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1 Introduction

The Euler equation-GMM approach of Hansen and Singleton (1982) in continuous dynamic deci-
sion models, and the finite dependence representation of Hotz and Miller (1993) and Arcidiacono
and Miller (2011) in dynamic discrete choice models are fundamental contributions to the esti-
mation of dynamic structural models. A main advantage of these estimation methods is that
they avoid the curse of dimensionality associated with the computation of present values.1 In
the same spirit, Aguirregabiria and Magesan (2013) provide a representation of dynamic dis-
crete choice models as a continuous decision problem where the decision variables are choice
probabilities and derive marginal conditions of optimality similar to the Euler equations in con-
tinuous decision problems and to the finite dependence representation in discrete choice models.
While these methods significantly reduce the computational burden associated with estimating
structural parameters, the end goal of structural work is typically to use an estimated model to
study the effect of policies that have never occurred. These counterfactual experiments require
the solution of the dynamic programming (DP) problem. However, as far as we know, there are
no results in the literature showing computational advantages of the Finite Dependence / Euler
Equations (FD/EE) representation for solving DP problems.

In this paper, we show that the FD/EE representation of dynamic discrete choice models can
be used to construct a fixed point mapping in the space of conditional choice value functions that
we denote the Euler Equation (EE) operator. This operator is a contraction such that successive
iterations in this mapping deliver the unique solution to the DP problem. For an important
class of models, so-called Multi-armed bandit models, the contraction or Lipschitz constant of
this mapping is strictly smaller than the discount factor of the DP problem, which significantly
speeds up the convergence of fixed point iterations.2

We compare the computational properties of the EE iterations algorithm with those of the
most commonly used solution methods: Value Function (VF) iterations, Relative Value Function
(RVF) iterations, and Policy Function (PF) iterations. The EE operator is a stronger contraction
(i.e., it has a smaller Lipschitz constant) than VF and RVF, and has similar contraction prop-
erties as the PF operator. In terms of the time required to evaluate the operator a single time,
the EE operator is also more efficient than VF, RVF, and PF algorithms, and this difference
increases quadratically with the dimension of the state space. We present numerical examples
that illustrate how solving the model by using EE iterations implies substantial computational

1The computational cost of estimating structural parameters using these methods increases with sample size
but not with the dimension of the state space.

2The defining feature of multi-armed bandit models is that the only endogenous state variable is the deci-
sion variable at the previous period. Many empirically relevant problems have this feature, including market
entry/exit, demand with switching costs, occupational choice, migration, and store location, among others.
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savings relative to these three alternative methods.
We define a sample-based version of the EE operator and use it to estimate counterfactual

conditional choice probabilities (CCP).3 This sample-based EE operator is defined only at sample
points of the exogenous state variables, and thus its dimensionality does not increase with the
dimension of the state space. We show that this sample-based EE operator is also a contraction
with a Lipschitz constant strictly smaller than the discount factor, and its unique fixed point is a
root-N consistent estimator of the true solution. The computational cost to obtain counterfactual
CCPs using this method does not depend on the dimension of the state space of the exogenous
state variables.

We illustrate the computational gains of the EE method using several numerical experiments
in the context of a dynamic model of market entry and exit with a high dimension in the
exogenous state variables. In the first experiment, we compare the computation time of EE,
VF, RVF, and PF algorithms for the exact solution of the model. For moderately sized state
spaces (up to 200,000 states), the EE algorithm is over 200 times faster than PF, between 50-
70 times faster than VF, and between 5-40 times faster than RVF.4 These differences increase
with the dimension of the state space. Many models that are computationally infeasible for all
practical purposes using standard methods are feasible using the EE method. We also use this
first set of experiments to study the source of the difference in total computation time across
these algorithms. We show that the advantages of the EE algorithm relative to VF and RVF are
due to improvements in both time-per-iteration and the number of iterations to convergence.
In a second experiment, we use the entry/exit model to study the performance of the sample
version of the EE operator relative to more standard methods in predicting the response to a
counterfactual increase in the cost of entry, holding the computation time of the different methods
fixed. We show that the finite sample properties of the EE estimator are substantially better
than those of the standard methods, i.e., mean absolute bias and squared error are between 35

and 60 percentage points smaller in the EE method.
The rest of the paper is organized as follows. Section 2 presents the model and the FD/EE

representation. Section 3 contains the main results of this paper. We derive the EE operator
and show that it is a contraction with a Lipschitz constant smaller than the discount factor.
We also define the sample-based EE operator and explain how it delivers consistent estimates
of counterfactual CCPs. Section 4 presents our Monte Carlo experiments. We summarize and
conclude in section 5. Proofs of Propositions are in Appendix A.

3Our sample-based EE operator is related to the random grid method of Rust (1997), though Rust defines
and applies this method to standard value function and policy function operators, and not to Euler equations.

4The EE algorithm is also faster than hybrid algorithms that combine PF and VF or RVF iterations.
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2 Model

2.1 Framework

We consider a stationary Markov Decision Process (MDP) with a discrete decision variable as
in Puterman (1994) or Rust (1994). Each discrete period t, an agent takes a decision at to
maximize her expected intertemporal payoff, Et

[∑∞
j=0 β

j Π(at+j, st+j)
]
, where β ∈ (0, 1) is the

discount factor, Π(.) is the payoff function, and st ∈ S is the vector of state variables that follows
a controlled Markov process with a transition probability function fs(st+1|at, st). The decision
variable at belongs to the discrete and finite set A = {0, 1, ..., J}. The value function V (st) can
be obtained solving the Bellman equation:

V (st) = max
at∈A

{
Π(at, st) + β

∫
V (st+1) fs(st+1|at, st) dst+1

}
(1)

The optimal decision rule, α(st) : S → A, is obtained as the argument that maximizes the
expression in brackets {.} in equation (1).

Following the standard model of dynamic discrete choice in the literature (Rust, 1994), we
partition the vector of state variables st into two sets of variables, st = (xt, εt) where xt belongs
to a discrete set X and is observable to the researcher, while εt ≡ {εt(a) : a ∈ A} is a vector of
J+1 choice-specific state variables that are unobservable to the researcher. These state variables
satisfy the usual assumptions of additive separability and conditional independence. Specifically,
the payoff function Π(.) is given by (i.e., additive separability):

Π(at, st) = π(at,xt) + εt(at) (2)

The transition probability function of the state variables factors as (i.e., conditional indepen-
dence) fs(st+1|at, st) = f (xt+1|at,xt) g (εt+1), where g (.) is the density function of εt which is
absolutely continuous with respect to the Lebesgue measure, differentiable in all its arguments,
and possess finite moments.

Let V σ(xt) be the integrated value function, which is defined as the original value function in-
tegrated over the density of the unobservable state variables, i.e., V σ(xt) ≡

∫
V (xt, εt) g(εt) dεt.

The integrated Bellman equation has the following form:

V σ(xt) =

∫
max
a∈A

{
v(a,xt) + εt(a)

}
g (εt) dεt (3)

where v(a,xt) is the conditional-choice value function, or value of choosing alternative a, and is
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defined as:
v(a,xt) ≡ π(a,xt) + β

∑
xt+1∈X

V σ(xt+1) f (xt+1|a,xt) (4)

Define the value difference ṽ(a,xt) ≡ v(a,xt)−v(0,xt), where the selection of alternative 0 as
the baseline is without loss of generality. Let P (a|xt) ≡ Pr(α(xt, εt) = a|xt) be the conditional
choice probability (CCP), i.e., the probability that alternative a is optimal conditional on the
observable state xt. Let ṽ(xt) = {ṽ(a,xt) : a ∈ A − {0}} be a vector of J value differences,
and let P(xt) ≡ {P (a|xt) : a ∈ A− {0}} be a vector of choice probabilities. The optimal choice
probability (OCP) function, Λ (ṽt(x)) ≡ {Λ (a, ṽt(x)) : a ∈ A − {0}}, is the following mapping
from the space of value differences into the space of choice probabilities:

P (a|xt) = Λ (a, ṽ(xt)) ≡
∫

1 {ṽ(a,xt) + εt(a) ≥ ṽ(j,xt) + εt(j), ∀j} g (εt) dεt (5)

where 1{.} is the indicator function. In vector form, we have P(xt) = Λ (ṽ(xt)).
Hotz-Miller Inversion Property (Hotz and Miller, 1993) establishes that the OCP mapping is

invertible: there exists an inverse function Λ−1(.) such that ṽ(xt) = Λ−1(P(xt)). The following
equation is a Corollary of Hotz-Miller Inversion Property (see Arcidiacono and Miller, 2011).
For any choice alternative a and state xt, we have:

V σ(xt) = v(a,xt) + ψ(a,P(xt)) (6)

where ψ(.) is a primitive function that only depends on the probability distribution of εt. The
combination of the integrated Bellman equation in (3) and Hotz-Miller representation in (6)
gives us the definition of function ψ(.):5

ψ(a,P(xt)) ≡
∫

max
j∈A

{
Λ−1(j,P(xt))− Λ−1(a,P(xt)) + εt(j)

}
g (εt) dεt (7)

2.2 Finite dependence / Euler equation representation

The Hotz-Miller inversion property has allowed researchers to develop different representations
of optimal behavior that significantly reduce the computational burden associated with the
estimation of dynamic discrete choice models. One such representation is the finite dependence
(FD) representation of Arcidiacono and Miller (2011), who show that if the transition probability
of the state variables xt satisfies a particular condition, then value differences can be written

5For instance, when εt(a) is i.i.d. type I extreme value, we have that ψ(a,Pt(xt)) = γ − lnPt(a|xt), where γ
is Euler’s constant.
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in terms of payoffs and choice probabilities at a finite number of periods. Here we focus on
2-periods finite dependence as it fully characterizes the solution of multi-armed bandit problems
that we study in this paper.

