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We propose a dynamic model of an oligopoly industry characterized by
spatial competition between multi-store retailers. Firms compete in
prices and decide where to open or close stores depending on demand
and cost conditions, the number of competitors at different locations,
and on location-specific private-information shocks. The model
distinguishes multiple forces in the spatial configuration of store
networks, such as cannibalization of revenue between stores of the same
retail chain, economies of density, competition, consumer transportation
costs, or positive demand spillovers from other stores. We develop an
algorithm to approximate a Markov Perfect Equilibrium in our model,
and propose a procedure for the estimation of the parameters of the
model using panel data on number of stores, prices, and quantities at
multiple geographic locations within a city. We also present a numerical
example to illustrate the model and algorithm.

I. INTRODUCTION

RETAIL CHAINS ACCOUNT FOR MORE THAN 60% OF SALES IN U.S. RETAILING

(see Hollander and Omura [1989], and Jarmin, Klimek and Miranda
[2009]). Geographic location is in many cases the most important source of
product differentiation for these firms. It is also a forward looking decision
with significant non-recoverable entry costs, mainly due to capital invest-
ments which are both firm and location specific. Thus, the sunk cost of set-
ting up a new store, and the dynamic strategic behavior associated with
them, is a potentially important force behind the configuration of the spa-
tial market structure that we observe in retail markets.

Despite its relevance, there have been very few studies analyzing spatial
competition as a dynamic oligopoly game. Existent models of industry
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dynamics often lack an explicit account of spatial competition. Although
useful applications have emerged from the seminal work by Pakes and
McGuire [1994] and Ericson and Pakes [1995], none have explicitly incor-
porated the spatial and multi-store features which are prevalent in many
retailing industries.1 The literature on spatial competition often restricts
the treatment of time. Models based on the seminal work of Hotelling
[1929] describe a two or three-period framework where firms choose loca-
tions and then compete in the product market.2 Eaton and Lipsey [1975],
Schmalensee [1978], and Bonanno [1987] study the multi-store monopolist
under the threat of entry. They find that an incumbent monopolist will
strategically locate its stores to successfully preempt the entry of competi-
tors. As noted by Judd [1985], the limited account of time and dynamics in
this literature has very important implications on some predictions of these
models. Judd notes that the aforementioned models assume that entry and
location decisions are completely irreversible, with no possibility of exit or
relocation. He shows that allowing for exit may result in non-successful
spatial preemption by the incumbent. Judd�s paper emphasizes that models
of spatial competition between multi-store firms need to incorporate
dynamics to its full extent, allowing for endogenous entry, exit, and
forward-looking strategies. That is the intention of this paper.

In this context, the contribution of this paper is threefold. First, we pro-
pose a dynamic model of an oligopoly industry characterized by spatial
competition between multi-store firms. In this model, firms compete in pri-
ces and decide where to open or close stores depending on the location pro-
file of competitors, demand and cost conditions, and location-specific
private information shocks. The model distinguishes multiple forces in the
spatial configuration of store networks, such as cannibalization of revenue
between stores of the same retail chain, economies of density, competition,
consumer transportation costs, or positive demand spillovers from other
stores. We define and characterize a Markov Perfect Equilibrium (MPE) in
this model. The consideration of multi-store retail firms is a particularly rele-
vant aspect of our model. Important topics in the analysis of competition in
retail industries, such as cannibalization, spatial pre-emption, economies of
density, network effects, or the value of mergers between store networks,

1 Ellickson, Beresteanu and Misra [2010] endogenize supermarkets� �store density,� i.e., the
number of stores per capita a firm owns in a market. Holmes [2011] studies the role of econo-
mies of density in explaining the spatial evolution of Wal-Mart stores since the 1950s. How-
ever, spatial competition is not accounted for in these applications.

2 Anderson, De Palma and Thisse [1992] present a compilation of static spatial competition
models. There is also a large and growing literature on estimation of static structural models
of spatial competition and store location. The work by West [1981a] and [1981b] was seminal
in this literature. Some recent important contributions to this empirical literature are Pinkse,
Slade and Brett [2002], Seim [2006], Zhu and Singh [2009], Ellickson, Houghton and Timmins
[2013], Datta and Sudhir [2011], and Vitorino [2012]. Slade [2005] and Pinkse and Slade
[2010] provide excellent surveys.
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cannot be studied without a model that recognizes the multi-store nature of
retailers. Until recently, empirical games of market entry and store location
did not account for the explicit multi-store nature of retailers, e.g., Seim
[2006] and Zhu and Singh [2009]. However, recent studies by Jia [2008],
Ellickson, Houghton and Timmins [2013], and Nishida [2014] propose and
estimate entry games between retail chains. Our paper extends the models in
these three previous papers in several important dimensions. First, while
these previous models are static, we consider a dynamic game. Incorporating
dynamics and firms� forward looking behavior is necessary to study topics
such as pre-emption, first-mover advantage, or the implications of firms�
uncertainty about future demand or land price. Second, the models in these
previous papers do not incorporate spatial differentiation and competition
within a market (i.e., within a U.S. county in the papers by Jia [2008] and
Ellickson, Houghton and Timmins [2013], and within a 1 km square region
in the paper by Nishida [2014]). In contrast, our model incorporates spatial
differentiation and the explicit distance between retailers� stores within a city
such that we can measure the degree of spatial substitution between stores.
Third, Jia [2008] and Ellickson, Houghton and Timmins [2013] impose the
restriction that there are only positive (or only negative) spillover effects
between stores of the same retail chain. Our model allows for both cannibal-
ization effects on the demand side and economies of scope, scale and density
on the cost side.3 Finally, the specification of the profit function in these pre-
vious models is semi-structural in the sense that it does not distinguish
between demand and cost parameters. Our framework includes an explicit
model of consumer demand with spatial differentiation, and a model of price
competition between multi-store retailers. This allows us to distinguish
between demand, variable cost, fixed cost and entry cost parameters, and to
study welfare implications of alternative policies or firms� strategies.

A second contribution of this paper is to provide a method to compute an
equilibrium of the model. The number of possible geographic configurations
of a store network, that determines the size of the action space and of the state
space in this dynamic game, increases exponentially with the number of geo-
graphic locations and with the number of firms. Solving exactly for an equilib-
rium of the model is an intractable problem even when the number of
locations is not too large.4 In static games of network competition, recent
papers have proposed models and methods to deal with the high dimensional-
ity of the action space. Jia [2008] and Nishida [2014] show that under certain
restrictions on the profit function the static game is supermodular and this

3 The model in Nishida [2014] allows for negative spillover effects within a market and posi-
tive spillover effects across markets. As in Jia [2008], these restrictions are imposed to satisfy a
supermodularity condition in the profit function of a retail chain.

4 If I is the number of firms, and L is the number of locations in the model, then the number
of cells in the state space is 2IL. For instance, with four firms and ten locations the number of
cells is greater than one trillion (1012).
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property can be exploited to define an algorithm for the solution of a Nash
Equilibrium that is computationally efficient and practical. Unfortunately, the
supermodularity of the static game does not extend to the dynamic version of
the game, even under stronger conditions on firms� profits.5 Ellickson,
Houghton and Timmins [2013] relax the supermodularity restriction and pro-
pose a �Profit Inequality� method for the estimation of a static game of com-
petition between retail networks. The method does not require solving for an
equilibrium but only evaluating profits at a (not very large) number of retail
networks. However, this method cannot solve the dimensionality problem in a
dynamic game because this problem appears not only in the dimension of the
action space but most importantly in the dimension of the state space. Fur-
thermore, while estimation of structural parameters does not require solving
for an equilibrium, the implementation of counterfactual experiments typi-
cally involves the computation of an equilibrium, or at least an approxima-
tion. In this paper, we propose a method to obtain an approximation of an
equilibrium of this dynamic game. The method combines three main ideas: (a)
a restriction on the number of stores that a firm can open/close per period; (b)
smoothing and interpolation over the geographic space of a city; and (c) a
method of simulation and interpolation in the spirit of Rust [1997].6

(a) An advantage of the dynamic game is that we can deal, quite easily,
with the problem of dimensionality of the action space that appears in the
static game. In most real world situations, we find that a retail chain opens/
closes only a small number of stores per quarter, or month, or week.
We impose this as a restriction. Note that the researcher can observe store
openings and closings almost in continuous time, and our model can accom-
modate any time frequency for firms� store location decisions.7 (b) We
exploit the geographic nature of the model to summarize the information in
the state vector (i.e., a high-dimension vector of discrete variables that repre-
sent the number of stores of each retail chain at each location) using smooth
surfaces in the two dimension geographic space that can be represented
using a small number of parameters. (c) Finally, we apply Rust�s random
grid method and extend it to a multi-agent problem. While Rust proved that
his method �breaks the curse of dimensionality� in the solution of single-
agent discrete-choice dynamic programming models with continuous state

5 In order to apply this type of algorithm to a dynamic version of the game, we need super-
modularity not of the one-period profit function but of the intertemporal profit function, i.e.,
the one-period profit plus the continuation value. This condition requires not only restrictions
on the profit function but very unrealistic and ad hoc restrictions on the evolution of the
endogenous state variables. See Aguirregabiria [2008] for an example in a simple dynamic
model of market entry-exit.

6 In a companion paper (Aguirregabiria and Vicentini [2012]), we provide a manual that
describes in detail our programs and procedures. This manual and the software, in GAUSS
language, can be downloaded from authors� web pages.

7 We illustrate this point in section 5 in the context of a longitudinal dataset for the super-
market industry in the city of Greensboro, NC, that has been used in Vicentini [2013].
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variables, in this paper we do not provide any proof that this property
extends to our multi-agent spatial competition model. For our purposes,
Rust�s method provides us with a practical way to reduce significantly the
curse of dimensionality when computing equilibrium in the dynamic game.

A third contribution of the paper is that we discuss data requirements and
econometric issues in the structural estimation of the parameters of the
model. Section IV(i) provides a detailed description of the type of data
required to estimate the model, and provides examples of previous applica-
tions in empirical IO that have used this type of data. Section IV(ii) describes
our specification of the primitive functions and our restrictions on the unob-
servables of the model. In Section IV(iii), we describe the implementation of
a two-step pseudo maximum likelihood method for the estimation of the
dynamic game. In the first step of this method, the reduced-form (semipara-
metric) estimation of player�s conditional choice probabilities is particularly
challenging in our spatial dynamic model. For the estimation of these proba-
bilities, we propose a flexible but practical reduced-form model that uses the
variable profit function from the static Bertrand equilibrium of our model.

The rest of the paper is organized as follows. Section II presents the model
and characterizes a Bertrand equilibrium of the static pricing game and a
Markov Perfect Equilibrium of the dynamic game of store location by retail
chains. In Section III, we describe our algorithms to solve for an equilibrium
and to deal with multiple equilibria in the implementation of counterfactual
experiments. Section IV deals with structural estimation, data requirements,
and estimation methods. We have included in Section V a simple example to
illustrate our model and methods. We summarize and conclude in Section VI.

II. MODEL

II(i). The Market

Consider a local market of a differentiated retail product (e.g., retail bank-
ing, supermarkets). From a geographic point of view the market is a com-
pact set C in the Euclidean space R2. The distance between two points in the
market, say a and b, is the Euclidean distance denoted by jja2bjj. There is a
finite set of L pre-specified business locations where it is feasible for firms to
operate stores. Let fz1; z2; . . . ; zLg be the set of geographical coordinates of
these feasible locations, where z‘ 2 C. Figure 1 presents an example.8

8 The assumption of a finite number of feasible locations is made for computational conven-
ience. In an empirical application of the model, this assumption implies that the researcher
has to discretize the set of business locations. However, there are situations where this assump-
tion can be realistic. For instance, in Canada and the U.S. leasing contracts at shopping cen-
ters typically include a �radius restriction� clause that prohibits tenants in a shopping center
from opening another store within a certain radius (see Eckert and West [2006]). Also, some
countries and states have zoning laws that apply to �big box� retailers. These restrictions can
be sufficiently strict such that some retailers have only a few feasible locations.
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Time is discrete. At time t the market is populated by a continuum of
consumers. Each consumer is characterized by a geographical location or
home address z 2 C. The geographical distribution of consumers at period t
is given by the absolute measure /tðzÞ such that

Ð
C
/tðdzÞ5Mt, where Mt is

the size of the market. This measure /t evolves over time according to a
discrete Markov process. Let X be the discrete set of possible functions /t.

9

There are I multi-store firms that can potentially operate in the market.
We index firms by i and use !5f1; 2; . . . ; Ig to represent the set of firms.
At the beginning of period t a firm�s network of stores is represented by
the vector nit5ðni1t; ni2t; . . . ; niLtÞ, where ni‘t is the number of stores that
firm i operates in location ‘ at period t. For simplicity, we assume that a
firm can have at most one store in a location, such that ni‘t 2 f0; 1g. The
model can be easily generalized to the case with more than one store per
location and firm.10 Overlapping of stores from different firms at the same
location is allowed. In Section II(vii), we present an extension of the model
where business space is scarce in some locations such that there is a maxi-
mum number of stores that can operate in each of these locations. The
spatial market structure at period t is represented by the vector
nt5 n1t; n2t; . . . ; nItð Þ 2 f0; 1gIL. A store in this market is identified by a
pair ði; ‘Þ where i represents the firm, and ‘ identifies the location.

Every period t, firms observe the spatial market structure nt, the state of
the demand /t, and some location and firm specific shocks in costs which
are private information of each firm. Given this information, incumbent
firms compete in prices. Prices can vary over stores within the same firm.

Figure 1
Market and Feasible Business Locations (represented with �)

9 A market where the spatial distribution of consumers is constant over time (i.e., /tðzÞ5/ðzÞ
for any z 2 C) is a particular case of our model.

