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Abstract
Firms are more likely to introduce products in markets where they anticipate stronger demand. They
also possess information that is unobserved to researchers. This creates endogenous selection bias
in the estimation of demand parameters. With differentiated products, the entry decision violates
the monotonicity conditions required for standard selection-correction methods to yield consistent
demand estimates. Existing studies address this issue either by imposing strong assumptions about
firms’ information on demand at the time of entry or by jointly estimating a full equilibrium model
of demand, pricing, and entry. Both strategies make the estimation of demand heavily reliant on
supply-side assumptions. We propose a new semiparametric estimation method that addresses
these limitations. Our approach exploits the correlation across products in their market-entry
decisions to identify entry probabilities conditional not only on observable characteristics but also
on latent variables that capture unobserved interdependencies among firms’ entry choices. We
refer to these probabilities as latent propensity scores. We show that the selection bias term in the
demand equation is a convolution of these latent propensity scores and is therefore identifiable.
Building on this result, we develop a two-step semiparametric estimator in the spirit of standard
sample-selection correction methods. Applying our method to data from the airline industry, we
find that conventional approaches to correcting for selection bias substantially underestimate price
elasticities of demand.

Keywords: Demand for differentiated product; Product entry; Selection bias; Airline markets.

JEL codes: C14, C34, C35, C57, D22, L13, L93.

*We are grateful for helpful comments from Roy Allen, Gaurab Aryal, Giovanni Compiani, Andreea Enache,
Christos Genakos, Ying Fan, Michele Fioretti, Philip Haile, Nail Kashaev, Mathieu Marcoux, Mateusz Mysliwski,
Anders Munk-Nielsen, David Pacini, Bertel Schjerning, Philipp Schmidt-Dengler, Jesse Shapiro, Yutec Sun,
Yuanyuan Wan, Ao Wang, and Christine Zulehner; as well as from seminar participants at the Universities of
Bolzano, Copenhagen, ENSAI-Rennes, Glasgow, Helsinki GSE, Cambridge (Judge), Mannheim, NHH-Bergen,
Penn State, Rochester, Sciences Po, TSE, and Vienna; and from participants at the Advances in Demand Analysis
Workshop (2024), BSE Summer Forum on Structural Microeconometrics (2024), CEPR IO Meeting (2024), Cowles
Conference on Models & Measurement (2024), IAAE (2023), MaCCI Summer Institute (2022), and Midwest
Econometrics Group Meeting (2023).

†University of Toronto and CEPR. victor.aguirregabiria@utoronto.ca.
‡University of Bristol and CEPR. alessandro.iaria@bristol.ac.uk.
§University of Bristol. senay.sokullu@bristol.ac.uk.

mailto: victor.aguirregabiria@utoronto.ca
mailto: alessandro.iaria@bristol.ac.uk
mailto: senay.sokullu@bristol.ac.uk


1 Introduction

Estimating demand systems for differentiated products typically relies on data spanning

multiple geographic markets and time periods. In these settings, it is common for some

products to be unavailable in certain markets or at particular times. Firms tend to introduce

products in markets where they anticipate stronger demand, drawing on information about

market conditions that is unobservable to researchers. As a result, the observed pattern of

product availability is not random but reflects firms’ private expectations about demand. This

endogenous selection into markets can generate substantial bias in the estimation of demand

parameters in regression-based models. This issue is prevalent across various industries,

including airlines (Berry et al., 2006; Berry and Jia, 2010; Aguirregabiria and Ho, 2012), super-

market chains (Smith, 2004), radio stations (Sweeting, 2013), personal computers (Eizenberg,

2014), and ice cream (Draganska et al., 2009).

The selection problem in this structural model of demand and product entry exhibits a

distinctive feature that sets it apart from more conventional cases. Specifically, the demand

unobservables are multi-dimensional and have a non-additive effect on firms’ expected prof-

its. This breaks a key monotonicity condition typically required for the selection equation.