Define the two-periods forward transition probability of the state variables:

f (2) (xt+2 | xt, at, at+1) =
∑
xt+1

f (xt+2 | xt+1, at+1) f (xt+1 | xt, at) (8)

DEFINITION. A controlled transition probability f (xt+1|xt, at) has the 2-period finite depen-
dence property if there is at least a state xt and choice paths (jt, jt+1) and (kt, kt+1) such that:

f (2) (xt+2 | xt, jt, jt+1) = f (2) (xt+2 | xt, kt, kt+1) , for any xt+2 ∈ X � (9)

Following Arcidiacono and Miller (2011), we now use this property to obtain a representation
of value differences in terms of payoffs and choice probabilities at periods t and t+ 1. Plugging
Hotz-Miller equation (6) into the expression for the conditional choice value function in (4):

v(at,xt) = π(at,xt) + β
∑
xt+1

(
v(at+1,xt+1) + ψ(at+1,P(xt+1)

)
f (xt+1|at,xt) (10)

Replacing v(at+1,xt+1) with its definition from equation (4):

v(a,xt) = π(a,xt) + β
∑
xt+1

π(at+1,xt+1)f (xt+1|at,xt)

+ β
∑
xt+1

ψ(at+1,P(xt+1)f (xt+1|at,xt) + β2
∑
xt+2

V (xt+2)f2 (xt+2|xt, at, at+1)

(11)

Equation (11) holds for any state xt and any choice path (at, at+1). Now, consider a state xt and
two choice paths (jt, jt+1) and (kt, kt+1) that satisfy the 2−period finite dependence property in
equation (9). Combining equation (11) and the 2− period finite dependence property, we have
the following expression for the value differences:

v(jt,xt)− v(kt,xt) = π(jt,xt)− π(kt,xt)

+ β
∑
xt+1

π(jt+1,xt+1)f (xt+1|jt,xt)− π(kt+1,xt+1)f (xt+1|kt,xt)

+ β
∑
xt+1

ψ(jt+1,P(xt+1))f (xt+1|jt,xt)− ψ(kt+1,P(xt+1))f (xt+1|kt,xt)

(12)
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A key implication of the 2 − period finite dependence property is that the term associated
with the continuation value at period t + 2, V (xt+2), does not appear in this expression for
the value difference. Therefore, equation (12) provides a representation of value differences in
terms of payoffs and CCPs at periods t and t + 1 only. This representation has been used
to develop estimation methods – CCP or Hotz-Miller methods – that do not require solving
the dynamic programming problem. In this paper, we use this representation to derive a new
solution algorithm.

Aguirregabiria and Magesan (2013) establish that discrete choice MDPs within the class of
Rust (1994) can be represented as continuous decision models where the decision variable at
period t is the vector of CCPs, Pt. They show that the optimal CCPs of the DP problem should
also solve a constrained optimization problem that consists of the maximization of expected
payoff at periods t and t + 1, Et (Πt + β Πt+1), under the constraint of keeping fixed the prob-
ability distribution of xt+2. The first-order conditions of this constrained optimization problem
– i.e., the Lagrange equations – depend on CCPs and payoffs at periods t and t + 1, and on
the Lagrange multipliers of the constraints. The authors show that, under the 2− period finite
dependence condition, it is possible to solve for the Lagrange multipliers and obtain optimality
conditions that depend only on CCPs and payoffs at periods t and t + 1. These optimality
conditions are the so-called Euler equations. Interestingly, these Euler equations have the same
form as equation (12) on value differences. For the rest of the paper, we use the term Euler
equations to denote these 2− period optimality conditions.

3 Euler fixed point mapping

Since CCPs depend only on differences between conditional choice values, the right-hand side in
the Euler equation (12) depends on primitives of the model and value differences only, such that
we can interpret this equation as a mapping from value differences into value differences. We
show below that this Euler-equation mapping defines the unique solution to the DP problem.
For the rest of the paper, we focus on a particular class of discrete choice MDP: Multi-armed
bandit models.

DEFINITION. A Multi-armed bandit model is a discrete choice MDP where the only endogenous
state variable is the decision variable at the previous period. That is, xt = (at−1, zt), where zt is
a vector of exogenous state variables with transition density function fz(zt+1|zt). �

The class of Multi-armed bandit models includes many important economic applications such
as market entry/exit, demand with switching costs, occupational choice, migration, and store
location, among others.
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Multi-armed bandit models have the 2− period finite dependence property for any state xt

and for any pair of choice paths (jt, jt+1) and (kt, kt+1) as long as jt+1 = kt+1. To characterize the
solution of the DP problem, we only need one Euler equation for each xt and choice alternative
at. Without loss of generality, for every action a ∈ A − {0}, we consider the following pair of
choice paths at t and t + 1: (a, 0) and (0, 0). This implies the following system of J |X | Euler
equations:

ṽ(a,xt) = c(a,xt) + β
∑
zt+1

(
S(ṽ(a, zt+1))− S(ṽ(0, zt+1))

)
fz (zt+1|zt) (13)

where c(a,xt) is the following function of primitives of the model:

c(a,xt) ≡ π(a,xt)− π(0,xt) + β
∑
zt+1

(
π(0, a, zt+1)− π(0, 0, zt+1)

)
fz (zt+1|zt) (14)

And S(ṽ(xt)) is McFadden’s Social Surplus function:

S(ṽ(xt)) ≡
∫

max
j∈A

{
ṽ(j,xt) + εt(j)

}
g (εt) dεt (15)

We use function ΓEE(a,xt, ṽ) to represent the right-hand side of the Euler equation (13) and
we denote it the Euler mapping. We write this system of equations in vector form to obtain this
fixed point representation:

ṽ = ΓEE(ṽ) (16)

where ṽ is the vector of value differences for any action in A − {0} and any state in X , and
similarly, ΓEE(ṽ) is the vector of functions ΓEE(a,xt, ṽ) for any action and state.

Proposition 1 is the main result of this paper. It establishes that the Euler mapping
is a contraction with a Lipschitz constant strictly smaller than the discount factor β. A
property of the Euler mapping that plays a key role in the proof of this Proposition is that
ΓEE(at, at−1, z; ṽ) − ΓEE(at, 0, z; ṽ) = ∆(at, at−1, z), where ∆(at, at−1, z) is a primitive of the
model that is known to the researcher before solving the model and does not depend on the
vector of values ṽ where we are evaluating the mapping. This property implies that all the
vectors in the sequence {ṽk : k ≥ 1}, obtained by applying fixed-point iterations from some
initial ṽ0 (i.e., ṽk+1 = ΓEE(ṽk)), satisfy the property ṽ(at, at−1, z) − ṽ(at, 0, z) = ∆(at, at−1, z).
Therefore, without loss of generality, we can restrict our analysis of the fixed point mapping ΓEE

to the subspace of values ṽ that satisfy this restriction. That is, we consider ΓEE(ṽ) on space,

VR ≡
{
ṽ ∈ RJ |X | : ṽ(at, at−1, z) = ṽ(at, 0, z) + ∆(at, at−1, z) for any (at, at−1, z)

}
(17)
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PROPOSITION 1. The Euler mapping ΓEE is a contraction in the complete metric space
(VR, ‖.‖∞), and its Lipschitz constant δ is strictly smaller than β. That is, there is a constant
δ ∈ (0, 1) with δ < β such that for any pair ṽ and w̃ in VR, we have that ‖ΓEE(ṽ)− ΓEE(w̃)‖∞ ≤
δ ‖ṽ − w̃‖∞. �

Proof: In Appendix A.

