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Abstract This paper addresses a fundamental identification problem in the structural
estimation of dynamic oligopoly models of market entry and exit. Using the standard
datasets in existing empirical applications, three components of a firm’s profit func-
tion are not separately identified: the fixed cost of an incumbent firm, the entry cost
of a new entrant, and the scrap value of an exiting firm. We study the implications
of this result on the power of this class of models to identify the effects of differ-
ent comparative static exercises and counterfactual public policies. First, we derive a
closed-form relationship between the three unknown structural functions and the two
functions that are identified from the data. We use this relationship to provide the
correct interpretation of the estimated objects that are obtained under the ‘normaliza-
tion assumptions’ considered in most applications. Second, we characterize a class of
counterfactual experiments that are identified using the estimated model, despite the
non-separate identification of the three primitives. Third, we show that there is a gen-
eral class of counterfactual experiments of economic relevance that are not identified.
We present a numerical example that illustrates how ignoring the non-identification
of these counterfactuals (i.e., making a ‘normalization assumption’ on some of the
three primitives) generates sizable biases that can modify even the sign of the esti-
mated effects. Finally, we discuss possible solutions to address these identification
problems.
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1 Introduction

Dynamic models of market entry and exit are useful tools in the study of differ-
ent issues and questions on firm competition for which it is important to consider
the endogeneity of the market structure and its evolution over time. During recent
years, the structural estimation of this class of models has experienced substantial
developments, both methodological and empirical, and there are a growing number
of empirical applications.1 In all of these applications, the answer to the empirical
questions of interest is based on the implementation of counterfactual experiments
using the estimated model. Sometimes, the purpose of a counterfactual experiment is
to evaluate the effects of a hypothetical public policy, such as a new tax or subsidy.
In other instances, the main purpose of the experiment is to measure the effects of a
parameter change. For instance, we may want to obtain the change in market struc-
ture, prices, firm profits, and consumer welfare if we reduce the value of a parameter
that captures entry costs by 25 percent.

To estimate dynamic structural models of market entry/exit, we distinguish two
main components in a firm’s profit function: variable profit and fixed cost. Parame-
ters in the variable profit function (i.e., demand and variable cost parameters) can be
identified using data on firms’ quantities and prices combined with a demand sys-
tem and a model of competition in prices or quantities.2 The fixed cost is the part of
the profit that derives from buying, selling, or renting inputs that are fixed during the
whole active life of the firm.3 The fixed cost is constant with respect to the amount
of output that the firm produces and sells in the market, however, this cost depends
on the amount and prices of fixed inputs, such as land or fixed capital, and on the
firm’s current and past incumbent status. The parameters in the fixed cost are esti-
mated using data on firms’ choices of whether to be active in the market, combined
with a dynamic model of market entry/exit. The identification of this fixed cost func-
tion is based on the principle of revealed preference. If a firm chooses to be active

1Examples of recent applications are: Ryan (2012) on environmental regulation of an oligopoly industry;
Suzuki (2013) on land use regulation and competition in retail industries; Kryukov (2010) on the relation-
ship between market structure and innovation; Sweeting (2013) on competition in the radio industry and
the effects of copyright fees; Collard-Wexler (2013) on demand uncertainty and industry dynamics; Snider
(2009) on predatory pricing in the airline industry; or Aguirregabiria and Ho (2012) on airlines network
structure and entry deterrence.
2See Berry and Haile (2010) and Berry et al. (2013) for recent identification results in the estimation of
demand and supply models of differentiated products.
3There is some abuse of language in using the term ”cost” to refer to this component of a firm’s profit.
This fixed component of the profit may include the positive income/profits associated with sales of owned
inputs, such as land and buildings. Therefore, in this paper, we sometimes use ”fixed profit” instead of
”fixed cost” to denote this component.
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in the market, it does so because the firm’s expected value of being in the market is
greater than its expected value of not being in the market. Therefore, a firm’s choice
reveals information about structural parameters affecting the firm’s profit and value.

This paper addresses a fundamental identification problem in the structural esti-
mation of dynamic models of market entry and exit. Using the standard datasets in
existing empirical applications, three key components of a firm’s fixed cost func-
tion are not separately identified: the fixed cost of an incumbent firm, the entry
cost of a new entrant, and the exit value, or scrap value, of an exiting firm.4 This
non-identification result can be considered as an application to dynamic models of
market entry and exit of Proposition 2 in Magnac and Thesmar (2002) on the under-
identification of a general dynamic discrete choice model. In the existing applications
of dynamic models of market entry and exit, the approach to address this identifica-
tion problem is to normalize one of three functions to zero. This is often referred to
as a ‘normalization’ assumption. The most common ‘normalization’ is making the
scrap value equal to zero. This approach is used in applications such as those pre-
sented by Snider (2009), Aguirregabiria and Mira (2007), Ellickson et al. (2012),
Lin (2012), Collard-Wexler (2013), Dunne et al. (2013), Igami (2013), Suzuki (2013),
or Varela (2013), among others. In other papers, such as Pakes et al. (2007), Ryan
(2012), Santos (2013) or Sweeting (2013), the normalization involves making the
fixed cost equal to zero.5

Using this non-identification result as a starting point, the purpose of this paper
is to study the implications of the ‘normalization’ approach on the interpretation of
the estimated structural functions and, most importantly, on the identification of the
effects of comparative static exercises or counterfactual experiments using the esti-
mated model. This issue is important because many empirical questions on market
competition, as well as on the evaluation of the effects of public policies in oligopoly
industries, involve examining counterfactual changes in some of these structural
functions, e.g., Ryan (2012), Dunne et al. (2013), Lin (2012), or Varela (2013),
among others. We find that a ‘normalization’ is not always innocuous for some empir-
ical questions. For those cases, we propose alternative approaches to address this
identification problem.

First, we derive a closed-form relationship between the three unknown struc-
tural functions and the two functions that are identified from the data. We use this
relationship to provide the correct interpretation of the estimated objects that are
obtained under the ‘normalization assumptions’ considered in applications. Second,
we study the identification of counterfactual experiments. We characterize a class
of counterfactuals that are identified using the estimated model, despite the non-
separate identification of the three primitives. This class of identified counterfactuals

4This identification problem is fundamental in that it does not depend on other econometric issues that
appear in this class of models, such as the stochastic structure of unobservables, the non-independence
between observable and unobservable state variables, or the existence of multiple equilibria in the data.
These issues may generate additional identification problems. However, addressing or solving these other
identification problems does not help separately identify the three components in the fixed cost function.
5Although making the entry cost equal to zero is another possible normalization, this approach has not
been common in empirical applications.
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consists of an additive change in the structural function(s) where the change is known
to the researcher. We also show that there is a general class of counterfactual exper-
iments of economic relevance that are not identified. For instance, the effects of a
change in the stochastic process of the price of a fixed input that is an argument in
the entry cost, fixed cost, and exit value functions (e.g., land price) is not identified.
We present numerical examples that illustrate how ignoring the non-identification
of these counterfactuals (i.e., making a ‘normalization assumption’ on some of the
three primitives) generates sizable biases that can modify even the sign of the esti-
mated effects. Finally, we discuss possible solutions to address these identification
problems. We show that a particular type of exclusion restrictions provides identifi-
cation. Furthermore, in industries where the trade of firms is frequent and where the
researcher observes transaction prices (Kalouptsidi (Forthcoming)), this information
can be used to solve this identification problem. In the absence of this type of data,
the researcher can apply a bounds approach in the spirit of Manski (1995). We derive
expressions for the bounds of the three functions using this approach.

The rest of the paper proceeds as follows. Section 2 presents the model of mar-
ket entry and exit. Section 3 describes the identification problem and the relationship
between structural functions and identified objects. Section 4 addresses the identifi-
cation of counterfactual experiments and presents numerical examples. In Section 5,
we discuss different approaches to address this identification problem. We summarize
and conclude in Section 6.

2 Dynamic model of market entry and exit

2.1 Basic model

We start with a single-firm version of the model or dynamic model of monopolis-
tic competition. Later in this section, we extend our framework to dynamic games
of oligopoly competition. Time is discrete and indexed by t . Every period t the firm
decides to be active in the market or not. A firm is defined as active if it owns or rents
some fixed inputs that are necessary to operate in this market, e.g., land, equipment.6

Let at ∈ {0, 1} be the binary indicator of the firm’s decision at period t , such that
at = 1 if the firm decides to be active in the market at period t , and at = 0 otherwise.
The firm takes this action to maximize its expected and discounted flow of profits,
Et

(∑∞
r=0 β

r�t+r

)
, where β ∈ (0, 1) is the discount factor, and �t is the firm’s

profit at period t . We distinguish two main components in the firm’s profit at time t:
variable profits, VPt , and fixed profits (or fixed costs), FPt , with �t = VPt + FPt .
The variable profit is equal to the difference between revenue and variable costs.
It varies continuously with the firm’s output and it is equal to zero when output is
zero. If active in the market, the firm observes its demand curve and variable cost

6In principle, a firm may be active in the market but producing zero output. However, whether we allow
for that possibility or not is irrelevant for the (non) identification results in this paper.
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function and chooses its price to maximize variable profits at period t . This
static price decision determines an indirect variable profit function that relates this
component of profit with state variables:

VPt = at vp(zvt ) (1)

where vp(.) is a real-valued function, and zvt is a vector of exogenous state variables
affecting demand and variable costs, e.g., market size, consumers’ socioeconomic
characteristics, and prices of variable inputs such as wages, price of materials, energy,
etc.7

The fixed profit is the part of the profit that derives from buying, selling, or renting
inputs that are fixed during the active life of the firm and that are necessary for the
firm to operate in the industry. These fixed inputs may include land, buildings, some
type of equipment, or even managerial skills. We distinguish three components in the
fixed profit: the fixed cost of an active firm, FCt , the entry cost of a new entrant,
ECt , and the scrap value of an exiting firm, SVt . Each of these three components
may depend on a vector of exogenous state variables zct that includes prices of fixed
inputs (e.g., prices of land and fixed capital inputs). This vector may have elements
in common with the vector zvt (e.g., the market size may affect both variable profit
and fixed costs):

FPt = −FCt − ECt + SVt

= −atf c
(
zct

) − at (1 − kt ) ec
(
zct

) + (1 − at ) kt sv
(
zct

) (2)

where f c (.), ec (.), and sv (.) are real-valued functions and kt ≡ at−1 is the indicator
of the event “the firm was active at period t − 1”, or, equivalently, the firm had the
fixed input at period t − 1. The fixed cost is paid in every period during which the
firm is active (i.e., when at = 1). The fixed cost includes the cost of renting some
fixed inputs and taxes that should be paid every period and that depend on the amount
of some owned fixed inputs, e.g., property taxes. The entry cost is paid if the firm is
active in the current period but was not active in the previous period (i.e., if at = 1
and kt = 0), and the entry cost includes the cost of purchasing fixed inputs and
transaction costs related to the startup of the firm. The firm receives a scrap or exit
value if it was active in the previous period but decides to exit in the current period
(i.e., if at = 0 and kt = 1). This scrap value includes earnings from selling owned
fixed inputs minus transaction costs related to closing the firm such as compensations
to workers and to lessors of capital due to breaking long-term contracts.