Without this condition, the selection propensity score – the probability of product entry given

exogenous observables – cannot serve as a sufficient statistic to control for selection bias in the

estimation of demand parameters (Angrist, 1997). Furthermore, the model involves multiple

equilibria in both the entry and pricing games. The possibility that different equilibria are

selected across markets introduces additional non-monotonicity in the selection equation.

As a result, standard identification results and two-step estimation methods that rely on the

propensity score are not applicable in this context (e.g., Ahn and Powell, 1993; Das et al., 2003;

Aradillas-Lopez et al., 2007; Newey, 2009).1

1Importantly, instrumental variable approaches cannot address this form of selection bias. Consistent estimation
typically requires control-function methods that explicitly model the selection process. See Vella (1998), Heckman
and Navarro-Lozano (2004), Wooldridge (2015).
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The growing interest in estimating models of oligopoly competition that endogenize firms’

product-entry decisions across geographic markets has made the associated selection problem

increasingly salient. The standard approach in this literature begins with the estimation

of a demand system. However, in the absence of instrumental-variable or control-function

methods to address selection bias, these studies typically impose strong assumptions about

firms’ information sets at the time of entry. Such assumptions effectively rule out endogenous

product selection based on unobserved demand shocks. Examples include Aguirregabiria and

Ho (2012), Fan (2013), Sweeting (2013), Eizenberg (2014), and Fan and Yang (2020). Motivated

by the importance of this issue, Ciliberto et al. (2021) and Li et al. (2022) develop methods that

jointly estimate the full structural model of demand, price competition, and product entry.

Although these approaches fully account for selection bias in demand estimation, they make

demand identification heavily dependent on supply-side assumptions—such as the nature

of competition, the functional form of cost functions, and the distributional assumptions on

unobservables.

The main contribution of this paper is to establish new, more general conditions for the

sequential (two-step) identification of demand parameters when product entry is endogenous.

Our approach leverages the cross-product correlation in firms’ market-entry decisions to

recover entry probabilities that are conditioned not only on observable characteristics but also

on latent variables capturing unobserved interdependencies among firms’ choices. We refer

to these as latent propensity scores. These probabilities are constructed by integrating over the

distribution of unobservables that satisfy a monotonicity condition, while conditioning on

those that violate it.

Our identification result proceeds in two steps. First, we establish the nonparametric

identification of the latent propensity scores. This step exploits a key feature of the model: the

unobservables that violate monotonicity in a product’s entry decision are precisely the demand

shocks of other products that could potentially enter the market. These unobservables generate

the interdependence among firms’ entry decisions. Consequently, the joint distribution of
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entry decisions follows a mixture model structure, where the unobservables driving this

interdependence act as the mixing variables. Second, we show that the selection-bias term in

the demand equation can be expressed as a convolution of these latent propensity scores, and

is therefore identifiable.

Building on our constructive proof of identification, we propose a transparent and compu-

tationally simple two-step estimator that jointly corrects for endogenous product selection

and price endogeneity in demand estimation. In the first step, we estimate each product’s

latent propensity score using a semiparametric mixture model that captures unobserved inter-

dependencies in firms’ entry decisions. In the second step, we recover the demand parameters

through a Control Function–GMM procedure that accounts for both endogenous product

availability and price endogeneity. This approach yields consistent estimates under minimal

assumptions about firms’ information, the structure of competition, and the functional forms

on the supply side.

We illustrate the proposed method using data from the airline industry. The results demon-

strate the importance of accounting for endogenous product entry when estimating demand

parameters and highlight the limitations of conventional selection-correction approaches.

Specifically, standard methods that impose strong informational or structural restrictions

substantially underestimate price elasticities of demand. We also uncover significant selection

bias in the estimation of marginal costs derived from Bertrand pricing equations. Moreover,

our reduced-form estimation of entry probabilities—capturing rich correlations in firms’ entry

decisions—provides economically meaningful insights. In particular, we find that models that

ignore or restrict correlated unobservables in market-entry decisions tend to overstate the

degree of market contestability, predicting a higher likelihood of new entry following mergers

than what is supported by the data.