A corollary of Proposition 1 is that successive iterations in the Euler operator is a method
to solve this discrete choice MDP. Below we compare this method to the most commonly used
methods for solving DP problems.

3.1 Solution algorithms

We describe the different algorithms using vector-form notation. Let |Z| be the dimension of
the space of exogenous state variables. All of the following vectors have dimension |Z| × 1:
V(y) is the vector of values when the endogenous state is at−1 = y; and π(a, y), ṽ(a, y), P(a, y)

are the vectors of one-period payoffs, differential values, and conditional choice probabilities,
respectively, when current action is at = a and the endogenous state is at−1 = y. Finally, Fz is
the |Z| × |Z| matrix of transition probabilities of the exogenous state variables.

3.1.1 Value function (VF) iterations

The value function operator is a fixed point mapping in the space of the vector of values V =

{V(y) : y ∈ A}. It is defined as ΓV F (V) = {ΓV F (y,V) : y ∈ A} with

ΓV F (y,V) =

∫
max
j∈A

{
π(j, y) + β Fz V(j) + εt(j)

}
g(εt) dεt (18)

The algorithm starts with an initial vector of values V0. At every iteration n ≥ 1 it updates
the vector using Vn = ΓV F (Vn−1). The computational complexity per iteration derives from
the number of multiplications involved in matrix products Fz Vn−1(j) for the J + 1 choice
alternatives. In other words, we need to perform the multiplication fz(z

′|z) ∗ V (j, z
′
) for each

triple (j, z, z
′
) ∈ A × Z2. The computational complexity is thus of the order (J + 1) |Z|2. The

degree of contraction of this mapping, as measured by the Lipschitz constant, is equal to the
discount factor β (see Puterman, 1994, and Rust, 1996).

3.1.2 Relative Value function (RVF) iterations

Let x0 ∈ X be an arbitrary value of the vector of state variables. The relative value function
operator is a fixed point mapping in the space of the vector of values V = {V(y) : y ∈ A}, that
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is defined as ΓRV F (V) = {ΓRV F (y,V) : y ∈ A} with

ΓRV F (y,V) =

∫
max
j∈A

{
π(j, y) + β Fz

[
V(j)− V (x0) 1|Z|

]
+ εt(j)

}
g(εt) dεt (19)

where 1|Z| is a column vector of ones. Given an initial V0, this vector is updated at every
iteration n ≥ 1 using Vn = ΓRV F (Vn−1). The computational complexity per iteration in
the case of relative value iteration is the same as the case of value function iterations, and
derives from the number of multiplications involved in matrix product Fz

[
V(j)− V (x0) 1|Z|

]
In other words, we need to perform the multiplication fz(z

′|z) ∗ (V (j, z
′
) − V (x0)) for each

triple (j, z, z
′
) ∈ A × Z2. The computational complexity is thus of the order (J + 1) |Z|2. The

difference between the two algorithms is in their contraction properties. The Lipschitz constant
of the RVF operator is β ρ(Fz), where ρ(Fz) ∈ (0, 1) is the spectral radius of the transition
matrix Fz (Morton and Wecker, 1977; Puterman, 1994, section 6.6; Bray, 2019, Proposition 3).

When the stochastic process of the exogenous state variables has strong time persistence,
the spectral radius ρ(Fz) is close to one and the degree of contraction of RVF is similar to
VF. However, when the exogenous state variables are not so persistent, the value of ρ(Fz) is
substantially smaller than one and the RVF algorithm converges to a solution faster than VF
iterations.

3.1.3 Policy function (PF), or Newton-Kantorovich, iterations

The policy function operator (Puterman and Brumelle, 1979) is a fixed point mapping in the
space of the vector of conditional choice probabilities P ∈ {P(a, y) : (a, y) ∈ [A− {0}]×A}. It
is defined as ΓPF (P) = {ΓPF (a, y,P) : (a, y) ∈ [A− {0}]×A} with,

ΓPF (a, y,P) =

∫
1
{
π(a, y) + β Fz WP(a) + εt(a) ≥ π(j, y) + β Fz WP(j) + εt(j), ∀j

}
g(εt) dεt

(20)
where WP(a) is an |Z| × 1 vector that contains the present discounted values of future payoffs
conditional on every possible value of zt and on at−1 = a, and conditional on the behavior of
the agent in future periods follows the vector of choice probabilities P. The vectors of present
values {WP(a) : a ∈ A} are obtained solving the system of linear equations: for any y ∈ A,

WP(y) =
J∑
a=0

P(a, y) ∗
[
π(a, y) + β Fz WP(a)

]
, (21)

where ∗ is the element-by-element product. The linear operator described in the system (21),
that delivers the vectors WP(a) for a given vector of CCPs P, is denoted the valuation oper-
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ator. The operator in the right-hand side of equation (20) that returns a new vector of CCPs
given the vectors of valuations WP is denoted the policy improvement operator. By definition,
policy function operator in (20) is the composition of the valuation and the policy improvement
operators.

The PF algorithm starts with an initial P0, and at every iteration n ≥ 1 updates the vector
using Pn = ΓPF (Pn−1). The computational complexity of one iteration in the PF operator
is given by the complexity of solving the system of linear equations (21). This complexity
is determined by the number of objects to be solved in this system, and so is of the order
O(|X |3). Therefore, one PF iteration is more costly than one VF or RVF iteration, and the
difference increases with the dimension of the state space. However, the PF operator is a
stronger contraction than VF and RVF operators, and therefore it requires a smaller number of
iterations to achieve convergence.

3.1.4 Euler function iterations

The EE operator is a fixed point mapping in the restricted space of value differences VR as
described above and is defined as:

ΓEE(a, y, ṽ) = c(a, y) + β Fz

(
S(ṽ(a))− S(ṽ(0))

)
(22)

where c(a, y) is the vector of primitives:

c(a, y) ≡ π(a, y)− π(0, y) + β Fz

(
π(0, a)− π(0, 0)

)
(23)

The algorithm starts with an initial vector ṽ0 ∈ VR and at every iteration n ≥ 1 updates
the vector using ṽn = ΓEE(ṽn−1). The computational complexity of each iteration is of the
order J |Z|2, and it comes from the calculation of the matrix products Fz

(
S(ṽ(a))− S(ṽ(0))

)
.

In other words, we need to perform the multiplication fz(z
′|z) ∗ (S(ṽ(a, z

′
)) − S(ṽ(0, z

′
))) for

each triple (a, z, z
′
) ∈ {A − 0} × Z2; note that we do not need to do this multiplication for

one of the endogenous states (0). The computational complexity is thus of the order (J) |Z|2.
This algorithm has two computational advantages with respect to VF and RVF methods. First,
its cost per iteration is smaller: it is of the order J |Z|2 for EE, and (J + 1) |Z|2 for VF and
RVF. This is because the EE operator needs to calculate expectations of next-period values not
for every current choice alternative (as VF and RVF) but for all alternatives except one. This
difference increases with the dimension of the state space. But the computational advantage of
EE compared to VF and RVF is that it is a stronger contraction such that it converges to the
solution using a smaller number of iterations. We illustrate these advantages in section 4.
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3.2 Sample-based EE operator and counterfactuals

Suppose that the researcher’s dataset consists of panel data of N agents, indexed by i, over
T periods with information on agents’ actions and state variables, {ait , xit : i = 1, 2, ..., N ;

t = 1, 2, ..., T}. We consider a sample where the number of agents N is large and the number
of periods T is small, i.e., asymptotic results as N → ∞ and T is fixed. The researcher is
interested in using this sample to estimate CCPs associated with a counterfactual experiment.
We assume that the payoff function is known to the researcher, e.g., the structural parameters
of the model have been estimated using FD/EE method such as Arcidiacono and Miller (2011)
or Aguirregabiria and Magesan (2013). In this section, we present an estimation method for
counterfactual CCPs that uses the EE operator.

Given the sample values of the exogenous state variables {zit} and the counterfactual values
of the structural parameters, the researcher can construct an empirical counterpart of the EE
operator in equation (22). Define the empirical set ZN ≡ {z ∈ Z : there is an observation (i, t)

with zit = z}, and the empirical transition probability function f̂N(z′|z0) defined on ZN×ZN into
[0, 1], such that for any z0 ∈ ZN , f̂N(z′|z0) =

∑N
i=1 1{zit+1 = z′ and zit = z0}/

∑N
i=1 1{zit = z0}.

