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ABSTRACT

We derive marginal conditions of optimality (i.e., Euler equations) for a
general class of Dynamic Discrete Choice (DDC) structural models.
These conditions can be used to estimate structural parameters in these
models without having to solve for approximate value functions. This
result extends to discrete choice models the GMM-Euler equation
approach proposed by Hansen and Singleton (1982) for the estimation of
dynamic continuous decision models. We first show that DDC models can
be represented as models of continuous choice where the decision variable
is a vector of choice probabilities. We then prove that the marginal condi-
tions of optimality and the envelope conditions required to construct
Euler equations are also satisfied in DDC models. The GMM estimation
of these Euler equations avoids the curse of dimensionality associated to
the computation of value functions and the explicit integration over the
space of state variables. We present an empirical application and compare
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estimates using the GMM-Euler equations method with those from
maximum likelihood and two-step methods.

Keywords: Dynamic discrete choice structural models; Euler
equations; choice probabilities

JEL classifications: C35; C51; C61

INTRODUCTION

The estimation of Dynamic Discrete Choice (DDC) structural models
requires the computation of expectations (value functions) defined as inte-
grals or summations over the space of state variables. In most empirical
applications, the range of variation of the vector of state variables is contin-
uous or discrete with a very large number of values. In these cases the
exact solution of expectations or value functions is an intractable problem.
To deal with this dimensionality problem, applied researchers use approxi-
mation techniques such as discretization, Monte Carlo simulation, polyno-
mials, sieves, neural networks, etc.1 These approximation techniques are
needed not only in full-solution estimation techniques but also in any two-
step or sequential estimation method that requires the computation of value
functions.2 Replacing true expected values with approximations introduces
an approximation error, and this error induces a statistical bias in the
estimation of the parameter of interests. Though there is a rich literature on
the asymptotic properties of these simulation-based estimators,3 little is
known about how to measure this approximation-induced estimation bias for
a given finite sample.4

In this context, the main contribution of this article is in the derivation
of marginal conditions of optimality (Euler equations) for a general class
of DDC models. We show that these Euler equations provide moment con-
ditions that can be used to estimate structural parameters without solving
or approximating value functions. The estimator based on these Euler
equations is not subject to bias induced by the approximation of value
functions. Our result extends to discrete choice models the GMM-Euler
equation approach that Hansen and Singleton (1982) proposed for the
estimation of dynamic models with continuous decision variables. The
GMM-Euler equation approach has been applied extensively to the estima-
tion of dynamic structural models with continuous decision variables, such
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as problems of household consumption, savings, and portfolio choices, or
firm investment decisions, among others. The conventional wisdom was
that this method could not be applied to discrete choice models because,
obviously, there are not marginal conditions of optimality with respect to
discrete choice variables. In this article, we show that the optimal decision
rule in a dynamic (or static) discrete choice model can be derived from
a decision problem where the choice variables are probabilities that have
continuous support. Using this representation of a discrete choice model,
we obtain Euler equations by combining marginal conditions of optimality
and Envelope Theorem conditions in a similar way as in dynamic models
with continuous decision variables. Just as in the Hansen�Singleton
approach, these Euler equations can be used to construct moment condi-
tions and to estimate the structural parameters of the model by GMM
without having to evaluate/approximate value functions.

Our derivation of Euler equations for DDC models extends previous
work by Hotz and Miller (1993), Aguirregabiria and Mira (2002), and
Arcidiacono and Miller (2011). These papers derive representations of
optimal decision rules using Conditional Choice Probabilities (CCPs) and
show how these representations can be applied to estimate DDC models
using simple two-step methods that provide substantial computational sav-
ings relative to full-solution methods. In these papers, we can distinguish
three different types of CCP representations of optimal decisions rules:
(1) the present-value representation which consists of using CCPs to obtain
a closed-form expression for the expected and discounted stream of future
payoffs associated with each choice alternative; (2) the terminal-state repre-
sentation which applies only to optimal stopping problems with a terminal
state; and (3) the finite-dependence representation which was introduced by
Arcidiacono and Miller (2011) and applies to a particular class of DDC
models with the finite dependence property.5

Our article presents a new CCP representation that we call CCP-Euler-
equation representation. This representation has several advantages over
the previous ones. The present-value representation is the CCP approach
more commonly used in empirical applications because it can be applied to
a general class of DDC models. However, that representation requires the
computation of present values and therefore it is subject to the curse of
dimensionality and to biases induced by approximation error (e.g., discreti-
zation, Monte Carlo simulation). The terminal-state, the finite-dependence,
and the CCP-Euler-equation representations do not involve the computa-
tion of present values, or even the estimation of CCPs at every possible
state, and this implies substantial computational savings as well as avoiding
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biases induced by approximation errors. Furthermore, relative to terminal-
state and finite-dependence representations, our Euler equation applies to a
general class of DDC models. We can derive Euler equations for any DDC
model where the unobservables satisfy the conditions of additive separabil-
ity (AS) in the payoff function, and conditional independence (CI) in the
transition of the state variables.

The estimation based on the moment conditions provided by the Euler
equation, or terminal-state, or finite-dependence representations imply an
efficiency loss relative to estimation based on present-value representation.
As shown by Aguirregabiria and Mira (2002, Proposition 4), the two-step
pseudo maximum likelihood (PML) estimator based on the CCP present-
value representation is asymptotically efficient (equivalent to the maximum
likelihood (ML) estimator). However, this efficiency property is not shared
by the other CCP representations. Therefore, there is a trade-off in the
choice between CCP estimators based on Euler equations and on present-
value representations. The present-value representation is the best choice in
models that do not require approximation methods. However, in models
with large state spaces that require approximation methods, the Euler
equations CCP estimator can provide more accurate estimates.

We present an empirical application where we estimate a model of
firm investment. We compare estimates using CCP Euler equations, CCP
present-value, and ML methods.

EULER EQUATIONS IN DYNAMIC

DECISION MODELS

Dynamic Decision Model

Time is discrete and indexed by t. Every period t, an agent chooses an
action at within the set of feasible actions A that, for the moment, can be
either a continuous or a discrete choice set. The agent makes this decision

to maximize his expected intertemporal payoff Et

PT − t
j= 0 β

jΠtðatþ j; stþ jÞ
h i

;

where β∈ ð0; 1Þ is the discount factor, T is the time horizon that can be
finite or infinite, Πtð:Þ is the one-period payoff function at period t, and st
is the vector of state variables at period t. These state variables follow
a controlled Markov process, and the transition probability density
function at period t is ftðstþ 1jat; stÞ: By Bellman’s principle of optimality,
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the sequence of value functions fVtð:Þ : t≥ 1g can be obtained using the
recursive expression:

VtðstÞ= max
at ∈A

Πtðat; stÞ þ β

Z
Vtþ 1ðstþ 1Þ ftðstþ 1 j at; stÞ dstþ 1

� �
ð1Þ

The sequence of optimal decision rules fα�t ð:Þ : t≥ 1 are defined as the
argmax in at ∈A of the expression within brackets in Eq. (1).

Suppose that the primitives of the model fΠt; ft; βg can be characterized
in terms of vector of structural parameters θ. The researcher has panel data
for N agents (e.g., individuals, firms) over ~T periods of time, with informa-
tion on agents’ actions and a subset of the state variables. The estimation
problem is to use these data to consistently estimate the vector of para-
meters θ. In this section, we first describe this approach in the context of
continuous-choice models, as proposed in the seminal work by Hansen and
Singleton (1982). Second, we show how a general class of discrete choice
models can be represented as continuous choice models where the decision
variable is a vector of choice probabilities. Finally, we show that it is
possible to construct Euler equations using this alternative representation
of discrete choice models, and that these Euler equations can be used
to construct moment conditions and a GMM estimator of the structural
parameters θ.

Euler Equations in Dynamic Continuous Decision Models

Suppose that the decision at is a vector of continuous variables in the K

dimensional Euclidean space: at ∈A⊆R
K . The vector of state variables

st ≡ ðyt; ztÞ contains both exogenous (zt) and endogenous (yt) variables.
Exogenous state variables follow a stochastic process that does not depend
on the agent’s actions fatg, for example, the price of capital in a model of
firm investment under the assumption that firms are price takers in the
capital market. In contrast, the evolution over time of the endogenous state
variables, yt, depends on the agent’s actions, for example, the stock of capi-
tal in a model of firm investment. More precisely, the transition probability
function of the state variables is

ftðstþ 1 jat; stÞ= 1fytþ 1 =Yðat; st; ztþ 1Þg f zt ðztþ 1 jztÞ ð2Þ

where 1 :f g is the indicator function, Yð:Þ is a vector-valued function that
represents the transition rule of the endogenous state variables, and f zt is
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the transition density function for the exogenous state variables. For the
derivation of Euler equations in a continuous decision model, it is conveni-
ent to represent the transition rule of the endogenous state variables using
the expression 1 ytþ 1 = Yðat; st; ztþ 1Þ

� �
. This expression establishes that ytþ 1

is a deterministic function of ðat; st; ztþ 1Þ. However, this structure allows for
a stochastic transition in the endogenous state variables because ztþ 1 is an
argument of function Yð:Þ.6 The following assumption provides sufficient
conditions for the derivation of Euler equations in dynamic continuous
decision models.

Assumption EE-Continuous. (A) The payoff function Πt and the transi-
tion function Yð:Þ are continuously differentiable in all their arguments.
(B) at and yt are both vectors in the K-dimension Euclidean space and
for any value of ðat; st; ztþ 1Þ we have that

∂Yðat; st; ztþ 1Þ
∂y0t

=Hðat; stÞ
∂Yðat; st; ztþ 1Þ

∂a0t
ð3Þ

where Hðat; stÞ is a K ×K matrix.

For the derivation of the Euler equations, we consider the following
constrained optimization problem. We want to find the decisions rules at
periods t and tþ 1 that maximize the one-period-forward expected profit
Πt þ β EtðΠtþ 1Þ under the constraint that the probability distribution of the
endogenous state variables ytþ 2 conditional on st implied by the new deci-
sion rules αtð:Þ and αtþ 1ð:Þ is identical to that distribution under the optimal
decision rules of our original DP problem, α�t ð:Þ and α�tþ 1ð:Þ. By construc-
tion, this optimization problem depends on payoffs at periods t and tþ 1

only, and not on payoffs at tþ 2 and beyond. And by definition of optimal
decision rules, we have that α�t ð:Þ and α�tþ 1ð:Þ should be the optimal solutions
to this constrained optimization problem. For a given value of the state
variables st, we can represent this constrained optimization problem as

max at ; atþ1f g∈A2 Πtðat;stÞþβ
R
Πtþ1ðatþ1;Yðat;st;ztþ1Þ;ztþ1Þ f zt ztþ1jztð Þdztþ1

� �
subject to: Yðatþ1;Yðat;st;ztþ1Þ;ztþ1;ztþ2Þ=κ�tþ2ðst;ztþ1;ztþ2Þ

ð4Þ
where Yðatþ 1;Yðat; st; ztþ 1Þ; ztþ 1; ztþ 2Þ represents the realization of ytþ 2

under arbitrary choice ðat; atþ 1Þ, and κ�tþ 2ðst; ztþ 1; ztþ 2Þ is a function that
represents the realization of ytþ 2 under the optimal decision rules α�t ðstÞ
and α�tþ 1ðstþ 1Þ, and it does not depend on ðat; atþ 1Þ. This constrained
optimization problem can be solved using the Lagrangian method. It is
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possible to show that the optimal solution should satisfy the following mar-
ginal condition of optimality:7

Et

∂Πt

∂a0t
þ β

∂Πtþ 1

∂y0tþ 1

−Hðatþ 1; stþ 1Þ
∂Πtþ 1

∂a0tþ 1

� �
∂Ytþ 1

∂a0t

� 	
= 0 ð5Þ

where Etð:Þ represents the expectation over the distribution of fatþ 1; stþ 1g
conditional on ðat; stÞ. This system of equations is the Euler equations of the
model.