10 In our model, two stores of the same firm and at the same location are perfect substitutes.
Therefore, a firm will never find it optimal to have more than one store at the same location.
However, it is straightforward to extend our logit demand model to allow for horizontal dif-
ferentiation between stores with the same firm and location, i.e., the consumer-specific
extreme value type 1 variables should vary across stores within a firm location.
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This spatial Bertrand game is static because current prices do not have any
effect on future demand or profits. Furthermore, private information
shocks affect fixed operating costs and entry costs but not the demand or
variable costs. Therefore, these shocks do not have any influence on equi-
librium prices. The resulting Bertrand prices determine equilibrium variable
profits for each firm i at period t. At the end of period t, firms decide
simultaneously their network of stores for the next period. This choice is
dynamic because of partial irreversibility in the decision to open a new
store, i.e., sunk costs. Firms are allowed to open or close at most one store
per period. Exogenous changes in the spatial distribution of demand (i.e.,
changes in /t) and firms� location specific shocks generate entry and exit
at different locations and changes over time in the spatial market structure.
Firms may grow (or decline) over time expanding (contracting) their net-
work of stores, and possibly become a dominant player (or exit from the
market). The details of this model are presented in Sections II(ii) to II(vi).
In Section II(vii) we present several extensions of our basic framework.

Some assumptions about the basic structure of the model deserve further
explanation. First, while our model of entry-exit and store location is
dynamic, we assume that the model of price competition is static. This
implies that there are no dynamics in demand, such as durable or storable
products and consumer switching costs, or in variables costs, such as learn-
ing by doing/selling, menu costs, or firm inventories. This structure of the
model follows the framework in Ericson and Pakes [1995] and Pakes and
McGuire [1994], as well as most of the recent literature on empirical
dynamic games of oligopoly competition (see Aguirregabiria and Nevo
[2013]). An important reason for using this structure is convenience in the
characterization and computation of an equilibrium. However, we also
believe that this structure is realistic for many retail industries, especially if
the analysis is not particularly focused on the short-run dynamics of
prices.11 Second, our model allows for firms� private information in the
dynamic game but assumes complete information in the static pricing game.
We admit that allowing for private information in both games would be
more realistic. Our assumption of complete information in the pricing game
is mainly for convenience and it follows most of the empirical IO literature
on models of price competition in differentiated product industries. While it
is relatively simple to characterize and compute a Bayesian Nash Equilib-
rium in a discrete choice game of incomplete information (like a model of
market entry-exit), it is substantially more complicated in games where

11 Sales promotions and price dynamics related to storable products (Hendel and Nevo
[2006]), or to firm inventories (Aguirregabiria [1999]) tend to occur at relatively high time fre-
quencies. Our model of price competition can be interpreted in terms of firms� competition in
average prices over a quarter or a year.
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players� decisions are continuous variables, and even more if the decision is
a vector of prices at each/store location, as in our pricing game.12

II(ii). Consumer Behavior

The model of consumer demand that we present here builds on De Palma
et al. [1985]. We extend their model in two dimensions. First, we incorpo-
rate vertical differentiation (i.e., they assume that firms have the same qual-
ities xi). And second, geographic location in our model has two
dimensions while they consider a linear city.

A consumer is fully characterized by a pair ðz; vÞ, where z is her location
in geographic space or home address, and v 2 R

IL is a vector representing
her idiosyncratic preferences over all possible stores. Consumer behavior is
static and demand is unitary. At every period t, consumers know all active
stores with their respective locations and prices. A consumer decides
whether to buy or not a unit of the good and from which store to buy it.
The indirect utility of consumer ðz; vÞ patronizing store ði; ‘Þ at time t is:

ui‘t5xi‘2pi‘t2sgðjjz2z‘jjÞ1vi‘(1)

xi‘ is the quality of the product offered by retail chain i that, in principle,
may vary exogenously across locations. All consumers agree on this mea-
sure. pi‘t is the mill price charged by store ði; ‘Þ at time t. The term
s gðjjz2z‘jjÞ represents consumer�s transportation costs, where s is the unit
transportation cost and jjz2z‘jj is the Euclidean distance between the con-
sumer�s address and the store, and g :ð Þ is a continuous and increasing func-
tion.13 Finally, vi‘ captures consumer idiosyncratic preferences for store
ði; ‘Þ. The utility of the outside alternative (i.e., not purchasing the good) is
normalized to zero.

A consumer purchases a unit of the good at store ði; ‘Þ if and only if ui‘t

� 0 and ui‘t � ui0‘0t for any other store ði0; ‘0Þ. To obtain the aggregate
demand at each store we have to integrate individual demands over the dis-
tribution of ðz; vÞ. We assume that v is independent of z and it has a type 1
extreme value distribution with dispersion parameter l. The parameter l
measures the importance of horizontal product differentiation, other than
spatial differentiation. Integrating over v we obtain the local demand for
store i; ‘ð Þ from consumers at location z:

12 In a discrete choice game of incomplete information, a player�s strategy can be repre-
sented as a vector of probabilities in the simplex. In contrast, in a continuous decision game of
incomplete information, a player�s strategy is a multivariate continuous function, which is a
substantially more complex object. Most applications of continuous decision games of incom-
plete information have concentrated in relatively simple one-dimension strategies such as auc-
tions, or price competition in homogeneous product industries.

13 The gð:Þ function can be linear, concave, or convex. As in the standard Hotelling model
of store location, if this function is convex, then the equilibrium of the model incorporates a
consumer transportation cost motive for the agglomeration of stores.
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ri‘ðz; nt; ptÞ5
ni‘t exp fðxi‘2pi‘t2sgðjjz2z‘jjÞÞ=lg

11
XI

i051

XL

‘051

ni0‘0t exp fðxi0‘02pi0‘0t2sgðjjz2z‘0 jjÞÞ=lg
(2)

Integrating these local demands over the spatial distribution of consumers
we obtain the aggregate demand for store ði; ‘Þ at time t:

si‘ðnt; pt;/tÞ5
ð
C

ri‘ðz; nt; ptÞ/tðdzÞ(3)

Consumers� substitution patterns depend directly on the distance func-
tion jjz2z‘jj, so that a store competes more fiercely against closer stores.
Stores� market areas are overlapping because of the unobserved heterogene-
ity of consumers, v. Therefore a store serves consumers from all corners of
the city C, but more so the nearby patronage. Stores will always face a posi-
tive demand and can adjust prices without facing a perfectly elastic
demand. Firms face the trade-off between strategic and market share
effects. As stores locate closer to each other, the more intense price compe-
tition acts as a centrifugal force of dispersion (strategic effect). At the same
time, firms wish to locate where transportation costs are minimum, which
acts as a centripetal force of agglomeration (market share effect). An equi-
librium spatial market structure would balance these forces, along with the
effect of own-firm stores cannibalization.

We note the importance of the parameters l and s that capture product
differentiation. As l! 0 the degree of non-spatial horizontal product dif-
ferentiation becomes small and every consumer shops at the store with the
lowest full price from her location (i.e., quality-adjusted mill price plus
transportation costs). At the limit we would observe market areas defined
as Voronoi graphs (or Thiessen polygons) with well defined market borders
(see Eaton and Lipsey [1975], or Tabuchi [1994], among others). Transpor-
tation costs increase the importance of location, serve as a shield for mar-
ket power and create incentives for firm dispersion.14

II(iii). Price Competition

For notational simplicity we omit the time subindex in this subsection.
Every period firms compete in prices taking as given their network of
stores, the state of the demand, and variable costs. Firms may charge dif-
ferent prices at different stores. This price competition is a game of

14 Besides computing equilbrium prices, our Bertrand algorithm computes demand price
elasticities for each location and store at these prices. These elasticities help the researcher bet-
ter understand what the actual market areas are in geographic space. The detection of the rele-
vant geographical market area has long been debated among antitrust authorities (see Willig
[1991] and Baker [1997]).
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complete information. In this game, every firm knows the current networks
of stores, the demand system, and the unit costs of all active stores. A firm
variable profit function is:

Riðn; p;/Þ5
XL

‘51

pi‘2ci‘ð Þsi‘ðn; p;/Þ(4)

ci‘ is the unit variable cost of firm i at location ‘ which is assumed constant
over time. Each firm maximizes its variable profit by choosing its best-
response vector of prices. The best response of firm i can be characterized
by the first-order condition for each price pi‘:

si‘1 pi‘2ci‘ð Þ @si‘

@pi‘
1
X
‘0 6¼‘

pi‘02ci‘0ð Þ @si‘0

@pi‘
50(5)

The first two terms are the price and quantity effects of pi‘ on the profit at
its own store ði; ‘Þ, while the last term is the quantity effect of pi‘ on all other
stores of firm i. This last term is zero for a single-store firm. For a multi-
store firm, this term captures how the pricing decision of the firm internal-
izes the cannibalization effect among its own stores. In our demand system,
stores of a same firm are gross substitutes (i.e., @si‘0=@pi‘ > 0 for ‘0 6¼ ‘) and
therefore the third term is always positive. Given that @si‘=@pi‘ < 0, we have
that, ceteris paribus, a multi-store firm will offer higher prices than a single-
store firm. The firm knows that by reducing the price in one of its stores
there is a business stealing effect on its other stores.15

Let p and s pð Þ be vectors with dimension IL31 of prices and demands,
respectively, for every store. Following Berry [1994] and Berry et al. [1995],
we define a square matrix K pð Þ of dimension IL3IL with elements:

Kj‘0

i‘ 5
2
@sj‘0

@pi‘
if j5i

0 otherwise

8><
>:(6)

We can write the entire system of best-response equations in vector form as
s pð Þ2K pð Þ � p2cð Þ50, or what is equivalent:

p5c1K pð Þ21 � s pð Þ(7)

where c is the IL31 vector of unit costs. A spatial Nash-Bertrand equilib-
rium is then a vector p� that solves the fixed-point mapping (7). Given our

15 Of course, there are cost factors (e.g., economies of scale and density) that can make pri-
ces of multi-store firms smaller than prices of single-store firms. The effect that we illustrate in
equation (5) is only the cannibalization effect.
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assumptions on the distribution of consumer taste heterogeneity v, the
mappings s pð Þ and K pð Þ are continuously differentiable. Furthermore, it is
possible to show that, for every firm i and location ‘, an equilibrium price
p�i‘ in this game is always greater than or equal to the constant marginal
cost ci‘ and smaller than or equal to the equilibrium price at store ði; ‘Þ
when firm i is a monopolist with stores at every location in the city. There-
fore, the vector of prices p belongs to a compact set: p belongs to the IL-
dimension rectangle (i.e., lattice) < c; pMon >, where pMon is the vector of
monopoly prices for each firm-location. By Brower�s fixed-point theorem,
a Nash-Bertrand equilibrium exists.

The equilibrium is not necessarily unique. Multiplicity of equilibria may
be a problem when we use the model for comparative statics or to evaluate
the effects of public policies. A possible way of dealing with multiplicity of
equilibria is to impose an equilibrium selection mechanism, i.e., a criterion
that selects a specific type of equilibrium such that when we do compara-
tive statics the same equilibrium type is always selected. To implement an
equilibrium selection mechanism in practice, we need an algorithm that
can find the specific type of equilibrium for any possible specification of
the primitives of the model. We describe here an algorithm with these fea-
tures that exploits the supermodularity of this Bertrand game.

The algorithm is based on Topkis [1979], [1998] and Echenique [2007].
Following Vives [1999] (page 32), our Bertrand game is smooth supermod-
ular if it satisfies the following conditions: (i) the space of prices is a lattice;
(ii) the profit function Rið:Þ is twice continuously differentiable in prices;
(iii) @2Ri=@pi‘@pjm � 0 for any i 6¼ j and any pair of locations ‘ and m; and
(iv) @2Ri=@pi‘@pim � 0 for any ‘ 6¼ m. As mentioned above, conditions
(i) and (ii) are satisfied in this pricing game because p belongs to the lattice
< c; pMon > and the revenue function is twice continuously differentiable
within that set. A sufficient (but not necessary) condition for (iii) and (iv)
to hold is that the local market shares ri‘ðz; pÞ are never larger than a half
within the set < c; pMon >.16 More generally, this Bertrand game is smooth

16 For condition (iii) we have that for i 6¼ j:

@2Ri

@pi‘@pjm
5

@si‘

@pjm

� �
1 pi‘2ci‘ð Þ @2si‘

@pi‘@pjm

� �
1
X
‘0 6¼‘

pi‘02ci‘0ð Þ @2si‘0

@pi‘@pjm

2
4

3
5

The first and the third terms in brackets are always positive. For the second term, we have
that: @2si‘=@pi‘@pjm5l21

Ð
@ri‘ðzÞ=@pjm 122ri‘ðzÞð Þ/ðdzÞ. Since @ri‘ðzÞ=@pjm > 0, a sufficient

condition for this second term to be positive is that, for any location z 2 C, the local market
shares ri‘ðzÞ are smaller than 1/2. This condition holds when qualities are not too large and
the degree of horizontal product differentiation l is not too small relative to transportation
costs. However, it is clear that this sufficient condition is far from being necessary. Local mar-
ket shares greater than 1/2 are perfectly compatible with a positive value for @2si‘=@pi‘@pjm.
Furthermore, it is clear that the cross-price second derivative of the profit function can be
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supermodular if quality differences between firms are not too large and the
degree of horizontal product differentiation (l) is not too small relative to
transportation costs (s).

The following Lemma is a straightforward application to our Bertrand
game of a general result by Topkis [1979] for supermodular games. The
Lemma establishes a simple algorithm to obtain the equilibria with the
smallest and with the largest prices, respectively.