Stationarity of the transition probability fz(zt+1|zt) implies that: (1) the set ZN is a random
sample from the ergodic set Z; (2) ZN converges to Z as N →∞; and (3) f̂N(z′|z0) converges
uniformly to fz(z′|z0) as N → ∞. Let E(N)

{z′|z}[.] be a sample-based conditional mean operator
from R into R such that for any real-valued function h(z′) the operator is defined as:

E(N)
{z′|z0} [h(z′)] ≡

∑
z′∈ZN

f̂N(z′|z0) h(z′) (24)

The Sample-based EE operator Γ
(N)
EE (ṽ) is defined as the sample counterpart of the EE map-

ping in Equation (22):

Γ
(N)
EE (a, y, z; ṽ) = c(N)(a, y, z) + β E(N)

{z′|z}

[
S
(
ṽ(a, z′)

)
− S

(
ṽ(0, z′)

)]
(25)

This is a fixed point mapping in the space of value differences such that we can obtain a sample-
based solution to the DP problem by solving the fixed point problem ṽ = Γ

(N)
EE (ṽ). Importantly,

the dimension of this fixed point mapping is J(J+1)N , which can be many orders of magnitude
smaller than the dimension of ΓEE when the dimension of Z is large relative to sample size.

PROPOSITION 2. The Sample-Based EE operator Γ
(N)
EE (ṽ) is a contraction with Lipstchitz

constant strictly smaller than β and it converges uniformly in probability to the true EE mapping
ΓEE)(ṽ) as N →∞..
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Proof: In Appendix A.

Let θ be the vector of structural parameters characterizing the payoff function π, the density
function of the unobservables g, and the transition probability Fz. For notational convenience,
we now include explicitly θ as an argument of the EE operator, i.e., ΓEEṽ,θ). Suppose the
researcher is interested in estimating the effects on CCPs of a change in the structural parameters
from the estimate θ̂ to an alternative vector θ∗. To estimate the effects of this counterfactual
experiment, the researcher needs to solve the DP problem given the structural parameters θ∗.
We can represent this solution in terms of the vector of value differences ṽ∗. The vector ṽ∗ is
defined as the unique solution of the fixed point problem ṽ∗ = ΓEE(ṽ∗,θ∗).

In most empirical applications, the dimension of the state space, and in particular the di-
mension of Z, is very large such that the exact computation of ṽ∗ is computationally infeasible.
Here we propose an approximation to the solution using the Sample-based EE operator. We
approximate ṽ∗ using ṽ∗N , which is defined as the unique fixed point of the Sample-based EE
mapping,

ṽ∗N = Γ
(N)
EE (ṽ∗N ,θ

∗) ≡
{

Γ
(N)
EE (a, y, z; ṽ) : (a, y, z) ∈ A− {0} × A× ZN

}
(26)

And the corresponding vector of conditional choice probabilities is P∗N = Λ(ṽ∗N). This approxi-
mate solution has the following interesting properties.

(a) Lower computational cost and no curse of dimensionality. The vector ṽ∗N and the mapping
Γ

(N)
EE have the same dimension as the sample size. In most empirical applications, this dimension

is many orders of magnitude smaller than the dimension of the state space. This reduction in the
dimension of the fixed point problem and the stronger contraction property of the EE operator
imply substantial computational savings. The Sample-based EE mapping is an Euler equation
version of the random operators defined in Rust (1997). Rust shows that these operators succeed
in breaking the curse of dimensionality for discrete choice MDP with continuous state variables.
This property also applies to our dynamic decision model when the endogenous state variables
are discrete and exogenous state variables are continuous.

(b) Consistency. ṽ∗N and P∗N are consistent estimators of the true counterfactuals ṽ∗ and P∗.

PROPOSITION 3. The vector of value differences ṽ∗N , which is defined as the fixed point ṽ∗N =

Γ
(N)
EE (ṽ∗N ,θ

∗), is a root-N consistent and asymptotically normal estimator of ṽ∗.

Proof: In Appendix A.
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4 Numerical experiments

In this section, we present Monte Carlo experiments to illustrate the performance of the EE
iterations algorithm in terms of computational savings and statistical precision in two problems:
the exact solution of the DP problem and the estimation of counterfactual experiments. We
evaluate this algorithm in the context of a dynamic model of market entry and exit.

First, we examine the differences in the computational burdens of the four solution algo-
rithms, VF, RVF, PF, and EE. Generally speaking, the total time required to obtain a model
solution is comprised of two factors, the amount of time per iteration and the number of itera-
tions. We use the experiments to compare the time per iteration and the number of iterations
each method takes to converge. Second, given an estimated model and a counterfactual experi-
ment that consists of an increase in the cost of market entry, we present Monte Carlo experiments
to evaluate the finite sample properties of the four algorithms to estimate counterfactual choice
probabilities. These four methods consist of finding a fixed point of the sample-based versions
of the VF, RVF, PF, and EE operators.

4.1 Design of the experiments

We consider a dynamic model of firm entry and exit decisions in a market. The decision variable
at is the indicator of being active in a market, such that the action space is A = {0, 1}. The
endogenous state variable is the lagged value of the decision variable, yt = at−1, and it represents
whether the firm has to pay an entry cost or not. The vector zt of exogenous state variables
includes firm productivity, and market and firm characteristics that affect variable profit, fixed
cost, and entry cost.6 We specify each of these components in turn.

An active firm earns a profit π(1,xt) + εt(1) where π(1,xt) is equal to the variable profit
(V P t) minus fixed cost (FCt), and minus entry cost (ECt). The payoff to being inactive is
π(0,xt) + εt(0), where we make the normalization π(0,xt) = 0 for all possible values of xt.
We assume that εt(0) and εt(1) are extreme value type 1 distributed with dispersion parameter
σε = 1. The variable profit function is V Pt = [θV P0 + θV P1 z1t + θV P2 z2t] exp (ωt) where ωt is
the firm’s productivity shock, z1t and z2t are exogenous state variables that affect the firm’s
price-cost margin in the market; and θV P0 , θV P1 , and θV P2 are parameters. The fixed cost is,
FCt = θFC0 +θFC1 z3t, and the entry cost is, ECt = (1−yt) [θEC0 +θEC1 z4t], where the term (1−yt)
indicates that the entry cost is paid only if the firm was not active in the market at the previous
period, z3t and z4t are exogenous state variables, and θ’s are parameters. The vector of structural

6We treat productivity as observable. For instance, using data on firms’ output and inputs the researcher
can estimate production function parameters and productivity taking into account the selection problem due to
endogenous entry and exit decisions, e.g., Olley and Pakes (1996), Ackerberg, Caves, and Frazer (2015).
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parameters in the payoff function is θ = (θV P0 , θV P1 , θV P2 , θFC0 , θFC1 , θEC0 , θEC1 )′. The vector of
exogenous state variables z = (z1, z2, z3, z4, ω) has discrete and finite support. Each of the
exogenous state variables takes K values. The dimension of the state space |X | is then 2 ∗K5.
Each exogenous state variable follows a discrete-AR(1) process with an intercept parameter γj0,
slope parameter γj1, and variance of the innovation shock σ2

j . Similarly, productivity ωt follows
a discrete-AR(1) process with an intercept parameter γω0 , slope parameter γω1 , and variance of
the innovation shock σ2

ω. We use Tauchen’s method to construct the transition probabilities of
these discrete state variables (Tauchen, 1986).7 The DGP used in our numerical and Monte
Carlo experiments is summarized in table 1.

Table 1: Parameters in the DGP

Payoff Parameters : θV P0 = 0.5, θV P1 = 1.0, θV P2 = −1.0
θFC0 = 0.5, θFC1 = 1.0
θEC0 = 1.0, θEC1 = 1.0

Stochastic process of state variables : For j = 1, 2, 3, 4, zjt is AR(1) with γj0 = 0.0, γj1 = 0.6
ωt is AR(1) with γω0 = 0.2, γω1 = 0.9

Low persistence model: σω = σ1 = σ2 = σ3 = σ4 = 1
High persistence model: σω = σ1 = σ2 = σ3 = σ4 = 0.001

Discount factor : β = 0.95

4.2 Comparing solution methods

We compare VF, RVF, PF, and EE algorithms for six different dimensions of the state space
|X |: 64, 486, 2048, 6250, 15552, and 200, 000 that correspond to values 2, 3, 4, 5, 6, and 10,
respectively, for the number of points K in the support of each exogenous state variable. We
use the same starting values to initialize the different algorithms. In principle, the relative
performance of these methods may depend on the initial value. To check for this possibility,

7Let {z(k)j : k = 1, 2, ...,K} be the support of the state variable zj , and define the width values w(k)
j ≡

z
(k+1)
j −z(k)j . Let z̃jt be a continuous latent variable that follows the AR(1) process z̃jt = γj0 +γj1 z̃jt−1 +ejt, with
ejt ∼ i.i.d. N(0, σ2

j ). Then, the transition probability for the discrete state variable zjt is given by: Φ([z
(1)
j +

(w
(1)
j /2)− γj0 − γ

j
1z]/σj) for z

′ = z
(1)
j ; Φ([z

(k)
j + (w

(k)
j /2)− γj0 − γ

j
1z]/σj)− Φ([z

(k−1)
j + (w

(k−1)
j /2)− γj0 − γ

j
1z]/σj)

for z′ = z
(k)
j with 2 ≤ k ≤ K − 1; and 1− Φ([z

(K−1)
j + (w

(K−1)
j /2)− γj0 − γ

j
1z]/σj) for z′ = z

(K)
j .
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we have implemented this experiment using ten different initial values, the same for all the
algorithms. We find very small differences in the relative performance of the algorithms across
the different initial values. The results in tables 3 and 4 are the averages over these initial values.