7The variable profit function is VPt = pt D(pt , zvt )−VC(qt , zvt ), where pt is the firm’s price, D(pt , zvt )
is the demand function, and VC is the variable cost function that depends on output qt . Maximization of
variable profit implies the well-known condition of marginal revenue equal to marginal cost, D(pt , zvt )+
pt [∂D(pt , zvt )/∂pt ]−MC(D(pt , zvt ), zvt ) [∂D(pt , zvt )/∂pt ] = 0, where MC represents the marginal cost
function. Using this condition we can get the optimal pricing function pt = p∗(zvt ), and plugging-in this
optimal price into the variable profit function, we get the indirect variable profit function vp(zvt ) ≡ p∗(zvt )
D(p∗(zvt ), zvt )− VC(D(p∗(zvt ), zvt ), zvt ).
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Example 1 Consider the decision of a hotel chain about whether to operate a hotel
in a local market or small town. To start its operation (entry in the market), the firm
should purchase or lease some fixed inputs, such as land, a building, furniture, eleva-
tors, a restaurant, a kitchen, and other equipment. If this equipment is purchased at the
time of entry, the cost of purchasing these inputs is part of the entry cost. Other com-
ponents of the entry cost are the cost of a building permit or, in the case of franchises,
franchise fees. Some fixed inputs are leased. Therefore, a hotel’s fixed cost includes
the rental cost of leased fixed inputs. It also includes property taxes (that depend on
land prices), royalties to the franchisor, and the maintenance costs of owned fixed
inputs. At the time of its closure, the hotel operator may recover some money by sell-
ing owned fixed inputs such as land, buildings, furniture, and other equipment. These
amounts correspond to the scrap value.

The one-period profit function can be described as:8

�t =
⎧
⎨

⎩

kt sv
(
zct

)
if at = 0

vp(zvt )− f c
(
zct

) − (1 − kt ) ec
(
zct

)
if at = 1

(3)

The vector of state variables of this dynamic model is {zt , kt }, where zt ≡ {zvt ,
zct }. The vector of state variables zt follows a Markov process with transition prob-
ability function fz(zt+1|zt ). The indicator of incumbent status follows the trivial
endogenous transition rule, kt+1 = at .

In the econometric or empirical version of the model, we distinguish between two
different types of state variables: the variables that are observable to the researcher
and those that are unobservable. Here, we consider a general additive specification
of the unobservables:

FCt = at

[
f c(zct )+ ε

f c
t

]

ECt = at (1 − kt )
[
ec(zct )+ εect

]

SVt = (1 − at ) kt
[
sv(zct )+ εsvt

]

(4)

where εt ≡ {εf ct , εect , εsvt } is the vector of state variables that are observable
to the firm at period t but unobservable to the researcher. Let zt be the vec-
tor with all the observable exogenous state variables, i.e., zt = (

zvt , zct
)
. We

assume that the unobserved state variables in εt are i.i.d. over time and indepen-
dent of (zt , kt ) (Rust 1994). Without loss of generality these unobserved variables
have zero mean. Allowing for serially correlated unobservables does not have any

8In this version of the model, there is no “time-to-build” or “time-to-exit” such that the decision of being
active or not in the market is taken at period t and it is effective at the same period, without any lag. At the
end of this section we discuss variations of the model that involve “time-to-build” or/and “time-to-exit”.
These variations do not have any incidence in our (non) identification results, though they imply some
minor changes in the interpretation of the identified objects.
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substantive influence on the positive or negative identification results in this paper.
Serial correlation in the unobservables creates the so called “initial conditions prob-
lem”, that is an identification problem of different nature to the one we study in this
paper. Whatever the way the researcher deals with the “initial conditions problem”,
he still faces the problem of separate identification of the three components in the
fixed profit.

The model does not include an additive error in the variable profit. This deserves
an explanation. First, note that an additive and homoskedastic error term in the vari-
able profit (i.e., VPt = at

[
vp(zvpt )+ ε

vp
t

]
) is redundant with respect to the additive

term in the fixed cost because it simply replaces an error−ε
f c
t with an error εvpt −ε

f c
t ,

and the two error structures have the same empirical implications. Second, unobserv-
ables in demand and marginal costs do not imply, in general, an error term in the
variable profit that is additive and homoskedastic. Therefore, that type of error does
not seem plausible. Third, in applications where the researcher has data on prices
and quantities, one can estimate demand and marginal cost functions in a first stage,
before the estimation of fixed costs in the dynamic structural model. Once these func-
tions are estimated, the unobservables in demand and marginal costs can be recovered
as residuals and be treated as observables in the estimation of the fixed costs, i.e., they
become part of the observable vector zvt and not of the unobservable εvpt . For instance,
that is the case of the unobservables ξ and ω in the standard Berry-Levinsohn-Pakes
(BLP) model of demand and price competition in a differentiated product industry
(Berry et al. 1995). When data on prices and quantities are not available, the typical
application assumes that the variable profit is proportional to observable market size
and it does not include an error term in the variable profit.

The specification of the one-period profit function including unobservable state
variables is:

�t = π (at , kt , zt )+ εt (at ) =
⎧
⎨

⎩

kt sv
(
zct

) + εt (0) if at = 0

vp(zvt )− f c
(
zct

) − (1 − kt ) ec
(
zct

) + εt (1) if at = 1
(5)

where π(.) is the component of the one-period profit that does not depend on
unobservables, εt (0) ≡ kt ε

sv
t , and εt (1) ≡ −ε

f c
t − (1 − kt ) ε

ec
t .

The value function of the firm, V (kt , zt , εt ), is the unique solution to the Bellman
equation:

V (kt , zt , εt ) = max
at∈{0,1}

{v (at , kt , zt )+ εt (at )} (6)

where v (at , kt , zt ) is the conditional choice value function

v (at , kt , zt ) ≡ π (at , kt , zt )+ β
∑

zt+1∈Z

fz(zt+1|zt )
∫

V (at , zt+1, εt+1) dG (εt+1) .

(7)
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where β ∈ (0, 1) is the discount factor, and G(.) is the CDF of εt . Similarly, the opti-
mal decision rule of this dynamic programming problem is a function α (kt , zt , εt )
from the space of state variables into the action space {0, 1} such that:

α (kt , zt , εt ) = arg max
at∈{0,1}

{v (at , kt , zt )+ εt (at )} (8)

By the additivity and the conditional independence of the unobservable ε’s, the
optimal decision rule has the following threshold structure:

α (kt , zt , εt ) = 1{̃εt ≤ ṽ (kt , zt )} (9)

where ṽ (kt , zt ) = v (1, kt , zt )−v (0, kt , zt ) and ε̃t ≡ εt (0)−εt(1) ≡ (ε
f c
t +εect )+kt

(εsvt − εect ).
For our analysis, it is helpful to define also the Conditional Choice Probabil-

ity (CCP) function P(kt , zt ) that is the optimal decision rule integrated over the
unobservables:

P(k, z) ≡ Pr (α (kt , zt , εt ) = 1|kt = k, zt = z)

= Pr (̃εt ≤ ṽ (k, z))

= Fε̃|k (ṽ (k, z))

(10)

where Fε̃|k is the CDF of ε̃t conditional on kt = k.9 Note that P(0, zt ) is the
probability of market entry, and [1 − P(1, zt )] is the probability of market exit.

Appendix A presents three extensions, or variations, of this basic model: (a) model
with no re-entry after market exit; (b) model with time-to-build and time-to-exit;
and (c) model with capital investment. In the same appendix, we also show that our
(non) identification results extend to these models. The next subsection deals with
an extension that we consider particularly interesting: a dynamic oligopoly game of
market entry and exit.

2.2 Dynamic oligopoly game of entry and exit

We follow the standard structure of dynamic oligopoly models in Ericson and Pakes
(1995) but including firms’ private information as in Doraszelski and Satterthwaite
(2010).10 There are N firms that may operate in the market. Firms are indexed by j ∈
{1, 2, ..., N}. Every period t , the N firms decide simultaneously but independently
whether to be active or not in the market. Let ajt be the binary indicator for the event
“firm j is active in the market at period t”. Variable profits at period t are determined

9The distribution of ε̃t depends on kt if the entry cost and the scrap value contain unobservable components
and these unobservables are different, i.e., εsvt − εect �= 0.
10In Ericson and Pakes (1995), there is time-to-build in the timing of firms’ decisions. Here we con-
sider a version of the dynamic game without time-to-build. As described below, all our results on
(non-)identification apply similarly to models with or without time-to-build.
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in a static Cournot or Bertrand model played between those firms who choose to
be active. This static competition determines the indirect variable profit functions of
the N firms: VPjt = ajt vpj (a−j t , zvt ) , where VPjt is the variable profit of firm
j ; a−j t is the N − 1 dimensional vector with the binary indicators for the activity
of all the firms except firm j . Note that the variable profit functions, vpj , can vary
across firms due to permanent, common knowledge differences between the firms in
variable costs or in the quality of their products.

The three components of the fixed profit function have specifications similar to
the case of monopolistic competition, with the only differences that the functions
can vary across firms, and the unobservable ε′s are private information shocks of
each firm: FCjt = ajt [f cj (zct ) + ε

f c

jt ]; ECjt = ajt
(
1 − kjt

) [ecj (zct )+ εecjt ]; and

SVjt = (
1 − ajt

)
kjt [svj (zct ) + εsvjt ]. Now, εjt ≡ {εf cjt , εecjt , εsvjt } is a vector of

state variables that are private information for firm j , they are unobservable to the
researcher, and i.i.d. across firms and over time with distribution function G.

Following the literature on dynamic games of oligopoly competition, we assume
that the outcome of this game is a Markov Perfect Equilibrium (MPE). In a MPE, a
firm’s strategy is a function from the space of payoff relevant state variables (known
to the firm) into the space of possible actions, that in this model is {0, 1}. Let
αj

(
kt , zt , εjt

)
be a strategy function for firm j , where kt is the vector {kjt : j =

1, 2, ..., N} with firms’ indicators of previous incumbent status, kjt ≡ ajt−1. A MPE
is a N-tuple of strategy functions, α ≡ {αj : j = 1, 2, ...N} such that every firm
maximizes its expected value given the strategies of the other firms.

As we did in the model for a monopolistic firm, we can represent firms’ strategies
using CCP functions: Pj (k, z) ≡ Pr

(
αj

(
kt , zt , εjt

) = 1|kt = k, zt = z
)
. Suppose

that firm j believes that the other firms will behave now and in the future according to
their respective strategies in the N-tuple of CCP functions P ≡ {Pi : i = 1, 2, ...N}.
Given these beliefs, the expected profit of firm j is:

πP
j

(
ajt , kt , zt

) ≡ (1 − ajt )kjt svj
(
zct

) − ajtf cj
(
zct

) − ajt
(
1 − kjt

)
ecj

(
zct

)

+ ajt
∑

a−j t∈{0,1}N−1 Pr
(
a−j t |kt , zt ;P

)
vpj (a−j t , zvt )

(11)

where Pr
(
a−j t |kt , zt ;P

) ≡ ∏
i �=j Pi(kt , zt )ait [1 − Pi(kt , zt )]1−ait . Similarly, from

the point of view of firm j , the expected transition probability of the state variables
(kt , zt ) is:

f P
j (kt+1, zt+1|ajt , kt , zt ) ≡ 1

{
kjt+1 = ajt

}
Pr

(
k−j t+1|kt , zt ;P

)
fz(zt+1|zt )

(12)

where 1{.} is the indicator function. Therefore, given firm j ’s beliefs, we can define
its value function V P

j (kt , zt , εjt ) as the solution of the Bellman equation:

V P
j (kt , zt , εjt ) = max

aj t∈{0,1}

{
vP
j

(
ajt , kt , zt

) + εjt
(
ajt

)}
(13)
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with

vP
j

(
ajt ,kt , zt

) ≡ πP
j

(
ajt ,kt , zt

) + β
∑

z′,k′
f P
j (z

′,k′|ajt ,kt , zt )
∫

V P
j

(
z′,k′, ε′j

)
dG

(
ε′j

)

(14)

A firm’s best response function is the optimal decision rule associated to this Bellman
equation. A MPE is a N-tuple of strategy functions such that the strategy of every firm
is the best response to the strategies of the other firms, i.e., every firm maximizes his
intertemporal value given the strategies of the other firms. We can represent a MPE
as a fixed point of a mapping in the space of players’ CCPs. For every player j and
any state (k, z), the equilibrium condition is:

Pj (k, z) = Fε̃|k
(
ṽP
j (k, z)

)
(15)

where ṽP
j (k, z) is the differential value function vP

j (1, k, z)− vP
j (0, k, z).