Example 1. (Optimal consumption and portfolio choice; Hansen &
Singleton, 1982). The vector of decision variables is ðct; q1t; q2t;…; qJtÞ
where ct represents the individual’s consumption expenditure, and qjt
denotes the number of shares of asset/security j that the individual holds
in his portfolio at period t. The utility function depends only on con-
sumption, that is, Πtðat; stÞ=UtðctÞ. The consumer’s budget constraint
establishes that ct þ

PJ
j= 1 rjtqjt ≤wt þ

PJ
j= 1 rjt, where wt is labor

earnings, and rjt is the price of asset j at time t. Given that the budget
constraint is satisfied with equality, we can write the utility function as

Πtðat; stÞ=Ut wt −
PJ

j= 1 rjt½qjt − qjt− 1�

 �

, and the decision problem can

be represented in terms of the decision variables at = ðq1t; q2t;…; qJtÞ. The
vector of exogenous state variables is zt = ðwt; r1t; r2t;…; rJtÞ, and the
vector of endogenous state variables consists of the individual’s asset
holdings at t− 1, yt = ðq1t− 1; q2t− 1; :::; qJt− 1Þ. Therefore, the transition
rule of the endogenous state variables is trivial, that is, ytþ 1 = at, such
that ∂Ytþ 1=∂y0t = 0, ∂Ytþ 1=∂a0t = I, and the matrix Hðat; stÞ is a matrix of

zeros. Also, given the form of the utility function, we have that
∂Πt=∂qjt = −U0

tðctÞrjt and ∂Πt=∂qjt− 1 =U0
tðctÞrjt. Plugging these expression

in the general formula (5), we obtain the following system of Euler equa-
tions: for any asset j= 1; 2;…; J:

Et U
0
tðctÞrjt − βU0

tþ 1ðctþ 1Þrjtþ 1

� 

= 0 ð6Þ

Random Utility Model as a Continuous Optimization Problem

Before considering DDC models, in this section we describe how the
optimal decision rule in a static discrete choice model can be represented
using marginal conditions of optimality in an optimization problem where
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decision variables are (choice) probabilities. Later, we apply this result in
our derivation of Euler equations in DDC models.

Consider the following Additive Random Utility Model (ARUM)
(McFadden, 1981). The set of feasible choices A is discrete and finite and it
includes Jþ 1 choice alternatives: A= f0; 1;…; Jg. Let a∈A represent the
agent’s choice. The payoff function has the following structure:

Πða; ɛÞ= πðaÞ þ ɛðaÞ ð7Þ

where πð:Þ is a real valued function, and ɛ ≡ fɛð0Þ; ɛð1Þ;…; ɛðJÞg is a vector
of exogenous variables affecting the agent’s payoff. The vector ɛ has a
cumulative distribution function (CDF) G that is absolutely continuous
with respect to Lebesgue measure, strictly increasing and continuously dif-
ferentiable in all its arguments, and with finite means. The agent observes ɛ
and chooses the action a that maximizes his payoff πðaÞ þ ɛðaÞ. The optimal
decision rule of this model is a function α�ðɛÞ from the state space R

Jþ 1

into the action space A such that: α�ðɛÞ= argmaxa∈AfπðaÞ þ ɛðaÞg. By the
AS of the ɛ’s, this optimal decision rule can be written as follows: for any
a∈A

α�ðɛÞ= a
� �

iff ɛðjÞ− ɛðaÞ≤ πðaÞ− πðjÞ for any j ≠ a
� � ð8Þ

Given this form of the optimal decision rule, we can restrict our analysis
to decision rules with the following threshold form: αðɛÞ= a

� �
if and only

if fɛðjÞ− ɛðaÞ≤ μðaÞ− μðjÞ for any j ≠ ag, where μðaÞ is an arbitrary real
valued function. We can represent decision rules within this class using a
CCP function PðaÞ, that is the decision rule integrated over the vector of ran-
dom variables ɛ, that is, PðaÞ ≡ R 1 αðɛÞ= a

� �
GðɛÞdɛ. Therefore, we have that

PðaÞ=
Z

1 ɛðjÞ− ɛðaÞ≤ μðaÞ− μðjÞ for any j ≠ a
� �

dGðɛÞ= ~Ga μðaÞ− μðjÞ : for any j ≠ að Þ ð9Þ

where 1f:g is the indicator function, and ~Ga is the CDF of the vector
fɛðjÞ− ɛðaÞ: for any j ≠ ag.

Lemma 1 establishes that in an ARUM we can represent decision rules
using a vector of CCPs P ≡ fPð1Þ;Pð2Þ;…;PðJÞg in the J-dimension simplex.

Lemma 1. (McFadden, 1981). Consider an ARUM where the distribu-
tion of ɛ is G that is absolutely continuous with respect to Lebesgue
measure, strictly increasing and continuously differentiable in all its
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arguments. Let αð:Þ be a discrete-valued function from R
Jþ 1

into A= f0; 1;…; Jg; let m ≡ fμð1Þ; μð2Þ;…; μðJÞg be a vector in the
J-dimension Euclidean space, and consider the normalization μð0Þ= 0;
and let P ≡ fPð1Þ;Pð2Þ;…;PðJÞg be a vector in the J-dimension simplex S.
We can say that αð:Þ, μ, and P represent the same decision rule in the
ARUM if and only if the following conditions hold:

αðɛÞ=
XJ
a= 0

a1 ɛðjÞ− ɛðaÞ≤ μðaÞ− μðjÞ for any j ≠ a
� � ð10Þ

and for any a∈A
PðaÞ= ~Ga μðaÞ− μðjÞ: for any j ≠ að Þ ð11Þ

where ~Ga is the CDF of the vector fɛðjÞ− ɛðaÞ : for any j ≠ ag.
Lemma 2 establishes the invertibility of the relationship between the

vector of CCPs P and the vector of threshold values μ.

Lemma 2. (Hotz & Miller, 1993) Let ~Gð:Þ be the vector-valued mapping
f ~G1ð:Þ; ~G2ð:Þ;…; ~GJð:Þg from R

J into S. Under the conditions of Lemma 1,
the mapping ~Gð:Þ is invertible everywhere. We represent the inverse map-
ping as ~G

− 1ð:Þ.
Given an arbitrary decision rule, represented in terms αð:Þ, or μ, or P, let

Πe be the expected payoff before the realization of the vector ɛ if the agent
behaves according to this arbitrary decision rule. By definition

Πe ≡
Z

π αðɛÞð Þ þ ɛ αðɛÞð Þ� �
dGðɛÞ=E π αðɛÞð Þ þ ɛ αðɛÞð Þ½ � ð12Þ

where the expectation Eð:Þ is over the distribution of ɛ. By Lemmas 1�2,
we can represent this expected payoff as a function either of αð:Þ, or μ, or P.
For our analysis, it is most convenient to represent it as a function of
CCPs, that is, ΠeðPÞ. Given its definition, this expected payoff function can
be written as

ΠeðPÞ=
XJ
a= 0

PðaÞ πðaÞ þ eða;PÞ� �
= πð0Þ þ eð0;PÞ

þ
XJ
a= 1

PðaÞ πðaÞ− πð0Þ þ eða;PÞ− eð0;PÞ� � ð13Þ
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where eða;PÞ is defined as the expected value of ɛðaÞ conditional on
alternative a being chosen under decision rule αðɛÞ. That is, eða;PÞ≡
E ɛðaÞ jαðɛÞ= að Þ, and as a function of P we have that

eða;PÞ=E ɛðaÞ j ɛðjÞ− ɛðaÞ≤ ~G
− 1ða;PÞ− ~G

− 1ðj;PÞ for any j ≠ a

 �

ð14Þ

The conditions of the ARUM imply that functions eða;PÞ and ΠeðPÞ are
continuously differentiable with respect to P everywhere on the simplex S.
Therefore, this expected payoff function ΠeðPÞ has a maximum on S. We
can define P� as the vector of CCPs that maximizes this expected payoff
function:

P� = argmax
P∈S

ΠeðPÞ� � ð15Þ

Then, we have two representations of the ARUM, and two apparently
different decision problems. On the one hand, we have the discrete choice
model with the optimal decision rule α�ð:Þ in Eq. (8) that maximizes the
payoff πðaÞ þ ɛðaÞ after ɛ is realized and known to the agent. We denote
this as the ex-post decision problem to emphasize that the decision is after
the realization of ɛ is known to the agent. Associated to α�, we have its
corresponding CCP, that we can represent as Pα� , that is equal to ~Gð ~πÞ
where ~π is the vector of differential payoffs f ~πðaÞ ≡ πðaÞ− πð0Þ : for any
a ≠ 0. For econometric analysis of ARUM, we are interested in the Pα�

representation because these are CCPs from the point of view of the econ-
ometrician (who does not observe ɛ) describing the behavior of an agent
who knows π and ɛ and maximizes his payoff. On the other hand, we
have the optimization problem represented by Eq. (15) where the agent
chooses the vector of CCPs P to maximize his ex-ante expected payoff Πe

before the realization of ɛ. In principle, this second optimization problem
is not the one the ARUM assumes the individual is solving. In the ARUM
we assume that the individual makes his choice after observing the realiza-
tion of the vector of ɛ’s. Proposition 1 establishes that these two optimiza-
tion problems are equivalent, that the choice probabilities Pα� and P� are
the same, and that P� can be described in terms of the marginal conditions
of optimality associated to the continuous optimization problem in
Eq. (15).

Proposition 1. Let Pα� be the vector of CCPs associated with the optimal
decision rule α� in the discrete decision problem (8), and let P� be the
vector of CCPs that solves the continuous optimization problem (15).
Then, (i) the vectors Pα� and P� are the same; and (ii) P� satisfies the
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marginal conditions of optimality ∂ΠeðP�Þ=∂PðaÞ= 0 for any a> 0, and
the marginal expected payoff ∂ΠeðPÞ=∂PðaÞ has the following form:

∂ΠeðPÞ
∂PðaÞ = πðaÞ− πð0Þ þ eða;PÞ− eð0;PÞ þ

XJ
j= 0

PðjÞ ∂eðj;PÞ
∂PðaÞ ð16Þ

Proof in the appendix.
Proposition 1 establishes a characterization of the optimal decision rule

in terms of marginal conditions of optimality with respect to CCPs. In the
third section, we show that these conditions can be used to construct
moment conditions and a two-step estimator of the structural parameters.

Example 2. (Multinomial logit). Suppose that the unobservable variables
ɛðaÞ are i.i.d. with an extreme value type 1 distribution. For this distribu-
tion, the function eða;PÞ has the following simple form: eða;PÞ=
γ − ln PðaÞ, where γ is Euler’s constant (see the appendix to Chapter 2
in Anderson, de Palma, and Thisse (1992), for a derivation of this
property). Plugging this expression into Eq. (16), we get the following
marginal condition of optimality:

∂ΠeðP�Þ
∂PðaÞ = πðaÞ− πð0Þ− ln P�ðaÞ þ ln P�ð0Þ= 0 ð17Þ

because in this model, for any a, the term
PJ

j= 0 PðjÞ ½∂eðj;PÞ=∂PðaÞ� is
zero.8

Example 3. (Binary probit model). Suppose that the decision model is
binary, A= f0; 1g, and ɛð0Þ and ɛð1Þ are independently and identically
distributed with a normal distribution with zero mean and variance σ2.
Let ϕð:Þ and Φð:Þ denote the density and the CDFs for the standard nor-
mal, respectively, and let Φ− 1ð:Þ be the inverse function of Φ. Given this

distribution, it is possible to show that eð0;Pð1ÞÞ= σffiffi
2

p ϕ Φ− 1 1−Pð1Þ½ �ð Þ
1−Pð1Þ , and

eð1;Pð1ÞÞ= σffiffi
2

p ϕ Φ− 1 Pð1Þ½ �ð Þ
Pð1Þ . Using these expressions, we have that9

∂eð0;Pð1ÞÞ
∂Pð1Þ =

σffiffiffi
2

p −Φ− 1 1−Pð1Þð Þ
1−Pð1Þ þ ϕ Φ− 1 Pð1Þ½ �� 


½1−Pð1Þ�2
� �

∂eð1;Pð1ÞÞ
∂Pð1Þ =

σffiffiffi
2

p −Φ− 1 Pð1Þð Þ
Pð1Þ −

ϕ Φ− 1 Pð1Þ½ �� 

Pð1Þ2

� �
ð18Þ

Solving these expressions into the first order condition in Eq. (16)
and taking into account that by symmetry of the Normal distribution
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Φ− 1 1−Pð1Þð Þ= −Φ− 1 Pð1Þð Þ, we get the following marginal condition of
optimality:

∂ΠeðP�Þ
∂Pð1Þ = πð1Þ− πð0Þ−

ffiffiffi
2

p
σ Φ− 1 Pð1Þð Þ= 0 ð19Þ

Euler Equations in Dynamic Discrete Choice Models

Consider the dynamic decision model in section “Dynamic Decision
Model” but suppose now that the set of feasible actions is discrete and
finite: A= f0; 1;…; Jg. There are two sets of state variables: st = ðxt; ɛtÞ,
where xt is the vector of state variables observable to the researcher, and ɛt
represents the unobservables for the researcher. The set of observable state
variables xt itself is comprised by two types of state variables, exogenous
variables zt and endogenous variables yt. They are distinguished by the fact
that the transition probability of the endogenous variables depends on the
action at, while the transition probability of the exogenous variables does
not depend on at. The vector of unobservables satisfies the assumptions of
AS and CI (Rust, 1994).