Lemma. Define the best response mapping in vector form, bðpÞ � c
1K pð Þ21s pð Þ. Consider the following algorithm (best response function iter-
ation): start with an initial vector of prices p0; at iteration k � 1,
pk5bðpk21Þ; stop when pk5pk21. If the game is supermodular then:

i. if we start with p05c, then the algorithm stops at the Nash-Bertrand
equilibrium with smallest prices, plow;

ii. if we start with p05pMon, then the algorithm stops at the Nash-
Bertrand equilibrium with largest prices, phigh.

Topkis [1979] proved this Lemma for supermodular games, and Topkis
[1998] extended the result to a more general class of games with strategic
complementarities (GSC). The proof is relatively simple. If the game is
supermodular, then the best response mapping bðpÞ is monotonically
increasing. This implies that bðcÞ � c, and b2ðcÞ � bðbðcÞÞ � c,. . ., and
bkðcÞ � bk21ðcÞ, such that iterating in bð:Þ generates a monotonically
increasing sequence in the space of prices < c; pMon >. But the space of pri-
ces is compact, so there must be an iteration such that bkðcÞ5bk21ðcÞ, and
this implies that bkðcÞ is a Nash-Bertrand equilibrium. Let plow be that
equilibrium, and let p� be another equilibrium of the game. Since p� � c
and the best response mapping is monotonically increasing, we have that
plow5 bkðcÞ � bkðp�Þ 5 p� for any equilibrium p�. Therefore, plow is the
equilibrium with smallest prices. Similarly, if we initialize the algorithm
with p05pMon, we generate a monotonically increasing sequence, bðpMonÞ
� b2ðpMonÞ � . . . � bkðpMonÞ that should converge in the compact space of

positive when @2si‘=@pi‘@pjm is negative just because the other two terms can be larger in abso-
lute value. For condition (iv) we have that for ‘ 6¼ m:

@2Ri

@pi‘@pim
5

@si‘

@pim
1
@sim

@pi‘

� �
1 pi‘2ci‘ð Þ @2si‘

@pi‘@pim
1 pim2cimð Þ @2sim

@pi‘@pim

� �

1
X

‘0 6¼f‘;mg
pi‘02ci‘0ð Þ @2si‘0

@pi‘@pim

2
4

3
5

Again, the first and the third terms in brackets are always positive. The second term is also
positive under the same conditions as mentioned above.
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prices. Let phigh be that equilibrium. Since any equilibrium p� is such that
p� � pMon, we have that phigh5 bkðpMonÞ � bkðp�Þ 5 p� for any equilibrium
p�. Therefore, phigh is the equilibrium with largest prices.17

Based on this Lemma, we can use Topkis algorithm to select always the
same type of Nash-Bertrand equilibrium, e.g., the equilibrium with mini-
mum prices. The two extremal equilibria coincide with the Pareto best and
the Pareto worst equilibria from the point of view of firms (see Vives
[1999], page 152). In the numerical examples in Section V, we use Topkis
algorithm to select the Nash-Bertrand equilibrium with smallest prices: the
worst equilibria from the point of view of firms.18

Let p� n;/ð Þ be the vector of equilibrium prices associated with a value
n;/ð Þ of the state variables. Solving this vector into the variable profit

function one obtains the equilibrium variable profit function:

R�i n;/ð Þ � Riðn; p� n;/ð Þ;/Þ(8)

II(iv). Dynamic Game

At the end of period t firms simultaneously choose their network of stores
nt11 with an understanding that they will affect their variable profits at
future periods. We model the choice of store location as a game of incom-
plete information, so that each firm i has to form beliefs about other firms�
choices of networks. More specifically, there are components of the entry
costs and exit values of a store which are firm-specific and private informa-
tion. There are two main reasons why we include incomplete information
in our model. First, as shown by Doraszelski and Satterthwaite [2010], in
the Ericson-Pakes complete-information model of industry dynamics an
equilibrium in pure strategies does not necessarily exist. Doraszelski and
Satterthwaite also show that the introduction of private information varia-
bles with continuous distribution function and large support guarantees
the existence of an equilibrium in this class of games of industry dynamics.
Second, the recent literature on estimation of dynamic games has also con-
sidered games of incomplete information because these variables are con-
venient sources of unobserved heterogeneity from the point of view of the

17 See also Echenique [2007], who has developed an efficient algorithm to find all the equili-
bria in GSC. The implementation of Echenique�s algorithm is relatively simple. Once we have
obtained the lowest equilibrium, plow, we can define a new game with the same payoff func-
tions as our game but where the set of feasible prices is the lattice < plow1d; pMon >, and d > 0
is a small constant. Then, we can apply Topkis algorithm to obtain the lowest equilibrium of
this game. It is straightforward to show that this equilibrium is the one with the second lowest
prices in our Bertrand game. We can proceed in this way to obtain a sequence of equilibria
sorted by the value of prices. The algorithm continues until an iteration K where the K-lowest
equilibrium is exactly the highest equilibrium, phigh.

18 We can also use the Lemma to check for multiplicity of equilibria. If the smallest equilib-
rium coincides with the largest equilibrium, then the equilibrium is unique.
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researcher (see Aguirregabiria and Mira [2007], or Pakes, Ostrovsky and
Berry [2007]).

We assume that a firm may open or close at most one store per period.
Given that we can make the frequency of firms� decisions arbitrarily high,
this is a plausible assumption that reduces significantly the cost of comput-
ing an equilibrium in this model. Let ait be the decision of firm i at period
t such that: ait5‘1 represents the decision to open a new store at location
‘; ait5‘2 means that a store at location ‘ is closed; and ait 5 0 means
the firm chooses to do nothing. Therefore, the choice set is
A5f0; ‘1; ‘2 : ‘51; 2; . . . ;Lg. Some of the choice alternatives in A are not
feasible for a firm given its current network nit. In particular, a firm can
not close a store in a submarket where it has no stores, and it cannot open
a new store in a location where it already has a store. The set of feasible
choices for firm i at period t is denoted AðnitÞ such that AðnitÞ5 f0g[
f‘1 : ni‘t50g[ f‘2 : ni‘t51g. Note that this choice set has exactly L 1 1
choice alternatives.

We represent the transition rule of market structure as nt115nt11½at�,
where 1½at� is a IL31 vector such that its ði; ‘Þ-element is equal to 1 1
when ait5‘1, to 21 when ait5‘2, and to zero otherwise. That is, the ði; ‘Þ-
element of 1½at� is equal to 1fait5‘1g21fait5‘2g, where 1f:g is the indica-
tor function.

II(v). Specification of the Profit Function

Firm i�s current profit is:

Pit 5 R�i nt;/tð Þ2FCit2ECit1EVit(9)

FCit is the fixed cost of operating all the stores of firm i. ECit is the entry
or set-up cost of a new store. And EVit is the exit value of closing a store.
Fixed operating costs depend on the number of stores but also on their
location.

FCit 5
XL

‘51

hFC
i‘ ni‘t(10)

hFC
i‘ is the fixed cost of operating a store in submarket ‘. In Section II(vii),

we extend this basic specification to incorporate economies of scale and
density in the fixed cost of a retail chain. The specification of entry cost is:

ECit 5
XL

‘51

1fait5‘1g hEC
i‘ 1eEC

i‘t

� �
(11)
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hEC
i‘ is the entry cost at location ‘. The variable eEC

i‘t represents a firm and
location specific component of the entry cost. This idiosyncratic shock is
private information of firm i. The specification of the exit value is:

EVit 5
XL

‘51

1fait5‘2g hEV
i‘ 1eEV

i‘t

� �
(12)

hEV
i‘ is the scrapping or exit value of a store in location ‘. The variable eEV

i‘t
is a firm and location specific shock in the exit value of a store.

The vector of private information variables for firm i at period t is
eit5feEC

i‘t ; e
EV
i‘t : ‘51; 2; . . . ;Lg. We make two assumptions on its distribu-

tion. First, we assume that eit is independent of demand conditions /t, and
independently distributed across firms and over time. Independence across
firms implies that a firm cannot learn about other firms� e�s by using its
own private information. And independence over time means that a firm
cannot use other firms� histories of previous decisions to infer their current
e�s. These assumptions simplify significantly the definition and the compu-
tation of an equilibrium in this dynamic game. Second, we assume that eit

has a cumulative distribution function Gið:Þ that is strictly increasing and
continuously differentiable with respect to the Lebesgue measure in R

2L.
These two assumptions allow for a broad range of specifications for the
eit�s, including spatially correlated shocks.

It will be convenient to distinguish two additive components in the cur-
rent profit function:

Pit5pi ait; nt;/tð Þ1eitðaitÞ(13)

where pi ait; ntð Þ is the current profit function excluding the private infor-
mation variables, and eitðaitÞ represents the private information shock asso-
ciated with action ait.

II(vi). Markov Perfect Equilibrium

We consider that a firm�s strategy depends only on its payoff relevant state
variables ðnt;/t; eitÞ. For the sake of notational simplicity, hereinafter we
omit the state of the demand /t as an argument of the different functions.
Let a � faiðnt; eitÞ : i 2 !g be a set of strategy functions, one for each firm,
such that ai is a function from f0; 1gIL

3R
2L into A. Given a set of strategy

functions a, we can define a value function V a
i ðnt; eitÞ that represents the

value of firm i given that the other firms behave according to their strategy
functions in a and firm i responds optimally. The value function V a

i is the
unique solution of the following Bellman equation:
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V a
i ðnt; eitÞ5 max

ait2AðnitÞ
va

i ðait; ntÞ1eitðaitÞ
� �

(14)

where the functions va
i ðait; ntÞ are choice specific value functions which are

defined as:

va
i ðait; ntÞ �pi ait; ntð Þ1b

ð
V a

i nt11½ait; a2iðnt; e2itÞ�; ei;t11

� �

3dGiðei;t11Þ
Y
j 6¼i

dGjðejtÞ
" #(15)

Similarly, we can define firm i�s best response function, aBR
i ðnt; eit; a2iÞ, as:

aBR
i ðnt; eit; a2iÞ5 arg max

ait2AðnitÞ
va

i ðait; ntÞ1eitðaitÞ
� �

(16)

A Markov perfect equilibrium (MPE) in this game is a set of strategy func-
tions such that each firm�s strategy maximizes the value of the firm for
each possible ðnt; eitÞ and taking other firms� strategies as given.

Definition. A set of strategy functions a� � fa�i ðnt; eitÞ : i 2 !g is an MPE
if and only if for any firm i and any state ðnt; eitÞ we have that:

a�i ðnt; eitÞ5aBR
i ðnt; eit; a

�
2iÞ(17)

Next, we follow Aguirregabiria and Mira ([2007], pp. 7–13) to represent
an MPE as a fixed point in a space of choice probabilities. The algorithm
that we use to compute an equilibrium (in Section III(ii)) uses this repre-
sentation. We start by defining three objects: conditional choice probabil-
ities; integrated value function; and best response probability function.

Conditional choice probabilities (CCP�s). Given any set of strategy functions
a, we can define a set of conditional choice probabilities Pa � fPa

i ðaitjntÞ :
i 2 !; ait 2 A; nt 2 f0; 1gILg such that

Pa
i ðaitjntÞ � Pr ðaiðnt; eitÞ5aitjntÞ5

ð
1 aiðnt; eitÞ5aitf gdGiðeitÞ(18)

The probabilities in Pa represent firms� expected behavior, from the point
of view of the competitors, when firms follow their respective strategies
in a. Given that ait and nt are discrete variables with finite support, Pa

is a vector in an Euclidean space of finite dimension.19 More precisely,

19 Note that we have assumed that /t can take only a finite number of values. Therefore,
Pa

i ðaitjnt;/tÞ also belongs to a finite-dimension Euclidean space.
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Pa 2 ½0; 1�D where D5I � L � 2IL is the number of free probabilities in the
vector Pa.

Define the integrated value function �V a
i ðntÞ �

Ð
V a

i ðnt; eitÞdGiðeitÞ. Apply-
ing the definitions of CCP�s and integrated value function to the Bellman
equation in (14)-(15) we get the following integrated Bellman equation:

�V a
i ðntÞ5

ð
max

ait

pi ait; ntð Þ1eitðaitÞf

1b
X
a2it

�V a
i nt11½ait; a2it�ð Þ

Y
j 6¼i

Pa
j ðajtjntÞ

" #)
dGiðeitÞ

(19)

The integrated value function �V a
i is the unique fixed point of this Bellman

equation. Notice that the fixed point mapping that defines �V a
i depends on

firms� strategies only through the vector of choice probabilities Pa. To
emphasize this point and to define an MPE in probability space, we change
the notation slightly and use the symbol �V P

i instead of �V a
i to denote the

integrated value function. For the same reason, we use vP
i ðait; ntÞ to repre-

sent the choice-specific value functions, which can be written as:

vP
i ðait; ntÞ � pi ait; ntð Þ1b

X
a2it

�V P
i nt11½ait; a2it�ð Þ

Y
j 6¼i

Pa
j ðajtjntÞ

" #
(20)

Given these value functions, we can re-write the best response function as:
aBR

i ðnt; eit;PÞ5arg max ait2AðnitÞfvP
i ðait; ntÞ1eitðaitÞg. Note that we have

replaced a2i by P as an argument in the best response function. This is
because CCP�s contain all the information about competitors� strategies
that a firm needs to construct its best response.

The best response probability function, Wiðaitjnt;PÞ, is the probability
that action ait is firm i�s best response given that the state of the market is
nt and the other firms behave according to their choice probabilities in P. It
is the best response function aBR

i integrated over the distribution of private
information variables.