3 Identification of structural functions

3.1 Conditions on data generating process

Suppose that the researcher has panel data with realizations of firms’ decisions over
multiple markets/locations and time periods. We use the letter m to index markets.
The researcher observes a random sample of M markets with information on {ajmt ,

zmt , kjmt : j = 1, 2, ..., N , t = 1, 2, ..., T }, where N and T are small (they can be as
small as N = T = 1) and M is large. For the identification results in this section, we
assume that M is infinite and T = 1. For most of the rest of the paper, we assume that
the variable profit functions vpj (.) are known to the researcher or, more precisely,
that they have already been identified using data on firms’ prices, quantities, and
exogenous demand and variable cost characteristics. However, we also discuss the
case in which the researcher does not have data on prices, quantities, or revenue to
identify the variable profit function in a first step.

We want to use this sample to estimate the structural ‘parameters’ or functions of
the model: the three functions in the fixed profit, f cj

(
zct

)
, ecj

(
zct

)
, and svj (zct ); the

transition probability of the state variables, fz; and the distribution of the unobserv-
ables Fε̃|k . Following the standard approach in dynamic decision models, we assume
that the discount factor β is known to the researcher. The transition probability func-
tion {fz} is nonparametrically identified.11 Therefore, we assume that {vpj (.), fz, β}
are known, and we concentrate on the identification of the functions f cj (.), ecj (.),
svj (.), and Fε̃|k .

11Note that fz(z′|z) = Pr(zmt+1 = z′ | zmt = z). Under mild regularity conditions, we can consistently
estimate these conditional probabilities using a nonparametric method such as a kernel or sieve method.
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All of our identification results apply very similarly to the model of monopolistic
competition and to the dynamic game of oligopoly competition. Given the identifica-
tion of the variable profit function vpj (.) and given players’ CCP functions, it is clear
that the expected variable profit of firm j in the dynamic game is also identified.12

From an identification point of view, a relevant difference between the monopolis-
tic and oligopoly models is that in the oligopoly case, the CCP function of a firm
depends not only on its own incumbent status kjt but also on the incumbent sta-
tus of all firms, as represented by vector kt . Because a firm’s fixed profit does not
depend on the incumbent status of the other firms, one may believe that this exclu-
sion restriction might help separately identify the three components of a firm’s fixed
profit. However, this conjecture is not correct. The oligopoly model provides addi-
tional over-identifying restrictions that can be tested; however, these over-identifying
restrictions do not help in the separate identification of the three components of the
fixed cost. Therefore, for notational simplicity, we omit the firm subindex for the rest
of the paper and use the notation of the monopolistic case. When necessary, we com-
ment on some differences to the dynamic oligopoly game and on why the additional
restrictions implied by the dynamic game do not help in our identification problem.

3.2 Identification of the distribution of the unobservables

Suppose that the variable profit function is estimated in a first step using data on
prices and quantities. Let vpt ≡ vp(zvt ) be the estimated variable profit after this first
step such that the vpt is known to the researcher at every observation in the sample.
Proposition 1 establishes conditions for the identification of the distributions Fε̃|0 and
Fε̃|1.

Proposition 1 Suppose that the following conditions hold: (a) the firm lasts for
finite periods;13 (b) the vector of unobservables εt is independent of (kt , zt ); (c)
functions Fε̃|0 and Fε̃|1 are strictly increasing over the real line; and (d) vpt has
continuous support, and for any value of (k, zc), the CCP function P(vp, k, zc) ≡
Pr(at = 1|vpt = vp, kt = k, zct = zc) is strictly increasing in vp and it can reach
values arbitrarily close to 0 and 1. Under these conditions, the distributions Fε̃|0
and Fε̃|1 are nonparametrically identified. Furthermore, the nonparametric estima-
tion of these distributions can be implemented separately from the estimation of the
structural functions in the fixed profit.

Now, suppose that the dataset does not include information on prices and quanti-
ties such that the variable profit cannot be estimated in a first step. In this context, the
specification of the (indirect) variable profit function typically follows the approach

12Note that the expected variable profit vpP
j (k, z) is equal to

∑
a−j

[∏i �=j Pi (k, z)ai (1 − Pi (k, z))1−ai

] vpj (a−j , zv). Therefore, given vpj and CCPs {Pi : i �= j}, the expected variable profit function vpP
j is

known.
13To the best of our knowledge, there is not yet a proof of identification of these distributions in an infinite
horizon model.
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in the seminal work by Bresnahan and Reiss (1990, 1991a, 1991b, and 1994). In the
monopolistic case, this specification is VPt = yt α(zvt ), where yt represents market
size and α(.) may be a constant or a function that depends on variables other than
market size. That is, variable profit is proportional to observable market size, and
market size does not enter in the fixed profit. Given this semiparametric specification
of the variable profit, we have that Proposition 1 applies to this case with only two
differences: (1) condition (1d) on the variable vpt is replaced by a similar condition
on market size yt , i.e., market size yt has continuous support, and for any value of
(kt , zct , zvt ), the CCP function P(y, k, zc, zv) ≡ Pr(at = 1|yt = y, kt = k, zct = zc,
zvt = zv) is strictly increasing in y and it can reach values arbitrarily close to 0 and
1; and (2) the distributions Fε̃|0 and Fε̃|1 are identified up to a scale parameter. This
also implies that the α(.) function in the variable profit, and the functions in the fixed
profit are identified up to a scale parameter.

For the rest of the paper, we assume that the distributions Fε̃|0 and Fε̃|1 are iden-
tified. All our results below apply also to the case where these distributions are
identified up to scale with the only difference that in this case the results apply to
the fixed cost, entry cost, and scrap value functions divided by an unknown scale
parameter.

3.3 Identification of functions in the fixed profit

By definition, the CCP function P(k, z) is equal to the conditional expectation E(amt

| kmt = k, zmt = z) and therefore, it is nonparametrically identified using data on
{amt , kmt , zmt }. Given the CCP function P(k, z) and the inverse distribution F−1

ε̃|k , we
have that the differential value function ṽ (k, z) is identified from the expression:

ṽ (k, z) = F−1
ε̃|k (P (k, z)) . (16)

Given the identification of Fε̃|0 and Fε̃|1, function ṽ (k, z) is nonparametrically iden-
tified everywhere, such that we can treat ṽ (k, z) as a known/identified function.
ṽ (k, z) is the value of being active in the market minus the value of not being active
for a firm with incumbent status “k” at previous period. This differential value is
equal to the inverse function of Fε̃|k evaluated at P(k, z), that is the probability of
being active in the market for a firm with incumbent status “k” at previous period.

Functions ṽ (k, z), vp(zv), and Fε̃|k summarize all the information in the data that
is relevant for the identification of the three functions in the fixed profit. We now
derive a closed-form relationship between these identified functions and the unknown
structural functions f c, ec, and sv. Given that by construction ṽ (k, z) is equal to
v (1, k, z)− v (0, k, z), and given the definition of conditional choice value function
in Equation (7), we have the following system of equations: for any value of (k, z),

ṽ(k, z) = vp(zv)− [
f c

(
zc

) + ec
(
zc

)] + k
[
ec

(
zc

) − sv
(
zc

)] + β
∑

z′∈Z

fz(z′|z)
[
V̄

(
1, z′

) − V̄
(
0, z′

)]

(17)
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where V̄ (k, z) is the integrated value function
∫
V (k, z, ε) dG(ε), i.e., the value

function integrated over the distribution of the unobservables in ε. This system
summarizes all the restrictions that the model and data impose on the structural
functions.

Using the definition of the integrated value function V̄ (k, z), we can express it as
follows:

V̄ (k, z) = ∫
max
a∈{0,1}

{v (a, k, z)+ ε(a)} dG (ε)

= v (0, k, z)+ ∫
max{0; ṽ (k, z)− ε̃} dFε̃|k (̃ε)

= v (0, k, z)+ S(ṽ (k, z) , Fε̃|k),

(18)

where S(ṽ (k, z) , Fε̃|k) represents the function
∫ ṽ(k,z)
−∞ [ṽ(k, z) − ε̃] dFε̃|k (̃ε). Note

that the arguments of function S, i.e., functions ṽ and Fε̃|k , are identified. There-
fore, function S is also a known or identified function. Plugging expression
V̄ (k, z) = v (0, k, z)+ S(ṽ (k, z) , Fε̃|k) into equation (17), and taking into account
that v (0, 1, z) − v (0, 0, z) = sv (zc), we have the following system of equations
that summarizes all the restrictions that the data and model impose on the unknown
structural functions f c, ec , and sv.

ṽ(k, z) = vp(zv)− [
f c (zc)+ ec (zc)

] + k
[
ec (zc)− sv (zc)

] + β
∑

zc′∈Zc

fz(zc′|z)sv(zc′)

+ β
∑

z′∈Z
fz(z′|z)

[
S(ṽ

(
1, z′

)
, F̃ε|1)− S(ṽ

(
0, z′

)
, F̃ε|0)

]

(19)

To study the identification of functions f c, ec, and sv, it is convenient to sum
up all the identified functions in equation (19) into a single term. Define the func-
tion Q(k, z) ≡ ṽ(k, z)− β

∑
z′∈Z fz(z′|z) [S(ṽ

(
1, z′

)
, Fε̃|1)− S(ṽ

(
0, z′

)
, Fε̃|0)]. It

is clear that function Q(k, z) is identified. This function has also an intuitive inter-
pretation. It represents the difference between the firm’s value under two different
‘ad-hoc’ strategies: the strategy of being in the market today, exiting next period, and
remaining out of the market forever in the future, and the strategy of exiting from the
market today and remaining out of the market forever in the future. Using this defi-
nition for function Q(k, z), we can rewrite the system of equations (19) as follows:

Q(k, z) = vp(zv)− [
f c (zc)+ ec (zc)

] + k
[
ec (zc)− sv (zc)

]

+ β
∑

zc′∈Zc

fz(zc′|z)sv(zc′) (20)

This system of equations provides a closed form expression for the relationship
between the unknown structural functions and the identified function Q(k, z).

Proposition 2 The structural functionsfc (zc), ec (zc), and sv (zc) are not separately
identified. However, we can identify two combinations of these structural functions
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which have a clear economic interpretation: (a) the sunk part of the entry cost when
entry and exit occur at the same state z , i.e.,ec (zc)−sv (zc); and (b) the sum of fixed
cost and entry cost minus the discounted expected scrap value in the next period,
i.e.,f c (zc)+ ec (zc)− β

∑
z′∈Z fz(z′|z) sv

(
zc′

)
.

ec (zc)− sv (zc) = Q(1, z)−Q(0, z),

f c (zc)+ ec (zc)− β
∑

zc′∈Zc

fz(zc′|z)sv(zc′) = −Q(0, z)+ vp(zv).
(21)

3.4 ‘Normalizations’ and interpretation of estimated functions

In empirical applications, the common approach to address this identification prob-
lem is to restrict one of the three structural functions to be zero at any value of
zc. This is often referred to as a ‘normalization’ assumption. Although most papers
in the literature admit that setting the fixed cost or the scrap value to zero is not
really an assumption but a ‘normalization’, these papers do not derive the implica-
tions of this ‘normalization’ on the estimated parameters and on the counterfactual
experiments using the estimated model. Based on our derivation of the relationship
between identified objects and unknown structural functions in the system of equa-
tions (20), or equivalently in (21), we can obtain the correct interpretation of the
estimated functions under any possible normalization. Ignoring this relationship can
lead to misinterpretations of the empirical results.

