Assumption 3 establishes the restriction that firms’ types are indepen-
dently distributed—independent private values (IPV)—and that a firm’s be-
liefs about other firms’ actions do not depend on the firm’s own type.

Assumption 3. (A) The private information variables (ε1, ε2,…, εN ) are
independently distributed conditional on x: F (ε1, ε2,…, εN |x)=

∏N
i=1 Fi(εi|x).

(B) Every firm i knows that other firms’ private information is independent of
its own private information such that a−i and εi are independent conditional
on x. (C) The beliefs function bi(a−i|εi, x) does not depend on the firm’s own
type, εi. I represent a beliefs function as bi(a−i|x). �

The identification results in this paper—in propositions 1 to 5—still hold
when we allow for two types of unobservables for the researcher: the firm-
specific private information unobservables, εi—with an IPV structure—and
unobservables, ω, which vary across markets but not over firms, can be known
by every firm and can be payoff-relevant or not. For notational simplicity, I
focus on a model without market unobserved heterogeneity ω.5

Assumption 4. The private information εi is a continuous random variable
with the real line as support and with a cumulative distribution function con-
ditional on x—Fi(εi|x)—that is strictly increasing over the whole real line.�

2.3. Characterization of firms’ best response functions
Define the expected marginal profit (without including the private component
εi) as

Δπe
i (ai, x; bi)≡

∫
a−i

Δπi(ai, a−i, x)bi(a−i|x)da−i. (6)

4 In a recent paper, Allen and Rehbeck (2019) show that the assumption of
additive separability of unobservables provides identification of preferences and
counterfactual behaviour in a very general class of single-agent static decision
models.

5 To extend the identification results in this paper to a model with unobserved
market heterogeneity, we can apply results from Aguirregabiria and Mira
(2019). In that paper, the authors assume that unobserved market heterogeneity
ω is independent of εi—but not independent of x—and has a distribution with
finite support. Using results from the literature on nonparametric finite
mixtures, they establish the identification of the probability distribution of a
firm’s action conditional on x and ω (propositions 1 and 2 in Aguirregabiria and
Mira 2019). Given the identification of this distribution, it is straightforward to
extend propositions 1 to 5 to a model with this type of market unobserved
heterogeneity such that a firm’s beliefs function is bi(a−i|x, ω).
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Consider the marginal condition of optimality. If ai is firm i’s optimal choice,
then: (i) for models with continuous decision variable, Δπe

i (ai, x; bi) − εi = 0
and (ii) for models with discrete decision variable, Δπe

i (ai + 1, x; bi) < εi ≤
Δπe

i (ai, x; bi), where—remember—I have adopted the convention that Δπi(0,
a−i, x) = +∞ and Δπi(J + 1, a−i, x) = −∞. Let σi(εi, x, bi) be firm i’s best
response function.

Proposition 1 establishes that the marginal condition is necessary and
sufficient. This proposition also characterizes a firm’s best response function
in terms of the cumulative choice probability function.

Proposition 1. (A) Under assumptions 1 to 3, the marginal condition of
optimality is a necessary and sufficient condition for firm i’s best response,
i.e., σi(εi, x, bi)=ai if and only if the marginal condition holds for value ai.
(B) Under assumptions 1 to 4, for any value a0 in the choice set A, we have
the following relationship between the cumulative choice probability function
Pi(a0|x) and the expected marginal profit:

Pi(a0|x)=Fi

[
Δπe

i (a0, x; bi)|x
]
. (7)

This relationship is invertible such that we have

Qi(a0|x)=Δπe
i (a0, x; bi), (8)

where Qi(a0|x) ≡ F −1
i

[
Pi(a0|x)

]
and F −1

i is the inverse of Fi (quantile
function). �

The following examples illustrate this characterization of best response
functions using four standard models of competition: Cournot, auctions, mar-
ket entry and number of stores, respectively.

Example 2 (Cournot competition). Consider a Cournot game of quan-
tity choice in an homogeneous product industry. Let ai ∈R+ be firm i’s amount
of output. The market demand function is d(Q, x), where Q =

∑N
i=1 ai and a

firm’s marginal cost function is ci(ai, x) + εi. The expected marginal profit
function is Δπe

i (ai, x; bi)−εi, where

Δπe
i (ai, x; bi)=−ci(ai, x)+

∫
a−i

aid

(∑
j �=i

aj , x
)

bi(a−i|x)da−i. �(9)

Example 3 (market entry game). Consider a game of market entry. Let
ai ∈ {0, 1} be the indicator of the event “firm i is active in the market.” A
firm’s profit if not active in the market is zero, Πi(0, a−i, εi, x) = 0. If active
in the market, a firm’s profit is equal to the variable profit vi(a−i, x) (i.e.,
revenue minus variable cost) minus the entry cost eci(x) + εi. The marginal
profit is the profit if active minus the profit if not active, which, in this case,
is zero. Then, the expected marginal profit function is

Δπe
i (1, x; bi)−εi =−eci(x)−εi +

∑
a−i

vi(a−i, x)bi(a−i|x). �(10)
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Example 4 (competition in number of stores or products). Con-
sider a game where ai ∈{0, 1,…, J} represents the number of products that the
firm has in the market. Similarly as in the market entry game, a firm’s profit is
equal to the variable profit vi(ai, a−i, x) minus the fixed cost fci(ai, x)+aiεi.
In this case, the private information εiis associated to the increase in the
fixed cost from managing one more product. Then, the expected marginal
profit function is

Δπe
i (ai, x; bi)−εi =−Δfci(ai, x)−εi +

∑
a−i

Δvi(ai, a−i, x)bi(a−i|x), (11)

with Δfci(ai, x) ≡ fci(ai, x) − fci(ai − 1, x) and Δvi(ai, a−i, x) ≡ vi(ai,
a−i, x)−vi(ai −1, a−i, x). �

Example 5 (procurement auction). This example is slightly different
from the previous ones because the private information variable εi is not
additive in the marginal condition of optimality. I use this example to illustrate
how this condition is not necessary to obtain the characterization of the
best response function that I use for the identification results in this paper.
Consider a procurement auction where ai ∈R represents firm i‘s bid. The profit
function is Πi(ai, a−i, εi, x)=(ai −ci(x)−εi) 1{aj >ai∀j �= i}, where ci(x)+εi

is the cost and 1{.} is the indicator function such that 1{aj >ai∀j �= i} is the
indicator of the event “firm i has the lowest bid and wins the auction.”

The expected profit function is

Πe
i (ai, εi, x; bi)= (ai − ci(x)−εi)

∫
a−i

1{aj >ai∀j �= i}bi(a−i|x)da−i

= (ai − ci(x)−εi) W (ai, x, bi),
(12)

where W (ai, x, bi) ≡ ∫
a−i

1{aj > ai∀j �= i}bi(a−i|x) da−i is firm i’s subjective
probability of wining the auction given its beliefs. Therefore, the expected
marginal profit function is

Δπe
i (ai, εi, x; bi)=W (ai, x, bi)+(ai − ci(x)−εi) ΔW (ai, x, bi), (13)

where ΔW (ai, x, bi) represents the derivative of the subjective probability of
winning with respect to the own bid ai.

Note that this expected marginal profit function is not additively separable
in εi. However, Δπe

i is strictly monotonic in ai and εi, and this implies
that the best response function is strictly monotonic in εi. More specifi-
cally, we have that σi(εi, x, bi) = a0 if and only if W (a0, x, bi)+ (a0 − ci(x)
−εi)ΔW (a0, x, bi)= 0, and this is equivalent to εi =a0 − ci(x)+ W (a0, x, bi)

ΔW (a0, x, bi) .