Wiðaitjnt;PÞ �
ð
1 ait5arg max

a2AðnitÞ
vP

i ða; ntÞ1eitðaÞ
� �� 	

dGiðeitÞ(21)

This function maps CCP�s into CCP�s. The best response probability func-
tion in vector form is WðPÞ5fWiðaitjnt;PÞ : ði; ait; ntÞ 2 !3A3f0; 1gILg.

Let a� be a set of MPE strategies and let P� be the vector of CCP�s asso-
ciated to a�. Using the previous definitions it is simple to verify that P�

should be a fixed point of the mapping W. Inversely, let P� be a fixed point
of the mapping W, and define the set of strategy functions a� with
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a�i ðnt; eitÞ5arg max aitfvP�
i ðait; ntÞ1eitðaitÞg. Then, it is also simple to verify

that a� is an MPE (see Aguirregabiria and Mira [2007], for further details).
Therefore, we can represent any MPE in this model as a fixed point of the
best response probability mapping. Equilibrium probabilities solve the
coupled fixed-point problems defined by equations (19), (20) and (21).
Given a vector of probabilities P, we obtain value functions �V P

i as solutions
of the I Bellman equations in (19), and given these value functions, we
obtain best response probabilities using (21).

Given this representation of an equilibrium, the proof of existence of an
MPE is a straightforward application of Brower�s theorem. The distribu-
tion Gið:Þ has support over the entire R

2L and it is continuous and strictly
increasing with respect to every argument. This implies that the fixed-point
mapping W is continuous on the compact set ½0; 1�D. Thus, by Brower�s
theorem, an equilibrium exits.

Example. The functional forms of the integrated Bellman equation and of
the best response probability mapping depend on the distribution of the pri-
vate information variables. A special case in which these functions have close
form expressions is when the private information variables have a type
1 extreme value distribution. Suppose that the private information shocks f
eitðaÞ : a 2 Ag are independently and identically distributed over ði; t; aÞ with
type 1 extreme value distribution. Then, the integrated Bellman equation is:

�V P
i ðntÞ5log

X
ait2AðnitÞ

exp vP
i ðait; ntÞ

� �0
@

1
A(22)

And the best response probability function is:

Wiðaitjnt;PÞ5
exp vP

i ðait; ntÞ
� �

P
a2AðnitÞ exp vP

i ða; ntÞ
� �(23)

The iid extreme value distribution is restrictive because it implies no spatial
correlation between private information shocks. However, it is very conven-
ient from a computational point of view because it avoids numerical inte-
gration over the space of eit. �

This dynamic game can have multiple equilibria. This is an issue when
we use this model for comparative statics. In principle, a researcher may be
willing to deal with multiplicity by imposing an equilibrium selection
mechanism such that, for different values of the model parameters, the
same equilibrium type is always selected. We illustrated in Section II(iii)
how imposing an equilibrium selection mechanism is relatively simple in
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static supermodular games. Unfortunately, it is generally difficult to estab-
lish supermodularity in dynamic games.20

To deal with multiple equilibria in the dynamic game, we use different
approaches when estimating the model and when making counterfactual
experiments. In Section IV, we describe different estimation methods that
do not require solving for an equilibrium of the dynamic game and that
can deal with multiplicity at the estimation stage. In Section III(iii), we
present a computationally simple homotopy method to deal with multiplic-
ity of equilibria in the implementation of counterfactual experiments. The
method involves the computation, or approximation, of only two equili-
bria, one under the factual scenario and other under the counterfactual.

II(vii). Extensions of the Benchmark Model

(a) Positive spillover effects from other stores. In order to reduce their
searching/shopping costs, consumers may be attracted to locations with
multiple stores selling the same differentiated product. This argument
implicitly assumes that when consumers decide which location to visit they
have some uncertainty about product availability (stockouts) or quality of
service at stores and this uncertainty disappears only when the consumer
visits the store. We do not model explicitly this consumer uncertainty.
Instead, we extend our specification of consumer utility by including a new
term that accounts for a positive spillover effect from the presence of other
stores. The indirect utility of consumer ðz; vÞ patronizing store ði; ‘Þ is:

ui‘5xi‘1dh
X
j 6¼i

nj‘

 !
2pi‘2sgðjjz2z‘jjÞ1vi‘(24)

where d is a positive parameter, hð:Þ is an increasing function, and
P

j 6¼i nj‘

is the number of stores at location ‘ from firms other than i. This extension
of the model does not have any effect on the basic structure of the demand
model and of the Bertrand equilibrium. All the results above remain by
only replacing xi‘ with x�i‘, where x�i‘ � xi‘1d hð

P
j 6¼i nj‘Þ. However, this

extension can have substantial effects on the spatial configuration of stores
in equilibrium, and on the relationship between equilibrium prices and the
number of stores in a location.

In our benchmark model of price competition, the number of stores in a
location only has a competition effect in the sense that, ceteris paribus, prices
are lower in locations with more stores. In this extended model with spill-
overs, the number of stores in a location still has a competition effect, but it

20 Curtat [1996] provides a useful overview of the problem. More recently, Bernstein and
K€ok [2009] have obtained conditions for the supermodularity of a dynamic game of innova-
tion and cost reduction in assembly networks.
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also has a positive effect on prices due to the increase in consumer traffic.
The net effect on prices can be either positive or negative depending on the
relative magnitude of the spillover parameter d and the parameter l that
represents the degree of (non-spatial) horizontal product differentiation.

Our benchmark dynamic model of store location includes some features
that can generate agglomeration of stores in some locations, e.g., minimiza-
tion of consumer transportation costs if function gð:Þ is convex; or loca-
tions with high (low) values of the amenities xi‘ (costs). The extended
model with positive spillover effects introduces an additional centripetal
force of store agglomeration.

(b) Store experience increases quality. It is well known in the empirical
IO literature that firms or stores that have been longer in the market are
more productive and have larger market shares, on average, than younger
stores. There are multiple (not mutually exclusive) explanations for this
empirical evidence, e.g., dynamic selection, active or passive learning. Here
we present a simple extension of our benchmark model that incorporates
store passive learning. Stores that stay active accumulate experience, and
this experience has a positive effect on the service quality the store provides
to customers. The specification of consumer utility is:

ui‘t5xi‘1ck ei‘tð Þ2pi‘t2sgðjjz2z‘jjÞ1vi‘(25)

where c is a positive parameter that captures the magnitude of the experi-
ence effect on quality, k :ð Þ is an increasing function, and ei‘t is a discrete
variable that measures the experience of a store at period t, e.g., a dummy
variable that is equal to zero if the store is brand new and equal to one oth-
erwise; or the number of consecutive periods that the store has been active
in the market, with a maximum value �e.

This extension has no implications on the basic structure of the Bertrand
equilibrium model and the computation of an equilibrium, but it has rele-
vant implications on its predictions. The extended model predicts that, in
equilibrium, younger stores charge lower prices. This extension implies a
more substantial modification in the structure of the dynamic game. Now,
the vector of endogenous state variables describing retail chain networks is
fnt; etg where et � fei‘t : i 2 !; ‘51; 2; . . . ;Lg is the vector of store experi-
ences. Similar to nt, the vector et has also a deterministic transition rule
conditional on firms� entry-exit decisions. Otherwise, the description of a
Markov Perfect Equilibrium does not change. However, this extension can
have substantial implications on the predictions of the dynamic game. The
positive effect of experience on store quality introduces a first-mover
advantage, creates incentives for �early� entry, and discourages entry in loca-
tions with experienced incumbents.
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(c) Economies of scale and density at the chain level. The specification of
fixed costs can be extended to take into account that the fixed cost of oper-
ating a network of stores may depend on the number of stores (e.g., econo-
mies of scale) and on the distance between the stores (e.g., economies of
density). Economies of density are spatial scope economies enjoyed by
clustered stores belonging to the same firm, in the sense that the closer the
stores of a firm are to each other in space, the more scope economies there
are. For example, such density economies may include reduced distribution
costs, easier product quality inspection and employee monitoring, and
sharing of advertising, inventory, and personnel among same-firm stores.
The recent empirical IO literature on retail chains has emphasized the
importance of these economies of scale and density (Holmes [2011], Jia
[2008], Nishida [2014]). Here we present an extended version of our bench-
mark model that includes economies of density in fixed costs using a speci-
fication similar to Jia [2008]. Other specifications are possible, as well as
incorporating similar network effects in other components of the model
such as variable costs, entry costs, or even consumer demand.

The fixed cost of operating store ði; ‘Þ is:

hFC
i‘ ni‘t2

hED

2

X
‘0 6¼‘

ni‘0t

jjz‘02z‘jj
(26)

where hED is a parameter that represents the magnitude of the economies of
density. The effect on this fixed cost of stores of the same firm at other locations
is weighted by the inverse of the distance to location ‘. This term is multiplied
by one-half to avoid double counting in the total fixed cost of the retail chain.

This extension does not alter the basic structure of the dynamic game, and
it does not have any implication on the pricing game (i.e., conditional on
market structure nt, equilibrium prices are the same as in the benchmark
model). However, economies of density can have very substantial implications
on the predictions of the model. For obvious reasons, spatial agglomeration
of stores of the same chain should be stronger with economies of density. It
seems plausible that this extension can generate an equilibrium with the fla-
vour of spatial entry deterrence, i.e., if chain A is an incumbent in location ‘,
then this reduces the probability that chain B opens a store in locations close
to ‘. This implies that store agglomeration becomes stronger for stores of the
same chain but weaker for stores of different chains. Moreover, economies of
density could potentially cause such within-firm agglomeration of stores even
if there is no spatial entry deterrence motive. For example, under density
economies a firm with a store in location ‘ would likely prefer to open a new
store in a location that is near location ‘ (instead of in a similar but more dis-
tant location) simply because its overall fixed operating costs would be lower
due to the density economies.
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(d) Scarce business space. Some business locations are unique in the
sense that they offer a limited number of slots for retail stores. For example,
it is not unusual for open-air �strip malls� to have a small number of lots
that can accommodate large retailers such as supermarkets or department
stores. Such restriction can be even stronger if one considers older and/or
denser cities. Here we present an extension of our benchmark model that
incorporates a simple version of this feature. Suppose that a location ‘ can
accommodate a maximum of N‘ stores. The values N‘ at different locations
are common knowledge to firms. However, the incomplete information
nature of our dynamic game implies that, when firms make their entry-exit
decisions, they do not know how many other firms want to operate a store
in a location. Therefore, we distinguish between firms �applications� for
store entry and the actual realization of entry decisions.

Let a�it 2 AðnitÞ be the decision of firm i at period t, where the set AðnitÞ
has exactly the same definition as in the benchmark model. However, a�it
represents an �application� and not necessarily the actual opening-closing
of stores of the firm. Let ait be the variable that represents the actual
change in the store network of firm i, such that nit115nit11faitg as in the
benchmark model. We consider the following relationship between the
decisions/applications fa�itg and the actual realizations of store entry-exit
faitg. First, if the application is for closing an existing store (i.e.,
a�it5‘2 2 AðnitÞ) or for doing nothing (i.e., a�it50), then this application is
realized with probability one such that ait5a�it. Second, if the application is
for opening a new store (i.e., a�it5‘1 2 AðnitÞ), then this request is not auto-
matically implemented and there is some uncertainty. Let Ninc

‘t11 be the total
number of incumbent stores in location ‘ at period t that decide to stay in
the market, i.e., Ninc

‘t11 �
PI

i51 ni‘t 1fa�it 6¼ ‘2g. And let Nnew
‘t11 be the num-

ber of new applicants for opening a store, i.e., Nnew
‘t11 �

PI
i51 1fa�it5‘1g.

The allocation of the N‘ slots follows two simple rules: (1) if there is not
excess demand for business slots at location ‘ (i.e., if Ninc

‘t111Nnew
‘t11 � N‘),

then all the applications are accepted; and (2) if there is excess demand
(i.e., if Ninc

‘t111Nnew
‘t11 > N‘), then all the incumbents can keep their stores

with probability one and the new applicants enter into a lottery for the
allocation of the remaining N‘2Ninc

‘t11 slots. Different lotteries may be con-
sidered. The simplest one is a sequential lottery of each slot where all the
applicants have the same probability of winning a slot. Other lotteries
might be considered to try to capture that firms may have different willing-
ness to pay for a business slot.

This extension of the benchmark model introduces an additional source
of uncertainty in the dynamic game. Firms� strategy functions and Condi-
tional Choice Probabilities are defined in terms of the application decisions
fa�itg in a very similar way as in our benchmark model. The main difference
appears in the transition rule of store networks that becomes stochastic.
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The implications of this new source of uncertainty on the predictions of
the model are not obvious. Of course, the scarcity of business space should
reduce entry and store agglomeration in some locations.

III. ALGORTHIMS FOR SOLUTION AND COMPARATIVE STATICS

III(i). Computation of a Nash-Bertrand equilibrium

To compute a Nash-Bertrand equilibrium of the static pricing game, we
iterate in the best response function. More specifically, we use a Gauss-
Seidel version of the algorithm that iterates in the best response mapping,
such that players take turns in best-responding instead of jointly best-
responding in each iteration. Topkis [1998] has shown that the Lemma that
we have presented in Section II(iii) also applies to the Gauss-Seidel version
of the algorithm. In fact, Topkis shows that for supermodular games the
Gauss-Seidel algorithm is faster (see also Echenique [2007]).

For a given value of the state variables, we have defined the best response
mapping as b pð Þ � c1K pð Þ21 � s pð Þ. Let bðiÞ pð Þ be the elements of b pð Þ
associated with the prices of firm i. Similarly, let pðiÞ be the elements of the
vector p associated with firm i. To obtain the equilibrium with smallest pri-
ces we initialize the algorithm with prices equal to marginal costs.