Table 1 reports the relationship between the estimated structural functions and
the true structural functions under different normalizations. Functions f̂ c, ŝv, and
êc represent the estimated vectors under a given normalization, and they should be
distinguished from the true structural functions f c, sv, and ec. The expressions in
Table 1 are derived as follows. First, the estimated functions f̂ c, ŝv, and êc sat-
isfy the identifying restrictions in (20) and (21). In particular, êc (zc) − ŝv (zc) =
Q(1, z) − Q(0, z) and f̂ c (zc) + êc (zc) − β

∑
zc′∈Zc fz(zc′|z) ŝv

(
zc′

)
. Of course,

these conditions are also satisfied by the true values of these functions. Therefore, it
should be true that for any normalization we have the following:

êc (zc)− ŝv (zc) = ec (zc)− sv (zc) ,

f̂ c (zc)+ êc (zc)− β
∑

z′∈Z
fz(z′|z)ŝv

(
zc′

) = f c (zc)+ ec (zc)− β
∑

zc′∈Zc

fz(zc′|z)sv(zc′).
(22)

These expressions and the corresponding normalization assumption provide a system
of equations that we can solve for the estimated functions and thus obtain the expres-
sion of these estimated functions in terms of the true functions. These expressions
provide the correct interpretation of the estimated functions.

Suppose that the normalization is ŝv (zc) = 0. Including this restriction into the
system (22) and solving for êc (zc) and f̂ c (zc), we get that êc (zc) = ec (zc)−sv (zc),
and f̂ c (zc) = f c (zc)+ sv (zc) −β

∑
zc′ fz(z

c′|z) sv (
zc′

)
. The estimated entry cost
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Table 1 Interpretation of estimated structural functions under various “normalizations”

is in fact the entry cost minus the scrap value at the same state, i.e., the ‘ex-ante’ sunk
entry cost.14 And the estimated fixed cost is the actual fixed cost plus the difference
between the current scrap value and the expected, discounted next period scrap value.
When the normalization is êc (zc) = 0, we can perform a similar operation to obtain
that ŝv (zc) = sv (zc)−ec (zc), and f̂ c (zc) = f c (zc)+ec (zc)−β

∑
zc′∈Zc fz(zc′|z)

ec
(
zc′

)
. That is, the estimated scrap value is equal to the ‘ex-ante’ sunk entry cost but

with the opposite sign, and the estimated fixed cost is equal to the actual fixed cost
plus the difference between current entry cost and expected discounted next period
entry cost. When the normalization is applied to the fixed cost, such that f̂ c (zc) = 0,
obtaining the solution of the estimated functions in terms of the true functions is a
bit more convoluted because the solution of the system of equations is not point-wise
or separate for each value of z, but instead we need to solve recursively a system
of equations that involves every possible value of z. We have the recursive systems
[êc (zc) − ec (zc)] = f c (zc) + β

∑
zc′ fz(z

c′|z) [êc (
zc′

) − ec
(
zc′

)] and [ŝv (zc) −
sv (zc)] = f c (zc) + β

∑
zc′ fz(z

c′|z) [ŝv (
zc′

) − sv
(
zc′

)]. Solving recursively these
functional equations, we get that êc (zc) = ec (zc)+ ∑∞

r=0 β
r
E[f c(zct+r ) | zt = z],

and ŝv (zc) = sv (zc)+ ∑∞
r=0 β

r
E[f c(zct+r ) | zt = z] . That is, the estimated entry

cost is equal to the actual entry cost plus the discounted and expected sum of the
current and future fixed costs of the firm if it would be active forever in the future. A
similar interpretation applies to the estimated scrap value.

Example 2 Suppose an industry where firms need to use a particular capital equip-
ment to operate in the market. For some reason (e.g., informational asymmetries)
there is not a rental market for this equipment, or it is always more profitable
to purchase the equipment than to rent it. Let zc be a state variable that repre-
sents the current purchasing price of the equipment. Suppose that the entry cost is

14The ‘ex-ante’ sunk entry cost is not necessarily equal to the ‘ex-post’ or realized sunk cost because the
value of the state variables affecting the scrap value may be different at the entry and exit periods.
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ec(zc) = ec0 + zc, where ec0 > 0 is a parameter that represents costs of entry other
than those related to the purchase of capital. The fixed cost depends also on the price
of capital through property taxes that firms should pay every period they are active:
f c(zc) = f c0 + τ zc, where τ ∈ (0, 1) is a parameter that captures how the property
tax depends on the price of the owned capital. The scrap value function is sv(zc) = λ

zc, where λ ∈ (0, 1) is a parameter that captures the idea that there is some capital
depreciation, or a firm-specific component in the capital equipment, such that there is
a wedge between the cost of purchasing capital and the revenue from selling it. Now,
consider the identification of these functions. For simplicity, suppose that the real
price of capital zc is constant over time, though it varies across markets in our data
such that we can estimate the effect of this state variable. When the normalization is
ŝv (zc) = 0, we have that êc (zc) = ec0 + (1−λ) zc such that êc (zc)− ec (zc) = −λ

zc. An interpretation of êc (zc) as the true entry cost, instead of the sunk entry cost,
implies to underestimate the effect of the price of capital on the entry cost. The esti-
mated fixed cost is f̂ c (zc) = f c0 + (τ + (1−β)λ) zc, such that f̂ c (zc)−f c(zc) =
(1 − β)λ zc and ignoring the effects of the normalization and treating f̂ c (zc) as the
true fixed cost leads to an over-estimation of the effect of the price of capital on the
fixed cost. That is, we over-estimate the impact of the property tax on the fixed cost.
Similar arguments can be applied when the normalization is êc (zc) = 0. In particu-
lar, f̂ c (zc) = f c0 + (τ + (1 − β)) zc, such that the over-estimation of the incidence
of the property tax on the fixed cost is (1 − β) zc that is even stronger than before.
When we normalize the fixed cost to zero, both the scrap value and the entry cost are
overestimated by (f c0 + τ zc)/ (1 − β). The estimated effect of the price of capi-
tal on the cost of entry includes not only the purchasing cost but also the discounted
value of the infinite stream of property taxes.

3.5 Dynamic oligopoly game of entry and exit

Appendix A shows that a very similar identification problem arises in three exten-
sions of the basic model. We discuss here the case of the dynamic oligopoly game.
Proposition 2 can be extended to the dynamic oligopoly game. In particular, the
additional structure in the dynamic game does not help the identification of the com-
ponents in the fixed profit. Equation (20) also applies to the dynamic game, only
with the following modifications: (i) all the functions are firm-specific and should
have the firm subindex j ; (ii) function Qj includes as an argument also the past
incumbent statuses of the other firms, k−j , such that we have Qj([kj ,k−j ], z); and
(iii) the expected variable profit function depends on firms’ CCPs and it includes
as an argument the incumbent statuses of all the firms, i.e., vpP

j (k, zv). Given this
modified version of equation (20), it is straightforward to extend the two parts of
Proposition 2 to the dynamic game model. For the same reason, the relationship
reported in Table 1 is still applicable to this extension. Note that the dynamic game
provides over-identifying restrictions. For instance, we have that for every value
of k−j the following equation should hold: ecj (zc) − svj (zc) = Qj(1,k−j , z) −
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Q(0,k−j , z). This implies that the value of Qj(1,k−j , z) − Q(0,k−j , z) should
be the same for any value of k−j , which is a testable over-identifying
restriction.

4 Counterfactual experiments

4.1 Definition and identification of counterfactual experiments

Suppose that the researcher is interested in using the estimated structural model to
obtain an estimate of the effect on firms’ entry-exit behavior of a change in some
of the structural functions such that the environment is partly different from the one
generating the data. Let θ0 = {vp0, f c0, ec0, sv0, β0, f 0

z } represent the structural
functions that have generated the data. And let θ∗ = {vp∗, f c∗, ec∗, sv∗, β∗, f ∗

z } be
the structural functions in the hypothetical or counterfactual scenario. Define θ ≡
{vp, f c, ec, sv, β, fz} ≡ θ∗ − θ0. We refer to θ as the perturbation
in the primitives of the model defined by the counterfactual experiment. The goal
of this counterfactual experiment is to obtain how the perturbation θ affects firms’
behavior as measured by the CCP function. In other words, we want to identify the
counterfactual choice probabilities P(k, z ; θ0 +θ).

The parameter perturbations that have been considered in the counterfactual
experiments in recent empirical applications include regulations that increase entry
costs (Ryan 2012; Suzuki 2013), entry subsidies (Das et al. 2007; Dunne et al. 2013;
Lin 2012), subsidies on R&D investment (Igami 2013), tax on revenue (Sweeting
2013), market size (Bollinger Forthcoming; Igami 2013), economies of scale and
scope (Aguirregabiria and Ho 2012; Varela 2013), a ban on some products (Bollinger
Forthcoming; Lin 2012), demand fluctuation (Collard-Wexler 2013), time to build
(Kalouptsidi Forthcoming), or exchange rates (Das et al. 2007).

Before we present our main identification results on counterfactual experiments
(i.e., Propositions 3 and 4), we first describe here the main ideas on the derivation
of these results. Propositions 3 and 4 are based on two main building blocks: equa-
tions (21) from Proposition 2, and Lemma 1 that we present below. First, Lemma 1
establishes that there is a one-to-one relationship between the vector of choice prob-
abilities P̃ ≡ {P(k, z) : for all (k, z)} and the vector of values Q̃ ≡ {Q(k, z) : for
all (k, z)}. By this lemma, the counterfactual choice probabilities P(.; θ0 +θ) are
identified if and only if the counterfactual Q-values Q(.; θ0 + θ) are identified.
Therefore, we can study the identification of counterfactual experiments by look-
ing at the identification of counterfactual Q-values. This is very convenient because
to study the identification of Q(k, z ; θ0 + θ) we can use equations (21) to get a
closed-form relationship between Q-values and the counterfactual structural param-
eters θ0 +θ , i.e., equation (24) below. Finally, given this closed-form relationship,
we can determine what type of counterfactual experiments is identified (Proposition
3) and what type is not (Proposition 4).
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We now present Lemma 1 that establishes the one-to-one relationship between
CCPs and Qs.15

Lemma 1 Define Q̃ ≡ {Q(k, z) : for all (k, z)} and P̃ ≡ {P(k, z) : for all (k, z)}.
For given (β, fz), there is a one-to-one (invertible) mapping q̃(̃P; β, fz) from the
space of vectors P̃ into the space of vectors Q̃ such that Q̃ = q̃ (̃P; β, fz) and P̃ =
q̃−1(Q̃; β, fz). The form of this mapping is, q̃(̃P; β, fz) ≡ {q(k, z, P̃; β, fz) : f or
all (k, z)} with:

q(k, z, P̃;β, fz) ≡ F−1
ε̃|k (P (k, z))− β

∑

z′∈Z
fz(z′|z)

(
∫ F−1

ε̃|1 (P (1,z′))
−∞ [F−1

ε̃|1
(
P(1, z′)

) − ε̃] dF̃ε|1 (̃ε)
)

+ β
∑

z′∈Z
fz(z′|z)

(
∫ F−1

ε̃|0 (P (0,z′))
−∞ [F−1

ε̃|0
(
P(0, z′)

) − ε̃] dF̃ε|0 (̃ε)
)

(23)

Lemma 1 implies that the vector of counterfactual CCPs P̃(θ0 +θ) is identified
if and only if the vector of counterfactual Qs, Q̃(θ0 + θ), is identified. Therefore,
we can study the identification of counterfactual CCPs by looking at the identifica-
tion of counterfactual Qs. For notational simplicity, we use P ∗(k, z) and Q∗(k, z) to
represent counterfactuals P(k, z; θ0 +θ) and Q(k, z; θ0 +θ), and P 0(k, z) and
Q0(k, z) to represent factuals P(k, z; θ0) and Q(k, z; θ0), respectively.