First, we analyze the degree of contraction of these algorithms. The number of iterations
that a fixed point algorithm needs to achieve convergence is closely related to the degree of
contraction of the mapping. To compare the degree of contraction, we calculate an approxima-
tion to the Lipschitz constants of the mappings. The Lipschitz constant of a mapping Γ in a
complete metric space (V , ‖.‖) is defined as the smallest constant c that satisfies the condition
‖Γ(V)− Γ(W)‖/‖V −W‖ ≤ c for any two points V and W in the domain V . For instance,
using the sup-norm, the Lipschitz constant is defined as:

L(Γ) ≡ sup
V,W∈R|X|

[
supx∈X |Γ(x,V)− Γ(x,W)|

supx∈X |V (x)−W (x)|

]
(27)

Calculating the exact value of the Lipschitz constant for any of the mappings we consider is not
a practical option because the dominion of all these mappings is infinite. As such we obtain the
following approximation. Let {Vk : k = 0, 1, ..., IV0} be the sequence of values that we obtain by
applying successive iterations in the mapping Γ given an initial value V0, where IV0 is the number
of iterations to reach convergence. Then, we obtain an approximation (i.e., a lower bound) to
the Lipschitz constant of this mapping by considering the ratios ‖Γ(V)− Γ(W)‖/‖V −W‖ at
the pair of values Vk and Vk+1 generated in the sequence. To obtain a better approximation,
we generate sequences from many initial guesses, and take as our approximation to the Lipschitz
constant the maximum over all these sequences. That is, the approximation to the Lipschitz
constant of mapping Γ is:

L̃(Γ) ≡ max
V0∈V0

{
max

k∈{0,1,...,IV0
}

‖Γ(Vk+1)− Γ(Vk)‖
‖Vk+1 −Vk‖

}
(28)

Table 2 reports the Lipschitz constants of the four operators for the different dimensions of the
state space, and for two different versions of the model according to the time persistence of the
exogenous state variables (see table table 1): a model with low persistence that implies ρ(Fz) =

0.56; and a model with high persistence that implies a ρ(Fz) close to one. The Lipschitz constants
are very stable across the different dimensions of the state space. For the low persistence model,
there is a very substantial difference in the degree of contraction of the VF operator and the
other operators. The PF and the EE operators are always the strongest contractions. In the
model with low persistence, the RVF operator is a stronger contraction than VF, but it is still far
away from the EE and the PF operators. The good contraction properties of the RVF operator
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Table 2: Degree of Contraction (Lipschitz Constants) of the mappings

Low Persistence Model High Persistence Model
|X | EE PF VF RVF EE PF VF RVF

64 0.20 0.14 0.95 0.59 0.34 0.56 0.95 0.95
486 0.18 0.13 0.95 0.54 0.34 0.47 0.95 0.95

2,032 0.18 0.11 0.95 0.53 0.31 0.86 0.95 0.95
6,250 0.18 0.10 0.95 0.53 0.32 0.69 0.95 0.95
15,552 0.18 0.09 0.95 0.53 0.28 0.62 0.95 0.95
200,000 0.18 - 0.95 0.53 0.28 - 0.95 0.95

completely disappear in the model with highly persistent state variables. Importantly, that is
not the case for the EE operator: the Lipschitz constant of this operator increases when ρ(Fz)

gets close to one but it is still substantially smaller than the Lipschitz constant of VF and RVF
operators. This is the main result that we want to emphasize in table 2. The EE operator has
strong contraction properties, similar and even better to the ones of the PF operator, regardless
of the degree of persistence in the exogenous state variables.

Table 3 presents time per iteration, number of iterations, and total computation time for the
different algorithms and dimensions of the state space for the model with low persistence of the
state variables, which is a very optimistic scenario for the relative value iterations algorithm.
For every dimension of the state space, iterating in the EE mapping is always the most efficient
algorithm. The computational gains relative to the standard methods are very substantial, as
shown in the columns at the bottom-right of the table reporting the ratio of computing times
relative to the EE method. Furthermore, these gains increase with the dimension of the state
space.

The PF algorithm is the least efficient algorithm despite that this operator is the stronger
contraction and converges to the solution after only 5 iterations. The inefficiency of the PF
algorithm comes from the cost of its valuation step that increases cubically with the dimension
of the state space. EE is more efficient than VF and RVF both because its time-per-iteration is
lower and because it is a stronger contraction such that it requires a smaller number of iterations.
These advantages are quite substantial. The time-per-iteration of VF and RVF is more than
twice that of the EE. For the largest dimension of the state space (still a modest dimension
relative to most empirical applications), the total times of VF and RVF are 85 and 7 times,
respectively, more than the EE method.

Table 4 compares the EE and RVF algorithms in the model with high persistence of the
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Table 3: Comparison of Solution Methods – Low Persistence Model

Number of Number of Iterations Time per Iteration
states (in seconds)

|X | EE PF VF RVF EE PF VF RVF

64 (= 2*25) 13 5 351 36 0.001 0.01 < 0.001 < 0.001
486 (= 2*35) 13 5 246 31 < 0.001 0.60 < 0.001 < 0.001
2048 (=2*45) 13 5 345 30 0.005 16.29 0.01 0.01
6250 (=2*55) 13 5 344 30 0.04 150.0 0.08 0.08
15552 (=2*65) 13 5 344 30 0.17 916.2 0.46 0.46

200,000 (=2*105) 13 5(1) 344 30 21.05 198,978 67.64 64.47

Number of Total Time Time Ratios
states (in seconds)

|X | EE PF VF RVF EE
EE

PF
EE

VF
EE

RVF
EE

64 (= 2*25) < 0.001 0.05 0.03 < 0.001 1 60 37.0 4.0
486 (=2*35) 0.01 3.02 0.35 0.03 1 300 26.6 3.4
2048 (=2*45) 0.05 81.44 2.76 0.27 1 1320 53.1 5.2
6250 (=2*55) 0.47 750.0 26.14 2.37 1 1,595 55.9 5.1
15552 (=2*65) 2.25 4,581 158.9 13.89 1 2,040 70.7 6.2

200,000 (=2*105) 273.6 ' 1M(1) 23,270 1,934 1 3,630 85.0 7.1

Note (1): Estimated number of iterations, and estimated total time given the observed time-per-iteration.

state variables. As we have shown in table 2 above, in this model the RVF does not have
strong contraction properties and its computational properties are practically the same as VF
iterations. In contrast, the EE still has strong contraction properties. As a result, table 4 shows
that for this model the performance of the EE algorithm is strongly superior to RVF.