Step 0: Start with the vector of prices p0 such that p0
ðiÞ5ci for any

i 2 !.
Step 1: Compute aggregate demands s p0

� �
and the matrix of partial

derivatives K p0
� �

using quadrature integration (see below).
Step 2 (Gauss-Seidel iteration): Starting with firm 1, obtain a new vec-

tor p1
ð1Þ as p1

ð1Þ5bð1Þ p0
� �

. Then, for firm 2, p1
ð2Þ5bð2Þðp1

ð1Þ; p
0
ð2Þ; . . . ; p0

ðIÞÞ,
and so on for firm i, p1

ðiÞ5bðiÞðp1
ð1Þ; . . . ; p1

ði21Þ; p
0
ðiÞ; . . . ; p0

ðIÞÞ.
Step 3: If jjp12p0jj is smaller than a pre-fixed small constant, then

p�5p1. Otherwise, proceed to step 1 with p05p1.

Once the price equilibrium is computed, we encode the equilibrium current
variable profits of a firm given a particular state, R�i ðn;/Þ.

Given the logit assumption on the idiosyncratic tastes, the local demands
have the closed form expression in (2). However, to obtain the vector of
aggregate demands s pð Þ and the matrix of partial derivatives K pð Þ we have
to integrate local demands over consumers� addresses in the two-
dimensional city C. We use a quadrature method with midpoint nodes
(see Judd [1998], ch. 7). We first divide C into a pre-specified number of
mutually exclusive and adjacent rectangular cells, with each cell k having a
representative node point z kð Þ in its center. For each location z in cell k
we approximate the local demand ri‘ðz; nt; ptÞ and the density /t zð Þ using
ri‘ðz kð Þ; nt; ptÞ and /t z kð Þ

� �
, respectively. Therefore, we calculate aggregate

demand for store ði; ‘Þ as:
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si‘ðnt; pt;/tÞ5
X

k

ri‘ðz kð Þ; nt; ptÞ/t z kð Þ
� �

areaðkÞ(27)

where area(k) is the area of the rectangular cell k.

III(ii). Computation of an MPE

Consider the example where the private information variables are extreme
value distributed. A MPE is a vector of probabilities P� such that
P�5WðP�Þ, where the fixed-point mapping WðPÞ is fWiðaitjnt;PÞ : ði; ait; ntÞ
2 !3AðnitÞ3f0; 1gILg with

Wiðaitjnt;PÞ

5

exp piðait; ntÞ1b
X
a2it

�V P
i ðnt11½ait; a2it�Þ

Y
j 6¼i

PjðajtjntÞ
" #( )

X
ai2AðnitÞ

exp piðai; ntÞ1b
X
a2it

�V P
i ðnt11½ai; a2it�Þ

Y
j 6¼i

PjðajtjntÞ
" #( )

(28)

and the value function �V P
i solves the Bellman equation

�V P
i ðntÞ5 log

X
ait2AðnitÞ

exp pi ait; ntð Þf

0
@

1b
X
a2it

�V P
i nt11½ait; a2it�ð Þ

Y
j 6¼i

PjðajtjntÞ
" #)!

(29)

To obtain an MPE we iterate in the best response function W using
Gauss-Seidel iterations. The algorithm proceeds as follows.

Step 0: Initialize the algorithm with a vector of probabilities P0.
Step 1 [Value function]: Starting with firm 1, and given

P0
2;P

0
3; . . . ;P0

I

� �
fixed, we obtain the value function �V P0

1 by applying
value function iterations in the Bellman equation (29).

Step 2 [Best response]: Given �V P0

1 , we use the best response probabil-
ity mapping in (28) to obtain a new vector of CCP�s for firm 1:
P1

15fW1ðaitjnt;P0Þg.
Then, we proceed with firm 2. Given P1

1;P
0
3; . . . ;P0

I

� �
fixed, we obtain

the value function �V
P1

1;P
0
3;...;P

0
Ið Þ

2 by using value function iterations in the
Bellman equation (29). Then, we update firm 2�s CCP�s as
P1

25fW2ðaitjnt;P1
1;P

0
3; . . . ;P0

I Þg. We proceed in this way to update the
CCP�s of the I firms.
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Step 3: If jjP12P0jj is smaller than a pre-fixed small constant, then
P�5P1. Otherwise, proceed to step 1with P05P1.

The most serious burden for the computation of an equilibrium in our
model comes from the space-memory requirements.21 Value functions and
choice probabilities should be stored in high-speed memory because they
are required for value function iteration and for the calculation of best
response probabilities. Given that the vector of state variables nt is discrete,
value functions and choice probability functions can be described as vectors

in Euclidean spaces: i.e., �V P
i 2 R

2IL
and P 2 ½0; 1�ILð2

ILÞ. In applications
with many locations (or firms), the dimension of these Euclidean spaces
can be very large. For instance, in a duopoly model with 40 locations we
have that 2IL ’ 1012. This magnitude of memory space is rarely available.

There are two general approaches to deal with this computational issue.
One is to approximate the value function using a parametric family of
surfaces, such as polynomials or nonlinear basis functions derived from
neural networks (see Bertsekas and Tsitsiklis [1996]). The other approach is
to store �V P

i and P only over a subset of the state space and use interpola-
tion to obtain values of these functions at other points. In this paper we
consider the interpolation approach.22

Let S5fn1; n2; . . . ; njSjg be a subset of the actual state space f0; 1gIL.
The number of elements in the subset S is given by the amount of high-
speed memory in our computer. The selection of the grid points in S can be
done in different ways. For instance, we can take jSj random draws from a

uniform distribution over the set f0; 1gIL. Let �VPjS
i be a vector of values

restricted to the subset S: i.e., �VPjS
i 5f �V PjS

i ðntÞ : nt 2 Sg. The vector �VPjS
i is

the unique fixed point of the following Bellman equation: for any nt 2 S,

�V PjS
i ðntÞ5 log

X
ait2AðnitÞ

exp pi ait; ntð Þf

0
@

1b
X
a2it

C
�VPjS

i nt11½ait; a2it�ð Þ
Y
j 6¼i

PjðajtjntÞ
" #)!

(30)

21 Under the assumption that firms cannot open or close more than one store per period,
the computation of the expected value of next period�s value function is not a serious compu-
tational issue if the number of firms is small, e.g., no greater than four. To calculate the
expected value

P
a2it

�V P
i ðnt11½ait; a2it�Þ

Q
j 6¼i PjðajtjntÞ, we have to perform only ð11LÞI sums

and products, instead of the much larger number of 2IL operations which are required in the
general case. For instance, in a city with 40 locations we have that ð11LÞI is equal to 1,681 in a
model with two firms, and 2, 825, 761 in a model with four firms.

22 This interpolation approach goes back at least to Larson and Casti [1982]. More recently,
Rust [1997] has proposed a method of interpolation that exploits randomization in the selec-
tion of the grid points. See Rust [1996] for an excellent survey on numerical methods for
dynamic programming that includes a discussion of interpolation techniques.
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where C
�VPjS

i ðnÞ is the interpolation function. Different interpolating functions
may be considered. However, given that the indirect variable profit function
of a retail chain is an important component of the firm�s value, it seems rea-
sonable to use this function as a way of aggregating the information in the
state variables. An example of this type of interpolation function is:

C
�VPjS

i ðnÞ5

�V PjS
i ðnÞ if n 2 S

cð0Þi 1cð1Þi R�i ðnÞ1cð2Þi ½R�i ðnÞ�
2

1
XL

‘51

XI

j51

cð3Þij‘ nj‘1
X
j 6¼i

cð4Þij‘ ni‘nj‘

 !
if n 62 S

8>>>>>>><
>>>>>>>:

(31)

where c0s are the parameters that describe the interpolation function. For
the interpolation function of a firm, the number of c parameters is equal to
31Lð2I21Þ, and the total memory requirements to store the value func-
tion �V PjS

i ð:Þ is jSj1 Ið31Lð2I21ÞÞ. For instance, with L540 locations,
I 5 4 firms, we have to keep in memory jSj11; 132 values, that represents a
very substantial reduction with respect to the 24�40 ’ 1048 values in the
state space of the model. At each iteration of the solution method,
we recalculate the c parameters by running an OLS regression of �V PjS

i ðnÞ
on ½1; R�i ðnÞ; R�i ðnÞ

2; fnj‘g; fni‘ � nj‘g� for values of n in the set S.
Let us describe in more detail the procedure to approximate a firm�s best

response function. We start with an arbitrary initial guess of the vector �VPjS
i ,

that we represent as �V½0�i , e.g., �V½0�i ðnÞ5 log
P

ait
exp pi ait; nð Þf g


 �
. Then, we

run an OLS regression of �V½0�i ðnÞ on ½1; R�i ðnÞ; R�i ðnÞ
2; fnj‘g; fni‘ � nj‘g�

using the values of n in the set S such that we determine the vector of param-

eters in the interpolation function, c½0�i , as the OLS estimates in this regres-
sion. Next, we iterate in equation (30) to obtain a new vector of values, �Vi

½1�.
We iterate until convergence in the vector of values. Note that equations (30)

and (31) define a contraction mapping. Finally, given the vector �VPjS
i we

compute an approximation to the best response function of firm i as:

WðSÞi ðaitjn;PÞ5
exp pi ait; nð Þ1b

X
a2it

�V PjS
i n11½ait; a2it�ð Þ

Y
j 6¼i

PjðajtjnÞ
" #( )

X
ai2AðnitÞ

exp pi ai; nð Þ1b
X
a2it

�V PjS
i n11½ai; a2it�ð Þ

Y
j 6¼i

PjðajtjnÞ
" #( )

(32)
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An approximation to the MPE is a vector of probabilities P�5fPiðaitjntÞ
: ði; ait; ntÞ 2 !3AðnitÞ3Sg such that P�5WðSÞðP�Þ, where the fixed-point
mapping WðSÞðPÞ is fWðSÞi ðaitjnt;PÞ : ði; ait; ntÞ 2 !3A3Sg. That is, the
vector of choice probabilities and the equilibrium mapping are restricted to
the subspace S of the state space. As the original equilibrium mapping, the
mapping WðSÞ is continuously differentiable on the compact set of CCP�s.

A key question is how well our interpolation method approximates the
true value function. Unfortunately, we do not have general theoretical
results on this point. It is always difficult to provide general results about
the properties of approximation methods, other than simple properties like
consistency, i.e., as S goes to the true state space, the approximated value
function converges to the true one. It is also difficult to provide useful tests
to evaluate an approximation in a dynamic programming model because,
for the state space dimensions that we find in empirical applications, we can
never calculate true values and approximation errors. For our interpolation
method, a necessary condition to obtain a good approximation to the value
function is that the method can approximate well the variable profit func-
tion. This idea provides a simple test for our approximation method. Given
the values of the variable profit evaluated at the states in our grid S, we can
use the interpolation method to approximate the variable profit at other
points in a different grid S�. Then, we can compare these approximated
profits in S� with the true values, and evaluate the goodness of fit.

A limitation of the framework and method above is the assumption that
private information variables are independently extreme value distributed.
This assumption is made for convenience because it avoids numerical inte-
gration to calculate the multiple integral

Ð
VP

i ðnt; eitÞdGiðeitÞ. However, the
assumption of no spatial correlation between shocks at different locations
is not innocuous. For instance, this correlation can generate spatial
agglomeration of stores. Relaxing the extreme value assumption requires
one to use simulation techniques to approximate multiple dimensional inte-
grals. This can increase substantially the computational cost in the imple-
mentation of the method.

III(iii). Comparative Statics

Let h be the vector of structural parameters of the model. We include this
vector explicitly as an argument in the equilibrium mapping, WðP; hÞ. An
equilibrium of the model associated with h is a solution to the fixed-point
problem P5WðP; hÞ. Let h0 and h1 be two values of h. We want to study
how the equilibrium of the model, described by P, changes when we change
the structural parameters from h0 to h1 but keeping fixed the type of equilib-
rium. The later condition is key. In the comparative statics exercise that we
are interested in here, we control for the type of equilibrium.
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Before we describe the method, we first introduce the concepts of equilib-
rium type and regular equilibrium as defined in Doraszelski and Escobar
[2010], and present a Lemma that establishes that the number of regular
equilibria is finite.

Definition. [Regular MPE]. Let f ðP; hÞ be the function P2WðP; hÞ such
that an equilibrium of the game for given h can be represented as a solu-
tion to the system of equations f ðP; hÞ50. We say that an MPE P� is regu-
lar if the Jacobian matrix @f ðP�; hÞ=@P0 is non-singular.

Definition. [Equilibrium types]. Let h0 and, h1 be two vectors of structural
parameters in the Euclidean space. And let P�0 and P�1 be MPEs associated
with h0 and h1, respectively. We say that P�0 and P�1 belong to the same type
of equilibrium if and only if there is a continuous path fpðkÞ : k 2 ½0; 1�g
that satisfies the condition

f pðkÞ; ð12kÞh01kh1ð Þ50

for every k 2 ½0; 1�, such that pð0Þ5P�0 and pð1Þ5P�1, and this path con-
nects in a continuous way the equilibria P�0 and P�1.

Lemma. [Doraszelski and Escobar [2010]].23 Under the conditions of our
model, for almost all games/payoffs h: (A) all equilibria are regular; (B)
the number of equilibria is finite; and (C) each equilibrium belongs to a
particular type.

The model has a discrete and finite set of equilibrium types that we
index by k. Let P½k�ðhÞ be the vector of choice probabilities that represents
equilibrium type k when the vector of parameters is h, such that it satisfies
the equilibrium restrictions P½k�ðhÞ5WðP½k�ðhÞ; hÞ. Note that some equilib-
rium types may exist only for a subset of the parameter space H. Under
our conditions on the mapping WðP; hÞ, the equilibrium probability func-
tions P½k�ðhÞ are continuous in h.