For some counterfactual experiments, we need to distinguish two components in
the vector of state variables: z ≡ (znosv, zsv), where zsv is the subvector of the state
variables zc that affect the scrap value, and znosv represents the rest of the state vari-
ables. Without loss of generality, we can always represent the transition probability of
the observable state variables as fz(zt+1|zt ) = fz,sv(zsvt+1|zt ) fz,nosv(znosvt+1 |zt , zsvt+1).

Now, taking into account equation (20), we can derive the following equation that
relates the counterfactual Q∗(k, z) with the factual Q0(k, z), and with θ0 and θ :

Q∗(k, z) = Q0(k, z)

+ vp(zv)−
[
fc (zc)+ec (zc)

] + k
[
ec (zc)−sv (zc)

]

+ β0 ∑

zsv′∈Z
f 0
z,sv(z

sv′|z)sv(zsv′)

+ β0 ∑

zsv′∈Z
fz,sv (z

sv′|z)[sv0(zsv′)+sv(zsv′)]

+ β

∑

zsv′∈Z
[f 0

z,sv(z
sv′|z)+fz,sv (z

sv′|z)][sv0(zsv′)+sv(zsv′)]

(24)

15Lemma 1 is related but quite different to Proposition 1 in Hotz and Miller (1993). Hotz-Miller Proposi-
tion 1 establishes that for every value of the state variables (k, z), there is a one-to-one mapping between
CCPs P and differential values ṽ. In our binary choice model, Hotz-Miller Proposition simply establishes
that in equation P(k, z) = F̃ε|k (̃v(k, z)) the distribution function F̃ε|k is invertible. In contrast, Lemma
1 establishes the invertibility of the mapping between vector Q̃ and vector P̃ . This invertibility is not
point-wise because every value Q(k, z) depends on the whole vector P̃ .
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Remember from Section 3.3 that the factual Q0(k, z) is identified from the data. By
design of the counterfactual experiment, the perturbations in the structural functions,
θ ≡ {vp, f c, ec, sv, β, fz}, are also known to the researcher. But notice
that the right-hand-side of equation (24) includes also the discount factor β0 and
the scrap-value function sv0(.) that are not identified. Therefore, if a counterfactual
experiment is such that the right-hand-side of equation (24) does not depend on β0

and sv0, then the experiment is identified. Otherwise, it is not identified. Propositions
3 and 4 characterize the class of experiments that are identified and the class that is
not, respectively.

Proposition 3 Suppose that θ implies changes only in functions vp, f c, ec, sv, and
fz,nosv such that β∗ = β0 and f ∗

z,sv = f 0
z,sv. And suppose that the researcher knows

the perturbation θ = {vp (zv), fc (zc), ec (zc), sv (zc), fz,nosv

(
znosv′|z)}

(though he does not know neither θ0 nor θ∗). Then, Q∗(k, z) and P ∗(k, z) are
identified at every state (k, z).

Proposition 3 establishes that the non-identification of the three functions in
the fixed profit does not imply an identification problem for counterfactuals that
can be described as additive changes in these functions. In contrast, the following
Proposition 4 shows that there are relevant counterfactual experiments that are not
identified.

Proposition 4 Suppose that θ implies changes in the discount factor or in the
transition probability of the state variables, such that β ≡ β∗ − β0 �= 0 or/and
fz,sv ≡ f ∗

z,sv − f 0
z,sv �= 0, where the researcher knows both (β0, f 0

z ) and (β∗, f ∗
z ).

Despite the knowledge of these primitives under the factual and the counterfactual
scenarios, the effect of these counterfactuals on firms’ behavior, as represented by
Q∗(k, z) or P ∗(k, z), is NOT identified.

4.2 Bias induced by normalizations

Suppose that a researcher has estimated the structural parameters of the model
under one of the ‘normalization’ assumptions that we have described in Section 3.4.
Furthermore, suppose that given the estimated model, this researcher implements
counterfactual experiments by applying the same ‘normalization’ assumption that
has been used in the estimation. For instance, the model has been estimated under the
condition that the scrap value is zero, and this condition is also maintained when cal-
culating the counterfactual equilibrium. In this section, we study whether and when
this approach introduces a bias in the estimation of the counterfactual effects. We find
that this approach does not introduce any bias for the class of (identified) counterfac-
tuals described in Proposition 3. For the class of counterfactuals in Proposition 4, this
approach provides a biased estimation. Of course, this bias is not surprising because,
as shown in that Proposition, that class of counterfactual experiments is not identi-
fied. More interestingly, we show that the magnitude of this bias can be economically
very significant.
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Table 2 Counterfactual experiments in recent empirical studies

Given a normalization used for the estimation of the model (not necessarily
ŝv0(zc) = 0), let ŝv0(zc) be the estimated scrap value function. And let Q̂∗(k, z) be
the estimate of Q∗(k, z) when we use ŝv0 instead of the true value sv0. Using the gen-
eral expression for Q∗(k, z) in equation (24), the bias induced by the normalization
is:

Q̂∗(k, z)−Q∗(k, z) = β0 ∑

zsv′∈Z
fz,sv (z

sv′|z)
[
ŝv0(zsv′)− sv0(zsv′)

]

+ β

∑

zsv′∈Z
[f 0

z,sv (z
sv′|z)+fz,sv (z

sv′|z)]
[
ŝv0(zsv′)− sv0(zsv′)

] (25)

Proposition 5 If the counterfactual experiment is such that β = 0 and fz,sv = 0,
then the bias Q̂∗(k, z) − Q∗(k, z) is zero, and the ‘normalization’ assumption is
innocuous for this class of experiments. Otherwise, the bias Q̂∗(k, z) − Q∗(k, z) is
not zero and the ‘normalization’ assumption introduces a bias in the estimated effect
of the counterfactual experiment.

Proposition 5 defines the class of counterfactual experiments for which the ‘nor-
malization’ assumptions introduce a bias. This class consists of those experiments
involving a change in the transition probability of a state variable that enters into
the scrap value function or a change in the discount factor. While most of the coun-
terfactual experiments in recent applications examine the impacts of the change in
structural functions other than transition functions, several studies have examined the
change in firms’ behavior under different transition functions. Table 2 lists recent
empirical studies using the framework in this paper and implementing counterfac-
tual experiments. We have classified these papers according to two criteria: (a) the
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type of counterfactual experiment, i.e., change in the profit function, in the discount
factor, or in the transition probabilities; and (b) normalization assumption used in
the estimation of the model.16 In terms of normalization, most papers normalize
the scrap value to zero, except Ryan (2012), Santos (2013) and Sweeting (2013)
that normalize the fixed cost, and Kalouptsidi (Forthcoming) that does not rely on
any normalization. We have not found papers that normalize the entry cost to
zero. The most common type of counterfactual experiments consists of changes
in the parameters of the profit function. Proposition 3 establishes that this type
of experiment is identified. We have found two papers that present counterfac-
tual experiments that change the transition probability functions fz. As shown by
Proposition 4, these experiments are not identified when the state variables in
the perturbed transition probability affect the scrap value. Collard-Wexler (2013)
examines the effect of demand uncertainty on the dynamics of ready-mix concrete
markets. His experiments simulate firms’ behavior when demand did not fluctuate.
According to our results, the normalization used in that study (zero scrap value)
is not innocuous if state variables affecting demand have some impact on scrap
value. In another example, Das et al. (2007) simulate the change in firms’ export
decisions when the currencies of these firms’ home countries decrease by 20 per-
cent. In this case, the normalization on the scrap value is no longer innocuous
if part of the scarp value comes from the sale of their foreign assets (e.g., sub-
sidiaries), and hence depends on the exchange rate. The counterfactual experiments in
Kalouptsidi (Forthcoming) are identified despite they imply a change in the transition
probability function. The reason is she does not need to impose any normalization
assumption in the estimation because her dataset includes information on transac-
tion prices from the acquisition of firms. We discuss this point in more detail in
Section 5.3 below.

4.3 Numerical example

In this section, we present a simple example that illustrates how the bias induced
by the normalization assumption can be sizeable and economically significant. Con-
sider a retail industry in which market entry requires land ownership. Examples
include big-box stores and hotels. Let zcmt represent the land price in market m at
period t . The form of the entry cost, fixed cost, and scrap value functions are as
follows: ec

(
zcmt

) = ec0 + ec1 zcmt , f c
(
zcmt

) = f c0 + f c1 zcmt , and sv
(
zcmt

) =
sv0 + sv1 zcmt , where ec0, ec1, f c0, f c1, sv0, and sv1 are parameters. Variable
profits do not depend on land price: vp

(
zvmt

) = vp0, where vp0 is a parameter.
The stochastic process of land price is described by the following AR(1) process:
zcm,t+1 = α0+α1 z

c
mt+σz um,t+1, where um,t+1 is an i.i.d. shock with standard normal

distribution.

16There are several empirical studies that use the framework in this paper but do not conduct counterfactual
experiments considered in this paper. Examples include Snider (2009) and Ellickson et al. (2012).
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Suppose that there are two groups of markets in the data, types H and L. For
instance, each group of markets may represent a metropolitan area or a region. Each
group consists of a large number of local markets. Suppose that the only differ-
ences between these two groups of markets are the stochastic processes of land
price:

TypeH : zcm,t+1 = αH
0 + αH

1 zcmt + σHum,t+1

TypeL : zcm,t+1 = αL
0 + αL

1 z
c
mt + σLum,t+1

where umt is iid N (0, 1). All structural cost functions are the same in all local mar-
kets, whether they belong to type H or type L. However, this is not known to the
researcher. The researcher observes that the stochastic processes of land prices are
different between the two groups; however, he does not know whether this difference
is the only structural difference between the two groups.

Given a dataset generated from this model, the researcher observes, or esti-
mates consistently, the CCP functions for each group of markets. For every value
of land price zc, he knows the entry probabilities of potential entrants in mar-
ket type H and market group L, i.e., PH (0, z) and PL(0, z), respectively, and the
probabilities that an incumbent stays in the market, i.e., PH(1, z) and PL(1, z).
The researcher also knows the variable profit vp0, the discount factor β, and the

parameters
{
α
j

0 , α
j

1 , σ
j : j = H,L

}
in the stochastic process of land price. Suppose

that the main interest of this researcher is to understand the contribution of different
structural factors to the differences in the CCP functions in the two groups of markets.
More specifically, he is interested in estimating what part of this difference in CCP
functions can be attributed purely to the differences in the stochastic processes of
land prices, rather than to the differences in cost functions. Unfortunately, as shown
in Proposition 5, the researcher cannot obtain an unbiased/consistent estimator of this
effect. Performing this experiment requires the knowledge of the scrap value function
sv (zc); however, the functions ec (zc) , sv (zc), and f c (zc) are not separately iden-
tified from the data. Suppose that the researcher makes a normalization assumption
on these functions and uses the same normalization to implement the counterfac-
tual experiment. The goal of this numerical exercise is to quantify the extent to
which this approach introduces a bias in the estimated effect of the counterfactual
experiment.