This implies that σi(εi, x, bi) ≤ a0 if and only if εi ≤ a0 − ci(x) + W (a0, x, bi)
ΔW (a0, x, bi)

such that we can represent the best response function using the following
formula for the conditional quantile function:

Qi(a0|x)=a0 − ci(x)+ W (a0, x, bi)
ΔW (a0, x, bi)

. �(14)
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2.4. Common equilibrium restrictions in empirical applications
The framework presented above includes as particular cases most games of
competition with incomplete information in empirical IO applications. A main
difference is that most empirical applications have assumed that firms’ beliefs
satisfy some equilibrium restrictions. Different equilibrium concepts have been
used in the literature. I present here the equilibrium concepts that have
received more attention in empirical applications in IO.

All these equilibrium concepts assume that firms choose their best re-
sponse strategies given their beliefs: that is, they impose the best response
conditions described above. In addition, they restrict beliefs to satisfy some
additional equilibrium restrictions. I describe below these additional restric-
tions.

(a) Bayesian Nash equilibrium (BNE) with independent private values.
This is the most commonly used solution concept in games of incomplete
information in IO. It has received particular attention in auction games (e.g.,
Guerre et al. 2000, Athey and Haile 2002) and in discrete choice games (e.g.,
Seim 2006, Sweeting 2009). It has been used also in empirical applications
of Cournot competition models with incomplete information (Armantier and
Richard 2003, Aryal and 2019).

A BNE can be described as N cumulative choice probability functions—
{Pi(ai|x) : i = 1, 2,…, N}—satisfying the following conditions: (i) [best
responses] Pi(ai|x) satisfies the best response equation (7) given beliefs bi

and (ii) [rational beliefs] the cumulative beliefs function Bi is equal to the
actual distribution function of the choices of the other firms conditional on x:

Bi(a−i|x)=
∏
j �=i

Pj

(
aj |x)

. (15)

(b) Cognitive hierarchy (CH) and level-K models. These models propose
equilibrium concepts where firms have biased beliefs, that is, Bi(a−i|x) �=∏

j �=iPj

(
aj |x)

. They are based on the following ideas. Firms are heterogeneous
in their beliefs and there is a finite number of belief types. That is, Bi(a−i|x)
belongs to a finite family of K belief functions, {B(k)(a−i|x) : k = 1, 2,…, K}.
Each member of this family is a “belief type.” Belief types correspond to
different levels of strategic sophistication and are determined by a hierarchical
structure.

A type-0 firm has arbitrary believes B(0). In the level-k model, a type-k
firm believes that all the other firms are type (k-1). Therefore, a type-k firm
has beliefs:

B(k)(a−i|x)=
∏
j �=i

Fj

(
Δπe

j (aj , x; B(k−1))|x
)
. (16)

This recursive equation defines the belief functions for every type k between
1 and K. Note that the only unrestricted function is the beliefs function for
type-0: the rest of the belief functions are known functions of B(0) and the
primitives of the model.
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The CH model is more flexible than the level-k model. In the CH model, a
type-k firm believes that the other firms come from a probability distribution
over types 0 to (k−1). This model has been estimated in IO applications in
Goldfarb and Xiao (2011), Brown et al. (2013) and Hortaçsu et al. (2019).

These models allow for some flexibility in beliefs. However, they still impose
important restrictions. More specifically, they do not include BNE or rational
beliefs as a particular case, and there is a small number of belief types. In
applications, K is always smaller than N and typically equal to 2 or 3.

(c) Rationalizability (Bernheim 1984, Pearce 1984). The concept of
rationalizability imposes two simple restrictions on firms’ beliefs and be-
haviour. First, every firm maximizes its own expected profit given beliefs.
And second, this rationality is common knowledge, i.e., every firms knows
that every firm knows...that all the firms are rational. The set of outcomes of
the game that satisfy these conditions—the set of rationalizable outcomes—
includes all the Bayesian Nash equilibria (BNE) of the game but also outcomes
where players have biased beliefs. More specifically, in a game with multiple
equilibria, each firm has beliefs that are consistent with a BNE, but these
beliefs may not correspond to the same BNE, that is, a firm believes that
they are playing equilibrium A and other firm believes that the equilibrium
played is B.

In general, the set of rationalizable beliefs is larger than the set of BNE
but substantially smaller than the set of all the possible beliefs. Therefore, the
condition of common knowledge rationality imposes non trivial restrictions
with respect to the model that I consider in this paper. I show that these
additional restrictions are testable.

(d) Correlated Bayesian Nash equilibrium. In recent work, Bergemann
and Morris (2013, 2016) have introduced the solution concept of Bayesian
correlated equilibrium (BCE). This solution is more robust than BNE, in the
sense that it delivers all predictions compatible with BNE for any information
structure within a wide class. Magnolfi and Roncoroni (2017) study inference
based on the BCE solution concept. Their goal is to identify payoff parameters
and they do not study the identification of beliefs. Their work illustrates a
trade-off between robustness to assumptions about information structures and
the ability to achieve point identification.

3. Dynamic games
In this section, I extend the previous framework to a dynamic game. Time is
discrete and indexed by t. Now, Πit(ait, a−it, εit, xt) represents the profit func-
tion of firm i at period t. The arguments of this function have the same inter-
pretation as in section 2. Firms choose their actions at every period t to max-
imize their expected and discounted profits Et(

∑T −t
s=0 βs

i πit+s), where βi is the
firm’s discount factor and T is the time horizon that can be finite or infinite.

I introduce an additional assumption that, in dynamic structural models,
is typically described as the conditional independence assumption.
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Assumption 5. (A) The vector of state variables xt follows a controlled
Markov process with transition probability density function fxt(xt+1|ait,
a−it, xt). (B) The private information variable εit is independently and iden-
tically distributed over time. �

Assumption 5(B) implies that the private information variables are not
serially correlated. It rules out the possibility of firms using the history of
other firms’ decisions to learn about these firms’ types. This type of learning
is the focus of the Experience-Based equilibrium concept in Fershtman and
Pakes (2012).

Every period, firms choose simultaneously their actions to maximize their
intertemporal values. A firm’s value at period t depends on the actions of other
firms at that period and in the future. Firms form probabilistic beliefs about
the actions of competitors, now and in the future. Let b

(t)
it+s(a−i,t+s|xt+s) be

a probability density function, in the space of the actions of firms other than
i, that represents the beliefs of firm i at period t about the behaviour of
competitors at period t + s. This representation of beliefs allows for general
forms of beliefs updating. According to this notation, b

(t+1)
it+s − b

(t)
it+s represents

the updating from period t to period t+1 in the beliefs that firm i has about
the behaviour of competitors at period t+s.

Given a firm’s beliefs at period t, b
(t)
i ≡{b

(t)
i,t+s :s≥0}, its best response at

period t is the solution of a single-agent dynamic programming (DP) problem.