Let P0 be a regular equilibrium associated with h0. P0 belongs to an
equilibrium type, say k, i.e., P05P½k�ðh0Þ. For instance, P0 can be the equi-
librium that we obtain using the solution method described in Section
III(ii) above when we initialized the algorithm using a vector where all the
probabilities are zero. The problem that we consider here is how to com-
pute P15P½k�ðh1Þ, i.e., how to calculate the equilibrium associated to h1

that belongs to the same type as P0. This seems a reasonable way of doing

23 Doraszelski and Escobar [2010] study dynamic games of incomplete information. Our
Lemma A comes from their Theorem 1. Lemma B corresponds to their Corollary 1. And
Lemma C is a corollary of their Proposition 2.
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comparative statics if we are interested in how changes in h affect players�
equilibrium behavior only via payoff-relevant factors and keeping constant
the same equilibrium type. The following is a simple homotopy method
that solves this problem.

The method is based on a first order Taylor approximation to P½k�ðh1Þ5
WðP½k�ðh1Þ; h1Þ around h5h0. Note that the equilibrium P0 is regular, and
then the Jacobian matrix I2@WðP0; h0Þ=@P0 is non-singular. Therefore, the
Taylor approximation is:

P15P½k�ðh1Þ ’ P01 I2
@WðP0; h0Þ

@P0

� 
21 @WðP0; h0Þ
@h0

ðh12h0Þ(33)

When kh12h0k2 is small, the right-hand-side of this expression provides a
good approximation to P½k�ðh1Þ. To improve the accuracy of this approxi-
mation, we may combine this approach with iterations in the equilibrium
mapping. Suppose that the equilibrium type k is Lyapunov stable, i.e., the
Jacobian matrix @WðP½k�ðhÞ; hÞ=@P0 has all its eigenvalues in the unit circle.
This implies that there is a neighborhood of P1, say N , such that if we iter-
ate in the equilibrium mapping Wð:; h1Þ starting with a P 2 N , then we
converge to P1. The neighborhood N is called the dominion of attraction of
the stable equilibrium P1. Suppose that the Taylor approximation is precise
enough such that it belongs to the dominion of attraction of P1. Then, by
iterating in the equilibrium mapping Wð:; h1Þ starting with the Taylor

approximation P̂15P01 I2 @WðP0;h0Þ
@P0


 �21
@WðP0;h0Þ

@h0
ðh12h0Þ, we will obtain

the equilibrium P½k�ðh1Þ.

IV. STRUCTURAL ESTIMATION

IV(i). Data

We start this section on structural estimation with a discussion of the type
of data that can be used to estimate the model. The ideal dataset provides
information for a single city or metropolitan area on the store location
decisions, prices, and quantities of the I retail chains in a retail industry.
We partition the city into L locations where firms in this industry can oper-
ate stores. We also make a partition of the city into C small regions that
represent consumer addresses, e.g., census tracts. For each of these regions
(for businesses or consumers) indexed by ‘, we construct a centroid z‘ that
represents the address of that region. The dataset for a city can be
described in terms of three sets of variables: (1) store locations fni‘tg; (2)
population density f/tðz‘Þg and consumer demographics fx‘tg; and (3) pri-
ces and quantities for every active store fpi‘t; qi‘tg. We find this type of
datasets in recent empirical applications of spatial competition such as,
among others, Thomadsen [2005] for the fast food industry in Santa Clara
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County, California; Davis [2006] for movie theatres; Ho and Ishii [2011] for
the retail banking industry, or Slade [1992] and Houde [2012] for gas sta-
tions in Vancouver and Quebec city, respectively.

For the statistical properties of the estimators presented below, the key
dimension of the dataset is the number of locations where firms can oper-
ate stores, L. The number of locations L should be relatively large (e.g.,
L � 200) because the application of a Law of Large Numbers (LLN) and a
Central Limit Theorem (CLT) to our estimator is for the number of loca-
tions L going to infinity, and I and T fixed. For the application of LLN
and CLT using our spatial data, we need to impose some restrictions on
the spatial correlation of the unobservables (see Jenish and Prucha [2012]).
For instance, under the assumption that unobservables in the demand sys-
tem are not spatially correlated, and provided that we have valid instru-
ments, we can obtain consistent and asymptotically normal estimates of
demand parameters using store-level prices and quantities with large L and
fixed I and T. The restriction of no spatial correlation can be replaced with
a weaker restriction such as a spatial autoregressive process. Under the
same type of restriction on the spatial correlation of the unobservables in
marginal costs, fixed costs, and entry costs, we can also obtain consistent
estimates of the parameters in these functions when L goes to infinity and
I and T are fixed. Note that the number of periods T and firms I in the
data can be as small as two. Given the assumptions of time-homogeneity
and stationarity in the primitives of the model and in the equilibrium con-
cept, two periods of data are enough to identify choice probabilities and
transition probabilities of the state variables. Note that, given these statio-
narity assumptions, we could also consider asymptotics when L � T goes
to infinity. We present below an example of a dataset from Vicentini [2013]
where L 5 144 and T 5 55 years.

Store location information is easily available. However, prices and espe-
cially quantities at the store level can be more difficult to obtain for some
industries. Therefore, a more common type of dataset contains only infor-
mation on (1) store locations and (2) consumer demographics and other
location characteristics. This is the case in applications of store location
models such as Seim [2006] or Nishida [2014], among others. As we explain
in Section IV(iii), this type of data can be used for the estimation of our
model as long as the researcher is willing to calibrate or fix some of the
parameters in the demand function or in variable costs.

Most of these applications consider data from multiple cities or regions.
However, in Slade [1992], Thomadsen [2005], Houde [2012], or Vicentini
[2013] the datasets include only one big city, as in our description above of
the ideal dataset. With this type of data, the asymptotics of the estimators
(i.e., law of large numbers and central limit theorems) is based on the num-
ber of locations L going to infinity and applies results in spatial econome-
trics (see Anselin [2010], and Pinkse and Slade [2010], for recent surveys, or
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Pinkse, Slade and Brett [2002], and Slade [2005], for other applications of
these econometric methods in empirical IO).

Example. We now provide an example of an actual dataset that can be
used to estimate a dynamic game of spatial competition with the methods
proposed in this paper. The dataset is described in detail in Vicentini
[2013], and is comprised of the location history of supermarkets and drug
stores within the city and suburbs of Greensboro, North Carolina. In that
paper, the author uses the dataset to estimate the extent to which density
economies and spatial monopolization behavior are present in the super-
market and drug store industries, although without incorporating dynam-
ics explicitly and structurally as we propose in this paper. Here we provide
a brief description of the supermarket component of that dataset.

The supermarket dataset was collected from yearly published Greensboro
city directories from 1955 to 2010 (T 5 56 years). Each directory provides the
name and address of each �grocery store� present in Greensboro in the respec-
tive year. The addresses were then geocoded and the latitude and longitude
coordinates obtained. Additionally, data was collected on the physical size of
the building of each of the grocery stores; this allowed the author to rule out
stores that were relatively small. Based on all of these researched items, the
original list of grocery stores was narrowed down to 184 supermarket stores.
For every year in the sample, there are no more than five chains that account
for almost all the supermarket stores in the city. To illustrate the sequential
location pattern followed by chain supermarkets, Figure 2A depicts the
sequential spatial positioning of Winn-Dixie supermarkets over time. For
instance, Winn-Dixie opened its first three stores within about two miles of
each other in the central part of the city in the 1950�s. It then opened its
fourth store (labeled store �#4�) in 1961 on the Northeast area, slightly iso-
lated from the other stores, but then it opened its fifth store in 1962 almost in
between stores number one and three. Figure 2B presents a discretized grid of
possible business locations, i.e., a uniform grid of 12 3 12 locations (L 5 144)
with a 1.5 miles distance (vertical and horizontal) between locations. �

IV(ii). Specification of Primitive Functions

To complete the specification of the econometric model, we need to make
some assumptions about the primitives xi‘; ci‘; hFC

i‘ ; hEC
i‘ , and hEV

i‘ . We
assume that these primitives vary freely across firms, but they vary over
locations only according to the observable socioeconomic variables in x‘.

xi‘5hx
i x‘; ci‘5hc

i x‘; hFC
i‘ 5hFC

i x‘; hEC
i‘ 5hEC

i x‘(34)

where hx
i ; hc

i ; hFC
i ; hEC

i , and hEV
i are vectors of parameters. This assump-

tion rules out the possibility of unobserved heterogeneity across locations
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Figure 2A
Sequential Location of Stores: Winn-Dixie

Notes: Solid gray line represents Greensboro 2000 urbanized area, and dotted gray line repre-
sents Greensboro 1950 city limits, both based on U.S. Census boundary files.

Figure 2B
Construction of Business Locations: Greensboro, North Carolina

Notes: Solid gray line represents Greensboro 2000 urbanized area, and dotted gray line repre-
sents Greensboro 1950 city limits, both based on U.S. Census boundary files.
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‘, and therefore it may be a strong assumption in applications without a
rich set of observables in x‘.

24

Let x be the vector fx‘ : ‘51; 2; . . . ;Lg, that is a description of the
�landscape� of observable socioeconomic characteristics in the city. All the
analysis is conditional on x. Given x, we can interpret the store networks
in nt as a single realization of a spatial stochastic process. In terms of the
econometric analysis, this has similarities with time series econometrics in
the sense that a time series is a single realization from a stochastic process.
Though we observe a single realization of this stochastic process, we can
still estimate consistently the parameters of that process as the number of
locations L goes to infinity.

IV(iii). Estimation

For estimation purposes, it is convenient to distinguish three subvectors in
h. That is, h5fhD; hMC; hFCg where hD represents demand parameters fl,
s, hx

i : i51; 2; . . . ; Ig; hMC contains parameters in marginal costs
fhc

i : i51; 2; . . . ; Ig, and hFC contains parameters in fixed costs, entry costs,
and exit values, fhFC

i ; hEC
i ; hEV

i : i51; 2; . . . ; Ig.
The estimation of parameters in demand and marginal costs can follow

the well known approach in Berry, Levinsohn and Pakes [1996] and Nevo
[2001] for the estimation of demand of differentiated products, i.e., the so
called BLP method. In fact, given the assumption of no unobserved loca-
tion heterogeneity in xi‘, the estimation of hD can be much simpler than in
the BLP approach because there is no endogeneity of prices and no need
to invert the relationship between market shares and average utilities.
Therefore, a possible estimator of hD is a Nonlinear Least Squares
estimator:

ĥD5arg min
hD

XI

i51

XL

‘51

si‘2
X

k

ri‘ðz kð Þ; n; p; hDÞ/ z kð Þ
� �" #2

(35)

where si‘ is the observed market share of store ði; ‘Þ (equals zero if that
store does not exist), and ri‘ðz kð Þ; n; p; hDÞ is the multinomial logit probabil-
ity that provides the proportion of consumers in location z kð Þ patronizing
store ði; ‘Þ. Given this estimation of demand, marginal costs parameters in
hMC can be also estimated by least squares using the marginal conditions
of optimality for prices in equation (5). And given consistent estimators ĥD

and ĥMC , and the algorithm for computing the Bertrand equilibrium, we
can construct estimates of equilibrium variable profits, R̂i ntð Þ, for any
observed or hypothetical market structure nt.

24 This is a common assumption in some empirical applications, such as Seim [2006].

VICTOR AGUIRREGABIRIA AND GUSTAVO VICENTINI742

VC 2016 The Editorial Board of The Journal of Industrial Economics and John Wiley & Sons Ltd



The restriction of no unobserved location heterogeneity in demand is a
strong assumption. To relax this assumption, we need some instruments
for prices in the estimation of demand. For instance, suppose that some
observable exogenous variables in the vector x vary both across firms and
over locations, i.e., xi‘. With this type of data, we could use the so-called
BLP instruments and method for the estimation of demand parameters.
More specifically, we could obtain an equation that relates a known func-
tion of store market shares with the average utility of purchasing in store
ði; ‘Þ. In this equation, the observable characteristics of stores other than
ði; ‘Þ, i.e., fxi‘ : j 6¼ ig, can be used to instrument for the price pi‘.

When data of prices and quantities at the store level is not available, the
researcher may be willing to calibrate the parameters of a parsimonious
specification of demand and variable costs. Suppose that the researcher has
information on average price and aggregate quantity at the city-firm level,
fPi;Qig. These 2 � I data points can be used to calibrate the parameters
fl, s, x, cg under the assumption that firms have homogeneous qualities
and unit costs. Another alternative is estimating jointly all the parameters
of the model using the dynamic game and firms� store location decisions.