For our numerical example, we consider the following values for the parameters
in the data generating process:

ec0 = 6.5 ; ec1 = 1 ; sv0 = 0.9 ; sv1 = 0.96
f c0 = 0.1 ; f c1 = 0.03 ; vp0 = 1.1 ; β = 0.95

αH
0 = 1.0 ; αH

1 = 0.9 ; σH = 0.5
αL

0 = 0.9 ; αL
1 = 0.9 ; σL = 0.5

Under this setting, the average land price of group H is ten percent higher than that
of group L (10.0 vs. 9.0), while the standard deviation of land price is the same (1.3).
Figure 1 illustrates the distributions of these two groups.
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Fig. 1 Stationary Distribution of land price in the two types of markets

Figure 2 shows the CCPs of both a potential entrant and an incumbent in each
group of markets. The observed difference in the CCPs of these two groups is
entirely due to the difference in the stochastic processes of the land price (though
the researcher does not know this fact). For every land price, the probability of entry
and the probability of staying in the market is higher for group H than for group L
because, at any level of the current land price, a firm’s expectation about the future
land price is lower in group L than in group H. As a result, a new entrant in group L
is more likely to postpone his entry because the future entry cost is (more) likely to
be lower. Similarly, an incumbent in group L is more likely to exit today because the
scrap value is (more) likely to be lower in the future. For a given value of land price
z, there are more entries and fewer exits in type H markets than in type L markets.
On average, land prices are lower in group L, which implies that once we average
over all possible land prices, there are more entries and fewer exits in type L mar-
kets than in type H markets. For a potential entrant, the unconditional probability of
being in the market is 7.1 percent in group H and 10.4 percent in group L, and these
probabilities are 94.7 percent and 96.5 percent, respectively, for an incumbent.

Having a probability of staying in a market that declines with land price is not by
itself evidence of a scrap value that depends on land price. This correlation can also
be generated by a model in which the scrap value is constant and the fixed cost of an
incumbent firm increases with land price (e.g., property taxes or a leasing price that
depends on the price of land). In fact, such a development is the case in our example,
where both effects play a role in generating this dependence.

Figure 3 presents the estimated entry cost and fixed cost functions in groupH with
a zero scrap value normalization. With this normalization, the estimated entry cost
function is smaller and less sensitive to a change in land price than the true function,
i.e., êc(zc) = ec(zc) − sv(zc) = [5.6 + 0.4zc] < [6.5 + zc] = ec(zc). In contrast,
the estimated fixed cost function is larger for most levels of land price and more
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Fig. 2 Estimated probabilities of entry and staying

sensitive to a change in land price than the true function. Under the normalization of
the scrap value to zero, the researcher may interpret that the effect of the land price
on the probability of exit derives only from the fixed operating cost; however, this
effect may also derive from the dependence of the scrap value with respect to the
land price, as in this example.

We do not present a figure with the estimated entry cost and fixed cost functions in
group L. In this example and under this normalization, the estimated entry cost is the
same for the two groups of markets because the stochastic process of land price does
not play any role in the estimated entry cost under the zero scrap value normalization.
The estimated fixed cost functions are different: f̂ cH (zc) = −0.767+ 0.1692 zc for
group H , and f̂ cL(z

c) = −0.675 + 0.1692 zc for group L. Given these results, the
researcher concludes that the sunk entry cost is the same in the two groups of markets.
Furthermore, he might even be willing to conjecture that the two groups have the
same entry cost function and the same scrap value function. However, this correct
conjecture is still not sufficient to identify the effect of a change in the stochastic
process of land price. Furthermore, given the difference in the estimated fixed cost
function, the researcher cannot identify how much of this difference can be attributed
to the difference in the level of land prices and how much can be attributed to possible
actual differences in the fixed cost functions of the two groups.
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Fig. 3 Estimated (and true) entry cost and fixed cost

Figure 4 presents the main results of a counterfactual experiment that measures
to what extent the differences in average land prices can explain the different firm
turnover rates between type H and type L markets.17 This experiment consists of
solving for the equilibrium CCPs in a type H market if we keep the structural cost
functions at the estimated values for group H but replace the stochastic process of
land price with that of type L. The upper panel shows the true and the estimated
changes in the entry probability (i.e., the difference between counterfactual and
factual probabilities) where the estimated values are based on a zero scrap value nor-
malization. Similarly, the lower panel shows the change in the probability of staying
in the market for an incumbent.

The true effect of this counterfactual experiment that consists of reducing the aver-
age land price by ten percent is that both the new entrants and the incumbents are
less likely to be in the market at every land price, i.e., the schedules that represent
the probability of entry and stay, as functions of zc, move downward. The reduction
in the average land price implies that, at any level of the current land price, a firm’s

17The land price is discretized into 20 equally spaced distinct points between the first and ninety-ninth
percentiles.
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Fig. 4 Estimated (and true) counterfactual change

expectation about the future land price decreases. As a result, a new entrant is more
likely to postpone its entry because the future entry cost is likely to be lower and an
incumbent is more likely to exit today because the scrap value is likely to decrease in
the future. Despite this downward shift in these probability schedules with the lower
mean land price, there are on average more entries and fewer exits: the counterfac-
tual change increases the unconditional probability of being in the market from 7.1
percent to 10.4 percent for a potential entrant and from 94.7 percent to 96.5 percent
for an incumbent.

The predictions are considerably different if we perform the same counterfactual
experiment using the estimated structural cost functions that are ‘identified’ from
data under the zero scrap value restriction. In contrast to the true effect, the estimated
effect shows an upward shift in the schedules that represent the probability of entry
and the probability of stay for every possible land price. For instance, for the mean
land price in the original distribution (zc = 10), the probability of being in the mar-
ket increases by 2.0 percentage points (from 5.3 to 7.3) for a new entrant and by 1.2
percentage points (from 95.7 to 96.9) for an incumbent. This experiment also over-
estimates the unconditional probability of being in a market in the next period by 4.7
percentage points for a potential entrant (15.1 vs. 10.4) and by 1.4 percentage points
for an incumbent (97.9 vs. 96.5).
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This bias is generated by the difference between the estimated and true structural
cost functions. As shown in the first row of Table 1, imposing a zero scrap value
restriction leads to an overestimation of fixed cost and an underestimation of entry
cost. In addition, fixed cost estimates under this restriction depend on the land price,
while both entry cost and scrap value do not. Under the original distribution of land
price, a firm’s equilibrium policy under this (incorrect) cost structure is exactly equal
to the policy under the true cost structure. However, if the distribution shifts to the
left, a firm is more likely to choose to be in the market for every land price level
because a firm expects lower fixed cost in the future. In this environment, firms do
not consider the change in entry cost and scrap value because they do not depend on
the land price any more.

5 Identifying conditions

In this section we present a discussion of three approaches to deal with the
non-identification of the three structural functions in the fixed cost and some of
the counterfactual experiments: (a) partial (interval) identification; (b) exclusion
restrictions, and (c) using data on firms’ value or scrap values.

5.1 Partial identification

There are weak and plausible restrictions on the fixed profits functions that provide
bounds of our estimates of these functions. For instance, suppose that the researcher
is willing to assume that the three components of the fixed profit are always positive,
i.e., ec(zc) ≥ 0, f c(zc) ≥ 0, and sv(zc) ≥ 0. These restrictions, together with
equation (21), imply sharper lower-bounds for the entry cost and the scrap value.
More specifically, we have that ec(zc) ≥ ecLOW(z) ≡ max{0,Q(1, z) − Q(0, z)},
and sv(zc) ≥ svLOW (z) = −ecLOW(z), such that the lower bounds for the entry
cost function, ecLOW(z), and for the scrap value function, svLOW(z), are identified.
That is, if the ‘ex ante’ sunk cost is strictly positive (i.e., Q(1, z) − Q(0, z) > 0),
then the entry cost should be at least as large as the sunk cost, and if the sunk cost
is strictly negative (i.e., Q(1, z) − Q(0, z) < 0), then the scrap value should be at
least as large as the negative sunk cost. Other restriction that seems plausible is that
the current scrap value should be greater than the discounted and expected value of
future scrap value, i.e., sv(zc) ≥ β E(sv(zct+1) | zt = z). Combining this restriction
with equation (21), we have the following upper bound on the fixed cost function:
f c(zc) ≤ f cUP (z) ≡ −Q(1, z) + vp(zv). The restriction that current entry cost
should be greater than the discounted and expected value of future entry cost (i.e.,
ec(zc) ≥ β E(ec(zct+1) | zt = z)) also provides an upper bound on the fixed cost.

5.2 Exclusion restrictions

In some applications, the researcher may be willing to assume some observables in z
enter only in one of the three structural cost functions. Proposition 6 explains when
these exclusion restrictions help identification of structural cost functions, while
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Proposition 7 shows that this additional identification result extends the set of iden-
tified counterfactual experiments. For simplicity, we assume that the space of the
vector of exogenous state variables Z is finite and discrete. We use |Z| to denote the
number of elements in a finite set Z .

Proposition 6 Suppose that the vector of exogenous state variables zc is such that
zc = (

zc1, zc2
)

with zc1 ∈ Zc
1 and zc2 ∈ Zc

2 . For any value zc0
2 ∈ Zc

2 , define the
transition matrix Fz1(z

c0
2 ) with elements {fz(zc′1 |zc1,zc0

2 )}. Suppose that the following

conditions hold: (1) zc2 does not enter the fixed cost function, i.e., f c (zc) = f c
(
zc1

)
;

(2) zc2 may enter either entry cost function ec (zc) or scrap value function sv (zc),
but not both; and (3) there exit two different values in Zc

2 , say zc0
2 and zc1

2 , such that
the matrix Fzc1

(zc1
2 ) − Fzc1

(zc0
2 ) has rank equal to |Zc

1 | − 1. Under these conditions,
each of the structural cost functions f c (zc) , ec (zc) and sv (zc) is identified up to an
additive constant.

A few remarks clarify the implication of Proposition 6. First, the normalization
considered in this proposition is less restrictive than the one considered before. In
this proposition, the normalization means to fix, say, scrap value for a particular
realization of zc1, while the normalization considered before fixes scrap values to
be zero for every possible realization of zc1. Second, this identification result does
not require a large support for Zc

2 . The set Zc
2 may contain as few points as two.

Larger
∣∣Zc

2

∣∣ does not bring full identification as the corresponding matrix never has
full column rank. Third, the key source of identification here is the variation in the
transition probabilities of zc1 caused by the change in zc2. The required rank condi-
tion means that the impacts of zc2 on the transition probabilities must vary across
different zc1.

Example 3 Suppose that zc1 represents the property tax rate in the market, and that
this variable enters into the three structural functions. Suppose that, at period t , it
is announced whether or not the market property tax will increase next period as a
result of, say, the passage of a new law. Let zc2t ∈ {0, 1} be the dummy variable
that indicates whether the market belongs to the ”experimental” group of markets
with an announcement of a future tax increase (i.e., zc2t = 1) or to the “control”
group of markets without that announcement (i.e., zc2t = 0). Following Proposition 6,
we need the following two identification assumptions. First, entry cost, scrap value,
and fixed cost at period t do not depend on the announcement dummy zc2t once we
control for the current property tax zc1t .

18 The second identification assumption is
that the announcement has an effect on the transition probability of the property
tax between periods t and t + 1, i.e., Pr(zc1t+1|zc1t,zc2t = 0) �= Pr(zc1t+1|zc1t,zc2t =
1). At period t , firms in an “experimental” market have different beliefs about the

18Note that the “announcement dummy” zc2t may be correlated with the level of tax at period t . That is,
the average property tax at period t in markets in the “experimental” group may be larger (or smaller) than
in the “control” group.
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distribution of future property tax than firms in a “control” market, even if the current
level of property tax is the same in the two markets. Note that this condition on the
transition probability of property tax is testable using the data. The restrictions that
exclude the announcement dummy from the structural functions are not testable.