Additive Separability (AS): The one-period payoff function is additively
separable in the unobservables: Πtðat; stÞ= πtðat; xtÞ þ ɛtðatÞ, where ɛt ≡ fɛtðaÞ:
a∈Ag is a vector of unobservable random variables.

Conditional Independence (CI): The transition probability (density) func-
tion of the state variables factors as: ft stþ 1 jat; stð Þ= fxt xtþ 1 jat; xtð Þ dG ɛtþ 1ð Þ,
where G :ð Þ is the CDF of ɛt which is absolutely continuous with respect to
Lebesgue measure, strictly increasing and continuously differentiable in all its
arguments, and with finite means.

Under these assumptions the optimal decision rules α�t ðxt; ɛtÞ have the
following form:

α�t ðxt; ɛtÞ= a
� �

iff ɛtðjÞ− ɛtðaÞ≤ vtða; xtÞ− vtðj; xtÞ for any j ≠ a
� � ð20Þ

where vtða; xtÞ is the conditional-choice value function that is defined as
vtða; xtÞ ≡ πtða; xtÞ þ β

R
xtþ 1

Vtþ 1ðxtþ 1Þ fxtðxtþ 1 ja; xtÞdxtþ 1, and VtðxtÞ is the
integrated value function, VtðxtÞ ≡

R
ɛt
Vtðxt; ɛtÞ dGðɛtÞ. Furthermore, the inte-

grated value function satisfies the following integrated Bellman equation:

VtðxtÞ=
Z
ɛt
max
at∈A

πtðat;xtÞþɛtðatÞþβ

Z
Vtþ1ðxtþ1Þ fxtðxtþ1 ja;xtÞ dxtþ1

� �
dGtðɛtÞ

ð21Þ

14 VICTOR AGUIRREGABIRIA AND ARVIND MAGESAN



We can restrict our analysis to decision rules αtðxt; ɛtÞ with the following
“threshold” structure: fαtðxt; ɛtÞ= ag if and only if fɛtðjÞ− ɛtðaÞ≤ μtða; xtÞ−
μtðj; xtÞ for any j ≠ ag, where μtða; xtÞ is an arbitrary real valued function.
As in the ARUM, we can represent decision rules using a discrete valued
function αtðxt; ɛtÞ, a real valued function μtða; xtÞ, or a probability valued
function Ptða jxtÞ.

PtðajxtÞ ≡
Z

1 αtðxt; ɛtÞ= a
� �

GtðɛtÞ dɛt
= ~Ga μtða; xtÞ− μtðj; xtÞ: for any j ≠ 0; a

� 
 ð22Þ

where ~Ga has the same interpretation as in the ARUM, that is, the CDF of
the vector fɛðjÞ− ɛðaÞ : for any j ≠ ag. Lemmas 1 and 2 from the ARUM
extend to this DDC model (Proposition 1 in Hotz & Miller, 1993). In parti-
cular, at every period t, there is a one-to-one relationship between the
vector of value differences ~μtðxtÞ ≡ fμtða; xtÞ− μtð0; xtÞ: a> 0 and the vector
of CCPs PtðxtÞ ≡ fPtðajxtÞ : a ≠ 0. We represent this mapping as PtðxtÞ=
~Gð~μtðxtÞÞ, and the corresponding inverse mapping as ~μtðxtÞ= ~G

− 1ðPtðxtÞÞ.
Given an arbitrary sequence of decision rules, represented in terms of

either α ≡ fαtð:Þ : t≥ 1g, or ~μ ≡ f~μtð:Þ : t≥ 1g, or P≡ fPtð:Þ : t≥ 1g, let We
t ðxtÞ

be the expected intertemporal payoff function at period t before the realiza-
tion of the vector ɛt if the agent behaves according to this arbitrary
sequence of decision rules. By definition

We
t xtð Þ≡E

XT − t

r=0

βr πtþ r αtþ rðxtþ r;ɛtþ rÞ;xtþ rð Þþɛtþ r αtþ rðxtþ r;ɛtþ rÞð Þ½ � j xt
 !

=E πt αtðxt;ɛtÞ;xtð Þþɛt αtðxt;ɛtÞð Þþβ

Z
We

tþ1 xtþ1ð Þ fxtðxtþ1jαtðxt;ɛtÞ;xtÞdxtþ1

� �
ð23Þ

We denote We
t xtð Þ as the valuation function to distinguish it from the

optimal value function and to emphasize that We
t xtð Þ provides the valuation

of any arbitrary decision rule. We are interested in the representation of
this valuation function as a function of CCPs. Therefore, we use the nota-
tion We

t xt;Pt;Pt0 > tð Þ. Given its definition, this function can be written using
the recursive formula:

We
t xt;Pt;Pt0 > tð Þ=Πe

t ðxt;PtÞ þ β

Z
We

tþ 1 xtþ 1;Ptþ 1;Pt0 > tþ 1ð Þ

× f et ðytþ 1jxt;PtÞ fzðztþ 1 jztÞdxtþ 1 ð24Þ
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where Πe
t ðxt;PtÞ is the expected one-period profit

PJ
a= 0 Ptða jxtÞ½πt a; xtð Þ þ

etða;PtðxtÞÞ�; etða;PtðxtÞÞ has the same definition as in the static model, that
is, it is the expected value of ɛtðaÞ conditional on alternative a being chosen
under decision rule αtðxt; ɛtÞ10; and f et ðytþ 1jxt;PtÞ is the transition probabil-
ity of the endogenous state variables y induced by the CCP function PtðxtÞ,
that is,

PJ
a= 0 PtðajxtÞ fytðytþ 1ja; xtÞ.

The valuation function We
t xt;Pt;Pt0 > tð Þ is continuously differentiable

with respect to the choice probabilities over the simplex. Then, we can
define P� as the sequence of CCP functions fP�

t ðxÞ : t≥ 1, x∈Xg such that
for any ðt; xÞ the vector of CCPs P�

t ðxÞ maximizes the values We
t x;Pt;Pt0 > tð Þ

given that future CCPs Pt0 > t are fixed at their values in P�.

P�
t ðxÞ= arg max

PtðxÞ∈S
We

t x;Pt;P
�
t0 > t

� 
� � ð25Þ

As in the ARUM, we have apparently two different optimal CCP func-
tions. We have the CCP functions associated with the sequence of optimal
decision rules α�t ð:Þ, that we represent as fPα�

t : t≥ 1g. And we have sequence
of CCP functions fP�

t : t≥ 1g defined in Eq. (25). Proposition 2 establishes
that the two sequences of CCPs are the same one, and that these probabil-
ities satisfy the marginal conditions of optimality associated to the continu-
ous optimization problem in Eq. (25).

Proposition 2. Let fPα�
t : t≥ 1g be the sequence of CCP functions asso-

ciated with the sequence of optimal decision rules fα�t : t≥ 1g as defined
in the DDC problem (20), and let fP�

t : t≥ 1g be sequence of CCP func-
tions that solves the continuous optimization problem (25). Then, for
every ðt; xÞ: (i) the vectors Pα�

t ðxÞ and P�
t ðxÞ are the same; and (ii) P�

t ðxÞ
satisfies the marginal conditions of optimality

∂We
t x;P�

t ;P
�
t0 > t

� 

∂PtðajxÞ

= 0 ð26Þ

for any a > 0, and the marginal value ∂Wt=∂Pt has the following form:

∂We
t

∂PtðajxÞ
= vtða; xt;Pt0 > tÞ− vtð0;xt;Pt0 > tÞ þ etða;PtðxÞÞ− etð0;PtðxÞÞ

þ
XJ
j= 0

PtðjjxÞ
∂etðj;PtðxÞÞ
∂PtðajxÞ

ð27Þ
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where vtða; xt;Pt0 > tÞ is the conditional-choice value function πtða; xtÞ þ
β
R
Wtþ 1 xtþ 1;Ptþ 1;Pt0 > tþ 1ð Þ ftðxtþ 1ja; xtÞ dxtþ 1.
Proof in the appendix.
Proposition 2 shows that we can treat the DDC model as a dynamic

continuous optimization problem where optimal choices, in the form of
choice probabilities, satisfy marginal conditions of optimality.
Nevertheless, the marginal conditions of optimality in Eq. (27) involve
value functions. We are looking for conditions of optimality in the spirit
of Euler equations that involve only payoff functions at two consecutive
periods, t and tþ 1. To obtain these conditions, we construct a con-
strained optimization problem similar to the one for the derivation of
Euler equations in section “Euler Equations in Dynamic Continuous
Decision Models”.

By Bellman’s principle, the optimal choice probabilities at periods t and
tþ 1 come from the solution to the optimization problem maxPt ;Ptþ 1

×
We

t ðx;Pt;Ptþ 1;P
�
t0 > tþ 1Þ, where we have fixed at its optimum the individual’s

behavior at any period after tþ 1, P�
t0 > tþ 1. In general, the CCPs Pt

and Ptþ 1 affect the distribution of the state variables at periods after
tþ 1 such that the optimality conditions of the problem maxPt ;Ptþ 1

×
We

t ðx;Pt;Ptþ 1;P
�
t0 > tþ 1Þ involve payoff functions and state variables at every

period in the future. Instead, suppose that we consider a similar optimiza-
tion problem but where we now impose the constraint that the probability
distribution of the endogenous state variables at tþ 2 should be the one
implied by the optimal CCPs at periods t and tþ 1. Since ðP�

t ;P
�
tþ 1Þ satisfy

this constraint, it is clear that these CCPs represent also the unique solution
to this constrained optimization problem. That is

fP�
t ðxÞ;P�

tþ1g=arg max
fPtðxÞ;Ptþ1g

Δt= We
t ðx;Pt;Ptþ1;P

�
t0>tþ1Þ−We

t ðx;P�
t ;P

�
tþ1;P

�
t0>tþ1Þ

� �
subject to: f et→tþ2ð:jx;Pt;Ptþ1Þ=f et→tþ2ð:jx;P�

t ;P
�
tþ1Þ ð28Þ

where we use function f et→ tþ 2ð:jx;Pt;Ptþ 1Þ to represent the distribution of
ytþ 2 conditional on xt = x and induced by the CCPs PtðxÞ and Ptþ 1, that
can be written as

ft→ tþ2ðytþ2jxt;Pt;Ptþ1Þ=
Z

f etþ1ðytþ2 jxtþ1;Ptþ1Þ f et ðytþ1 jxt;PtÞ fzðztþ1 jztÞdxtþ1

ð29Þ
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and, as defined above, f et ð:jx;PtÞ is the one-period-forward transition prob-
ability of the endogenous state variables y induced by the CCP function
PtðxÞ, that is,

PJ
a= 0 PtðajxtÞ ftðytþ 1ja; xtÞ.