For the estimation of hFC, we exploit the restrictions imposed by the
equilibrium of the dynamic game. Here we propose a two-step method for
the estimation of the dynamic game. Let P0 be the vector of CCP�s in the
MPE in the city under study. We assume that there is a unique equilibrium
in the data, i.e., the equilibrium does not vary over time or over regions
within the city. We can use our approximation to firms� best response prob-
ability functions WðSÞi ðaitjnt;P; hÞ evaluated at the true equilibrium P0 to
construct the following likelihood function:

QðP; hÞ5
X
i;t;‘

1fni‘t5ni‘t21gln WðSÞi ð0jnt;P; hÞ

1
X
i;t;‘

1fni‘t2150; ni‘t51gln WðSÞi ð‘1jnt;P; hÞ

1
X
i;t;‘

1fni‘t2151; ni‘t50gln WðSÞi ð‘2jnt;P; hÞ

(36)

Let P̂0 be a reduced-form nonparametric estimator of the population
CCP�s P0. We describe below how to obtain this estimator. Then, a consist-
ent estimator of hFC can be obtained by maximizing the pseudo likelihood
function QðP̂0 ; hFC ; ĥD; ĥMCÞ with respect to hFC. The estimator is root-L
consistent and asymptotically normal. This two-step method has been used
for the estimation of dynamic games in IO applications in Ellickson, Bere-
steanu and Misra [2010] or Sweeting [2013], among many others (see
Aguirregabiria and Nevo [2013], for a survey of applications).
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A key aspect in the implementation of this two-step method is the
reduced form nonparametric estimation of CCP�s in the first step. Given the
extreme value type I distribution of private information variables, the equilib-
rium CCP�s have the following Conditional Logit structure: P0

i ðaitjntÞ5
exp fviðait; nt; h

0Þg = ½
P

ai2AðnitÞ exp fviðai; nt; h
0Þg�, where viðai; nt; h

0Þ is the
conditional choice value function evaluated at the true parameters, that is
unknown to the researcher. For the reduced-form estimation of P0

i , we pro-
pose approximating the value functions viðait; nt; h

0Þ with a polynomial in the
variable profit R�i ðnt11faitgÞ (i.e., the variable profit if current network nt is
changed according to choice ait) and polynomials for each of the location-
specific variables fn1‘t; . . . ; nI‘tg � x‘ that correspond to choice ait, that we
represent as ðn‘t½ait� � x‘t½ait�Þ. More specifically,

P0
i ðaitjnt; aiÞ5

exp f1 R�i ðnt11faitgÞ
� �0

a1i1f 02ðn‘t½ait� � x‘½ait�Þa2i

n o
P

ai2AðnitÞ exp f1 R�i ðnt11faigÞ
� �0

a1i1f 02ðn‘t½ai� � x‘½ai�Þa2i

n o
(37)

where f1 R�i ðnt11faitgÞ
� �

and f2ðn‘t½ait� � x‘½ait�Þ represent vectors of poly-
nomial terms in R�i ðnt11faitgÞ and ðn‘t½ait� � x‘½ait�Þ, respectively, that form
the basis for the polynomial approximation; and a1i and a2i are vectors of
reduced form parameters. For instance, if the basis functions f1 and f2 cor-
responds to polynomials of order m1 and m2, respectively, then the dimen-
sion of the vector ai � ða1i; a2iÞ is m11m2 I K, where K is the dimension of
vector x‘.

25 These parameters are estimated by maximizing the reduced
form likelihood function (for firm i):

QRF
i ðaiÞ5

X
t;‘

1fni‘t5ni‘t21gln P0
i ð0jnt; aiÞ

1
X

t;‘

1fni‘t2150; ni‘t51gln P0
i ð‘1jnt; aiÞ

1
X

t;‘

1fni‘t2151; ni‘t50gln P0
i ð‘2jnt; aiÞ

(38)

For instance, with I 5 3 firms, K 5 2 exogenous variables x, and cubic poly-
nomials (m15m253), we have 21 parameters to estimate in the vector ai.
These parameters may be estimated with enough precision using a dataset
from a city with L 5 100 locations and enough store turnover.

25 Note that, though our specification of the reduced form CCP�s is very flexible, we do not
have a formal proof that, as the dimension of the polynomials increases, this function can
approximate arbitrarily well any value function viðait; ntÞ. In particular, our specification
apparently imposes the restriction that the dependence on variables at locations other that
‘½ait� occurs only through variable profit. This might not be really a restriction if the order of
the polynomial f1 R�i ðnt11faitgÞ

� �
is high enough, but we do not have a formal proof.
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V. ENTRY COSTS AND THE DYNAMICS OF STORE LOCATION

We apply our model to analyze how changes in the cost of setting-up a
store (entry costs) affect firms� strategies, firm value and consumer welfare.

V(i). Benchmark Model

The following parameters are constant over our experiments.

a. Market. The market is a square city of 10 3 10 kilometers:
C5½0; 10�2. Consumers (households) are uniformly distributed on C

and the population size is equal to 100,000 households. Population
size and the geographical distribution of consumers are constant over
time. There are 16 business locations (L 5 16) which form a uniform
grid in the square city. The coordinates of business locations are the
16 points that result from the intersection of coordinates ð2; 4; 6; 8Þ
in the horizontal and vertical axes, i.e., z15 2; 2ð Þ; z25 2; 4ð Þ,. . .,
z155 8; 6ð Þ; and z165 8; 8ð Þ. The unit transportation cost s, which
includes the opportunity cost of travel time, is $5 per kilometer.26

b. Product and firms. Firms are supermarket chains. The product under
consideration is the weekly shopping basket of a family in a super-
market. Therefore, xi represents the (average) willingness to pay for
the weekly shopping basket in supermarket chain i. There are two
firms in this city. These firms are identical in terms of the quality of
their products. We fix x15x25$135. One period in the model is a cal-
endar year and the discount factor is set at b50:9. Note that house-
holds� willingness to pay (x5$135) and the transportation cost
(s5$5=km) correspond to weekly shopping, while the frequency of
firms� decisions is annual. Therefore, the correct definition of market
size should be the number of households times the number of weeks
per year: M 5 100, 000 3 5255; 200; 000 household-weeks. The
parameter l, that measures the degree of (non-spatial) horizontal
product differentiation, is equal to $2.

c. Firms� costs. Firms are also identical in their cost structures. A firm�s
marginal cost to provide the weekly shopping basket of a household is
$100. Fixed operating costs and exit values are set to zero. The com-
mon knowledge component of entry costs, hEC, is constant across
locations. We compute an equilibrium of the dynamic game under 21
different values of hEC between $0 and $20 million. To give an idea of
the relative magnitude of this range of entry costs, note that given the
demand and variable cost parameters that we have fixed, the total
variable profit of a monopolist with one store at every location is

26 Suppose that most of the transportation cost comes from the opportunity cost of travel
time. If the average hourly wage is $30=hour and the average transportation speed in this city
is 6km=hour, then s5ð$30=hourÞ=ð6km=hourÞ5$5 per kilometer.
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close to $2:5 million. Therefore, the range of values of hEC goes from
0% to 800% of the annual variable profits of that monopolist. Though
we admit that an entry cost above 400% may be unrealistically high,
we have included high values of the entry cost in our analysis in order
to understand the effects of these costs in the limit when they generate
almost zero entry. The private information parts of entry costs and
exit values are independently and identically distributed with extreme
value type 1 distribution.

Table 1 presents a summary of the Nash-Bertrand equilibrium out-
come under different market structures. Profits and consumer surplus
are concave functions of the number of stores, either for a monopolist
or a duopolist. There are decreasing returns, in profits and in con-
sumer surplus, of an additional store. Competition reduces profits per
firm and increases consumer surplus. The closer the stores of the two
firms, the smaller price-cost margins and profits, and the larger con-
sumer surplus.

d. Interpolation algorithm. The number of points in the state space of this
dynamic game is 2IL5232 ’ 4:3 � 108. We do not have enough memory
space to compute exactly an equilibrium of this dynamic game. Instead,
we use the interpolation method described in Section III(ii). We now
explain our selection of the set of points S and of the interpolation
function C. The grid S contains 20, 000 points which are random draws
from a uniform distribution over the whole state space. More precisely,
let nðSÞ � fnðSÞi‘ : i51; 2; ‘51; 2; . . . ; 16g be a point in the grid S. To
obtain a point in this grid we generate the values nðSÞi‘ 2 f0; 1g as inde-
pendent random draws from a Bernoulli distribution with probability
0.5. Our specification of the interpolation function exploits several

TABLE 1
NASH-BERTRAND EQUILIBRIUM

(1)

Market Structure
Price-Cost

Margin
Variable
Profits(2)

Consumer
Surplus(3)

Total
Surplus(3)

Monopoly with: 1 store 15.2% 25.15 14.16 39.31
2 stores 17.9% 45.89 19.65 65.54
3 stores 18.5% 67.71 27.55 95.26
4 stores 19.4% 87.06 31.65 118.7

Duopoly 1 store 3.7% 12.17 45.64 57.81
Same locations: 2 stores 3.8% 16.57 73.70 90.27

3 stores 4.0% 19.93 99.51 119.4
4 stores 4.0% 20.80 117.2 138.0

Duopoly Zero distance 3.7% 12.17 45.64 57.81
Different locations Small distance 16.2% 45.27 24.23 69.50
one store for each firm Large distance 15.5% 49.77 27.15 76.93

Note 1: Parameter values: City [0,10] 3 [0,10]; four locations (2,2), (2,8), (8,2) and (8,8);
l52; s55; x5135; c5100:
Note 2: Annual variable profits, in million dollars, of all firms, i.e., variable profits
per person-week 3 100,000 3 52:
Note 3: Annual surplus in million dollars.
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features of our example. First, firms are identical and we impose sym-
metry in the equilibrium. Therefore, the interpolating function should be
symmetric across firms. Second, given that consumers are uniformly dis-
tributed over the city, the key feature that represents the �quality� of a
business location is its distance to the center of the city. We can distin-
guish three regions, A, B and C, such that two locations within the
same region have the same distance to the center of the city. Figure 3
shows these regions. Third, the average distance between the stores of a
firm summarizes the degree of cannibalization between these stores.
And fourth, the average distance between the stores of the two firms
summarizes the degree of substitution between the two firms. Based on
these ideas, we use the following interpolation function:

C
�VPjS

i ðnÞ

5

�V PjS
i ðnÞ if n 2 S

Second order polynomial in the following variables
fniA; niB; niC ; n2iA; n2iB; n2iC ;

diA; diB; diC ; d2iA; d2iB; d2iC ;

dA; dB; dCg

if n 62 S

8>>>>>><
>>>>>>:

(39)

where niR is the number of stores that firm i has in region R; diR is the aver-
age distance between firm i�s stores in region R; and dR is the average dis-
tance between the stores of firm 1 and firm 2 in region R. The number of
parameters in this interpolation function is 136.

We have made some sensitivity analysis to validate our approximation to
the exact solution. To validate the number of grid points in S, we have
solved the model using 5000, 10000, 15000 and 20000 grid points. While
the solution with 5000 points presents some differences with respect to the
solution with 20000 points, the other three solutions are almost identical.

Figure 3
Subregions A, B and C used for Interpolation
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To validate the interpolation function (39) we have applied this function
to similar but much smaller problems for which we can compare the
approximation to the exact solution of the game. We have considered the
same dynamic game but with four locations instead of 16. The market is
still the square city of 10 3 10 kilometers, C5½0; 10�2, but there are only
four business locations which are located in a straight line along the city�s
main street with coordinates z15ð2; 5Þ; z25ð4; 5Þ; z35ð6; 5Þ, and z45ð8; 5Þ.
For this simpler game the state space has 21051024 cells. For the interpola-
tion function we consider only two regions (A and B) according to the dis-
tance to the city center, such that locations z25ð4; 5Þ and z35ð6; 5Þ are in
region A (with distance to the center equal to 1), and locations z15ð2; 5Þ
and z45ð8; 5Þ are in region B (with distance to the center equal to 3). The
interpolation function is a second order polynomial in the variables
fniA,niB, n2iA; n2iB,di, d2ig and it has 28 parameters. The experiment shows
that this interpolation function provides an excellent approximation to the
true value function and to the equilibrium choice probabilities in this exam-
ple. More generally, we conjecture that for specifications where firms are
symmetric, consumers are uniformly distributed and business locations
have a symmetric spatial structure, this type of interpolation function may
provide a good approximation to the exact solution of the game.

V(ii). Results

Figures 4 to 8 summarize the results of our numerical experiments. Each of
these figures presents an outcome variable of the game (e.g., average num-
ber of stores) in the vertical axis as a function of the entry cost parameter
hEC in the horizontal axis. To analyze the effects of competition we repre-
sent these functions both for a duopoly model and for a monopolist with-
out threat of potential entrants. In the horizontal axis, the entry cost is
measured as a percentage of the annual variable profit of a monopolist with
stores at every business location. Some of the outcome variables (e.g., num-
ber of stores, consumer welfare, value of a firm, average distance between
stores) are calculated using the steady-state distribution of state variables
which is implied by the Markov perfect equilibrium. We have used the
homotopy method described in Section III(iii) to guarantee that we select
the same type of equilibrium when we vary the value of the entry cost.

a. Figure 4: Store turnover: openings and shutdowns.27 Figure 4 presents
the average number of store openings per year and firm. As one
would expect, an increase in the entry cost always reduces store open-
ings and shutdowns. For most values of the entry cost, store turnover
is similar under monopoly and duopoly. Nevertheless, for entry costs

27 In steady-state the number of store openings should be equal to the number of store
shutdowns.

VICTOR AGUIRREGABIRIA AND GUSTAVO VICENTINI748

VC 2016 The Editorial Board of The Journal of Industrial Economics and John Wiley & Sons Ltd



between 200% and 400% we observe that competition can generate
some extra store turnover relative to monopoly.

b. Figure 5: Number of stores. Entry costs have a negative effect both on
the creation of new stores and on store shutdowns. For our bench-
mark model we obtain that an increase in the entry cost has always a
negative effect on the number of stores per firm. Interestingly, this
negative effect is stronger under duopoly than under monopoly. In
fact, this implies that the number of stores per firm is not always
larger under monopoly than under duopoly. For entry costs larger
than 350%, a monopolist has more stores than a duopolist.