Proposition 7 Let f̂ c (zc), êc (zc), and ŝv (zc) be the identified functions (up to a
constant) under the conditions of Proposition 6. Then, the counterfactuals Q(k, z),
P (k, z) , and P(k, z ; θ0 +θ) are identified even if fz �= 0, as long as β = 0.

Note that the identification of counterfactual experiments that change the discount
rate β is still not identified as it requires the complete identification of scrap value
function sv (zc).

5.3 Using data on transaction prices from the acquisition of firms

In some industries, a common form of firm exit (and entry) is that the owner of
an incumbent firm sells all the firm’s assets to a new entrant. For instance, this is
very frequent in the bulk shipping industry, as shown in Kalouptsidi (Forthcoming),
and it is also common in some retail industries intensive in land input such as the
hotel industry. Sometimes, the researcher has data on firm acquisition prices. Under
some assumptions, these additional data can be used to deal with the identification
problem that we study in this paper. We now illustrate this approach in a simple
framework.

For simplicity, suppose that the industry is such that the only form of entry is
by acquiring an incumbent firm, and similarly the only form of exit is by selling
your assets to a new entrant. Then, the entry cost has two components: ec(zct ) =
r(zct ) + τen(zct ), where r(zct ) represents the acquisition price that the new entrant
should pay to the exiting incumbent, and τen(zct ) represents costs of entry other than
the acquisition price. Similarly, the exit value of a firm has also two components:
sv(zct ) = r(zct )− τex(zct ), where τex(zct ) represents costs associated with market exit.
We assume that the acquisition price r(zct ) is the solution of a Nash bargaining prob-
lem between the seller and the buyer. Taking into account that V̄ (1, z) − V̄ (0, z)
is the value of being an incumbent minus the value of being a potential entrant,
we have that the surplus of the buyer is V̄ (1, z) − V̄ (0, z) − ec(zc), and the sur-
plus of the seller is sv(zc) − V̄ (1, z) + V̄ (0, z). The Nash bargaining solution
implies that:

r(z) = V̄ (1, z)− V̄ (0, z)+ ατex(zc)− (1 − α)τen(zc) (26)

where α ∈ (0, 1) is a parameter that represents the seller bargaining power.
Let Rt be the selling price of a firm, and suppose that the researcher observes

this price when a transaction actually occurs. For simplicity, to abstract from selec-
tion problems, consider that Rt is a deterministic function of the observable state
variables zt plus a measurement error ξt that is not a state variable of the model,
has zero mean, and is independent of the observed state variables zt (i.e., classical
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measurement error): Rt = r(zt ) + ξt , with E(ξt |zt ) = 0.19 Under these conditions,
the pricing function r(z) is identified from the data. Now, the researcher has three sets
of restrictions to identify the three unknown functions f c(zc), τen(zc), and τex(zc):

τen (zc)+ τex (zc) = Q(1, z)−Q(0, z),

f c (zc)+ r(z)+ τen(zc)− β
∑

z′∈Z
fz(z′|z)

[
r
(
z′

) − τex
(
zc′

)] = −Q(0, z)+ vp(zv).

β
∑

z′∈Z
fz(z′|z)

[
r
(
z′

) − ατex
(
zc′

) + (1 − α)τen
(
zc′

)] = ṽ (k, z)−Q(k, z)

(27)
where the third set of restrictions comes from combining the price equation in (26)
with the definition of Q(k, z) as Q(k, z) ≡ ṽ (k, z)− β

∑
z′ fz(z

′|z) [V̄ (
1, z′

)−
V̄

(
0, z′

)].

Proposition 8 Given a value of the parameter that represents seller bargaining
power, α the set of restrictions in (27) identify the functions τen(.), τex(.), and f c(.).

6 Conclusion

The solution and estimation of dynamic structural models of oligopoly competition
is a useful tool in industrial organization and other fields of empirical microeco-
nomics such as trade, health economics, or public economics. Empirical applications
of these models typically use panel data on firms’ entry and exit decisions in multiple
local markets, combined with information on exogenous market and firm charac-
teristics, and sometimes information on firms’ prices and quantities. In this class
of models, the functions that represent fixed operating cost, entry cost, and exit
value play an important role in firms’ entry and exit behavior. Furthermore, many
public and managerial policies can be described in terms of changes in some of
these functions. This paper is motivated by a fundamental identification problem:
these three functions cannot be separately identified using these data. The conven-
tional approach to address this identification problem has been to ‘normalize’ some
of the structural parameters to zero. We study the implications of this ‘normaliza-
tion’ approach. First, we obtained closed-form expressions that provide the correct
interpretation of the estimated objects that are obtained under the ‘normalization
assumptions’ that have been considered in applications. Second, we show that there

19This assumption is testable: it implies that the residual price ξ ≡ [R − E(R|z)] should be independent
of firms’ entry and exit decisions. In general, unless the dataset is rich enough to include in z all the
relevant variables affecting the price of a firm, we should expect that this assumption will be rejected by
the data. That is, we expect R = r(z, ε)+ξ , where ε is the vector of state variables observable to firms but
unobservable to the researcher. Allowing for this type of unobservables as determinants of the transaction
price implies that we should deal with a potential selection problem. We only observe the transaction
price for those firm-market-period observations when a firm is sold, but those firms that are sold can be
systematically different in terms of unobserved state variables ε from those firms that are not sold, i.e.,
E(R|z, firm is sold) �= E(R|z).
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is a class of counterfactual experiments that are identified and for which the normal-
ization assumptions are innocuous. We also show that there is a class of experiments
for which the normalization assumptions introduce a bias. Using a simple numeri-
cal experiment, we show that this bias can be very significant both quantitatively and
economically. We also discuss alternative approaches to address this identification
problem.

Appendix

A Extensions of the basic model

A.1 Model with no re-entry after market exit and no waiting before market entry

Some models and empirical applications of industry dynamics assume that a new
entrant has only one opportunity to enter and an incumbent can not reenter after exit
from the market (e.g., Ryan 2012). This model is practically the same as the basic
model presented in Section 2.1, with the only difference that the value of not entering
for a potential entrant is 0 and the value of exiting for an incumbent is the scrap value,
i.e., v (0, 0, zt ) = 0 and v (0, 1, zt ) = sv(zct )+ εsvt .

A.2 Model with time-to-build and time-to-exit

In this version of the model, it takes one period to make entry and exit decisions
effective, though the entry cost is paid at the period when the entry decision is made,
and similarly the scrap value is received at the period when the exit decision is taken.
Now, at is the binary indicator of the event “the firm will be active in the market at
period t + 1”, and kt = at−1 is the binary indicator of the event “the firm is active in
the market at period t”. For this model, the one-period profit function is:

�t =
⎧
⎨

⎩

kt [vp(zvt )− f c
(
zct

) + sv
(
zct

)] + εt (0) if at = 0

kt [vp(zvt )− f c
(
zct

)] − (1 − kt ) ec
(
zct

) + εt (1) if at = 1
(A.1)

Given this structure of the profit function, we have that the Bellman equation, opti-
mal decision rule, and CCP function are defined exactly the same as above in
equations (6), (9), and (10), respectively.

A.3 Model with investment

The basic model and the previous extensions assume that the only dynamic deci-
sion of a firm is to be active or not in the market. However, our (non) identification
results extend to more general models where incumbent firms make investments in
product quality, capacity, etc. Here we present a relatively simple model with invest-
ment. Suppose that there is a quasi-fixed input, say capital, and the firm decides every
period the amount of capital to use. Let at ∈ {0, 1, · · · , K} denote the firm’s deci-
sion at period t where K is the largest possible capital level. When at is zero, the firm
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is inactive in the current period. The firm’s variable profit depends on the current
amount of capital at , e.g., the amount of capital may affect the quality of the product
and therefore demand, and also variable costs. The fixed profit depends both on cur-
rent capital at and on the amount of capital installed at previous period, kt ≡ at−1.
The one-period profit function of this firm is:

�t =
⎧
⎨

⎩

−ic
(
0, kt , zct

) + εt (0) if at = 0

vp(at , zvt )− f c
(
at , zct

) − ic
(
at , kt , zct

) + εt (at ) if at > 0
(A.2)

where ic
(
at , kt , zct

)
is the investment cost function, which represents the cost the

firm incurs to change its capital level from k to a taking zct as given. We assume
ic

(
at , kt , zct

) = 0 when at = kt . In this specification, ic
(
a, 0, zct

)
represents the

entry cost for a firm that decides to enter in the market with an initial level of capital
equal to a. Similarly, −ic

(
0, k, zct

)
represents the scrap value of an incumbent firm

with installed capital equal to k. It is clear that our baseline model is a special case of
this general model when K = 1.

A.4 Identification of the model with no re-entry after market exit and no waiting
before market entry

In this extension, v (0, k, zt ) is equal to k sv (zt ). The system of equations corre-
sponding to (19) is:

ṽ(k, z) = vp(zv)− [
f c (zc)+ ec (zc)

] + k
[
ec (zc)− sv (zc)

] + β
∑

zc′∈Zc fz(zc′|z)sv
(
zc′

)

+β
∑

z′∈Z fz(z′|z)S(ṽ
(
1, z′

)
, F̃ε|1)

(A.3)

Define the function Q(k, z) ≡ ṽ(k, z)−β
∑

z′∈Z fz(z′|z) S(ṽ
(
1, z′

)
, Fε̃|1). With this

new definition of Q(k, z), we have exactly the same system of equations as (20). The
relationship reported in Table 1 is directly applicable to this extension.

A.5 Identification of the model with time-to-build and time-to-exit

Most of the expressions for the basic model still hold for this extension, except
that now the one-period payoff π (a, k, z) has a different form. In particular, now
π (1, k, z) − π (0, k, z) = −k sv(zc) − (1 − k) ec (zc), and this implies that the
expression for the differential value function ṽ(k, z) is:

ṽ(k, z) = −ksv(zc)− (1 − k)ec
(
zc

)+ β
∑

z′∈Z

fz(z′|z)
[
V̄

(
1, z′

) − V̄
(
0, z′

)]
(A.4)

Also, now we have that v (0, 1, z)−v (0, 0, z) = π (0, 1, z)−π (0, 0, z) = vp(zv)−
f c (zc)+ sv (zc). Therefore, the system of identifying restrictions (20) becomes:

Q(k, z) = −ksv(zc)− (1 − k)ec (zc)+ β
∑

z′∈Z
fz(z′|z)[vp(zv′)− f c

(
zc′

) + sv
(
zc′

)] (A.5)
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Table 3 Interpretation of estimated structural functions in the model with time-to-build

where Q(k, z) has exactly the same definition as before in the model without time-
to-build. Given this system of equations, Proposition 2 also applies to this model
with the only difference that now we have the following relationship between true
functions and identified objects:

ec (zc)− sv (zc) = Q(1, z)−Q(0, z)

ec (zc)+ β
∑

zc′∈Zc

fz(zc′|z)[f c
(
zc′

) − sv
(
zc′

)] = −Q(0, z)+ β
∑

zv′∈Zv

fz(zv′|z)vp(zv′)
(A.6)

The first equation is exactly the same as in the model without time to build. The sec-
ond equation is slightly different: instead of current value of variable profit minus the
fixed cost, vp(zv) − f c(zc), now we have the discounted and expected value of this
function at the next period, i.e., β

∑
z′∈Z fz(z′|z) [vp

(
zv′

)−f c
(
zc′

)]. Table 3 reports
the relationship between estimated functions and unknown structural functions.