We can represent this DP problem using Bellman’s principle. Let V
b(t)

i
it (xt, εit)

be the value function. Then,

V
b(t)

i
it (xt, εit)= max

ait∈A

{∫
a−it

[
Πit(ait, a−it, εit, xt)

+v
b(t)

i
it (ait, a−it, xt)

]
b

(t)
it (a−it|xt)da−it

}
,

(17)

where v
b(t)

i
it (ait, a−it, xt) is the continuation value that has the following ex-

pression:

β

∫
V

b(t)
i

it+1(xt+1, εit+1)fxt(xt+1|ait, a−it, xt)dxt+1dFi(εit+1|xt). (18)

Given its beliefs, a firm chooses its strategy to maximize its value. That is,
the best response strategy function, σit(εit, xt, b

(t)
i ), is the maximand of the

term in brackets {.} in equation (17). As in the static game, it is convenient
to represent a firm’s strategy as a cumulative distribution function, or as a
quantile function.
Proposition 2. In the dynamic game, under assumptions 1 to 5, for any
value a0 in the choice set A, we have the following relationship between the
cumulative choice probability function Pit(a0|xt) and the marginal expected
intertemporal profit:

Pit(a0|xt)=Fi

[
Δπe

it(a0, xt; b
(t)
it )+Δv

e,b(t)
i

it (a0, xt; b
(t)
it )|xt

]
, (19)
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where Δπe
it(a0, xt; b

(t)
it ) ≡ ∫

a−it
Δπit(ait, a−it, xt) b

(t)
it (a−it|xt) da−it and

Δv
e,b(t)

i
it (a0, xt; b

(t)
it ) ≡ ∫

a−it
Δv

b(t)
i

it (ait, a−it, xt) b
(t)
it (a−it|xt) da−it. This rela-

tionship is invertible such that we have

Qit(a0|xt)=Δπe
it(a0, xt; b

(t)
it )+Δv

e,b(t)
i

it (a0, xt; b
(t)
it ), (20)

where Qit(a0|xt)≡F −1
i

[
Pit(a0|xt)

]
. �

In this framework, the sequence of beliefs b(t)
i =

{
b

(t)
i,t+s :s≥0

}
is completely

unrestricted. This framework contains as particular cases most solution con-
cepts in dynamics games of competition with incomplete information. I present
here some common cases.

(a) Markov perfect equilibrium (MPE). This is the most commonly used
solution concept in applications of dynamic games in empirical IO (Maskin
and Tirole 1988, Ericson and Pakes 1995). Here we consider a version of
MPE that allows for non-stationarity due to finite time horizon T or primitive
functions πit and fxt that vary over time.

An MPE can be described as N sequences of cumulative choice prob-
ability functions—{Pit(ait|xt) : i = 1, 2,…, N ; t ≥ 1}—satisfying the following
conditions: (i) [best responses] Pit(ait|xt) satisfies the best response condition
in equation (19) and (ii) [rational beliefs] beliefs b(t)

i are equal to the actual
probability distribution of the choices of the other firms: for any t ≥ 1, s ≥ 0,
a−i ∈AN−1 and x ∈X ,

b
(t)
i,t+s(a−i|x)=

∏
j �=i

pj,t+s

(
aj |x)

. (21)

(b) Dynamic equilibrium with belief-based learning, such as Bayesian learn-
ing, fictitious play and other forms of adaptive learning. These equilibrium
concepts impose restrictions on the evolution of beliefs over time. They are
restricted versions of the general model presented above. However, as men-
tioned in section 2.1, games with reinforcement learning are not a particular
case of our model because they are not belief-based.

4. Identification
4.1. Data
This section presents results on the identification of beliefs in the previous
general framework. I distinguish three scenarios for the data available to the
researcher which are common in empirical IO applications.

(a) Only firms’ choice data. The researcher has a sample of M local
markets, indexed by m, where she observes firms’ actions and state variables:
{aimt, xmt : i=1, 2,…, N ; t=1, 2,…, T data}. In empirical applications of market
entry models, it is often the case that the researcher has only choice data, e.g.,
firms’ entry/exit decision, and there is no direct information on firms’ revenues
or costs.
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(b) Choice data + revenue function. In addition to data on firms’ choices,
the researcher may have data on some components of the profit function. In
many IO applications, the researcher observes prices and quantities and can
estimate the demand system. Given the demand system, the researcher knows
the revenue function.

(c) Choice data + revenue function + cost function. Data on firms’ marginal
costs is rare but it is sometimes available (Hortaçsu and Puller 2008, Hortaçsu
et al. 2019). Marginal costs can be also obtained from the estimation of a
production function if the dataset contains information on firms’ output and
input quantities, and input prices.

To incorporate in our framework the data that the researcher has on
the revenue or cost functions, we distinguish these two components in the
profit function. A firm’s profit is equal to revenue minus cost: πi = ri − ci.
Accordingly, the marginal profit is equal to the marginal revenue minus the
marginal cost: Δπi =Δri −Δci. The economic interpretation of this marginal
revenue and marginal cost depends on the particular decision variable of the
model that can be continuous (e.g., quantity, price, investment) or discrete
(e.g., entry, number of products).

For the identification analysis below, I consider that the researcher has a
random sample with infinite markets: M →∞. This population level approach
is standard in the literature on identification. Given this infinite sample, the
cumulative choice probability function Pi(a0|x0) is identified for every firm i
and at every point (a0, x0) in the support A × X . More precisely, by defini-
tion, we have that Pi(a0|x0) = E(1{aim ≤ a0}|xm = x0), and the expectation
E(1{aim ≤ a0}|xm = x0) is identified from our sample. For the rest of this
section, I treat Pi as a known function.

4.2. The identification problem
Consider the static game. By proposition 1, we have that

Pi(a0|x)=Fi

(
Δre

i (a0, x, bi)−Δce
i (a0, x, bi)|x

)
, (22)

where Δre
i (a0, x, bi) ≡ ∫

Δri(ai, a−i, x)bi(a−i|x)da−i and Δce
i (a0, x, bi) ≡∫

Δci(ai, a−i, x)bi(a−i|x)da−i are the (subjective) expected marginal revenue
and expected marginal cost, respectively. Equation (22) summarizes all the
restrictions that the model imposes on the distribution function Pi. The left-
hand side of this equation—the distribution Pi—is known to the researcher.
The right-hand side depends on the model primitives—the structural functions
Fi, Δri and Δci—and on beliefs bi. The model is fully (point) identified if the
system of equations in (22) implies unique values for structural functions and
beliefs.

It is clear that the model is strongly under-identified. While the number
of restrictions (the dimension of the distribution Pi) is (|A| − 1)|X |, we have
that only the dimension of the beliefs function bi is (|A|N−1 − 1)|X |, which
is obviously larger than the number of restrictions. When Fi, Δri and Δci
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are unknown to the researcher, the under-identification is stronger. Despite
the under-identification of the model, I show below that it possible to identify
a function that only depends on beliefs. The identification of this “beliefs
object” can be used to test the validity of different equilibrium concepts and
restrictions on beliefs.

For the sake of simplicity, I first illustrate the identification results in a
simple model of competition: a binary choice game with two firms. Further-
more, I assume that the probability distribution Fi is known to the researcher.
In section 4.4, I show that this identification result extends to models with:
(i) multinomial and continuous choices, (ii) nonparametric specification Fi,
(iii) more than two players and (iv) dynamic games.

4.3. Two-firms binary choice game
Consider a binary choice game of price competition between two firms: ai =0
represents the choice of the low price (promotion price) and ai = 1 means
the choice of high price (regular price). Let qi = di(ai, a−i, x) be the demand
function for the product of firm i. and let Ci(qi, x) be the cost as a function of
output. Therefore, using our notation, the revenue function is ri(ai, a−i, x)≡
aidi(ai, a−i, x) and the cost function is ci(ai, a−i, x)=Ci(di(ai, a−i, x), x).6

Let Pi(0|x)—or in short Pi(x)—be the probability that firm i chooses the
low price. And let bi(0|x)—or in short bi(x)—be this firm’s belief about the
probability that the competitor chooses the low price. The marginal profit
function is Δπi(a−i, x) ≡ πi(1, a−i, x) − πi(0, a−i, x), that is, the difference
between the profit with high price and with low price. Marginal profit is
equal to marginal revenue minus marginal cost: Δπi(a−i, x) = Δri(a−i, x) −
Δci(a−i, x).