Our paper contributes to the literature on sample selection bias in demand estimation when

zeros arise from firms’ market entry decisions, including the seminal works of Draganska

et al. (2009), Conlon and Mortimer (2013), Ciliberto et al. (2021), and Li et al. (2022). These
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studies develop methods for estimating structural models that integrate differentiated-product

demand systems à la Berry et al. (1995) with market or product entry games following

Bresnahan and Reiss (1990, 1991) and Berry (1992). Their approach involves joint estimation of

demand, marginal cost, and entry-cost parameters using nested fixed-point algorithms. While

powerful, these methods rely on strong parametric assumptions about functional forms and

the distribution of unobservables. In contrast, our paper proposes a sequential estimation

strategy that identifies the demand parameters without imposing specific assumptions about

the supply side. This approach ensures robustness to a wide range of supply-side structures

and greatly simplifies computation by avoiding the need to solve for equilibrium outcomes.

Moreover, the framework and its computational advantages extend naturally to both static

and dynamic games of market entry and exit.2

Our approach contributes to the growing literature on structural models of oligopoly

competition that endogenize firms’ product entry decisions while explicitly incorporating

demand systems for differentiated products. Contributions in this line of research include

Aguirregabiria and Ho (2012), Fan (2013), Sweeting (2013), Eizenberg (2014), Schaumans and

Verboven (2015), Fan and Yang (2020), Bontemps et al. (2023), Caoui and Steck (2023), and Liu

and Luo (2025). These studies estimate structural parameters through a sequential approach

that begins with the estimation of the demand system. To address potential selection bias

from endogenous product entry, they impose restrictive assumptions about firms’ information

sets—specifically, that firms lack information about unobserved components of demand when

making entry decisions. These assumptions effectively rule out selection on unobservables

and simplify identification, but at the cost of misspecification biases. In contrast, we relax

this restriction, allowing firms to possess information about demand shocks at the time of

2Given the estimated demand parameters and unobservables from our method, one can subsequently recover
marginal and entry costs under weaker parametric assumptions than those required in joint structural estimation.
As in Ciliberto et al. (2021) and Li et al. (2022), our estimates can be used to conduct a variety of counterfactual
experiments that account for the endogeneity of product entry and exit—an essential feature when simulating
merger effects, as demonstrated by Li et al. (2022). Section 6.4 provides details on the implementation of these
counterfactuals.
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entry. This not only addresses selection bias in demand estimation but also corrects the

misspecification it induces in the entry game, where firms’ entry choices are endogenously

correlated through shared information about demand fundamentals.

Our estimation method contributes to the literature on semiparametric estimation of sample

selection models (see, e.g., Das et al. (2003); Newey (2009); Powell (2001); Aradillas-Lopez

et al. (2007)). We extend two-step propensity-score control function approaches to settings

where the unobservables in the selection equation violate the standard monotonicity condition.

Specifically, when the selection decision arises within a system of simultaneous selection

equations, and the non-monotonic unobservables are those generating dependence across

selection decisions, we show that it is still possible to identify a control function that corrects

for selection bias. As fat as we know, this is a novel result in this literature. Our approach

can be applied to other sample selection problems that share this structural feature, such as

labor market models with two-sided matching (Choo and Siow (2006), Galichon and Salanié

(2022)), models of joint household decisions (Browning et al. (2014)), or peer effects models

with endogenous network formation (Graham (2017), De Paula et al. (2018)).

The remainder of this paper is structured as follows. Section 2 introduces our model and

underlying assumptions. Section 3 deals with the selection problem within this framework.

Our identification results are outlined in Section 4. In Section 5, we detail our estimation

methodology, followed by an empirical application to the US airline industry in Section 6.

Finally, Section 7 provides a summary and concluding remarks.