A.6 Identification of the model with investment

Under mild regularity conditions the CCPs P(a|k, z) are identified, and given CCPs
we can also identify the differential value function ṽ(a, k, z) ≡ v(a, k, z)− v(0, k, z).
The model implies the following restrictions:

ṽ (a, k, z) = vp(a, zv)− f c (a, zc)− ic (a, k, zc)+ ic (0, k, zc)

+β
∑

z′∈Z
fz

(
z′|z) [

V̄
(
a, z′

) − V̄
(
0, z′

)] (28)

The same logic used to derive (18) implies that V̄ (k, z) = v (0, k, z)+ S(ṽ (., k, z) ,
Fε̃|k) where S(ṽ (., k, z) , Fε̃|k) ≡ v (0, k, z)+ ∫

maxa>0{0 , ṽ (a, k, z) − ε̃(a)}
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dFε̃|k (̃ε). Using the definition of v (a, k, z), we have that v (0, k, z) − v (0, 0, z) =
π (0, k, z) − π (0, 0, z) = −ic (0, k, zc), that is the scrap value of a firm with
k units of capital. Therefore, we have that V̄ (a, z) − V̄ (0, z) = −ic (0, k, zc)+
S(ṽ (., k, z) , Fε̃|k)− S(ṽ (., 0, z) , Fε̃|0). Define the function Q(a, k, z) ≡
ṽ (a, k, z)− β

∑
z′ fz

(
z′|z) [S(ṽ (., k, z) , Fε̃|k)− S(ṽ (., k, z) , Fε̃|k)] , that is identi-

fied from the data. Then, the restrictions shown in (28) can be written as:

Q(a, k, z) = vp(a, zv)− f c (a, zc)− ic (a, k, zc)+ ic (0, k, zc)

−β
∑

zc′∈Zc

fz
(
zc′|z) ic (

0, a, zc′
) (A.7)

Note that Q(k, z) in equation (20) is a special case when K = 1 and a = 1. Using
this expression, we can also obtain a system of equations that correspond or extend
the ones in (21). For any a > 0 and any (k, z):

−ic (a, k, zc)+ ic (0, k, zc)+ ic (a, 0, zc) = Q(a, k, z)−Q(a, 0, z)

f c (a, zc)+ ic (a, k, zc)− ic (0, k, zc)+ β
∑

zc′∈Zc

fz
(
zc′|z) ic (

0, a, zc′
)

= −Q(a, k, z)+ vp (a, zv)

(A.8)

The same logic used to prove Proposition 2 implies no identification of structural cost
functions f c (a, zc) and ic (a, k, zc). However, we can still identify the difference
between entry cost (ic (a, 0, zc)) and scrap value (−ic (0, k, zc)) for the same z as
we have

Q(k, k, z)−Q(k, 0, z) = ic (0, k, zc)+ ic (a, 0, zc) (A.9)

The relationship between estimated functions under some normalization and struc-
tural cost functions is similar to that of the baseline model. For example, when
we normalize scrap value (i.e., îc (0, k, zc) = 0), our estimates of investment cost
function îc (a, k, zc) and fixed cost function f c (k, zc) are written as

îc (a, k, zc) = ic (a, k, zc)+ ic (0, a, zc)− ic (0, k, zc)

f̂ c (k, zc) = f c (k, zc)− ic (0, k, zc)+ βE
[
ic(0, k, zct+1)|zt = z

] (A.10)

B Proofs of Lemmas and Propositions

Proof of Lemma 1. By definition Q(k, z) is equal to ṽ(k, z)− β
∑

z′ fz(z
′|z)

[ S(ṽ (1, z) , Fε̃|1)− S(ṽ (0, z) , Fε̃|0) ], where ṽ (k, z) = F−1
ε̃|k (P (k, z)) and

S(ṽ (k, z) , Fε̃|k) ≡
∫ ṽ(k,z)
−∞ [ṽ(k, z)− ε̃] dFε̃|k (̃ε). These expressions imply the map-

ping in equation (23). We can describe mapping q̃(P̃ ; β, fz) as the composition of
two mappings: (1) the mapping from CCPs to differential values, i.e., ṽ (k, z) =
F−1
ε̃|k (P (k, z)); and (2) the mapping from differential values to Q′s, i.e., Q(k, z) =

ṽ(k, z) − β
∑

z′ fz(z
′|z) [S(ṽ (1, z) , Fε̃|1)− S(ṽ (0, z) , Fε̃|0)]. The first mapping is

point-wise for every value of (k, z), and in our binary choice model it is obviously
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invertible. Proposition 1 in (Hotz and Miller 1993) establishes the invertibility of
that mapping for multinomial choice models. Therefore, we should prove the invert-
ibility of the second mapping, between the vector ṽ ≡ {̃v(k, z) : for all (k, z)} and
the vector Q̃ ≡ {Q(k, z) : for all (k, z)}. Define this mapping as Q̃ = g̃(̃v) where
g̃(̃v) ≡ {g(k, z, ṽ) : for all (k, z)} and:

g(k, z, ṽ) ≡ ṽ(k, z)− β
∑

z′∈Z
fz(z′|z)

(∫ ṽ(1,z′)
−∞ [̃v(1, z′)− ε̃] dFε̃|1 (̃ε)

)

+ β
∑

z′∈Z
fz(z′|z)

(∫ ṽ(0,z′)
−∞ [̃v(0, z′)− ε̃] dFε̃|0 (̃ε)

)

In vector form, we can express this mapping as:

g̃(̃v) ≡
[
g̃(0, ṽ)
g̃(1, ṽ)

]
=

[
ṽ(0, .)− βFz̃e(̃v)

ṽ(1, .)− βFz̃e(̃v)

]

where Fz is the transition probability matrix with elements fz(z′|z), and ẽ(̃v) ≡
{̃e(z; ṽ) : for all z} with ẽ(z; ṽ) = ∫ ṽ(1,z)

−∞ [̃v(1, z) − ε̃] dFε̃|1 (̃ε)−
∫ ṽ(0,z)
−∞ [̃v(0, z) −

ε̃] dFε̃|0 (̃ε). The mapping g̃(̃v) is globally invertible if and only if its Jacobian matrix
J(̃v) ≡ ∂g̃(̃v)/∂ṽ′ is non-singular for every value of ṽ. It is simple to show that this
Jacobian matrix has the following form:

J(̃v) = I − β

[(
1
1

)
⊗

(
Fz

∂ẽ(̃v)

∂ṽ′

)]

where I is the identity matrix. Given the form of function ẽ(z; ṽ), it is straightforward
to show that ∂ẽ(z; ṽ)/∂ṽ(0, z) = Fε̃|0(̃v(0, z)) = −P(0, z), and ∂ẽ(z; ṽ)/∂ṽ(1, z) =
Fε̃|1(̃v(1, z)) = P(1, z). Therefore,

∂ẽ(̃v)

∂ṽ′
= [−diag{P(0, .)}; diag{P(1, .)}]

where diag{P(k, .)} is diagonal matrix with elements {P(k, z)} for every value of z.
The Jacobian matrix J(̃v) is invertible for every value of ṽ.

Proof of Proposition 1 The proof of this Proposition 1 is a direct application of
Proposition 4 in Aguirregabiria (2010) to our model of market entry and exit.
Proposition 4 in Aguirregabiria (2010) applies to a general class of binary choice
dynamic structural models with finite horizon, and it builds on previous results by
Matzkin (1992, 1994).

Proof of Proposition 2 (i) No identification. Let ec, f c, and sv be the true values of
the functions in the population. Based on these true functions, define the functions:
ec∗ (zc) = ec (zc) + λ (zc); sv∗ (zc) = sv (zc) + λ (zc), and f c∗ (zc) = f c (zc) −
λ (zc) + β

∑
zc′∈Zc fz(zc′|z) λ

(
zc′

)
, where λ (zc) �= 0 is an arbitrary function. It is

clear that ec∗, sv∗, and f c∗ also satisfy the system of equations (20). Therefore, ec,
f c, and sv cannot be uniquely identified from the restrictions in equations (20). (ii)
Identification of two combinations of the three structural functions. We can derive
equations in equations (21) after simple operations in the system (20).
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Proof of Proposition 3 Under the conditions of Proposition 3, we have that equa-
tion (24) becomes:

Q(k, z; θ0 +θ) = Q0(k, z)+vp(zv)−
[
fc (zc)+ec (zc)

] + k
[
ec (zc)−sv (zc)

]

+β0 ∑

zsv′∈Z
f 0
z,sv(z

sv′|z)sv(zsv′)

(29)

The researcher knows all the elements in the right-hand-side of this equation, and
therefore Q(k, z; θ0 +θ) is identified. Given Q̃(θ0 +θ), we can use the inverse
mapping q̃−1 to get P̃(θ0 +θ) = q̃−1(Q̃(θ0 +θ); β0, f ∗

z ).

Proof of Proposition 4 Under the conditions of Proposition 4 (and making vp =
fc= ec= sv = fz,nosv = 0, for simplicity but without loss of generality),
equation (24) becomes:

Q(k, z; θ0 +θ) = Q0(k, z)+ β0 ∑

zsv′∈Z
fz,sv (z

sv′|z)sv0(zsv′)

+ β

∑

zsv′∈Z
[f 0

z,sv(z
sv′|z)+fz,sv (z

sv′|z)]sv0(zsv′)
(30)

Since the scrap value sv0 is not identified, none of the terms that form Q(k, z; θ0 +
θ)−Q0(k, z) are identified.

Proof of Proposition 5 It follows simply from equation (25).

Proof of Proposition 6 Suppose zc2 enters only in the entry cost ec (zc). Under the
conditions of Proposition 6, the system of equations (21) becomes:

f c
(
zc1

) + sv
(
zc1

) − β
∑

zc′1 ∈Zc

fz(zc′1 |zv, zc1,z
c
2)sv

(
zc′1

) = −Q(1, z)+ vp(zv). (31)

The difference between this equation evaluated at zc1
2 and at zc0

2 is:
∑

z′1∈Z
[fz(zc′1 |zv, zc1, zc1

2 )− fz(zc′1 |zv, zc1, zc0
2 )]sv (

zc′1

)

= 1

β

[
Q(1, zv, zc1, zc1

2 )−Q(1, zv, zc1, zc0
2 )

]
.

In matrix form, we can express this system of equations as
[
Fzc1

(zc1
2 )− Fzc1

(zc0
2 )

]
sv = 1

β

[
Q(1, zc1

2 )− Q(1, zc0
2 )

]
. (32)

Note that matrix Fzc1
(zc1

2 ) − Fzc1
(zc0

2 ) does not have full column rank because any
matrix that is a difference of transition matrices is singular. However, the rank of
Fzc1

(zc1
2 )−Fzc1

(zc0
2 ) can be |Zc

1 |−1. If that is the case, we can combine the system of
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equations (32) with a normalization assumption on one single element of the vector
sv (e.g., sv(zc0

1 ) = 0 for some value zc0
1 ) to uniquely identify the vector sv.

Proof of Proposition 7 The identified function ŝv (zc) is such that ŝv (zc) =
sv0 (zc) + κ where sv0 (zc) is the true scrap value function and κ is an unknown
constant. Given β = 0, we can write equation (30) as

Q(k, z; θ0 +θ) = Q0(k, z)+ β0 ∑

zsv′∈Z
fz,sv (z

sv′|z)
[
ŝv

(
zsv

′) − κ
]

= β0 ∑

zsv′∈Z
fz,sv (z

sv′|z)ŝv (
zsv′

)

where the last equality holds as we always have
∑

zsv′∈Z fz,sv (z
sv′|z) = 0. There-

fore, we can calculate Q(k, z; θ0 + θ), and the effect of the counterfactual
experiment on CCPs is identified.
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