Rust (1987, 1988), Powell (2007), Bertsekas (2011), and Iskhakov, Lee, Rust, Schjerning,
and Seo (2016) advocate using a hybrid value-policy iteration method. The algorithm starts
with value function iterations until a loose convergence criterion is reached. Then, the algorithm
switches to policy function iterations. When the switching point is appropriately tuned, this
algorithm can be faster than both value function and policy function iterations. We have not
reported results from this hybrid method in this experiment. The main reason is that, even for
the moderate dimensions of the state space in tables 2 to 4, one single policy iteration takes
almost one hundred times longer than the whole time to convergence of the EE method. In
other words, even for this moderate dimension, the optimal hybrid algorithm is the pure value
function iteration method.
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Table 4: Comparison of EE and RVF Solution Methods – High Persistence Model

Number of Ratio
states EE iterations Relative value iterations total time

|X | # iter. Time-per-iter. Total time # iter. Time-per-iter. Total time RVF / EE

64 (=2*25) 24 < 0.001 0.002 378 < 0.001 0.05 24.5
486 (=2*35) 24 < 0.001 0.03 350 < 0.001 0.79 30.4

2048 (=2*4 5) 17 0.01 0.16 341 0.02 6.28 38.8
6250 (=2*5 5 ) 18 0.06 0.99 322 0.12 37.94 38.0
15552 (=2*6 5 ) 17 0.43 7.15 333 0.87 289.13 40.5

200,000 (=2*10 5 ) 16 46.2 721.1 319 98.5 18,818 42.5

Figure 1 presents the time-per-iteration versus the number of points in the state space, both
in logarithms, for the different methods. This figure shows that the computational savings per-
iteration of using the EE algorithm increase fast with the state space. Figure 2 shows the ratio of
total computing time between the RVF and EE algorithms. We can see that the ratio increases
very fast with the dimension of the state space – faster than exponentially, as the x-axis is in
logarithms,

4.3 Application: Estimation of counterfactuals

We now study how sample-based methods perform in counterfactual policy experiments. Given
the large dimension of the state space in actual applications, the exact computation of a solution
of the model (under the factual and counterfactual scenarios) is computationally unfeasible, at
least using standard solution methods of value function or policy function iterations. The purpose
of this section is twofold. First, we show that the EE algorithm makes it feasible solving the
model exactly when the dimension of the state space is relatively large, i.e., of the order of a few
million values. We show that for this dimension, and using standard computing equipment, the
EE method solves the model in a few hours while standard methods require computing times
between a few weeks (for value function iterations) and more than one year (for policy function
iterations). The second purpose of this section is to study the relative performance of these
algorithms in empirical applications where the model cannot be solved exactly and we need to
use sample-based versions of the operators.
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Figure 1: Time-per-iteration vs. Number of States – in Logarithms

 

‐10

‐5

0

5

10

15

4 5 6 7 8 9 10 11 12 13

Lo
ga
rit
hm

 o
f T

im
e 
(s
ec
on

ds
) p

er
 it
er
at
io
n

Logarithm of Number of States
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4.3.1 Counterfactual question

The counterfactual policy we consider is an increase in the cost of market entry. The presence of
entry costs can generate misallocation in an industry. There may be potential entrants that are
more productive than incumbent firms but are not willing to enter in the market and replace the
less efficient firms because the entry cost makes this unprofitable. Furthermore, the presence of
entry costs makes exit less attractive to incumbent firms, because re-entry is more expensive, and
in this way, higher entry costs may discourage low-productivity incumbents from exiting. We
are interested in the quantification of the net effect of entry cost on total industry productivity.

Suppose that the industry consists of N potential entrants, indexed by i. Competition in this
industry is characterized by monopolistic competition, i.e., a single-agent model. The expected
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Figure 2: Ratio of RVF Total Computing Time over EE Total Computing Time
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value of the total output produced by firms active in the industry, is:

Q∗ = E

(
N∑
i=1

ait exp (ωit)

)
= N

∑
z,ω

p(z, ω) exp (ω) f ∗(z, ω) (29)

where f ∗(z, ω) represents the steady-state or ergodic distribution of the exogenous variables,
and p(z, ω) is the probability that a firm is active when the exogenous state variables take the
values (z, ω), i.e., p(z, ω) ≡ Pr(ait = 1|zt = z, ωit = ω). Note that p(z, ω) is different from the
CCP function because the probability p(z, ω) is not conditional on the firm’s incumbent status
at previous period. However, by definition, the steady-state condition implies the following
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relationship between p(z, ω) and the CCPs P (0, z, ω) and P (1, z, ω):

p(z, ω) = (1− p(z, ω)) P (0, z, ω) + p(z, ω) P (1, z, ω) (30)

Rearranging we get, p(z, ω) = P (0, z, ω)/[1 − P (1, z, ω) + P (0, z, ω)]. Using this expression to
obtain the partial derivative ∂p(z, ω)/∂EC, where EC represents the entry cost, it is possible to
show that the effect of entry cost on p(z, ω) and Q∗ is ambiguous and it depends on the values of
the state variables and the structural parameters. An increase in the entry cost has a negative
effect on the probabilities of entry P (0, z, ω) for potential entrants, but it has a positive effect
on the probability of staying in the industry P (1, z, ω) for incumbent firms. Since these effects
are of opposite sign, the entry cost has an ambiguous net effect on the steady-state probability
that a firm is active, p(z, ω), and on total output Q∗.

4.3.2 Exact solution using EE algorithm

Suppose that a researcher has estimated this model and is interested in the effect of the entry cost
on expected total industry output: i.e., the effect of a change in EC on Q∗. More specifically,
the counterfactual experiment we consider is an increase in the entry cost parameter θEC0 from
1 to 2.5. First, we show that when the dimension of the state space is relatively large (i.e.,
more than 1 million points), the EE algorithm can be used to solve the model exactly under the
factual and counterfactual scenarios, while standard solution methods are infeasible.

In this experiment, we consider a DGP with a state space with |Z1| = |Z2| = |Z3| =

|Z4| = |Ω| = 14, such that the number of points in the complete state space is |X | = 2 ∗ 145 =

1, 075, 648. The values of the structural parameters are the ones given in table 1 above. We
have solved the model, under the factual and counterfactual scenarios, by iterating in the EE
mapping. Using standard computing equipment, the time-per-iteration was 546 seconds, and
the total time (with 13 iterations) was 7, 048 seconds, i.e., less than two hours. In contrast, the
VF algorithm have a time-per-iteration of 1528 seconds and its total time is 146 hours, more
than 6 days.8

Table 5 presents predictions from the exact solution of the model using the EE algorithm.
We calculate the following average outcomes:

1. Average probability of being active: p∗ =
∑

z,ω p(z, ω) f ∗(z, ω).

2. Average probability of entry: P ∗0 =
∑

z,ω P (0, z, ω) f ∗(z, ω).

8This total time for the VF method is estimated using the condition that the number of iterations to conver-
gence is 344, which is consistent with the results in table 3. The estimated total time for the PF algorithm is
more than two years.
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Table 5: Factual and Counterfactual Solutions Using EE Algorithm

(1) (2) (3) (4) (5)
Probability Entry Exit State
Being Active Probability Probability Persistence Output

(A) Factual DGP 0.323 0.274 0.580 0.768 0.529
(B) Counterfactual DGP 0.258 0.157 0.513 0.884 0.423

Policy Effect: (B) - (A) -0.065 -0.117 -0.068 +0.116 -0.106
(Percentage change) (-20.1%) (-42.7%) (-11.7%) (15.1%) (-20.0%)

3. Average probability of exit: 1− P ∗1 =
∑

z,ω(1− P (1, z, ω)) f ∗(z, ω).

4. Average persistence in or out of the market: Pr(at = yt) =
∑

z,ω[p(z, ω) P (1, z, ω) + (1 −
p(z, ω)) (1− P (0, z, ω))] f ∗(z, ω).

5. Average output per firm: q∗ =
∑

z,ω p(z, ω) exp (ω) f ∗(z, ω).

In this experiment, the increase in entry cost reduces the average probability of being active
(by 6.5 percentage points), the average probability of entry (by 11.7 percentage points), and the
average probability of exit (by 6.8 percentage points). As non-incumbents are more likely to
remain outside the market when the cost of entry rises, and incumbents are less likely to exit,
we expect an increase in the persistence in the same state, which we see in column (4). Column
(5) shows that the increase in the entry cost implies a 20% reduction in industry output.

4.3.3 Estimation of counterfactuals using sample-based operators

The dimension of the state space in this experiment – with more than a million points – is
still small relative to the dimensions that we find in actual applications. For instance, in an
empirical application of this model, the five exogenous state variables can be continuous variables
with substantial variability across firms and over time. Even if the researcher is willing to
discretize each of these continuous variables, an accurate representation of the distribution of
these variables and their variation over time may require around one hundred grid points per
variable. In our model, this implies a state space with approximately 20 billion points. We would
like to compare the performance of the different approximation methods in this type of realistic
scenario. However, that model cannot be solved exactly, and therefore, we cannot calculate the
true approximation errors of the different methods. Instead, we consider that the true DGP is
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the model in the previous section with 2 ∗ 145 possible states (approximately, 1 million states)
and compare the performance of different approximation methods by fixing the computational
time that the researcher is willing to pay to obtain an approximate solution of the model.