By the definition of the valuation function We
t , we have that

We
t xt;Pð Þ=Πe

t ðxt;PtÞþβ

Z
Πe

tþ1 xtþ1;Ptþ1ð Þ f et ðytþ1jxt;PtÞ fzðztþ1jztÞdxtþ1

þβ2
Z

We
tþ2 xtþ2;Pt0 > tþ1ð Þ ft→ tþ2ðytþ2 jxt;Pt;Ptþ1Þ fzðztþ2jztÞdxtþ2

ð30Þ
The last term in this expression is exactly the same for We

t ðx;Pt;Ptþ 1;
P�
t0 > tþ 1Þ and for We

t ðx;P�
t ;P

�
tþ 1;P

�
t0 > tþ 1Þ because we have the same function

We
tþ 2 and because we restrict the distribution of ytþ 2 to be the same.

Therefore, subject to this constraint we have that Δt is equal to Πe
t ðx;PtÞ þ

β
R
Πe

tþ 1ðxtþ 1;Ptþ 1Þ f et ðxtþ 1jx;PtÞdxtþ 1, and the optimal CCPs at periods t

and tþ 1 solve the following optimization problem:

fP�
t ðxÞ;P�

tþ1g=arg max
fPtðxÞ;Ptþ1g

Δt

= Πe
t ðx;PtÞþβ

Z
Πe

tþ1ðxtþ1;Ptþ1Þ f et ðxtþ1jx;PtÞdxtþ1

� �
subject to : f et→tþ2ð:jx;Pt;Ptþ1Þ=f et→tþ2ð:jx;P�

t ;P
�
tþ1Þ ð31Þ

Suppose that the space of the vector of endogenous state variables Y
is discrete and finite. Therefore, the set of restrictions on f et→ tþ 2 ×
ðytþ 2jx;Pt;Ptþ 1Þ in the constrained optimization problem (31) includes at
most jYj− 1 restrictions, where jYj is the number of points in the support
set Y. Therefore, the number of Lagrange multipliers, and the matrix that
we have to invert to get these multipliers is of at most as large as jYj− 1. In
fact, in many models, the number of Lagrange multipliers that we must
solve for can be much smaller than the dimension of the vector of endogen-
ous state variables. This is because in many models the transition probabil-
ity of the endogenous state variable is such that, given the state variable at
period t, the state variable at period tþ 2 can take only a limited and small
number of possible values. We present several examples below.

Let Y þ sðxtÞ be the set of values that the endogenous state variables can
reach with positive probability s periods in the future given that the state
today is xt. To be precise, Y þ sðxtÞ includes all these possible values except
one of them because we can represent the probability distribution of ytþ s
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using the probabilities of each possible value except one. Let λtðxtÞ=
fλtðytþ 2jxtÞ : ytþ 2 ∈Y þ 2ðxtÞg be the jY þ 2ðxtÞj× 1 vector of Lagrange multi-
pliers associated to this set of restrictions. The Lagrangian function for this
optimization problem is

LtðPtðxtÞ;Ptþ1Þ=Πe
t ðx;PtÞþβ

X
xtþ1

Πe
tþ1ðxtþ1;Ptþ1Þ f et ðytþ1 j xt;PtÞ fzðztþ1jztÞ

−
X
ytþ2

λtðytþ2jxtÞ
X
xtþ1

f etþ1ðytþ2jxtþ1;Ptþ1Þ f et ðytþ1 jxt;PtÞfzðztþ1jztÞ
" #

ð32Þ

Given this Lagrangian function, we can derive the first order conditions
of optimality with respect to PtðxtÞ and Ptþ 1 and combine these conditions
to obtain Euler equations.

Proposition 3. The marginal conditions for the maximization of the
Lagrangian function in Eq. (32) imply the following Euler equations.
For every value of xt:

∂Πe
t

∂PtðajxtÞ
þβ
X
xtþ1

Πe
tþ1ðxtþ1Þ−mðxtþ1Þ0

∂Πe
tþ1ðztþ1Þ

∂Ptþ1ðztþ1Þ

� �
~f tðytþ1ja;xtÞ fzðztþ1jztÞ=0

ð33Þ

where ~f tðytþ1ja;xtÞ≡ ftðytþ1ja;xtÞ− ftðytþ1j0; xtÞ; ∂Πe
tþ1ðztþ1Þ=∂Ptþ1ðztþ1Þ

is a column vector with dimension JjYþ1ðxtÞj×1 that contains the partial
derivatives f∂Πe

tþ1ðytþ1;ztþ1Þ=∂Ptþ1ðajytþ1; ztþ1Þg for every action a>0
and every value ytþ1∈Yþ1ðxtÞ that can be reach from xt, and fixed value
for ztþ1; and mðxtþ1Þ is a JjYþ1ðxtÞj×1 vector such that mðxtþ1Þ≡
fetþ1ðxtþ1Þ0½ ~Ftþ1ðztþ1Þ0 ~Ftþ1ðztþ1Þ�−1 ~Ftþ1ðztþ1Þ0 where fetþ1ðxtþ1Þ is the
vector of transition probabilities ff etþ1ðytþ2jxtþ1Þ : ytþ2∈Yþ2ðxtÞg, and
~Ftþ1ðztþ1Þ is matrix with dimension JjYþ1ðxtÞj× jYþ2ðxtÞj that contains
the probabilities ~f tþ1ðytþ2ja;xtþ1Þ for every ytþ2∈Yþ2ðxtÞ, every ytþ1∈
Yþ1ðxtÞ, and every action a>0, with fixed ztþ1.

Proof in the appendix.
Proposition 3 shows that in general we can derive marginal conditional

of optimality that involve only payoffs and states at two consecutive
periods. The derivation of this Euler equation, described in the appendix,
is based on the combination of the Lagrangian conditions ∂Lt=∂PtðajxtÞ= 0
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and ∂Lt=∂Ptþ 1ðajxtþ 1Þ= 0. Using the group of conditions ∂Lt=∂Ptþ 1

ðajxtþ 1Þ= 0 we can solve for the vector of Lagrange multipliers as
½ ~Ftþ 1ðztþ 1Þ0 ~Ftþ 1ðztþ 1Þ�− 1 ~Ftþ 1ðztþ 1Þ0∂Πe

tþ 1ðztþ 1Þ=∂Ptþ 1ðztþ 1Þ and then we
can plug this solution into the first Lagrangian conditions, ∂Lt=∂PtðajxtÞ= 0.
This provides the expression for the Euler equation in (33). The main com-
putational cost in the derivation of this expression comes from inverting the
matrices ½ ~Ftþ 1ðztþ 1Þ0 ~Ftþ 1ðztþ 1Þ�. The dimension of these matrices is
jY þ 2ðxtÞj× jY þ 2ðxtÞj, where Y þ 2ðxtÞ is the set of possible values that the
endogenous state variable ytþ 2 can take given xt. In most applications, the
number of elements in the set Y þ 2ðxtÞ is substantially smaller that the whole
number of values in the space of the endogenous state variable, and several
orders of magnitude smaller than the dimension of the complete state space
that includes the exogenous state variables. This property implies very sub-
stantial computational savings in the estimation of the model. We now pro-
vide some examples of models where the form of the Euler equations is
particularly simple. In these examples, we have simple closed form expres-
sions for the Lagrange multipliers. These examples correspond to models
that are commonly estimated in applications of DDC models.

Example 4. (Dynamic binary choice model of entry and exit). Consider a
binary decision model, A= f0; 1g, where at is the indicator of being
active in a market or in some particular activity. The endogenous state
variable yt is the lagged value of the decision variable, yt = at− 1, and
it represents whether the agent was active at previous period. The vector
of state variables is then xt = ðyt; ztÞ where zt are exogenous state
variables. Suppose that ɛtð0Þ and ɛtð1Þ are extreme value type 1 distri-
buted with dispersion parameter σɛ. In this model, the one-period
expected payoff function is Πe

t ðxt;PtÞ=Ptð0jxtÞ ½π 0; xtð Þ−σɛ lnPtð0jxtÞ�þ
Ptð1jxtÞ ½π 1; xtð Þ−σɛ lnPtð1jxtÞ�. The transition of the endogenous state
variable induced by the CCP is the CCP itself, that is, f et ðytþ1jxt;PtÞ=
Ptðytþ1jxtÞ. Therefore, we can write the Δt function in the constrained
optimization problem as

Δt =Πe
t ðxt;PtÞ þ β

X
ztþ 1

fzðztþ 1jztÞ ½Ptð0jxtÞΠe
tþ 1ð0;ztþ 1;Ptþ 1Þ

þPtð1jxtÞ Πe
tþ 1ð1;ztþ 1;Ptþ 1Þ� ð34Þ

Given xt, the state variable ytþ 2 can take two values, 0 or 1. Therefore,
there is only one free probability in f et→ tþ 2 and one restriction in the
Lagrangian problem. This probability is
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f et→ tþ 2ð1jxt;Pt;Ptþ 1Þ=
X
ztþ 1

fzðztþ 1jztÞ ½Ptð0jxtÞPtþ 1ð1j0; ztþ 1Þ

þPtð1jxtÞPtþ 1ð1j1; ztþ 1Þ� ð35Þ
Let λðxtÞ be the Lagrange multiplier for this restriction. For a given xt,

the free probabilities that enter in the Lagrangian problem are Ptð1jxtÞ,
Ptþ 1ð1j0; ztþ 1Þ, and Ptþ 1ð1j1; ztþ 1Þ for any possible value of ztþ 1 in the
support set Z. The first order condition for the maximization of the
Lagrangian with respect to Ptð1jxtÞ is

∂Πe
t

∂Ptð1jxtÞ
þ β

X
ztþ 1

½Πe
tþ 1ð1Þ−Πe

tþ 1ð0Þ− λðxtÞfPtþ 1ð1j1; ztþ 1Þ

−Ptþ 1ð1j0; ztþ 1Þg� fzðztþ 1jztÞ= 0 ð36Þ
The marginal condition with respect to one of the probabilities Ptþ 1ð1jxtþ 1Þ

(for a given value of xtþ 1) is β
∂Πe

tþ 1ð0;ztþ 1;Ptþ 1Þ
∂Ptþ 1ð1j0;ztþ 1Þ = β

∂Πe
tþ 1ð1;ztþ 1;Ptþ 1Þ
∂Ptþ 1ð1j1;ztþ 1Þ = λðxtÞ.

Substituting the marginal condition with respect to Ptþ 1ð1jxtþ 1Þ into the
marginal condition with respect to Ptð1jxtÞ we get the Euler equation:

∂Πe
t

∂Ptð1jxtÞ
þβEt Πe

tþ1ð1;ztþ1Þ−Πe
tþ1ð0;ztþ1Þ

� 


þβEt Ptþ1ð1j0;ztþ1Þ
∂Πe

tþ1ð0;ztþ1;Ptþ1Þ
∂Ptþ1ð1j0;ztþ1Þ

−Ptþ1ð1j1;ztþ1Þ
∂Πe

tþ1ð1;ztþ1;Ptþ1Þ
∂Ptþ1ð1j1;ztþ1Þ

0
@

1
A

=0

ð37Þ
where we use Etð:Þ to represent in a compact form the expectation over the
distribution of fzðztþ 1jztÞ. Finally, for the logit version of this model and as
shown in Example 2, the marginal expected profit ∂Πe

t =∂Ptð1jxtÞ is equal to
π 1; xtð Þ− πt 0; xtð Þ− σɛðlnPtð1jxtÞ− lnPtð0jxtÞÞ. Taking this into account and
operating in the Euler equation, we can obtain this simpler formula for this
Euler equation:

π 1; yt; ztð Þ− π 0; yt; ztð Þ− σɛln
Ptð1jyt; ztÞ
Ptð0jyt; ztÞ

0
@

1
A

2
4

3
5

þ βEt π 1; 1; ztþ 1ð Þ− πt 1; 0; ztþ 1ð Þ− σɛ ln
Ptþ 1ð1j1; ztþ 1Þ
Ptþ 1ð1j0; ztþ 1Þ

0
@

1
A

2
4

3
5= 0

ð38Þ
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Example 5. (Machine replacement model). Consider a model where the
binary choice variable at is the indicator for a firm’s decision to replace
an old machine or equipment by a new one. The endogenous state vari-
able yt is the age of the “old” machine that takes discrete values f1; 2;…g
and it follows the transition rule ytþ 1 = 1þð1− atÞyt, that is, if the firm
replaces the machine at period t (i.e., at = 1), then at period tþ 1 it has a
brand new machine with ytþ 1 = 1, otherwise the firm continues with the
old machine that at tþ 1 will be one period older. Given yt, we have that
ytþ 1 can take only two values, ytþ 1 ∈ f1; yt þ 1g. Thus, the Δt function is