As established in proposition 1, the best response equation can be repre-
sented as

Qi(x)=Δπi(0, x)+ bi(x) [Δπi(1, x)−Δπi(0, x)] , (23)

with Qi(x) ≡ F −1
i (Pi(x)). Given this system of equations—for every value

of x—we are interested in the identification of marginal profits Δπi(0, x) and
Δπi(1, x) as well as the beliefs function bi(x). We are particularly interested in
the identification of the beliefs function bi(x), or at least on the identification
of an object or parameter that only depends on this function.

Without further restrictions, the model is under-identified. More specifi-
cally, the order condition for identification does not hold: for each value of
x, there is only one restriction, i.e., one value of Qi(x), but three unknowns,

6 Even if a firm’s cost depends only on its own output, the cost as a function of
prices depends both on the own price and competitors’ prices. This is simply
because the quantity produced and sold by a firm depends on all the prices. In
contrast, in a Cournot game, where the decision variable ai represents a firm’s
output, the cost function ci(ai, a−i, x) does not depend on a−i.
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Δπi(0, x), Δπi(1, x) and bi(x). Section 4.3.1 describes the identification of
beliefs when the researcher has revenue and cost data. In sections 4.3.2 and
4.3.3, I present an exclusion restriction that identifies firms’ beliefs even when
only choice data is available.

4.3.1 Identification with revenue and cost data
Suppose that the researcher knows the revenue function and the cost function:
the dataset includes information on prices and quantities of inputs and outputs
that can be used to identify demand and cost functions. This implies that
the marginal profits Δπi(0, x) and Δπi(1, x) are known to the researcher.
Therefore, under the condition that Δπi(1, x) − Δπi(0, x) �= 0, equation (23)
implies that the beliefs function is fully identified:

bi(x)= Qi(x)−Δπi(0, x)
Δπi(1, x)−Δπi(0, x) . (24)

The identification condition Δπi(a−i =1, x)−Δπi(a−i =0, x) �=0 is quite intu-
itive. A firm’s observed behaviour reveals information about the firm’s beliefs
only if beliefs have an effect on behaviour, and this is the case only if other
firms’ actions affect the firm’s profit, i.e., only if Δπi(a−i = 1, x) − Δπi(a−i =
0, x) �=0.

Given the identification of firms’ beliefs, the researcher can test the va-
lidity of restrictions on beliefs that are commonly imposed in applications:
(a) Testing for unbiased beliefs. We say that firm i has unbiased beliefs about
the behaviour of the other firm if bi(x)−p−i(x)=0 for every value of x. Given
the identification of bi(x), and that p−i(x) is known to the researcher, we can
test this null hypothesis.

(b) Testing for BNE. The concept of BNE imposes the restrictions that
all the firms play best responses and have unbiased beliefs. Therefore, testing
the null hypothesis of BNE is equivalent to test the joint restrictions b1(x)−
p2(x)=0 and b2(x)−p1(x)=0 for every value of x.

As explained in footnote 5, all the identification results in this paper still hold
when we allow for unobservables that vary across markets but not over firms and
have finite support. These unobservables can be payoff-relevant or not. Multiple
equilibria in the data can be represented using an unobservable that affects firms’
behaviour and is not payoff-relevant. Therefore, this test for BNE applies also to
a model and dataset with multiple equilibria in the data.

(c) Testing for rationalizability. Given that the researcher knows firms’
profit functions, she can construct the set of rationalizable beliefs and then test
if the identified beliefs—b1(x) and b2(x)—belong to this set. To
construct the set of rationalizable beliefs, we can use a simple iterative
procedure as in Aradillas-Lopez and Tamer (2008). This iterative procedure
exploits the property that the best response probability function Fi(Δπi(0, x)+
bi(x)[Δπi(1, x)−Δπi(0, x)]) is strictly monotonic in the beliefs function bi(x).
Suppose, without loss of generality, that Δπi(1, x)−Δπi(0, x)>0. At iteration
k, the set of level-k rationalizable beliefs for firm 1 is [L(k)

1 (x), U
(k)
1 (x)], with
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L

(k)
1 (x)=F2(Δπ2(0, x)+L

(k−1)
2 (x)[Δπ2(1, x)−Δπ2(0, x)]),

U
(k)
1 (x)=F2(Δπ2(0, x)+U

(k−1)
2 (x)[Δπ2(1, x)−Δπ2(0, x)]).

(25)

And we have a similar expression for the set of level-k rationalizable beliefs for
firm 2. To test rationalizability of level k, we test the null hypothesis implied
the inequalities L

(k)
1 (x)≤ b1(x)≤U

(k)
1 (x) and L

(k)
2 (x)≤ b2(x)≤U

(k)
2 (x).

4.3.2 Identification with revenue but not cost data
Suppose that the researcher has data that identifies the demand system and
therefore the revenue function ri(ai, a−i, x). The cost function is unknown.
The best response equation is

Qi(x)=Δri(0, x)−Δci(0, x)+ bi(x)[Δri(1, x)−Δri(0, x)
+Δci(1, x)−Δci(0, x)],

(26)

where Qi(x), Δri(0, x) and Δri(1, x) are known and bi(x), Δci(1, x) and
Δci(0, x) are unknown. This restriction cannot identify beliefs and cost func-
tions. For any possible value of bi(x), there exist values of the marginal costs
Δci(1, x) and Δci(0, x) such that the best response equation holds. Therefore,
there exist infinite combinations of (bi(x), Δci(0, x), Δci(1, x)) that satisfy the
best response equation (26).

This identification problem is closely related to the traditional identifica-
tion problem of the nature of competition, or the identification of collusive
behaviour (Bresnahan 1982). Almost any observed behaviour can be justified
as one with “non-collusive beliefs” if we select the appropriate marginal cost
function. The following example describes connection in detail.

Example 6 (firms’ beliefs and conjectural variations). In an in-
fluential paper, Bresnahan (1982) studies the identification of the form (or
nature) of competition in a model with complete information. In a complete
information game, the nature of competition can be described as a conjec-
tural variation (CV) parameter. This CV parameter has similarities with our
beliefs function, but there are also substantial differences between them. Our
beliefs function is an endogenous object that varies with all the exogenous
characteristics in the vector x affecting demand and costs. CV parameters
are typically interpreted as exogenously given and do not vary when demand
or costs change. As I explain below, this has important implications on the
identification of beliefs relative to the identification of CV parameters.

The best response equation in Bresnahan (1982) is similar as equation
(26) but replacing the beliefs function bi(x) with a parameter CVi that is
assumed invariant with x. After the identification of the demand and marginal
revenue functions, Bresnahan proposes an exclusion restriction that implies
the identification of the parameter CVi. I first describe this identification
result using our notation, and then I show this assumption cannot provide
identification of beliefs in our model where beliefs are endogenous.

Bresnahan’s identification of the nature of competition (CV). Suppose that
the vector of exogenous variables x has two components (x̃, z), where z is a
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variable that satisfies two conditions: (i) (Bresnahan-i) z affects the marginal
revenue function, or more precisely, the function Δri(1, x)−Δri(0, x), that is,
variation in z “rotates” the demand curve such that marginal revenue changes,
and (ii) (Bresnahan-ii) z does not enter in the marginal cost function.