Table 6: Average Computation Times Using Sample-Based Operators

VF PF EE

Points in spaces ZNmethod
100 100 1,735

Number of Iterations 350 5 12.7
Time Per Iteration 1.7 10−4 7.2 10−3 2.0 10−3

Total Time 0.062 0.036 0.026

To make a fair comparison, we keep the time required to solve the fixed points equal for the
different solution/approximation methods. As defined above, Z and ZN denote the true set and
the sample set of values of the exogenous state variables. Let NEE, NPF , and NV F be three
integers smaller than the sample size (number of firms) N . Define ZNEE

, ZNPF
, and ZNV F

as
the sets of sample values of the exogenous state variables for the first NEE, NPF , and NV F firms
in the sample, respectively, and over the T sample periods. In the Monte Carlo experiments we
solve the model by iterating in the sample-based EE mapping defined on the space ZNEE

, and by
iterating in the PF and VF mappings defined on the spaces ZNPF

and ZNV F
. In order to keep the

computation time (roughly) the same across the three methods, we choose NPF < NV F < NEE

appropriately. That is, we use a smaller space of the exogenous state variables when we solve
the model using PF and VF iterations than when we use EE iterations. To solve the mappings
on these reduced spaces, we must define the transition probabilities of the exogenous variables
in each case. We use the true transition probabilities, normalized to the reduced space. Table 6
presents the number of points in the spaces ZNEE

, ZNV F
, and ZNPF

and the average (across the
Monte Carlo simulations) computing times of the different methods.

Table 7 presents the results of this Monte Carlo experiment. We estimate the same effects as
in table 5. We implement three different iterative methods: EE, VF, and PF. We use 500 Monte
Carlo simulations from the DGP and calculate Root Mean Squared Error (RMSE) and the Mean
Absolute Bias (MAB) based on these simulations. The results indicate that the sample-based EE
algorithm has considerably lower bias and RMSE than both the VF and the PF approximation
methods for all the statistics. Systematically over the different parameters, the RMSE for the
VF and PF methods are twice as large for the EE algorithm.
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Table 7: Monte Carlo Experiment: Effects of Counterfactual Change in Entry Cost

(1) (2) (3) (4) (5)
Probability Entry Exit State Total
Being Active Probability Probability Persistence Output

True Policy Effect -0.065 -0.117 -0.068 +0.116 -0.106

Mean Absolute Bias
VF iterations 0.036 (55.9%) 0.016 (13.7%) 0.016 (24.2%) 0.011 (9.4%) 0.070 (66.3%)
PF iterations 0.036 (55.9%) 0.016 (13.7%) 0.016 (24.2%) 0.011 (9.4%) 0.070 (66.3%)
EE iterations 0.024 (36.8%) 0.007 (6.2%) 0.010 (14.4%) 0.008 (7.1%) 0.040 (38.1%)

Root Mean Square Error
VF iterations 0.044 (67.5%) 0.020 (17.1%) 0.020 (30.1%) 0.014 (11.8%) 0.088 (82.8%)
PF iterations 0.044 (67.5%) 0.020 (17.1%) 0.020 (30.1%) 0.014 (11.8%) 0.088 (82.8%)
EE iterations 0.024 (37.1%) 0.007 (6.3%) 0.010 (14.8%) 0.008 (7.2%) 0.041 (38.6%)

Note: In parentheses, the statistic in percentage over the true value of the parameter.

5 Conclusion

We show that these Finite Dependence / Euler Equations (FD/EE) representation of discrete
choice MDP implies a fixed point mapping in the space of conditional choice values (EE operator).
This operator is a contraction with a Lipschitz constant strictly smaller than the discount factor
of the model We show that solving the DP problem by iterating in this operator provides very
substantial computational gains relative to the standard solution methods of value function,
relative value function, and policy function iterations.

We define a sample-based version of the EE operator and show that, for any sample, it inherits
the same contraction properties as the exact EE operator. The sample-based EE operator is
defined only at sample points of the exogenous state variables, and thus its dimensionality does
not increase with the dimension of the state space. This operator can be used to obtain a
consistent and asymptotically normal estimate of counterfactual CCPs.

We use Monte Carlo experiments to illustrate the computational gains associated with the
EE algorithm. In the context of a dynamic model of entry and exit, computing the exact solution
on a moderately sized state space using the standard policy iteration can take thousands of times
as long as computing the exact solution using the EE mapping, implying that models that are
computationally infeasible for all practical purposes using standard methods, are feasible using
the method we propose. We then illustrate using Monte Carlo experiments the methods’ relative
ability to estimate the effect of a counterfactual increase in the cost of entry. We show that, for
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a fixed computation time, the finite sample properties of the EE method are better than those
of the estimator associated with policy iterations in terms of both mean squared error and mean
absolute bias.
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A Appendix – Proofs of Propositions

A.1 Williams-Daly-Zachary (WDZ) Theorem

The proof of Proposition 1 exploits the Williams-Daly-Zachary Theorem, which we first state
and prove. Let Λ(ṽ) ≡ {Λ(a, ṽ) : a = 1, 2, ..., J} be the Optimal Choice Probability with:

Λ(a, ṽ) =

∫
1{ṽa + ε̃a ≥ ṽj + ε̃j ∀j} g(ε) dε (31)

where S (ṽ) is McFadden’s Social Surplus function:

S (ṽ) ≡
∫

max
j∈{0,1,...,J}

[ṽj + ε̃j] g(ε) dε (32)

WDZ Theorem establishes that for any choice alternative a,

∂S (ṽ)

∂ṽa
= Λ(a, ṽ) (33)

Proof. Define the function m(ṽ + ε̃) = maxj∈{0,1,...,J} [ṽj + ε̃j], such that S (ṽ) =
∫
m(ṽ + ε̃)

g(ε) dε. It is clear that ∂m(ṽ + ε̃)/∂ṽa = 1{ṽa + ε̃a ≥ ṽj + ε̃j ∀j}. Note that ∂S (ṽ) /∂ṽa is
equal to

∫
∂m(ṽ + ε̃)/∂ṽa g(ε) dε. Therefore,

∂S (ṽ)

∂ṽa
=

∫
1{ṽa + ε̃a ≥ ṽj + ε̃j ∀j} g(ε) dε = Λ(a, ṽ) (34)

A.2 Proof of Proposition 1

Given a vector of value differences ṽ ≡ (ṽa(y, z) for any a, y, z), let ṽ(y, z) be the subvector
(ṽa(y, z) for any a). Note that ṽ(y, z) is the argument of the Social Surplus function S(.). For
any state y and vector ṽ(0, z), define the "difference" surplus function S̃y(ṽ(0, z)) as follows:

S̃y(ṽ(0, z)) ≡ S(ṽ(0, z) + ∆(y, z))− S(ṽ(0, z)) = S(ṽ(y, z))− S(ṽ(0, z)) (35)

By Willians-Daly-Zachary Theorem, we that:

∂S̃y(ṽ(0, z))

∂ṽa(0, z)
=
∂S(ṽ(0, z) + ∆(y, z))

∂ṽa(0, z)
− ∂S(ṽ(0, z))

∂ṽa(0, z)
= P (a, y, z)− P (a, 0, z) (36)

where, with some abuse of notation, P (a, y, z) is the CCP for alternative a given a vector of
values ṽ(0, z) + ∆(y, z), and similarly, P (a, 0, z) is the CCP for alternative a given a vector
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of values ṽ(0, z). It is clear that the absolute value of this partial derivative is always strictly
smaller that one. Define constant M as:

M ≡ supa,y,z,ṽ

∣∣∣∣∣∂S̃y(ṽ(0, z))

∂ṽa(0, z)

∣∣∣∣∣ (37)

It is clear that M < 1.
By definition of mappings ΓEE and S̃y, we have that:

ΓEE(a, y, z, ṽ) = c(a, y, z) + β
∑
z′

S̃a(ṽ(0, z′)) fz(z
′|z) (38)

Therefore, we have that for any ṽ and w̃ in VR:

ΓEE(a, y, z, ṽ)− ΓEE(a, y, z, w̃) = β
∑
z′

[
S̃a(ṽ(0, z′))− S̃a(w̃(0, z′))

]
fz(z

′|z) (39)

Applying the Mean Value Theorem (MVT) to function S̃a between ṽ(0, z′) and w̃(0, z′), we have
that there is a vector of values ṽ∗(0, z′) such that S̃a(ṽ(0, z′)) − S̃a(w̃(0, z′)) = ∇S̃a(ṽ∗(0, z′))
[ṽ(0, z′)− w̃(0, z′)], where ∇S̃a represents the gradient vector. Thus, we have:

ΓEE(a, y, z, ṽ)− ΓEE(a, y, z, w̃) = β
∑
z′

∇S̃a(ṽ∗(0, z′)) [ṽ(0, z′)− w̃(0, z′)] fz(z
′|z) (40)