Δt =Πe
t ðxtÞ þ β

X
ztþ 1

fzðztþ 1jztÞ½Ptð0jxtÞΠe
tþ 1ðyt þ 1; ztþ 1Þ

þPtð1jxtÞΠe
tþ 1ð1; ztþ 1Þ� ð39Þ

Given yt, we have that ytþ 2 can take only three values, ytþ 1 ∈
f1; 2; yt þ 1g. There are only two free probabilities in the distribution of
f et→ tþ 2ðytþ 2jxtÞ. Without loss of generality, we use the probabilities
f et→ tþ 2ð1jxtÞ and f et→ tþ 2ð2jxtÞ to construct the Lagrange function. These
probabilities have the following form:

f et→ tþ 2ð1jxtÞ=
X
ztþ 1

fzðztþ 1jztÞ½Ptð0jxtÞPtþ 1ð1jyt þ 1; ztþ 1Þ

þPtð1jxtÞPtþ 1ð1j1; ztþ 1Þ�
f et→ tþ 2ð2jxtÞ=Ptð1jxtÞ

X
ztþ 1

fzðztþ 1jztÞPtþ 1ð0j1; ztþ 1Þ ð40Þ

The Lagrangian function depends on the CCPs Ptð1jxtÞ, Ptþ 1ð1j1; ztþ 1Þ,
and Ptþ 1ð1jyt þ 1; ztþ 1Þ. The Lagrangian optimality condition with respect
to Ptð1jxtÞ is

∂Πe
t

∂Ptð1jxtÞ
þ β

X
ztþ 1

fzðztþ 1jztÞ Πe
tþ 1ð1; ztþ 1Þ−Πe

tþ 1ðyt þ 1; ztþ 1Þ
� �

− λð1Þ
X
ztþ 1

fzðztþ 1jztÞ Ptþ 1ð1j1; ztþ 1Þ−Ptþ 1ð1jyt þ 1; ztþ 1Þ½ �

− λð2Þ
X
ztþ 1

fzðztþ 1jztÞPtþ 1ð0j1; ztþ 1Þ= 0

ð41Þ
And the Lagrangian conditions with respect to Ptþ 1ð1j1; ztþ 1Þ and

Ptþ 1ð1jyt þ 1; ztþ 1Þ are β ∂Πe
tþ 1ð1;ztþ 1Þ

∂Ptþ 1ð1j1;ztþ 1Þ − λð1Þ þ λð2Þ= 0, and β
∂Πe

tþ 1ðyt þ 1;ztþ 1Þ
∂Ptþ 1ð1jyt þ 1;ztþ 1Þ −
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λð1Þ= 0, respectively. We can use the second set of conditions to solve
trivially for the Lagrange multipliers, and then plug in the expression for
this multipliers in the first set of Lagrangian conditions. We obtain the
Euler equation:

∂Πe
t

∂Ptð1jxtÞ
þβEt Πe

tþ1ð1; ztþ1Þ−Πe
tþ1ðytþ1; ztþ1Þ

� �

þβEt

∂Πe
tþ1ð1; ztþ1Þ

∂Ptþ1ð1j1; z tþ1ÞPtþ1ð0j1; ztþ1Þ−
∂Πe

tþ1ðytþ1; ztþ1Þ
∂Ptþ1ð1jytþ1; ztþ1Þ

Ptþ1ð0jytþ1; ztþ1Þ
2
4

3
5=0
ð42Þ

Finally, taking into account that for the logit specification of the
unobservables the marginal expected profit ∂Πe

t =∂Ptð1jxtÞ is equal to
π 1; xtð Þ− π 0; xtð Þ− σɛ½ln Ptð1jxtÞ− ln Ptð0jxtÞ�, and operating in the previous
expression, it is possible to obtain the following Euler equation:

π 1; yt; ztð Þ− π 0; yt; ztð Þ− σɛ ln
Ptð1jyt; ztÞ
Ptð0jyt; ztÞ

0
@

1
A

2
4

3
5

þ β Et π 1; 1; ztþ 1ð Þ− π 1; yt þ 1; ztþ 1ð Þ− σɛ ln
Ptþ 1ð1j1; ztþ 1Þ

Ptþ 1ð1jyt þ 1; ztþ 1Þ

0
@

1
A

2
4

3
5= 0

ð43Þ

Relationship between Euler Equations and Other CCP Representations

Our derivation of Euler equations for DDC models above is related to
previous work by Hotz and Miller (1993), Aguirregabiria and Mira (2002),
and Arcidiacono and Miller (2011). These papers derive representations of
optimal decision rules using CCPs and show how these representations can
be applied to estimate DDC models using simple two-step methods that
provide substantial computational savings relative to full-solution methods.
In these previous papers, we can distinguish three different types of
CCP representations of optimal decisions rules: (1) the present-value repre-
sentation; (2) the terminal-state representation; and (3) the finite-dependence
representation.

The present-value representation consists of using CCPs to obtain an
expression for the expected and discounted stream of future payoffs asso-
ciated with each choice alternative. In general, given CCPs, the valuation
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function We
t x;Pð Þ can be obtained recursively using its definition,

We
t xt;Pð Þ=Πe

t ðxt;PÞ þ β
R
We

tþ 1 xtþ 1;Pð Þ f et ðxtþ 1jxt;PÞ dxtþ 1. And given this
valuation function we can construct the agent’s optimal decision rule (or
best response) at period t given that he believes that in the future he will
behave according to the CCPs in the vector P. This present-value represen-
tation is the CCP approach more commonly used in empirical applications
because it can be applied to a general class of DDC models. However, this
representation requires the computation of present values and therefore it
is subject to the curse of dimensionality. In applications with large state
spaces, this approach can be implemented only if it is combined with an
approximation method such as the discretization of the state space, or
Monte Carlo simulation (e.g., Bajari et al., 2007; Hotz et al., 1994). In gen-
eral, these approximation methods introduce a bias in parameter estimates.

The terminal-state representation was introduced by Hotz and Miller
(1993) and it applies only to optimal stopping problems with a terminal
state. The finite-dependence representation was introduced by Arcidiacono
and Miller (2011) and applies to a particular class of DDC models with the
finite dependence property. A DDC model has the finite dependence prop-
erty if given two values of the decision variable at period t and their respec-
tive paths of the state variables after this period, there is always a finite
period t0 > t (with probability one) where the state variables in the two paths
take the same value. The terminal-state and the finite-dependence CCP repre-
sentations do not involve the computation of present values, or even the
estimation of CCPs at every possible state. This implies substantial compu-
tational savings as well as avoiding biases induced by approximation errors.

The system of Euler equations that we have derived in Proposition 3 can
be seen also as a CCP representation of the optimal decision rule in a DDC
model. Our representation shares all the computational advantages of the
terminal-state and finite-dependence representations. However, in contrast
to the terminal-state and finite-dependence, our Euler equation representa-
tion applies to a general class of DDC models. We can derive Euler equa-
tions for any DDC model where the unobservables satisfy the conditions of
AS in the payoff function, and CI in the transition of the state variables.

GMM ESTIMATION OF EULER EQUATIONS

Suppose that the researcher has panel data of N agents over ~T periods of
time, where he observes agents’ actions fait : i= 1; 2; …; N; t= 1; 2; …; ~Tg,
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and a subvector x of the state variables, fxit : i= 1; 2; …; N; t= 1; 2; …; Tg.
The number of agents N is large, and the number of time periods is typically
short. The researcher is interested in using this sample to estimate the struc-
tural parameters of the model, θ. We describe here the GMM estimation of
these structural parameters using moment restrictions from the Euler equa-
tions derived in section “Euler Equations in Dynamic Decision Models.”

GMM Estimation of Euler Equations in Continuous Decision Models

The GMM estimation of the structural parameters is based on the combina-
tion of the Euler equation(s) in (5), the assumption of rational expectations,
and some assumptions on the unobservable state variables (Hansen &
Singleton, 1982). For the unobservables, this literature has considered
the following type of assumption.

Assumption GMM-EE continuous decision. (A) The partial derivatives
of the payoff function are ∂Πðat; stÞ=∂at = πaðat; xtÞ and ∂Πðat; stÞ=∂yt =
πyðat; xtÞ þ ɛt, where πaðat; xtÞ and πyðat; xtÞ are known functions to the
researcher up to a vector of parameters θ, and ɛt is a vector of unobser-
vables with zero means, not serially correlated, and mean independent
of ðxt; xt− 1; at− 1Þ such that Eðɛtþ 1jxtþ 1; xt; atÞ= 0. (B) The partial deriva-
tives of the transition rule, ∂Ytþ 1=∂a0t and ∂Ytþ 1=∂y0t, and the matrix
Hðat; stÞ do not depend on unobserved variables, that is, ∂Ytþ 1=∂a0t =
Yaðat; xtÞ, ∂Ytþ 1=∂y0t = Yyðat; xtÞ, and Hðat; stÞ=Hðat; xtÞ.
Under these conditions, the Euler equation implies the following

orthogonality condition in terms only of observable variables fa; xg and
structural parameters θ: Eðωðat; xt; atþ 1; xtþ 1; θÞjxtÞ= 0, where

ωðat; xt; atþ 1; xtþ 1; θÞ≡ πaðat; xt; θÞ þ β½πyðatþ 1; xtþ 1; θÞ
−Hðatþ 1; xtþ 1; θÞπaðatþ 1; xtþ 1; θÞ�Yaðat; xt; θÞ ð44Þ

The GMM estimator θ̂N is defined as the value of θ that minimizes
the criterion function mNðθÞ0ΩNmNðθÞ, where mNðθÞ ≡ fmN;1ðθÞ;mN;2ðθÞ;…;
mN;T − 1ðθÞg is the vector of sample moments

mN;tðθÞ= 1

N

XN
i= 1

ZðxitÞωðait; xit; aitþ 1; xitþ 1; θÞ ð45Þ

and ZðxitÞ is a vector of instruments (i.e., known functions of the observable
state variables at period t).
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The GMM-Euler equation approach for dynamic models with continuous
decision variables has been extended to models with corner solutions and
censored decision variables (Aguirregabiria, 1997; Cooper, Haltiwanger, &
Willis, 2010; Pakes, 1994), and to dynamic games (Berry & Pakes, 2000).11

GMM Estimation of Static Random Utility Models

Consider the ARUM in section “Random Utility Model as a Continuous
Optimization Problem.” Now, the deterministic component of the utility
function for agent i is πðai; xi; θÞ, where xi is a vector of exogenous charac-
teristics of agent i and of the environment which are observable to the
researcher, and θ is a vector of structural parameters. Given a random
sample of N individuals with information on fai; xig, the marginal condi-
tions of optimality in Eq. (16) can be used to construct a semiparametric
two-step GMM estimator of the structural parameters. The first step con-
sists in the nonparametric estimation of the CCPs PðajxÞ ≡ Prðait = ajxit = xÞ.
Let P̂N ≡ fP̂ðajxiÞg be a vector of nonparametric estimates of CCPs for any
choice alternative a and any value of xi in the sample. For instance, P̂tðajxÞ
can be a kernel (Nadaraya�Watson) estimator of the regression between
1fai = ag and xi. In the second step, the vector of parameters θ is estimated
using the following GMM estimator:

θ̂N = argmin
θ∈Θ

m0
N θ; P̂N

� 

ΩNmN θ; P̂N

� 
 ð46Þ

where mNðθ;PÞ ≡ fmN;1ðθ;PÞ;mN;2ðθ;PÞ ;…; mN;Jðθ;PÞg is the vector of sam-
ple moments, with

mN;aðθ;PÞ= 1

N

XN
i= 1

Zi πða; xi; θÞ− πð0; xi; θÞ þ eða; xi;PÞ
"

− eð0; xi;PÞ þ
XJ
j= 0

PðjjxiÞ
∂eðj; xi;PÞ
∂PðajxiÞ

#
ð47Þ

This two-step semiparametric estimator is root-N consistent and asymp-
totically normal under mild regularity conditions (see Theorems 8.1 and 8.2
in Newey & McFadden, 1994). The variance matrix of this estimator can
be estimated using the semiparametric method in Newey (1994), or as
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recently shown by Ackerberg, Chen, and Hahn (2012) using a computa-
tionally simpler parametric-like method as in Newey (1984).