Consider the best response equation (26) but where the beliefs function
bi(x) is replaced with a constant parameter CVi. Let za and zb be two different
values of the special variable that “rotates” the demand curve. Consider the
best response equation evaluated at two different points, (x̃, za) and (x̃, zb),
and obtain the difference between these two equations. We get

Qi(x̃, za)−Qi(x̃, zb)=Δri(0, x̃, za)−Δri(0, x̃, zb)
+CVi

[
Δri(1, x̃, za)−Δri(0, x̃, za)−Δri(1, x̃, zb)+Δri(0, x̃, zb)

]
.

(27)

Everything in this equation except parameter CVi is known to the researcher.
Furthermore, the identification assumption (Bresnahan-ii) above implies that
Δri(1, x̃, za) − Δri(0, x̃, za) − Δri(1, x̃, zb) + Δri(0, x̃, zb) is different to zero.
Therefore, we can solve for CVi to identify this parameter.

This exclusion restriction does not work for the identification of endo-
genous beliefs. In our model, the beliefs function bi(x) is an endogenous
object that depends on all the exogenous variables affecting demand or costs.
Therefore, under Bresnahan’s identification assumptions (i) and (ii), we have
that right-hand side of equation (27) becomes

Δri(0, x̃, za)−Δri(0, x̃, zb)+
[
bi(x̃, za)− bi(x̃, zb)

]
[Δci(1, x̃)−Δci(0, x̃)]+ bi(x̃, za)[Δri(1, x̃, za)
−Δri(0, x̃, za)]− bi(x̃, zb)

[
Δri(1, x̃, zb)−Δri(0, x̃, zb)

]
.

(28)

This expression depends both on beliefs and costs and it cannot be used to
separately identify one from the other. �

Berry and Haile (2014, sections 5 and 6) extend Bresnahan’s analysis to a
model of price competition in a differentiated product industry with complete
information. They show that Bresnahan’s exclusion restriction still identifies
the nature of competition in their model and that there are other sources
of exogenous variation that identify the nature of competition, such as a
change in the firm’s own marginal cost. However, this identification result
in Berry and Haile (2014) does not extend to a model of competition with
incomplete information and unrestricted beliefs. The argument is the same
as the one presented above for the case of Bresnahan’s exclusion restriction.
In the model with incomplete information, the (expected) marginal revenue
function depends on the firm’s beliefs, that in turn depend on all the exogenous
variables of the model affecting demand or marginal costs. Any exogenous
variation in the firm’s own marginal cost implies a variation in beliefs. Without
knowledge of the beliefs function, it is not possible to identify how much of
the observed change in prices or quantities is due to variation in the firm’s
own marginal cost and how much it is because the change in beliefs.
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A useful exclusion restriction: variation in competitors’ cost. The rest of
this subsection presents an exclusion restriction that provides identification of
firms’ beliefs. Suppose that the vector x contains a firm-specific variable that
affects the marginal cost of a firm but not the marginal cost of its competitors.
For instance, input prices (e.g., wages, prices of intermediate inputs) can have
firm specific variation because long-term contracts, bargaining with suppliers,
internal labour markets, etc. Assumption 6 describes this condition more
formally.

Assumption 6. Vector x has the following elements (x̃, z1, z2,…, zN ) where
x̃ can affect the marginal revenues and marginal costs of all the firms in
an unrestricted way, and each variable zi is firm-specific and satisfies the
following conditions: (A) firm i’s marginal cost (or/and marginal revenue)
depends on zi and (B) firm i’s marginal cost and marginal revenue do not
depend on z−i ≡{zj : j �= i}. �

Under assumption 6, it is possible to identify firm i’s beliefs using this firm’s
change in behaviour when z−i varies. Proposition 3 establishes formally this
result.

Proposition 3. Let za
−i, zb

−i and zc
−i be three different values for the variable

z−i. Then, under assumptions 1 to 4 and 6, the following equation holds:

bi(x̃, zi, zc
−i)− bi(x̃, zi, zb

−i)
bi(x̃, zi, za

−i)− bi(x̃, zi, zb
−i)

=
Qi(x̃, zi, zc

−i)−Qi(x̃, zi, zb
−i)

Qi(x̃, zi, za
−i)−Qi(x̃, zi, zb

−i)
, (29)

such that an object that depends only on beliefs (left-hand side) is identified
using the firm’s observed behaviour (right-hand side). �

The term Qi(x̃, zi, za
−i) −Qi(x̃, zi, zb

−i) captures the change in the be-
haviour of firm i when z−i varies from za

−i to zb
−i: that is, the change in

the probability that firm i charges a low price when the competitor’s wage
rate changes. Since variable z−i does not affect firm i’s marginal revenue or
marginal cost—assumption 6(B)—we can conclude that the change in firm i’s
pricing behaviour is the result of a change in this firm’s beliefs. The difference
between the best-response equation at points (x̃, zi, za

−i) and (x̃, zi, zb
−i) is

Qi(x̃, zi, za
−i)−Qi(x̃, zi, zb

−i)=
[
bi(x̃, zi, za

−i)− bi(x̃, zi, zb
−i)

]
[Δπi(1, x̃, zi)−Δπi(0, x̃, zi)].

(30)

This difference is not sufficient to identify the beliefs parameter bi(x̃, zi, za
−i)−

bi(x̃, zi, zb
−i). The reason is that Δπi(1, x̃, zi)− Δπi(0, x̃, zi) depends on un-

known marginal costs through the term Δci(1, x̃, zi)− Δci(0, x̃, zi). How-
ever, we can also obtain the difference between the best-response equation
at points (x̃, zi, zc

−i) and (x̃, zi, zb
−i) to get an equation similar to (30) but for

Qi(x̃, zi, zc
−i) − Qi(x̃, zi, zb

−i). Note that the term Δπi(1, x̃, zi) − Δπi(0, x̃, zi)
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is common between these equations. Therefore, we can cancel this unknown
term by obtaining the ratio between these two difference equations.

Equation (29) shows that the observed variation in the pricing behaviour
of firm i when the competitor’s input prices change reveals information about
this firm’s beliefs. We can separate beliefs from the primitives in the profit
function.

In some models, the cost function of a firm does not depend on the action
of other firms. For instance, this is the case in Cournot models of quantity
competition or in the entry games because, in these models, the cost function
ci is a “pure” cost function and not the composition of the true cost function
and the demand function. In these models, we have that Δci(1, x̃, zi) −
Δci(0, x̃, zi) = 0 such that Δπi(1, x̃, zi) − Δπi(0, x̃, zi) = Δri(1, x̃) − Δri(0, x̃)
that is known to the researcher. Therefore, we can identify the following beliefs
parameter:

bi(x̃, zi, za
−i)− bi(x̃, zi, zb

−i)=
Qi(x̃, zi, za

−i)−Qi(x̃, zi, zb
−i)

Δri(1, x̃)−Δri(0, x̃) . (31)

Given the identification of these beliefs objects—either in equation (29) or
in (31), we can implement tests for the null hypotheses of unbiased beliefs and
BNE in a similar way, as I have described at the end of section 4.3.1.

4.3.3 Identification using only firms’ choice data
The previous exclusion restriction can be applied to the identification of beliefs
also when the researcher has not identified the revenue function. Proposition 3
applies also to this case. Similarly, we can use the identified beliefs parameters
to test the null hypotheses of unbiased beliefs and BNE.

Xie (2018) has obtained similar results on the identification beliefs without
imposing the exclusion restriction in assumption 6. Instead, he shows that
asymmetry in players’ choice sets—together with sample variation in these
choice sets—can provide identification of beliefs.