Taking into account this equation, we have that:

|ΓEE(a, y, z, ṽ)− ΓEE(a, y, z, w̃)| ≤ β
∑

z′

∣∣∣∣∣∣∇S̃a(ṽ∗(0, z′))∣∣∣∣∣∣ ||ṽ(0, z′)− w̃(0, z′)|| fz(z′|z)

≤ βM
∑

z′ ||ṽ(0, z′)− w̃(0, z′)|| fz(z′|z)

≤ βM ||ṽ(0)− w̃(0)||
(41)

where ṽ(0) ≡ (ṽa(0, z) ∀a, z), and similarly for w̃(0). Finally, note that for any ṽ and w̃ in VR:

||ṽ − w̃|| = supa,y,z |va(y, z)− wa(y, z)|
= supa,y,z |va(0, z) + ∆a(y, z)− wa(0, z)−∆a(y, z)|
= supa,z |va(0, z)− wa(0, z)|
= ||ṽ(0)− w̃(0)||

(42)

Therefore, we have proved that:

||ΓEE(ṽ)− ΓEE(w̃)|| ≤ β M ||ṽ − w̃|| with 0 < M < 1 � (43)
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A.3 Proof of Proposition 2

(A) Γ
(N)
EE (ṽ, θ) is a contraction. This proof is a straightforward extension of the proof of

Proposition 1. For a given sample with N cross-sectional observations, denote the space in
which the value differences live to be VN . Additionally, let f̂N(z′|z) be the estimated transition
probabilities for the exogenous state vector z. For any ṽ and w̃ in VN , the sample analog of
equation (40) is:

Γ
(N)
EE (a, y, z, ṽ, θ)− Γ

(N)
EE (a, y, z, w̃, θ) = β

∑
z′

∇S̃a(ṽ∗(0, z′)) [ṽ(0, z′)− w̃(0, z′)] f̂N(z′|z) (44)

We then have:∣∣∣Γ(N)
EE (a, y, z, ṽ, θ)− Γ

(N)
EE (a, y, z, w̃, θ)

∣∣∣ ≤ β
∑

z′

∣∣∣∣∣∣∇S̃a(ṽ∗(0, z′))∣∣∣∣∣∣ ||ṽ(0, z′)− w̃(0, z′)|| f̂N(z′|z)

≤ βM
∑

z′ ||ṽ(0, z′)− w̃(0, z′)|| f̂N(z′|z)

≤ βM ||ṽ(0)− w̃(0)|| with 0 < M < 1 �
(45)

(B) Γ
(N)
EE (ṽ, θ) converges uniformly to ΓEE(ṽ, θ). We need to show that, for any value of

(a,x), supṽ,θ

∣∣∣Γ(N)
EE (a,x, ṽ, θ)− ΓEE(a,x, ṽ, θ)

∣∣∣ −→p 0. Or equivalently, for any ε > 0 and any
δ > 0, there is an integer N0(ε, δ) such that for every value of (ṽ, θ) and any N > N0(ε, δ) we
have that,

Pr
(∣∣∣Γ(N)

EE,v(a,x, ṽ, θ)− ΓEE,v(a,x, ṽ, θ)
∣∣∣ > ε

)
< δ (46)

For the rest of this proof and for the sake of notational simplicity, we omit the arguments
(a,x) and use γ to represent the vector of parameters (ṽ, θ). By definition, we have that
ΓEE(γ) =

∑
z′∈Z h(z′, γ) f(z′) and Γ

(N)
EE (γ) =

∑
z′∈ZN

h(z′, γ) f̂N(z′), where: (a) h(z′, γ) is a
function of payoffs and choice probabilities that comes from the Euler equation; (b) h(z′, γ) is a
bounded function such that h∗ ≡ supz′,γ |h(z′, γ)| <∞; (c) f is the true population distribution
(transition probability) of z′, and f̂N is the empirical distribution based on the sample; (d) for
convenience, and without loss of generality, we consider that f̂N(z′) = 0 for values z′ outside
the sample set ZN , such that we can write Γ

(N)
EE (γ) =

∑
z′∈Z h(z′, γ) f̂N(z′); and (e) f̂N is a

uniformly consistent estimator of f and this implies that, for any εf > 0 and any δf > 0, there
is an integer Nf (εf , δf ) such that for any N > Nf (εf , δf ) we have that,

Pr

(
sup
z′∈Z

∣∣∣f̂N(z′)− f(z′)
∣∣∣ > εf

)
< δf (47)

Given points (a) to (e), we now prove uniform convergence of Γ
(N)
EE to ΓEE. Note that for
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any N and γ, ∣∣∣Γ(N)
EE (γ)− ΓEE(γ)

∣∣∣ =

∣∣∣∣ ∑
z′∈Z

[
f̂N(z′)− f(z′)

]
h(z′, γ)

∣∣∣∣
≤ h∗

∑
z′∈Z

∣∣∣f̂N(z′)− f(z′)
∣∣∣

≤ h∗ sup
z′∈Z

∣∣∣f̂N(z′)− f(z′)
∣∣∣

(48)

This implies that, for any ε > 0,

Pr
(∣∣∣Γ(N)

EE (γ)− ΓEE(γ)
∣∣∣ > ε

)
≤ Pr

(
h∗ sup

z′∈Z

∣∣∣f̂N(z′)− f(z′)
∣∣∣ > ε

)

= Pr

(
sup
z′∈Z

∣∣∣f̂N(z′)− f(z′)
∣∣∣ > ε

h∗

) (49)

Therefore, for any ε > 0 and δ > 0, we can fix εf = ε/h∗, δf = δ, and N0(ε, δ) = Nf (εf , δf ),
such that for any N > N0(ε, δ) we have that Pr

(∣∣∣Γ(N)
EE (γ)− ΓEE(γ)

∣∣∣ > ε
)
< δ. �

A.4 Proof of Proposition 3

(A) Consistency. For notational simplicity, we omit now θ∗ as an argument in functions
ΓEE(ṽ, θ∗) and Γ

(N)
EE (ṽ, θ∗). The true ṽ∗ is defined as the unique fixed point ṽ∗ = ΓEE(ṽ∗), and

ṽ∗N is defined as the unique fixed point ṽ∗N = Γ
(N)
EE (ṽ∗N). Given that, (a) ΓEE(.) is a continuous

function, and (b) Γ
(N)
EE converges uniformly in probability to ΓEE,v, we have by Slutsky’s Theorem

that ṽ∗N converges in probability to ṽ∗.

(B) Asymptotic Normality. By the fixed point conditions that define the value vectors ṽ∗N
and ṽ∗, we have that:

ṽ∗N − ṽ∗ = Γ
(N)
EE (ṽ∗N)− ΓEE(ṽ∗)

=
∑
z∈Z

h(z, ṽ∗N) f̂N(z)−
∑
z∈Z

h(z, ṽ∗) f(z)

(50)

Applying the Mean Value Theorem to the vector function h(z, ṽ∗N) at ṽ = ṽ∗, and using the
consistency of ṽ∗N (i.e., ṽ∗N = ṽ∗ + op(1)), we have that:

h(z, ṽ∗N) = h(z, ṽ∗) +
∂h(z, ṽ∗)

∂ṽ′
(ṽ∗N − ṽ∗) + op(1) (51)
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Substituting this expression into (50) and using the consistency of f̂N (i.e., f̂N(z) = f̂N(z) +

op(1)), we obtain:

ṽ∗N − ṽ∗ =
∑
z∈Z

h(z, ṽ∗)
(
f̂N(z)− f(z)

)
+

[∑
z∈Z

f(z)
∂h(z, ṽ∗)

∂ṽ′

]
(ṽ∗N − ṽ∗) + op(1) (52)

Solving for ṽ∗N − ṽ∗,
ṽ∗N − ṽ∗ = [I−D]−1 H

(
f̂N − f

)
+ op(1) (53)

where: I is the identity matrix; D is the matrix
∑

z∈Zf(z) ∂h(z, ṽ∗)/∂ṽ′; f̂N and f are the column
vectors that contain the probabilities f̂N(z) and f(z), respectively, for every value of z; and H

is the matrix with columns [h(z(1), ṽ∗), h(z(2), ṽ∗), ..., h(z(|Z|), ṽ∗)]. Under mild regularity condi-
tions, a standard Central Limit Theorem implies that the frequency estimator f(N) is such that√
N
(
f̂N − f

)
converges in distribution to N(0,Vf ). Then, applying the Mann-Wald Theorem

we have that:

√
N (ṽ∗N − ṽ∗)→d N

(
0, [I−D]−1 H Vf H′ [I−D′]

−1
)

� (54)
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