GMM Estimation of Euler Equations in DDC Models

The Euler equations that we have derived for DDC model implies the fol-
lowing orthogonality conditions: Eðξðat; xt; xtþ 1;Pt;Ptþ 1; θÞjat; xtÞ= 0,
where

ξðat; xt; xtþ1;Pt; Ptþ1;θÞ≡
∂Πe

t

∂PtðatjxtÞ

þβ Πe
tþ1ðxtþ1Þ−mðxtþ1Þ0

∂Πe
tþ1ðztþ1Þ

∂Ptþ1ðztþ1Þ

� � ~f tðytþ1jat;xtÞ
ftðytþ1jat;xtÞ

ð48Þ

Note that this orthogonality condition comes from the Euler equation
(33) in Proposition 3, but we have made two changes. First, we have
included the expectation Eð:jat; xtÞ that replaces the sum

P
xtþ 1

and the
distribution of xtþ 1 conditional on ðat; xtÞ, that is, ftðytþ 1jat; xtÞ fzðztþ 1jztÞ.
And second, the Euler equation applies to any hypothetical choice, a, at
period t, but in the orthogonality condition Eðξðat; xt; xtþ 1;Pt;Ptþ 1;
θÞjat; xtÞ= 0 we consider only the actual/observed choice at.

Given these conditions, we can construct a consistent an asymptotically
normal estimator of θ using a semiparametric two-step GMM similar to
the one described above for the static model. For simplicity, suppose that
the sample includes only two periods, t and tþ 1. Let P̂t;N and P̂tþ 1;N be
vectors with the nonparametric estimates of fPtðajxtÞg and fPtþ 1ðajxtþ 1Þg,
respectively at any value of xt and xtþ 1 observed in the sample. Note that
we do not need to estimate CCPs at states which are not observed in the
sample. In the second step, the GMM estimator of θ is

θ̂N = argmin
θ∈Θ

m0
N θ; P̂t;N ; P̂tþ 1;N

� 

ΩNmN θ; P̂t;N ; P̂tþ 1;N

� 
 ð49Þ

where mNðθ;Pt;Ptþ 1Þ is the vector of sample moments:

mNðθ;Pt;Ptþ 1Þ=
1

N

XN
i= 1

Zðait; xitÞξðait; xit; xitþ 1;Pit;Pitþ 1; θÞ ð50Þ
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Zðait; xitÞ is a vector of instruments, that is, known functions of the
observable decision and state variables at period t. As in the case of the sta-
tic ARUM, this semiparametric two-step GMM estimator is consistent and
asymptotically normal under mild regularity conditions.

Relationship with Other CCP Estimators

The estimation based on the moment conditions provided by the Euler
equation, or terminal-state, or finite-dependence representations imply an
efficiency loss relative to estimation based on present-value representation.
As shown by Aguirregabiria and Mira (2002, Proposition 4), the two-step
PML estimator based on the CCP present-value representation is asympto-
tically efficient (equivalent to the ML estimator). This efficiency property is
not shared by the other CCP representations. Therefore, there is a trade-off
in the choice between CCP estimators based on Euler equations and on
present-value representations. The present-value representation is the best
choice in models that do not require approximation methods. However, in
models with large state spaces that require approximation methods, the
Euler equations CCP estimator can provide more accurate estimates.

AN APPLICATION

This section presents an application of the Euler equations-GMM method
to a binary choice model of firm investment. More specifically, we consider
the problem of a dairy farmer who has to decide when to replace a dairy
cow by a new heifer. The cow replacement model that we consider here is
an example of asset or “machine” replacement model.12 We estimate this
model using data on dairy cow replacement decisions and milk production
using a two-step PML estimator and the ML estimator, and compare these
estimates to those of the Euler equations-GMM method.

Model

Consider a farmer that produces and sells milk using dairy cows. The farm
can be conceptualized as a plant with a fixed number of stalls n, one for
each dairy cow. We index time by t and stalls by i. In our model, one
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period of time is a lactation period of 13 months. Farmer profits at period t

is the sum of profits across the stalls,
Pn

i= 1 Πit where Πit is the profit from
stall i at period t, minus the fixed cost of operating a farm with n stalls/
cows, FCtðnÞ. In this application, we take the size of a farm, n, as exogen-
ously given. Furthermore, profits are separable across stalls and we can
view the problem as maximization of profit from an individual stall.

The farmer decides when (after which lactation period) to replace the
existing cow by a new heifer. Let ait ∈ f0; 1g be the indicator for this replace-
ment decision: ait = 1 means that the existing cow is replaced at the end of
the current lactation period. The profit from stall i at period t is

Πit =
pMt Mðyit;ωitÞ−CðyitÞ þ ɛitð0Þ if ait = 0

pMt Mðyit;ωitÞ−CðyitÞ−Rðyit; pHt Þþ ɛitð1Þ if ait = 1

�
ð51Þ

Mðyit;ωitÞ is the production of milk of the cow in stall i at period t, where
yit ∈ f1; 2; :::; ymaxg is the current cow’s age or lactation number, and ωit is a
cow-stall idiosyncratic productivity. pMt is the market price of milk. CðyitÞ
is the maintenance cost that may depend on the age of the cow. Rðyit; pHt Þ
is the net cost of replacing the existing cow by a new heifer. This net
cost is equal to the market price of a new heifer, pHt , plus some adjustment/
transaction costs, minus the market value of the retired cow. This market
value depends on the quality of the meat, and this quality depends on the
age of the retired cow but not on her milk productivity. In what follows we
assume that the prices pMt and pHt are constants and as such, do not consti-
tute part of the vector of state variables. So the vector of observable state
variables is xit = ðyit;ωitÞ where yit is the endogenous state variable, and
zit =ωit is the vector of endogenous state variable.

The estimations that we present below are based on the following specifi-
cation on the functions Cð:Þ and Rð:Þ: CðyitÞ= θCyit, and RðyitÞ= θR. That is,
the maintenance cost of a cow is linear in the cow’s age, and the replace-
ment cost is fixed over time.13 While the productivity shock ωit is unobser-
vable to the econometrician, as we show below, under some assumptions it
can be recovered by estimation of the milk production function,
mit =Mðyit;ωitÞ, where mit is the amount of milk, in liters, produced by the
cow in stall i at period t. The transition probability function for the produc-
tivity shock ωit is

Prðωi;tþ 1jωit; aitÞ= pωðωi;tþ 1jωitÞ if ait = 0

p0ωðωi;tþ 1Þ if ait = 1

�
ð52Þ
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An important feature of this transition probability is that the productivity
of a new heifer is independent of the productivity of the retired cow. Once
we have recovered ωit, the transition function for the productivity shock
can be identified from the data. The transition rule for the cow age is tri-
vial: yi;tþ 1 = 1þ ð1− aitÞyit. The unobservables ɛitð0Þ and ɛitð1Þ are assumed
i.i.d. over i and over t with type 1 extreme value distribution with disper-
sion parameter σɛ.

Data

The dataset comes from Miranda and Schnitkey (1995). It contains infor-
mation on the replacement decision, age and milk production of cows from
five Ohio dairy farms over the period 1986�1992. There are 2,340 observa-
tions from a total of 1,103 cows: 103 cows from farmer 1; 187 cows from
farmer 2; 365 from farmer 3; 282 from farmer 4; and 166 cows from the
last farmer. The data were provided by these five farmers through the
Dairy Herd Improvement Association.

Here we use the sample of cows which entered in the production process
before 1987. The reason for this selection is that for these initial cohorts we
have complete lifetime histories for every cow, while for the later cohorts
we have censored durations. Our working sample consists of 357 cows and
783 observations.

Table 1. Descriptive Statistics (Working Sample: 357 Cows with
Complete Spells).

Cow Lactation Period (Age)

1 2 3 4 5

Distribution of cows (%) by

age of replacement

113 126 68 37 13

(31.7%) (35.3%) (19.0%) (10.4%) (3.6%)

Hazard rate for the

replacement decision

0.317 0.516 0.571 0.740 1.000

Mean Milk Production

(thousand pounds) by age

(row) and age at replacement

(column)

1 14.90 18.13 18.76 18.42 16.85

2 � 17.42 19.80 20.46 19.40

3 � � 20.06 23.74 22.28

4 � � � 20.07 21.60

5 � � � � 16.99
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In Table 1 we provide some basic descriptive statistics from our working
sample. The hazard rate for the replacement decision increases monotoni-
cally with the age of the cow. Average milk production (per cow and per-
iod) presents an inverted-U shape pattern both with respect to the current
age of the cow and with respect to the age of the cow at the moment of
replacement. This evidence is consistent with a causal effect of age of milk
output but also with a selection effect, that is, more productive cows tend
to be replaced at older ages.

Estimation

In this section we estimate the structural parameters of the profit function
using our Euler equations method, as well as two more standard methods
for estimation of DDC models, the two-step PML method and ML method
for illustrative purposes.

Estimation of Milk Production Function
Regardless of the method we use to estimate the structural parameters
in the cost functions, we first estimate the milk production function,
mit =Mðyit;ωitÞ, outside the dynamic programming problem. We consider a
specification for milk production that is nonparametric in age, and log-
additive in the productivity shock ωit:

ln ðmitÞ=
Xymax

j= 1

αj1fyit = jgþωit ð53Þ

A potentially important issue in the estimation of this production func-
tion is that we expect age yit to be positively correlated with the productiv-
ity shock ωit. Less productive cows are replaced at early ages, and high
productivity cows at later ages. Therefore, OLS estimates of α will not have
a causal interpretation, as the age of the cow yit is positively correlated with
unobserved productivity ωit. Specifically, we would expect that E½ωitjyit� is
increasing in yit as more productive cows survive longer than less produc-
tive ones. This would tend to bias downward the α0s at early ages and
upward bias the α0s at old ages.14

To overcome this endogeneity problem, we consider the following
approach. First, note that if the productivity shock were not serially corre-
lated, there would be no endogeneity problem because age is a
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predetermined variable which is not correlated with an unanticipated shock
at period t. Therefore, if we can transform the production function such
that the unobservable is not serially correlated, then the unobservable in
the production function will not be correlated with age. Note that the pro-
ductivity shock ωit is cow specific and is not transferred to another cow in
the same stall. Therefore, if the age of the cow is 1, we have that ωit is not
correlated with 1fyit = 1g. That is,

α1 =E lnðmitÞjyit = 1½ � ð54Þ

and we can estimate consistently α1 using the frequency estimator
½Pi;t1fyit = 1g ln ðmitÞ�=½

P
i;t1fyit = 1g�. For ages greater than 1, we assume

that ωit follows an AR(1) process, ωit = ρ ωit− 1 þ ξit, where ξit is an i.i.d.
shock. Then, we can transform the production function to obtain the
following sequence of equations. For yit ≥ 2

lnðmitÞ= ρ ln ðmit− 1Þ þ
XyH
j= 2

γj1fyit = jgþ ξit ð55Þ

where γj ≡ αj − ρ αj− 1. OLS estimation of this equation provides consistent
estimates of ρ and γ0s. Finally, using these estimates and the estimator of
α1, we obtain consistent estimates of ρ and α0s. We can also iterate in this
procedure to obtain Cochrane�Orcutt FGLS estimator.

Table 2. Estimation of Milk Production Function (Working Sample: 357
Cows with Complete Spells).