2 Model

The framework follows the canonical model of demand and oligopoly competition in differen-

tiated product markets in industrial organization. We outline it here to define notation and

highlight the main assumptions. Proposition 1 derives a simple property of this model that is

fundamental to understanding the form of the selection bias examined in the paper.
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The demand system follows the BLP framework (Berry et al., 1995). For the sake of

notational simplicity, we focus on single-product firms. In section 2.4, we discuss how to adapt

our model and methodology to the case of multi-product firms. There are J firms indexed

by j ∈ J = {1, 2, ..., J} and T markets indexed by t ∈ {1, 2, ..., T}, where a market can be a

geographic location, a period, or a combination of both. Consumers living in a market t can

buy only the products available in that market. Firms’ market entry decisions, prices, and

quantities are determined as an equilibrium of a two-stage game. In the first stage, firms

maximize their expected profit by choosing whether or not to be active in the market. In the

second stage, prices and quantities of the active firms are determined as a Nash-Bertrand

equilibrium of a pricing game. This two-stage game is played separately across markets.3

Demand and price competition are static. Our model accommodates static and dynamic games

of firms’ product entry (and exit) decisions.

2.1 Demand

The indirect utility of household h in market t from buying product j is:

Uhjt ≡ δ(pjt, xjt) + v(pjt, xjt, υht) + εhjt, (1)

where pjt and xjt are the price and other characteristics, respectively, of product j in market t;

δjt ≡ δ(pjt, xjt) is the average (indirect) utility of product j in market t; and v(pjt, xjt, υht) + εhjt

represents a household-specific deviation from the average utility. The term v(pjt, xjt, υht)

depends on the vector of random coefficients υht with distribution Fυ(·|σ), where σ is a vector

of parameters. The term εhjt is unobserved to the researcher and is i.i.d. over (h, j, t) with type

I extreme value distribution.

3While this assumption is standard in the literature on empirical industrial organization, there are important
exceptions of structural models of entry which allow potential entrants to internalize network externalities
across markets, as Bontemps et al. (2023); Jia (2008); Aguirregabiria and Ho (2012). However, these structural
models of network formation do not consider the endogenous sample selection problem we study in this paper.
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Following the standard specification, the average utility of product j is:

δjt ≡ α pjt + x′jt β + ξ jt, (2)

where α and β are parameters. Variable ξ jt captures the characteristics of product j in market t

unobserved to the researcher. Similarly, the component of utility that depends on consumer-

level random coefficients takes the multiplicative form:

v(pjt, xjt, υht) =
(

pjt, xjt
)′

Ωσ υht (3)

where Ωσ is a (K + 1)× (K + 1) matrix that is a known, continuously differentiable function

of the parameter vector σ, and υht is a vector of random variables with a known distribution.

The outside option is represented by j = 0 and its indirect utility is normalized to Uh0t = εh0t.

We denote by θd the column vector of demand parameters, θd = (α, β′, σ′)′.

Let ajt ∈ 0, 1 denote the indicator that product j is offered in market t, and define at ≡ (ajt :

j ∈ J ) as the vector collecting the offer indicators for all products in market t. The outside

option j = 0 is always offered in every market. Every household chooses the product that

maximizes its utility. Let sjt be the market share of product j in market t, i.e., the proportion of

households choosing product j:

sjt = djt(δt, at, σ) ≡
∫ ajt exp

(
δjt +

[
pjt, xjt

]′
Ωσ υ

)
1 + ∑J

i=1ait exp
(
δit + [pit, xit]

′
Ωσ υ

) dFυ(υ). (4)

This system of J equations represents the demand system in market t. We can represent this

system in a vector form as st = dt(δt, at, σ).

For our analysis, it is convenient to define the sub-system of demand equations that

includes market shares, average utilities, and characteristics of only those products offered.

Define J a
t ≡ {j ∈ J : ajt = 1}, sa

t = (sjt : j ∈ J a
t ), and δa

t = (δjt : j ∈ J a
t ). Then, we
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represent this system as:

sa
t = da

t (δ
a
t , σ), (5)

Proposition 1 establishes that, for any configuration of a, the demand system (5) satisfies the

invertibility property of Berry (1994), and that the resulting inverse system depends on all

demand parameters, rendering them identifiable.