4.3.4 Full identification of the beliefs function
Given the result in proposition 3, the full identification of the beliefs function
bi(x̃, zi, z−i) requires two “normalization” restrictions for every value of (x̃, zi).
The researcher needs to fix the value of beliefs at two different points in the
support of the excluded variable, z−i.

A possible way of fixing these values is to assume that beliefs are rational—
that is, they are equal to the true value of the competitor’s CCP—at two
points in the support of z−i. In this case, an important issue is how to
select these two points. Aguirregabiria and Magesan (2020) describe sev-
eral approaches that can help the researcher when making this modelling
decision (see section 3.2.6 in that paper). A possible approach consists of
applying a test of equilibrium beliefs to every possible triple of points of z−i

and then choosing two points from a triple where the null hypothesis is not
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rejected. This procedure involves multiple testing, and therefore p-values should
be adjusted using, for instance, Bonferroni’s correction. Furthermore, the
effective application of this approach requires that, in the DGP, beliefs are
unbiased at no less than three points in the support set of z−i; otherwise, the
test of unbiased beliefs will reject the null hypothesis at every triple. Other
approach consists in testing for the monotonicity in z−i of both the firm’s
beliefs function and the competitor’s CCP function. Note that the restrictions
in equation (29) imply that monotonicity of the beliefs function is a testable
condition. If the two functions are strictly monotonic and z−i has a large
support, then the two functions converge to each other at extreme points
of the support, and it seems reasonable to assume unbiased beliefs at these
extreme points.

In principle, the researcher can fully identify the beliefs function by im-
posing functional form restrictions. However, the parametric restrictions nec-
essary to fully identify this function are strong. The reason is that the set of
restrictions in proposition 3—equation (29)—do not provide any information
about the location or the scale of the beliefs function. Therefore, a necessary
condition for the system of equations in (29) to fully identify a parametric
beliefs function is that the parametric family is such that the location and the
scale of the beliefs function are either: (i) known to the researcher or (ii) can be
obtained from the second order or higher order derivatives of this function. To
illustrate this point, it is useful to consider a polynomial specification of the be-
liefs function: that is, bi(x̃, zi, z−i) = βi0(x̃, zi) + βi1(x̃, zi)z−i + βi2(x̃, zi)z2

−i +
· · ·+βip(x̃, zi)zp

−i, where βi0(x̃, zi), βi1(x̃, zi),…, βip(x̃, zi) are unknown para-
meters. Solving this function into equation (29), it is straightforward to show
the identification of the parameters β̃ik(x̃, zi) for k ≥ 2, where β̃ik(x̃, zi) is
defined as βik(x̃, zi)/βi1(x̃, zi). Given this result, the full identification of the
beliefs function requires either the a priori knowledge of the location parameter
βi0 and the scale parameter βi1 or a parametric family where βik for k ≥ 2
are related to βi0 and βi1 such that these location and scale parameters are
identified from the knowledge of the β̃s. Of course, these restrictions are not
innocuous, and if incorrect, they imply the mis-specification of the model and
the inconsistent estimation of beliefs and profit functions.

4.4. Extensions
Under assumption 6 and the condition that Fi is known to the researcher,
the identification result in proposition 3 extends to models where the decision
variable is (ordered) multinomial or continuous, as long as the support of the
the state variable zi has at least as many points as the decision variable ai.
The proof is a bit more technical than proposition 3 because it requires to
represent the model in vector form and to show that a linear function of beliefs
can be written as linear projection of the vector of quantiles. See proposition 1
in Aguirregabiria and Magesan (2020).

For the sake of simplicity, for the other extensions, I focus here on a two-
player binary choice game.



Identification of firms’ beliefs 27

4.4.1 Identification in dynamic games
We can apply proposition 2 to the two-player dynamic binary choice game to
obtain the following expression for the quantile best response condition:

Qit(xt)=Δrit(0, xt)−Δcit(0, xt)+ b
(t)
it (xt)[Δrit(1, xt)−Δrit(0, xt)

−Δcit(0, xt)+Δcit(1, xt)]+Δv
b(t)

i
it (0, xt)

+ b
(t)
it (xt)[Δv

b(t)
i

it (1, xt)−Δv
b(t)

i
it (0, xt)]. (32)

In this equation, the first line is identical to the static game and the second
line contains the continuation value and therefore the dynamics of the game.

Unfortunately, the exclusion restriction in assumption 6 is not sufficient
for the identification of beliefs in the dynamic game. Without further assump-
tions, z−it is a state variable that affects the (marginal) continuation values
of the two firms, even if this variable satisfies assumption 6 such that it does
not have a different effect on the marginal profit of firm i at period t. For
instance, suppose that z−it is the wage rate paid by firm −i, the competitor
of firm i. Though the value of the competitors’ wage rate at period t does
not have a direct effect on the contemporaneous marginal profit of firm i—
once we account for the expected decision of the competitor—it can affect the
continuation value as it affects future wages.

Assumption 6Å extends assumption 6 such that we can get identification
of beliefs in dynamic games.

Assumption 6Å. Vector xt has the following elements (x̃t, z1t, z2t,…, zNt),
which satisfy conditions (A) and (B) in assumption 6. In addition, they also
satisfy (C)—the transition probability of the state variable zit is such that
zit+1 does not depend on (zit, z−it) once we condition on ait and x̃t, i.e.,

Pr (zit+1|ait, x̃t, zit, z−it)=Pr (zit+1|ait, x̃t) . �(33)

Assumption 6Å(C) holds in many applications of dynamic games in empir-
ical IO. The incumbent status, capacity, capital stock or product quality of a
firm at period t−1 are state variables that enter in the firm’s payoff function
at period t due to investment and adjustment costs. A firm’s payoff function at
period t depends also on the competitors’ values of these variables at period
t, but it does not depend on the competitors’ values of these variables at
t−1. Very importantly, assumption 6Å(C) does not mean that firm i does not
condition his behaviour on the state variables z−it. Each firm conditions his
behaviour on all the state variables that affect the profit of a firm in the game,
even if these variables are excluded from his own payoff.

More specifically, an important class of dynamic games that satisfies
assumption 6Å(C) consists of models where the transition rule for this state
variable is zi,t+1 = ait. It is clear that this transition rule is a particular case
of equation (33). This is an important class of dynamic games that includes
as particular cases games of market entry/exit, technology adoption, pricing
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with menu costs and some dynamic games of quality or capacity competition,
among others.

Of course, assumption 6Å(C) rules out many candidates for exclusion re-
strictions that do satisfy conditions assumption 6(A) and assumption 6(B).
As I have mentioned above, this is the case of the competitor’s input prices
because they typically follow Markov processes where zi,t+1 depends on zit.

A key implication of assumption 6Å(C) is that the marginal continua-

tion values Δv
b(t)

i
it (a−it, xt), which are defined as conditional on the com-

petitor’s decision a−it, do not depend on the state variable z−it, that is,

Δv
b(t)

i
it (a−it, x̃t, zit, z−it) = Δv

b(t)
i

it (a−it, x̃t). This state variable affects future

expected continuation values Δv
e,b(t)

i
it (xt; b

(t)
it ) only through the firm’s be-

liefs, that is, Δv
e,b(t)

i
it (xt; b

(t)
it )=Δv

b(t)
i

it (0, x̃t)+b
(t)
it (x̃t, zit, z−it)[Δv

b(t)
i

it (1, x̃t)−
Δv

b(t)
i

it (0, x̃t)]. This property implies the identification of beliefs.