Explanatory Variables Estimates (Standard Errors)

Not controlling for

selection

Controlling for

selection

γ parameters α parameters

lnðmit− 1Þ � 0.636 (0.048)

1fAge= 1g 2.823 (0.011) � 2.823 (0.010)

1fAge= 2g 2.905 (0.014) 1.068 (0.139) 2.863 (0.014)

1fAge= 3g 3.047 (0.019) 1.150 (0.144) 2.971 (0.020)

1fAge= 4g 3.001 (0.030) 1.004 (0.152) 2.894 (0.030)

1fAge= 5g 2.809 (0.059) 0.862 (0.155) 2.702 (0.057)

R2 0.13 0.364

Number of observations 783 426
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Table 2 presents estimates of the production function. In column 1 we
provide OLS estimates of Eq. (53) in levels. Column 2 presents OLS
estimates of semi-difference transformed Eq. (55). And column 3, provides
the estimates of the α parameters implied by the estimates in column 2,
where their standard errors have been obtained using the delta method.
The comparison of the estimates in columns 1 and 3 is fully consistent with
the bias we expected. In column 1 we ignore the tendency for more produc-
tive cows to survive longer and we estimate a larger effect of age on milk
production than when we do account for this in column 3. The difference is
particularly large when the cow is age 4 or 5.

Structural Estimation of Payoff Parameters
We now proceed to the estimation of the structural parameters in the main-
tenance cost, replacement cost/value, and variance of ɛ, that is,
θ= fσɛ ; θC; θRg. We begin by deriving the Euler equations of this model.
This Euler equations correspond to the ones in the machine replacement
model in Example 5 above. That is,

π 1; yt;ωtð Þ− π 0; yt;ωtð Þ− σɛ ln
Pð1jyt;ωtÞ
Pð0jyt;ωtÞ

0
@

1
A

2
4

3
5

þ βEt π 1; 1;ωtþ 1ð Þ− π 1; yt þ 1;ωtþ 1ð Þ− σɛ ln
Pð1j1;ωtþ 1Þ

Pð1jyt þ 1;ωtþ 1Þ

0
@

1
A

2
4

3
5= 0

ð56Þ

where we have imposed the restriction that the model is stationary such as
the functions πð:Þ and Pð:Þ are time-invariant. Using our parameterization
of the payoff function, we have that π 1; yt;ωtð Þ− π 0; yt;ωtð Þ= − θR, and
π 1; 1;ωtþ 1ð Þ− π 1; yt þ 1;ωtþ 1ð Þ= ½pMMð1;ωtþ 1Þ− pMMðyt þ 1;ωtþ 1Þ� þ θCyt,
such that we can get the following simple formula for this Euler equation:

Et
~Mtþ 1 − θR þ θCβyt þ σɛ ~etþ 1

� 

= 0 ð57Þ

where ~Mtþ1≡βpM½Mð1;ωtþ1Þ−Mðytþ1;ωtþ1Þ�, and ~etþ1≡ ½ln Pð0jxtÞþβ ln
Pð1jytþ1;ωtþ1Þ�− ½lnPð1jxtÞþβ lnPð1j1;ωtþ1Þ�. We estimate θ=fσɛ; θC;θRg
using a GMM estimator based on the moment conditions EtðZt
f ~Mtþ1−θRþθCytþσɛ ~etþ1gÞ where the vector of instruments Zt is f1, yt, ωt

Mð1;ωtÞ−Mðytþ1;ωtÞ, ln Pð0jxtÞ− ln P ð1jxtÞ, ln Pð1jytþ1;ωtÞ− ln Pð1j1;ωtÞg0.
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Table 3 presents estimates of these structural parameters using GMM-
Euler equations, and using two other standard methods of estimation, the
two-step PML (see Aguirregabiria & Mira, 2002), and the ML estimator.
We use the nested pseudo likelihood (NPL) method of Aguirregabiria and
Mira (2002) to obtain the ML estimates.15 For these PML and ML estima-
tions, we discretize the state variable ωit in 201 values using a uniform grid
in the interval ½− 5σ̂ω; 5σ̂ω�: The two-step PML and the MLE are very
similar both in terms of point estimates and standard errors. Note that
these estimators are asymptotically equivalent (Proposition 4,
Aguirregabiria & Mira, 2002). However, in small samples and with large
state spaces the finite sample properties of these estimators can be very dif-
ferent, and more specifically the two-step PML can have a substantially lar-
ger small sample bias (Kasahara & Shimotsu, 2008). In this application, it
seems that the dimension of the state space is small relative to the sample
size such that the initial nonparametric estimates of CCPs are precise
enough, and the finite sample bias of the two-step PML is also small.

Table 3 presents two different GMM estimates based on the Euler equa-
tions: a 1-step GMM estimator where the weighting matrix is ðPi;t Zit Z

0
itÞ− 1,

and 2-step GMM estimator using the optimal weighting matrix. Both
GMM estimates are substantially different to the MLE estimates, but
the optimal GMM estimator is closer. A possible simple explanation
for the difference between the GMM-EE and the MLE estimates is that
the GMM estimates is asymptotically less efficient, that is, it is not using
the optimal set of instruments. Other possible factor that may generate
differences between these estimates is that the GMM estimator is not

Table 3. Estimation of Maintenance Cost and Replacement Cost
Parameters (Working Sample: 357 Cows with Complete Spells).

Structural Parameters Estimates

Two-Step PML MLE GMM-Euler equation

1-step 2-step (Opt.

Wei. matrix)

Dispersion of unobs. σɛ 0.296 (0.035) 0.288 (0.031) 0.133 (0.042) 0.138 (0.038)

Maintenance cost θC 0.136 (0.029) 0.131 (0.029) 0.103 (0.035) 0.105 (0.031)

Replacement cost θR 0.363 (0.085) 0.342 (0.079) 0.209 (0.087) 0.241 (0.085)

Number of observations 770 770 770 770

Pseudo R2 0.707 0.707

34 VICTOR AGUIRREGABIRIA AND ARVIND MAGESAN



invariant to normalizations. In particular, we can get quite different esti-
mates of θ= fσɛ ; θC; θRg if we use a GMM estimator under the normalization
that the coefficient of ~Mtþ 1 is equal to one (i.e., using moment conditions
EðZtf ~Mtþ 1 − θR þ θCβyt þ σɛ ~etþ 1gÞ= 0Þ and if we use a GMM estimator
under the normalization that the coefficient of ~etþ 1 is equal to one (i.e., using
moment conditions EðZtfð1=σɛÞ ~Mtþ 1 − ðθR=σɛÞ þ ðθC=σɛÞ βyt þ ~etþ 1gÞ= 0Þ.
While the first normalization seems more “natural” because our parameters
of interest appear linearly in the moment conditions, the second normaliza-
tion is “closer” the moment conditions implied by the likelihood equations
and MLE. We plan to explore this issue and obtain GMM-EE estimates
under alternative normalizations.

The estimates of the structural parameters in Table 3 are measured in
thousands of dollars. For comparison, it is helpful to take into account
that the sample mean of the annual revenue generated by a cow’s milk pro-
duction is $150; 000. According to the ML estimates, the cost of replacing a
cow by a new heifer is $34; 200 (i.e., 22.8% of a cow’s annual revenue), and
maintenance cost increases every lactation period by $13; 100 (i.e., 8.7% of
annual revenue). There is very significant unobserved heterogeneity in the
cow replacement decision, as the standard deviation of these unobservables
is equal $28; 800.

Fig. 1 displays the predicted probability of replacement by age of
the cow (replacement probability at age 5 is 1). The probabilities are
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Fig. 1. Predicted probability of replacement.
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constructed using the ML estimates. The results suggest that at any age,
replacement is less likely the more productive the cow, and that for any
given productivity older cows are more likely to be replaced. There is an
especially large increase in the probability of replacement going from age 2
to age 3.

Because its simplicity, this empirical application provides a helpful
framework for a first look at the estimation of DDC models using GMM-
Euler equations. However, it is important to note that the small state space
also implies that this example cannot show the advantages of this estima-
tion method in terms of reducing the bias induced by the approximation of
value functions in large state spaces. To investigate this issue, in our future
work we plan to extend this application to include additional continuous
state variables (i.e., price of milk, and the cost of a new heifer). We also
plan to implement Monte Carlo experiments.

CONCLUSIONS

This article deals with the estimation of DDC structural models. We show
that we can represent the DDC model as a continuous choice model
where the decision variables are choice probabilities. Using this representa-
tion of the discrete choice model, we derive marginal conditions of optimal-
ity (Euler equations) for a general class DDC structural models, and based
on these conditions we show that the structural parameters in the model
can be estimated without solving or approximating value functions. This
result generalizes the GMM-Euler equation approach proposed in the semi-
nal work of Hansen and Singleton (1982) for the estimation of dynamic
continuous decision models to the case of discrete choice models. The main
advantage of this approach, relative to other estimation methods in the
literature, is that the estimator is not subject to biases induced by the errors
in the approximation of value functions.

NOTES

1. See Rust (1996) and the recent book by Powell (2007) for a survey of numeri-
cal approximation methods in the solution of dynamic programming problems. See
also Geweke (1996) and Geweke and Keane (2001) for excellent surveys on integra-
tion methods in economics and econometrics with particular attention to dynamic
structural models.
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2. The Nested Fixed Point algorithm (NFXP) (Rust, 1987; Wolpin, 1984) is a
commonly used full-solution method for the estimation of single-agent dynamic
structural models. The Nested Pseudo Likelihood (NPL) method (Aguirregabiria &
Mira, 2002, 2007) and the method of Mathematical Programming with Equilibrium
Constraints (MPEC) (Su & Judd, 2012) are other full-solution methods. Two-step
and sequential estimation methods include Conditional Choice Probabilities (CCP)
(Hotz & Miller, 1993), K-step Pseudo Maximum Likelihood (Aguirregabiria &
Mira, 2002, 2007), Asymptotic Least Squares (Pesendorfer & Schmidt-Dengler,
2008), and their simulated-based estimation versions (Bajari, Benkard, & Levin,
2007; Hotz et al., 1994).

3. Lerman and Manski (1981), McFadden (1989), and Pakes and Pollard (1989)
are seminal works in this literature. See Gourieroux and Monfort (1993, 1997)
Hajivassiliou and Ruud (1994), and Stern (1997) for excellent surveys.

4. In empirical applications, the most common approach to measure the impor-
tance of this bias is local sensitivity analysis. The parameter that represents the
degree of accuracy of the approximation (e.g., the number of Monte Carlo simula-
tions, the order of the polynomial, the number of grid points) is changed marginally
around a selected value and the different estimations are compared. This approach
may have low power to detect approximation-error-induced bias, especially when
the approximation is poor and these biases can be very large.

5. A DDC model has the finite dependence property if given two values of the
decision variable at period t and their respective paths of the state variables after
this period, there is always a finite period t0 > t (with probability one) where the state
variables in the two paths take the same value.

6. This representation is more general than it may look like because the vector
of exogenous state variables in ztþ 1 can include any i.i.d. stochastic element that
affects the transition rule of the endogenous state variables y. To see this, suppose
that the transition probability of ytþ 1 is stochastic conditional on ðztþ 1; at; stÞ such
that ytþ 1 =Yðξtþ 1; ztþ 1; at ; stÞ where ξtþ 1 is a random variable that is unknown at
period t and is i.i.d. over time. We can expand the vector of exogenous state vari-
ables to include ξ such that the new vector is z�t ≡ ðzt; ξtÞ. Then, f �ðytþ 1; z�tþ 1 jat;
yt; z�t Þ= f y�ðytþ 1jz�tþ 1; at; yt; z

�
t Þf z

� ðz�tþ 1jz�t Þ and by construction f y�ðytþ 1jz�tþ 1; at; yt;
z�t Þ= 1 ytþ 1 =Yðξtþ 1; ztþ 1; at; stÞ

� �
.