Figure 4

Figure 5
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c. Figures 6, 7 and 8: Consumer welfare and value of a firm. Given the
negative effect of entry costs on the number of stores, consumer wel-
fare also declines with entry costs. Furthermore, despite entry costs�
having a stronger effect on the number of stores under duopoly, con-
sumer welfare is always around 50% larger under duopoly than under
monopoly. This is because the monopolist offsets a reduction in con-
sumer transportation costs with higher prices. The value of a firm, in
Figure 7, and total welfare, in Figure 8, decline monotonically with
entry costs. Welfare is always greater under duopoly.

Figure 6

Figure 7
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VI. CONCLUSION

This paper proposes a dynamic model of an oligopoly industry character-
ized by spatial competition between multi-store firms. Firms compete in
prices and decide where to open or close stores depending on the spatial
market structure. We define and characterize a Markov Perfect Equilib-
rium in this model. Our framework is a useful tool to study multi-store
competition issues that involve spatial and dynamic considerations. An
algorithm to compute an equilibrium of the model is proposed. The algo-
rithm exploits interpolation techniques. We also propose a procedure for
the consistent estimation of the parameters of the model using panel data
on store location, prices and quantities from multiple locations in a single
city. We illustrate the model and the algorithm with several numerical
experiments that analyze the competitive and welfare effects of the sunk
cost of setting-up a store.

REFERENCES

Aguirregabiria, V., 1999, �The Dynamics of Markups and Inventories in Retailing
Firms,� The Review of Economic Studies, 66, pp. 275–308.

Aguirregabiria, V., 2008, �Comment: Identification of a Simple Dynamic Discrete
Game under Rationalizability,� Journal of Business and Economic Statistics, 26(3),
pp. 283–289.

Aguirregabiria, V., 2012, �A Method for Implementing Counterfactual Experiments
in Models with Multiple Equilibria,� Economics Letters, 114(2), pp. 190–194.

Aguirregabiria, V. and Mira, P., 2007, �Sequential Estimation of Dynamic Discrete
Games,� Econometrica, 75 (1), pp. 1–53.

Aguirregabiria, V., and Nevo, A. 2013, �Recent Developments in Empirical IO:
Dynamic Demand and Dynamic Games,� in Advances in Economics and

Figure 8

DYNAMIC SPATIAL COMPETITION BETWEEN BIG RETAILERS 751

VC 2016 The Editorial Board of The Journal of Industrial Economics and John Wiley & Sons Ltd



Econometrics. Tenth World Congress. Volume 3, Econometrics. Acemoglu, D.; Are-
llano, M. and Deckel, E. (eds).

Aguirregabiria, V. and Vicentini, G., 2012, �Software for the Computation of Markov
Perfect Equilibria in a Dynamic Model of Spatial Competition,� manuscript
(Department of Economics. University of Toronto, Toronto, Canada).

Anderson, S.; De Palma, A. and Thisse, J.-F., 1992, �Discrete Choice Theory of Prod-
uct Differentiation,� (MIT Press, Cambridge, Massachusetts, U.S.A).

Anselin, L., 2010, �Thirty Years of Spatial Econometrics,� Papers in Regional Science,
89(1), pp. 3–25.

Bajari, P.; Benkard, L. and Levin, J., 2007, �Estimating Dynamic Models of Imper-
fect Competition,� Econometrica, 75(5), pp. 1331–1370.

Baker, J., 1997, �Product Differentiation Through Time and Space: Antitrust Policy
Issues,� FTC Antitrust Bulletin, 42, pp. 177–196.

Bernstein, F. and K€ok, G., 2009, �Dynamic Cost Reduction through Process
Improvement in Assembly Networks,� Management Science, 55(4), pp. 552–67.

Berry, S., 1994, �Estimating Discrete Choice Models of Product Differentiation,�
RAND Journal of Economics, 25(2), pp. 242–262.

Berry, S.; Levinsohn, J. and Pakes, A., 1996, �Automobile Prices in Market Equi-
librium,� Econometrica, 63(4), pp. 841–890.

Bertsekas, D. and Tsitsiklis, J., 1996, �Neuro-Dynamic Programming,� (Athena Scien-
tific, Belmont, Massachusetts, U.S.A).

Bonanno, G., 1987, �Location Choice, Product Proliferation and Entry Deterrance,�
Review of Economic Studies, 54, pp. 37–45.

Curtat, L., 1996, �Markov Equilibria of Stochastic Games with Complementarities,�
Games and Economic Behavior, 17, pp. 177–199.

Datta, S. and Sudhir, K., 2011, �The Agglomeration-Differentiation Tradeoff in Spatial
Location Choice,� manuscript (Yale School of Management, Yale University, New
Haven, Connecticut, U.S.A).

Davis, P., 2006, �Spatial Competition in Retail Markets: Movie Theaters,� the RAND
Journal of Economics, 37(4), pp. 964–982.

De Palma, A.; Ginsburgh, V.; Papageorgiou, Y. and Thisse, J.-F., 1985, �The Principle
of Minimum Differentiation Holds Under Sufficient Heterogeneity,� Econometrica,
53(4), pp. 767–781.

Doraszelski, U. and Escobar, J., 2010, �A Theory of Regular Markov Perfect Equili-
bria in Dynamic Stochastic Games: Genericity, Stability and Purification,� Theo-
retical Economics, 5, pp. 369–402.

Doraszelski, U. and Satterthwaite, M., 2010, �Computable Markov-Perfect Industry
Dynamics,� RAND Journal of Economics, 41(2), pp. 215–243.

Eaton, C. and Lipsey, R., 1975, �The Principle of Minimum Differentiation Recon-
sidered: Some New Developments in the Theory of Spatial Competition,� Review
of Economic Studies, 42(1), pp. 27–50.

Echenique, F., 2007, �Finding All Equilibria in Games of Strategic Complements,�
Journal of Economic Theory, 135(1), pp. 514–532.

Eckert, A. and West, D., 2008, �Radius Restrictions and the Similarity of Neighboring
Shopping Centers,� International Journal of the Economics of Business, 15, pp. 281–300.

Ellickson, P.; Beresteanu A. and Misra, S., 2010, �The Dynamics of Retail Oligopoly,�
working paper (Duke University, Durham, North Carolina, U.S.A).

Ellickson, P.; Houghton S. and Timmins, C., 2013, �Estimating Network Economies
in Retail Chains: A Revealed Preference Approach,� RAND Journal of Economics,
44(2), pp. 169–193.

Ericson, R. and Pakes, A., 1995, �Markov-Perfect Industry Dynamics: A Framework
for Empirical Work,� Review of Economic Studies, 62, pp. 53–82.

VICTOR AGUIRREGABIRIA AND GUSTAVO VICENTINI752

VC 2016 The Editorial Board of The Journal of Industrial Economics and John Wiley & Sons Ltd



Hay, D. A., 1976, �Sequential Entry and Entry-Deterring Strategies in Spatial Com-
petition,� Oxford Economic Papers, 28(2), pp. 240–257.

Ho, K., and Ishii, J., 2011, �Location and Competition in Retail Banking,� Interna-
tional Journal of Industrial Organization, 29(5), pp. 537–546.

Hollander, S. and Omura, G., 1989, �Chain Store Developments and Their Political,
Strategic and Social Interdependencies,� Journal of Retailing, 65(3), pp. 299–325.

Holmes, T., 2011, �The Diffusion of Wal-Mart and Economies of Density,� Econo-
metrica, 79(1), pp. 253–302.

Hotelling, H., 1929, �Stability in Competition,� Economic Journal, 39, pp. 41–57.
Jarmin, R., Klimek, S. and Miranda, J. 2009, �The Role of Retail Chains: National,

Regional and Industry Results,� in Producer Dynamics: New Evidence from Micro
Data, Dunne, T., Jensen, J. B. and Roberts M. J. (edis). NBER Book Series Stud-
ies in Income and Wealth, (University of Chicago Press, Chicago, Illinois, U.S.A.).

Houde, Jean-François, 2012, �Spatial Differentiation and Vertical Mergers in Retail
Markets for Gasoline,� American Economic Review, 102(5), pp. 2147–2182.

Jenish, N. and Prucha, I., 2012, �On Spatial Processes and Asymptotic Inference
under Near-Epoch Dependence,� Journal of Econometrics, 170(1), pp. 178–190.

Jia, P., 2008, �What Happens when Wal-Mart Comes to Town: An Empirical Analy-
sis of the Discount Retailing Industry,� Econometrica, 76(6), pp. 1263–1316.

Judd, K., 1985, �Credible Spatial Preemption,� RAND Journal of Economics, 16, pp.
153–166.

Judd, K., 1998, Numerical Methods in Economics, (The MIT Press. Cambridge, Mas-
sachusetts, U.S.A).

Larson, R. and Casti., J., 1982, Principles of Dynamic Programming, Part II. (Dek-
ker, New York, New York, U.S.A).

Nevo, A., 2001, �Measuring Market Power in the Ready-to-Eat Cereal Industry,�
Econometrica, 69(2), 307–342.

Nishida, M., 2015, �Esmating a Model of Strategic Network Choice: The
Convenience-Store Industry in Okinawa,� Marketing Science, 34, pp. 20–38.

Pakes, A. and McGuire, P., 1994, �Computing Markov-Perfect Nash Equilibria:
Numerical Implications of a Dynamic Differentiated Product Model,� RAND Jour-
nal of Economics, 25(4), pp. 555–589.

Pakes, A.; Ostrovsky, M. and Berry, S., 2007, �Simple Estimators for the Parameters
of Discrete Dynamic Games, with Entry/Exit Examples,� RAND Journal of Eco-
nomics, 38(2), pp. 373–399.

Pinkse, J. and Slade, M. E., 2010, �The Future Of Spatial Econometrics,� Journal of
Regional Science, 50(1), pp. 103–117.

Pinkse, J., Slade, M. E. and Brett, C., 2002, �Spatial Price Competition: A Semipara-
metric Approach,� Econometrica, 70(3), pp. 1111–1153.

Rust, J., 1987, �Optimal Replacement of GMC Bus Engines: An Empirical Model of
Harold Zurcher,� Econometrica, 55(5), pp. 999–1033.

Rust, J., 1996, �Numerical Dynamic Programming in Economics,� in Amman, H.;
Kendrick, D. and Rust, J. (eds.) Handbook of Computational Economics, Vol. 1.,
(North-Holland Press, Amsterdam, The Netherlands).

Rust, J., 1997, �Using Randomization to Break the Curse of Dimensionality,� Econo-
metrica, 65, pp. 487–516.

Ryan, S., 2012, �The Costs of Environmental Regulation in a Concentrated Industry,�
Econometrica, 80(3), pp. 1019–1061.

Schmalensee, R., 1978, �Entry Deterrance in the Ready-to-Eat Breakfast Cereal
Industry,� Bell Journal of Economics, 9, pp. 305–327.

Seim, K., 2006, �An Empirical Model of Firm Entry with Endogenous Product-type
Choices,� RAND Journal of Economics, 37(3), pp. 619–640.

DYNAMIC SPATIAL COMPETITION BETWEEN BIG RETAILERS 753

VC 2016 The Editorial Board of The Journal of Industrial Economics and John Wiley & Sons Ltd



Slade, M., 1992, �Vancouver�s Gasoline-Price Wars: An Empirical Exercise in Uncov-
ering Supergame Strategies,� The Review of Economic Studies, 59(2), pp. 257–276.

Slade, M., 2005, �The Role of Economic Space in Decision Making,� Annales
d�Economie et de Statistique, 77, pp. 1–20.

Sweeting, A., 2013, �Dynamic Product Positioning in Differentiated Product Mar-
kets: The Effect of Fees for Musical Performance Rights on the Commercial
Radio Industry,� Econometrica, 81(5), pp. 1763–1803.

Tabuchi, T., 1994, �Two-Stage Two-Dimensional Spatial Competition between TWO
FIRMS,� Regional Science and Urban Economics, 24(2), pp. 207–227.

Thomadsen, R., 2005, �The Effect of Ownership Structure on Prices in Geographi-
cally Differentiated Industries,� The RAND Journal of Economics, 36(4), pp. 908–
929.

Topkis, D., 1979, �Equilibrium Points in Nonzero-Sum N-person Submodular
Games,� SIAM Journal of Control and Optimization, 17(6), pp. 773–787.

Topkis, D., 1998, Supermodularity and Complementarity (Princeton University Press,
Princeton, New Jersey, U.S.A).

Vicentini, G., 2013, �Location Strategy of Chain Retailers: The Case of Supermarkets
and Drug Stores in an Urban Market,� manuscript (Northeastern University, Bos-
ton, Massachusetts, U.S.A).

Vitorino, M. A., 2012, �Empirical Entry Games with Complementarities: An Appli-
cation to the Shopping Center Industry,� Journal of Marketing Research, 49, pp.
175–191.

Vives, X., 1999, Oligopoly Pricing (The MIT Press. Cambridge, Massachusetts,
U.S.A).

West, D., 1981a, �Testing for Market Preemption Using Sequential Location Data,�
Bell Journal of Economics, 12(1), pp. 129–143.

West, D., 1981b, �Tests of Two Locational Implications of a Theory of Market Pre-
Emption,� Canadian Journal of Economics, 14(2), pp. 313–326.

Willig, R., 1991, �Merger Analysis, Industrial Organization Theory and Merger
Guidelines,� Brookings Papers on Economic Activity - Microeconomics, 1991, pp.
281–332.

Zhu, T. and Singh, V., 2009, �Spatial Competition with Endogenous Location
Choices: An Application to Discount Retailing,� Quantitative Marketing and Eco-
nomics, 7(1), pp. 1–35.

VICTOR AGUIRREGABIRIA AND GUSTAVO VICENTINI754

VC 2016 The Editorial Board of The Journal of Industrial Economics and John Wiley & Sons Ltd


	l
	l
	l
	joie12112-note-0022
	joie12112-note-0022
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l