Proposition 4. Consider the two-player binary choice dynamic game under
assumptions 1 to 5 and 6 Å. Then, the following equation holds:

bit(x̃t, zit, zc
−it)− bit(x̃t, zit, zb

−it)
bit(x̃t, zit, za

−it)− bit(x̃t, zit, zb
−it)

=
Qit(x̃t, zit, zc

−it)−Qit(x̃t, zit, zb
−it)

Qit(x̃t, zit, za
−it)−Qit(x̃t, zit, zb

−it)
(34)

such that an object that depends only on beliefs (left-hand side) is identified
using the firm’s observed behaviour (right-hand side). �

Note that proposition 4 does not impose any restriction on the evolution
of beliefs over time. Therefore, the result is robust to very general forms of
firms’ belief-based learning. On the negative side, proposition 4 establishes the
identification of firms’ beliefs about competitors contemporaneous behaviour:
that is, beliefs at period t about the opponents’ behaviour at period t. We
cannot identify beliefs about the opponent’s behaviour in the future. How-
ever, Aguirregabiria and Magesan (2019) show that the identification of the
evolution of these contemporaneous beliefs is enough for testing a very general
class of models of learning and beliefs formation.

4.4.2 Identification of beliefs with unknown distribution of private information
For all the identification results presented above, we have imposed the re-
striction that the researcher knows the distribution function of the private
information variable εi. This is not an innocuous assumption. Mis-specifying
this distribution function can generate wrong conclusions about beliefs. There-
fore, it is important to study the identification of beliefs when the distribution
function Fi is unknown to the researcher.

Proposition 5 shows that, when the state variables zi have continuous
support, beliefs can be identified even when the distribution Fi is unknown
to the researcher and nonparametrically specified.
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Proposition 5. Consider the static binary choice game under assumptions
1 to 4 and 6. Suppose that: (i) the distribution Fi is independent of zi and
z−i but may depend on x̃, (ii) zi and z−i are continuous random variables,
(iii) Pi(x̃, zi, z−i) is strictly monotonic in zi and z−i and asymmetric in these
two arguments, i.e., for z �= z′, generically, Pi(x̃, z, z′) �= Pi(x̃, z′, z), (iv) the
researcher knows the revenue function and (v) firm i’s marginal cost does not
depend on a−i. Let (zA

i , zA
−i) and (zB

i , zB
−i) be two arbitrary values of (zi, z−i).

Then, the following results hold.
(A) There exist values zAB Å

−i and zBA Å
−i that are uniquely identified and

satisfy the following three properties: (1) zAB Å
−i �= zBA Å

−i , (2) Pi(x̃, zA
i , zA

−i) =
Pi(x̃, zB

i , zAB Å
−i ) and (3) Pi(x̃, zB

i , zB
−i)=Pi(x̃, zA

i , zBA Å
−i ).

(B) The following condition holds:

bi(x̃, zA
i , zA

−i)− bi(x̃, zA
i , zBA Å

−i )
bi(x̃, zB

i , zB
−i)− bi(x̃, zB

i , zAB Å
−i )

=− Δri(1, x̃, zA
i )−Δri(0, x̃, zA

i )
Δri(1, x̃, zB

i )−Δri(0, x̃, zB
i )

(35)

such that an object that depends only on beliefs (left-hand side) is identified
using the firm’s observed behaviour and revenue function.

Proof. Condition (v) establishes that firm i’s marginal cost does not depend
on the other firm’s actions. This condition applies to Cournot, market entry,
auctions and many other models. Under this condition, the best response
quantile equation becomes

Qi(x)=Δri(0, x)−Δci(0, x)+ bi(x) [Δri(1, x)−Δri(0, x)]. (36)

Under conditions (ii) and (iii) in proposition 5, for any value p in the
interior of the image set of function Pi(x̃, zB

i , .), we can find a unique value
zÅ

−i that solves equation p=Pi(x̃, zB
i , z−i) with respect to z−i. Given that the

function Pi(.) is identified, this value z
Å
−i is also identified. Define zAB Å

−i as
the unique value of z−i that solves the equation Pi(x̃, zA

i , zA
−i)= Pi(x̃, zB

i , z−i)
with respect to z−i, and similarly, define zBA Å

−i as the unique value of z−i that
solves the equation Pi(x̃, zB

i , zB
−i) = Pi(x̃, zB

i , z−i) with respect to z−i. Given
the asymmetry of function Pi with respect to zi and z−i—condition (iii)—we
have that zAB Å

−i and zBA Å
−i are two different values. Therefore, we have found

values zAB Å
−i and zBA Å

−i that satisfy conditions (1) to (3) in proposition 5.
Since Pi(x̃, zA

i , zA
−i) = Pi(x̃, zB

i , zAB Å
−i ) and the distribution function Fi

is independent of (zi, z−i)—condition (i)—the quantile values Qi(x̃, zA
i , zA

−i)
and Qi(x̃, zB

i , zAB Å
−i ) are also the same. Applying this condition to the best

response quantile equation, we have that (omitting x̃ as an argument for
notational simplicity)

0=Qi(zA
i , zA

−i)−Qi(zB
i , zAB Å

−i )
=

{
Δri(0, zA

i )−Δci(0, zA
i )+ bi(zA

i , zA
−i)

[
Δri(1, zA

i )−Δri(0, zA
i )

]}
−

{
Δri(0, zB

i )−Δci(0, zB
i )+ bi(zB

i , zAB Å
−i )

[
Δri(1, zB

i )−Δri(0, zB
i )

]}
.(37)
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Similarly, we obtain the condition

0=Qi(zB
i , zB

−i)−Qi(zA
i , zBA Å

−i )
=

{
Δri(0, zB

i )−Δci(0, zB
i )+ bi(zB

i , zB
−i)

[
Δri(1, zB

i )−Δri(0, zB
i )

]}
−

{
Δri(0, zA

i )−Δci(0, zA
i )+ bi(zA

i , zBA Å
−i )

[
Δri(1, zA

i )−Δri(0, zA
i )

]}
.

(38)

Adding up equations (37) and (38), we obtain the condition 0= [bi(zB
i , zB

−i)−
bi(zB

i , zAB Å
−i )] [Δri(1, zB

i ) − Δri(0, zB
i )] + [bi(zA

i , zA
−i) − bi(zA

i , zBA Å
−i )] [Δri

(1, zA
i ) − Δri(0, zA

i )], and this condition implies equation (35) in propo-
sition 5. �

5. Conclusions
Firms face substantial uncertainty about competitors’ strategies. The assump-
tion of complete information may be convenient in some empirical applica-
tions, but it ignores sources of strategic uncertainty that can be important to
understand the observed variation in behaviour between firms, across markets
and over time. Furthermore, in changing economic environments—e.g., new
regulations, mergers, pandemics—the assumption that firms have unbiased
beliefs can be very unrealistic and affect our estimates of structural para-
meters. Perhaps most importantly, heterogeneity in firms’ beliefs can be an
important source of misallocation and inefficiency in some industries.

In this paper, I have presented a framework where firms have incomplete
information, face strategic uncertainty and may have biased beliefs. I have
shown that standard exclusion restrictions, which are present in most appli-
cations in empirical IO, provide identification of objects that depend only on
firms’ beliefs. The approach imposes minimal restrictions on beliefs and on
structural functions. As such, the identified objects can be used to explore the
determinants and patterns of firms’ beliefs and learning over time.