7. See Section 9.5 in Stokey, Lucas, and Prescott (1989) and Section 4 in Rust
(1992).

8. Note that
PJ

j=0PðjÞ½∂eðj;PÞ=∂PðaÞ� is equal to PðaÞ½−1=PðaÞ�þPð0Þ½1=Pð0Þ�=0.
9. For the derivation of these expressions, it is useful to take into account that

ϕ0ðzÞ= − zϕðzÞ and dΦ− 1ðPÞ=dP= 1=ϕðΦ− 1ðPÞÞ.
10. Therefore, we also have that etða;PtðxtÞÞ is equal to E ðɛtðaÞjɛtðjÞ− ɛtðaÞ≤

~G
− 1ða;PtðxtÞÞ− ~G

− 1ðj;PtðxtÞÞ for any j ≠ aÞ.
11. The paper by Cooper et al. (2010) is “Euler Equation Estimation for Discrete

Choice Models: A Capital Accumulation Application.” However, that paper deals
with the estimation of models with continuous but censored decision variables, and
not with pure discrete choice models.
12. Dynamic structural models of machine replacement have been estimated

before by Rust (1987), Sturm (1991), Das (1992), Kennet (1994), Rust and
Rothwell (1995), Adda and Cooper (2000), Cho (2011), and Kasahara (2009),
among others.
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13. The latter may seem a strong assumption, but given that almost every cow in
our sample is sold in the first few years of its life, the assumption may not be so
strong over the range of ages observed in the data.
14. The nature of this type of bias is very similar to the one in the estimation

of the effect of firm-age in a production function of manufacturing firms, or in the
estimation of the effect of firm-specific experience in a wage equation.
15. In the context of single agent DDC models with a globally concave

pseudo likelihood, the NPL operator is a contraction such that it always converges
to its unique fixed point (Kasahara and Shimotsu) and this fixed point is the
MLE (Aguirregabiria & Mira, 2002). In this application the NPL algorithm
converged to the MLE after seven iterations using a convergence criterion of
‖θ̂k − θ̂k− 1‖ < 10

− 6.
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APPENDIX

Proof of Proposition 1.

Part (i). Let Πðα; ɛÞ be the ex-post payoff function associated with a deci-
sion rule α, such that Πðα; ɛÞ= PJ

a= 0 1fαðɛÞ= ag½πðaÞ þ ɛðaÞ�. By Lemmas
1�2, there is a one-to-one relationship between P and α. Given this rela-
tionship, we can represent the ex-post payoff function associated with a
decision rule α using the following function of P:

ΠðP; ɛÞ ≡
XJ
a= 0

1 ɛðjÞ− ɛðaÞ≤ ~G
− 1ða;PÞ− ~G

− 1ðj;PÞ for any j ≠ a
n o

πðaÞ þ ɛðaÞ½ �

ðA:1Þ

Given that α� maximizes Πðα; ɛÞ for every possible value of ɛ, then by
construction, Pα� maximizes ΠðP; ɛÞ for every possible value of ɛ. The proof
of this is by contradiction. Suppose that there is a vector of CCPs P0 ≠ Pα�

and a value ɛ0 such that ΠðP0; ɛ0Þ>ΠðPα� ; ɛ0Þ. This implies that the optimal
decision for ɛ0 is the action a with the largest value of ~G

− 1ða;P0Þ þ ɛ0ðaÞ.
But because ½ ~G− 1ða;P0Þ− ~G

− 1ðj;P0Þ� ≠ ½ ~G− 1ða;Pα� Þ− ~G
− 1ðj;Pα� Þ�= πðaÞ−

πðjÞ, the action that maximizes ~G
− 1ða;P0Þ þ ɛ0ðaÞ is different to the action

that maximizes πðaÞ þ ɛðaÞ. This contradicts that ΠðP0; ɛ0Þ>ΠðPα� ; ɛ0Þ.
Because Pα� maximizes ΠðP; ɛÞ for every possible value of ɛ, it should be

true that Pα� maximizes in P the “integrated” payoff functionR
ΠðP; ɛÞdGðɛÞ. It is straightforward to show that this integrated payoff

function is the expected payoff function ΠeðPÞ. Therefore, Pα� maximizes the
expected payoff function. By uniqueness of P�, this implies that Pα�=P�.

Part (ii). The expected payoff function ΠeðPÞ is continuously differenti-
able with respect to P. Furthermore, ΠeðPÞ goes to minus infinite as any of
the choice probabilities in P goes to 0 or to 1, that is, when P goes to the
frontier of the simplex S. Therefore, the maximizer P� should be in the
interior of the simplex and it should satisfy the marginal conditions of
optimality ∂ΠeðP�Þ=∂P= 0. Finally, given the definition of the expected pay-
off function in Eq. (13), we have that

∂ΠeðPÞ
∂PðaÞ = πðaÞ− πð0Þ þ eða;PÞ− eð0;PÞ þ

XJ
j= 0

PðjÞ ∂eðj;PÞ
∂PðaÞ ðA:2Þ
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Proof of Proposition 2.

The proof of this proposition is a recursive application of Proposition 1.
Let Wtðxt; ɛt; αt;Pt0 > tÞ be the ex-post valuation function associated with a
current decision rule αt and future CCPs Pt0 > t, such that

Wtðxt; ɛt; αt;Pt0 > tÞ=
XJ
a= 0

1 αtðxt; ɛtÞ= a
� �½vtða; xt;Pt0 > tÞ þ ɛtðaÞ� ðA:3Þ

and vtða; xt;Pt0 > tÞ is the conditional choice value πtða; xtÞ þ β
R
Wtþ 1 xtþ 1;ð

Ptþ 1ðxtþ 1Þ;Pt0 > tþ 1Þ ftðxtþ 1ja; xtÞdxtþ 1. By Lemmas 1�2, there is a one-to-
one relationship between PtðxtÞ and αt. Given this relationship, we can
represent the ex-post valuation function associated with a decision rule αt
using the following function of PtðxtÞ:

Wt xt; ɛt;PtðxtÞ;Pt0 > tð Þ ≡
XJ
a= 0

1fɛtðjÞ− ɛtðaÞ≤ ~G
− 1ða;PtðxtÞÞ

− ~G
− 1ðj;PtðxtÞÞ for any j ≠ ag ½vtða; xt;Pt0 > tÞ þ ɛtðaÞ�

ðA:4Þ
By definition of the optimal decision rule, given P�

t0 > t the decision rule α�t
maximizes Wtðxt; ɛt; αt;P�

t0 > tÞ for every possible value of ɛt. Then, as in
Proposition 1, we have that by construction, Pα�

t ðxtÞ maximizes
Wt xt; ɛt;PtðxtÞ;Pt0 > tð Þ for every possible value of ɛt. This implies that Pα�

t ðxtÞ
also maximizes the “integrated” valuation function

R
Wt xt; ɛt;PtðxtÞ;Pt0 > tð Þ

dGðɛtÞ. But this integrated function is equal to the expected valuation func-
tion We

t xt;PtðxtÞ;Pt0 > tð Þ. Therefore, Pα�
t ðxÞ maximizes We

t x;PtðxÞ;Pt0 > tð Þ. By
uniqueness of P�

t ðxÞ, this implies that Pα�
t ðxÞ=P�

t ðxÞ.
The expected valuation function We

t x;PtðxÞ;Pt0 > tð Þ is continuously differ-
entiable with respect to PtðxÞ. The maximizer We

t x;PtðxÞ;Pt0 > tð Þ with respect
to PtðxÞ should be in the interior of the simplex and it should satisfy the
marginal conditions of optimality ∂We

t x;P�
t ðxÞ;P�

t0 > t
� 


=∂P�
t ðxÞ= 0. Given the

definition of the expected value function, we have that

∂We
t

∂PtðajxÞ
=vtða;xt;Pt0 > tÞ−vtð0;xt;Pt0 > tÞþetða;PtÞ−etð0;PtÞþ

XJ
j=0

PtðjjxÞ
∂etðj;PtÞ
∂PtðajxÞ

ðA:5Þ
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Proof of Proposition 3.

For the derivation of the expressions below for the Lagrangian conditions,
note that, by definition of f et ðytþ 1jxtÞ, we have that ∂f et ðytþ 1jxtÞ=∂PtðajxtÞ=
~f tðytþ 1ja; xtÞ ≡ ftðytþ 1ja; xtÞ− ftðytþ 1j0; xtÞ. For any a> 0, the Lagrange con-
dition ∂Lt=∂PtðajxtÞ= 0 implies that

∂Πe
t

∂PtðajxtÞ
þ β

X
xtþ 1

Πe
tþ 1ðxtþ 1Þ ~f tðytþ 1ja; xtÞ fzðztþ 1jztÞ

−
X

ytþ 2 ∈Y þ 2ðxtÞ
λtðytþ 2; xtÞ

X
xtþ 1

f etþ 1ðytþ 2jxtþ 1Þ ~f tðytþ 1ja; xtÞ fzðztþ 1jztÞ
" #

= 0

ðA:6Þ
We can also represent this expression as

∂Πe
t

∂PtðajxtÞ
þ β

X
xtþ 1

Πe
tþ 1ðxtþ 1Þ− fetþ 1ðxtþ 1Þ0

λtðxtÞ
β

� �
~f tðytþ 1ja; xtÞ fzðztþ 1jztÞ= 0

ðA:7Þ
where λtðxtÞ is the vector with dimension jY þ 2ðxtÞj× 1 with the Lagrange
multipliers fλtðytþ 2; xtÞ : ytþ 2 ∈Y þ 2ðxtÞg, and fetþ 1ð:jxtþ 1Þ is the vector of
transition probabilities ff etþ 1ðytþ 2jxtþ 1Þ : ytþ 2 ∈Y þ 2ðxtÞg. Similarly, for any
a> 0 and any xtþ 1 ∈X , the Lagrange condition ∂Lt=∂Ptþ 1ðajxtþ 1Þ= 0

implies that

β
∂Πe

tþ 1ðxtþ 1Þ
∂Ptþ 1ðajxtþ 1Þ

−
X

ytþ 2 ∈Y þ 2ðxtÞ
λtðytþ 2; xtÞ ~f tþ 1ðytþ 2ja; xtþ 1Þ= 0 ðA:8Þ

We can represent this system of equations in vector form as

~Ftþ 1ðztþ 1Þ λtðxtÞ
β

=
∂Πe

tþ 1ðztþ 1Þ
∂Ptþ 1ðztþ 1Þ

ðA:9Þ

λtðxtÞ is the vector of Lagrange multipliers defined above. ∂Πe
tþ 1ðztþ 1Þ=

∂Ptþ 1ðztþ 1Þ is a column vector with dimension JjY þ 1ðxtÞj× 1 that contains
the partial derivatives f∂Πe

tþ 1ðytþ 1; ztþ 1Þ=∂Ptþ 1ðajytþ 1; ztþ 1Þg for every
action a > 0 and every value ytþ 1 ∈Y þ 1ðxtÞ that can be reach from xt, and
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fixed value for ztþ 1. And ~Ftþ 1ðztþ 1Þ is matrix with dimension
JjY þ 1ðxtÞj× jY þ 2ðxtÞj that contains the probabilities ~f tþ 1ðytþ 2ja; xtþ 1Þ for
every ytþ 2 ∈Y þ 2ðxtÞ, every ytþ 1 ∈Y þ 1ðxtÞ, and every action a> 0, with
fixed ztþ 1. In general, the matrix ~Ftþ 1ðztþ 1Þ is full-column rank for any
value of ztþ 1. Therefore, for any value of ztþ 1, the square matrix
~Ftþ 1ðztþ 1Þ0 ~Ftþ 1ðztþ 1Þ is non-singular and we can solve for the Lagrange
multipliers as

λtðxtÞ
β

= ~Ftþ 1ðztþ 1Þ0 ~Ftþ 1ðztþ 1Þ
� �− 1 ~Ftþ 1ðztþ 1Þ0

∂Πe
tþ 1ðztþ 1Þ

∂Ptþ 1ðztþ 1Þ

� �
ðA:10Þ

Solving this expression for the Lagrange multipliers into Eq. (A.7), we
get the following Euler equation

∂Πe
t

∂PtðajxtÞ
þβ
X
xtþ1

Πe
tþ1ðxtþ1Þ−mðxtþ1Þ0

∂Πe
tþ1ðztþ1Þ

∂Ptþ1ðztþ1Þ

� �
~f tðytþ1ja;xtÞ fzðztþ1jztÞ=0

ðA:11Þ

where mðxtþ 1Þ is a JjY þ 1ðxtÞj× 1 vector such that mðxtþ 1Þ0 = fetþ 1ðxtþ 1Þ0
½ ~Ftþ 1ðztþ 1Þ0 ~Ftþ 1ðztþ 1Þ�− 1; ~Ftþ 1ðztþ 1Þ0, and ∂Πe

tþ 1ðztþ 1Þ=∂Ptþ 1ðztþ 1Þ is the
vector of partial derivatives defined above.
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