References
Aguirregabiria, V., and A. Magesan (2019) “Strategic uncertainty and players’

learning in dynamic games,” manuscript, Department of Economics, University
of Calgary

(2020) “Identification and estimation of dynamic games when players’
beliefs are not in equilibrium,” Review of Economic Studies 87, 582–625

Aguirregabiria, V., and P. Mira (2007) “Sequential estimation of dynamic discrete
games,” Econometrica 75(1), 1–53

(2019) “Identification of games of incomplete information with multiple
equilibria and unobserved heterogeneity,” Quantitative Economics 10(4),
1659–701

Aguirregabiria, V., and E. Xie (2020) “Identification of non-equilibrium beliefs in
games of incomplete information using experimental data,” Journal of
Econometric Methods. https://doi.org/10.1515/jem-2019-0029



Identification of firms’ beliefs 31

Allen, R., and J. Rehbeck (2019) “Identification with additively separable
heterogeneity,” Econometrica 87(3), 1021–54

An, Y. (2017) “Identification of first-price auctions with non-equilibrium beliefs:
A measurement error approach,” Journal of Econometrics 200, 326–43

An, Y., Y. Hu, and R. Xiao (2018) “Dynamic decisions under subjective
expectations: A structural analysis,” manuscript, Department of Economics,
Johns Hopkins University

Aradillas-Lopez, A., and E. Tamer (2008) “The identification power of equilibrium
in simple games,” Journal of Business & Economic Statistics 26, 261–83

Armantier, O., and O. Richard (2003) “Exchanges of cost information in the
airline industry,” RAND Journal of Economics 34(3), 461–77

Aryal, G., and F. Zincenko (2019) “Empirical framework for Cournot oligopoly
with private information,” manuscript, Department of Economics, University of
Pittsburgh

Athey, S. (2001) “Single crossing properties and the existence of pure strategy
equilibria in games of incomplete information,” Econometrica 69(4), 861–89

Athey, S., and K. Bagwell (2001) “Optimal collusion with private information,”
RAND Journal of Economics 32(2), 428–65

Athey, S., and P. Haile (2002) “Identification of standard auction models,”
Econometrica 70(6), 2107–40

Bajari, P., H. Hong, J. Krainer, and D. Nekipelov (2010) “Estimating static models
of strategic interactions,” Journal of Business & Economic Statistics 28, 469–82

Bergemann, D., and S. Morris (2013) “Robust predictions in games with
incomplete information,” Econometrica 81(4), 1251–308

(2016) “Bayes correlated equilibrium and the comparison of information
structures in games,” Theoretical Economics 11(2), 487–522

Bernheim, B. (1984) “Rationalizable strategic behavior,” Econometrica 52, 1007–28
Berry, S.T., and P. Haile (2014) “Identification in differentiated products markets

using market level data,” Econometrica 82(5), 1749–97
Berry, S., J. Levinsohn, and A. Pakes (1995) “Automobile prices in market

equilibrium,” Econometrica 63(4), 841–90
Börgers, T., and R. Sarin (2000) Naive reinforcement learning with endogenous

aspirations,” International Economic Review 41(4), 921–50
Bresnahan, T. (1982) “The oligopoly solution concept is identified,” Economics

Letters 10(1–2), 87–92
Bresnahan, T., and P. Reiss (1991) “Entry and competition in concentrated

markets,” Journal of Political Economy 99(5), 977–1009
Brown, A., C. Camerer, and D. Lovallo (2013) “Estimating structural models of

equilibrium and cognitive hierarchy thinking in the field: The case of withheld
movie critic reviews,” Management Science 59(3), 733–47

Ciliberto, F., and E. Tamer (2009) “Market structure and multiple equilibria in
airline markets,” Econometrica 77(6), 1791–828

De Paula, A., and X. Tang (2012) “Inference of signs of interaction effects in
simultaneous games with incomplete information,” Econometrica 80(1), 143–72

Doraszelski, U., G. Lewis, and A. Pakes (2018) “Just starting out: Learning and
equilibrium in a new market,” American Economic Review 108, 565–615

Erev, I., and A. Roth (1998) “Predicting how people play games: Reinforcement
learning in experimental games with unique, mixed strategy equilibria,”
American Economic Review 88, 848–81



32 V. Aguirregabiria

Ericson, R., and A. Pakes (1995) “Markov-perfect industry dynamics: A
framework for empirical work,” Review of Economic Studies 62, 53–82

Fershtman, C., and A. Pakes (2012) “Dynamic games with asymmetric
information: A framework for empirical work,” Quarterly Journal of Economics
127, 1611–61

Goldfarb, A., and M. Xiao (2011) “Who thinks about the competition? Managerial
ability and strategic entry in US local telephone markets,” American Economic
Review 101, 3130–61

Guerre, E., I. Perrigne, and Q. Vuong (2000) “Optimal nonparametric estimation
of first-price auctions,” Econometrica 68(3), 525–74

Heinemann F., R. Nagel, and P. Ockenfels (2009) “Measuring strategic uncertainty
in coordination games,” Review of Economic Studies 76, 181–221

Hortaçsu, A., F. Luco, S. Puller, and D. Zhu (2019) “Does strategic ability affect
efficiency? Evidence from electricity markets,” American Economic Review 109,
4302–42

Hortaçsu, A., and S. Puller (2008) “Understanding strategic bidding in multi-unit
auctions: A case study of the Texas electricity spot market,” RAND Journal of
Economics 39(1), 86–114

Huang, Y., P. Ellickson, and M. Lovett (2018) “Learning to set prices.”
https://doi.org/10.2139/ssrn.3267701

Igami, M. (2017) “Estimating the innovator’s dilemma: Structural analysis of
creative destruction in the hard disk drive industry, 1981–1998,” Journal of
Political Economy 125(3), 798–847

Kline, B. (2018) “An empirical model of non-equilibrium behavior in games,”
Quantitative Economics 9(1), 141–81

Magnolfi, L., and C. Roncoroni (2017) “Estimation of discrete games with weak
assumptions on information,” manuscript, University of Wisconsin-Madison

Maskin, E., and J. Tirole (1988) “A theory of dynamic oligopoly, II: Price
competition, kinked demand curves, and Edgeworth cycles,” Econometrica 3,
571–99

Otsu, T., M. Pesendorfer, and Y. Takahashi (2016) “Pooling data across markets
in dynamic Markov games,” Quantitative Economics, 7(2), 523–59

Pearce, D. (1984) “Rationalizable strategic behavior and the problem of
perfection,” Econometrica 52, 1029–50

Ramsey, F. (1926) “Truth and probability.” In Ramsey, 1931, The Foundations of
Mathematics and other Logical Essays, ch. 7, pp. 156–98, R. B. Braithwaite, ed.
London: Kegan, Paul, Trench, Trubner & Co. New York: Harcourt, Brace and
Company

Seim, K. (2006) “An empirical model of firm entry with endogenous product-type
choices,” RAND Journal of Economics 37(3), 619–40

Simon, H. (1958) “The role of expectations in an adaptive or behavioristic model.”
In M. Bowman, ed., Expectations, Uncertainty, and Business Behavior. New
York: Social Science Research Council

(1959) “Theories of decision-making in economics and behavioral science,”
American Economic Review 49, 253–83

Sweeting, A. (2009) “The strategic timing incentives of commercial radio stations:
An empirical analysis using multiple equilibria,” RAND Journal of Economics
40(4), 710–42



Identification of firms’ beliefs 33

Van Huyck, J.B., R.C. Battalio, and R.O. Beil (1990) “Tacit coordination games,
strategic uncertainty, and coordination failure,” American Economic Review
80, 234–48

Xie, E. (2018) “Inference in games without Nash equilibrium: An application to
restaurants competition in opening hours,” manuscript, Department of
Economics, University of Toronto