PROPOSITION 1. Suppose that the outside option j = 0 is always offered. Then, for any value of the

vector a ∈ {0, 1}J :

a. The demand system in equation (5) is invertible in δa
t such that for every product with ajt = 1

the inverse function δjt = d−1
jt (sa

t , σ) exists.

b. The inverse function d−1
jt (sa

t , σ) depends on all the parameters in the vector σ, and matrix

E

(
∂d−1

jt (sa
t , σ)

∂σ

∂d−1
jt (sa

t , σ)

∂σ′

)
is full rank such that σ is identifiable. ■

Proof of Proposition 1: See Appendix A.1.

For a product offered in market t, we have:

d−1
jt (sa

t , σ) = α pjt + x′jt β + ξ jt if and only if ajt = 1. (6)

Importantly, after applying Berry’s inversion, the selection condition for the existence of the

regression equation for a product–market observation (j, t) depends only on product j (and

the outside option 0) being offered in market t, and not on which other products are offered in

that market. Consequently, the selection bias in estimating the demand for product j can be

expressed in terms of the following conditional expectation:

E
(
ξ jt | ajt = 1

)
. (7)
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This characterization of the selection term is an implication of working directly with the

inverse demand system, as represented by equation (6).4

As discussed in section 2.4, Proposition 1 is unaffected in the case of multi-product firms

and so is the structure of the resulting selection term, which can still be represented in terms

of E
(
ξ jt | ajt = 1

)
even if the firm owns other products. The following Example illustrates

Proposition 1 in the case of a nested logit model.

EXAMPLE 1 (Nested logit model). The J products are partitioned into R + 1 mutually

exclusive groups indexed by r ∈ {0, 1, ..., R}. We denote by rj the group to which product j

belongs. The outside good is the single element of group r = 0. The indirect utility function is

Uhtj ≡ δjt + (1 − σ) vht,rj + εhtj, where variables v and ε are independently distributed, ε and

(1 − σ) v + ε are i.i.d. type I extreme value, and σ ∈ [0, 1] is a parameter (Cardell, 1997). This

model implies:

sjt = dj (δ
a
t , σ) = drj (δ

a
t , σ) · dj|rj

(δa
t ) (8)

with:

drj (δ
a
t , σ) =

ajt eδjt

∑i∈rj
ait eδit

and dj|rj
(δa

t ) =

[
∑i∈rj

ait eδit
] 1

1−σ

∑R
r=0 [∑i∈rait eδit ]

1
1−σ .

(9)

If a0t = 1 and ajt = 1, this model implies that s0t > 0 and sjt > 0, and the inverse func-

tion d−1
jt (sa

t , σ) exists regardless of the value of ait for any product i different from j. It is

4To appreciate the value of this property, consider instead the case of the Almost Ideal Demand System (AIDS)
(Deaton and Muellbauer, 1980). In the AIDS, each value of the vector at implies a different set of regressors and
slope parameters in the regression equation that relates the demand of product j to the log-prices of the offered
products. Therefore, in the AIDS model, the selection bias within the demand equation for product j does not
depend solely on the availability of that particular product but rather on the availability profile of all products
within the system. In other words, the selection term cannot be represented in terms of E

(
ξ jt | ajt = 1

)
but

must instead be expressed in terms of E
(
ξ jt | ajt = 1, a−jt = a−j

)
. Consequently, in the AIDS model, we have a

different selection term for each value of the vector a−j representing the availability of products other than j.
This structure makes the selection problem multi-dimensional and significantly complicates identification and
estimation when the number of products J is large.
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straightforward to show that this inverse function has the following form:

d−1
jt (sa

t , σ) = ln
(

sjt

s0t

)
− σ ln

(
∑i∈rj

sit

s0t

)
, (10)

and it implies the regression equation:

ln
(

sjt

s0t

)
= σ ln

(
∑i∈rj

sit

s0t

)
+ α pjt + x′jt β + ξ jt. (11)

Given s0t > 0, this regression equation holds whenever ajt = 1. ■

2.2 Price competition

Let Πjt be the profit of firm j if active in market t. This profit equals revenues minus costs:

Πjt = pjt qjt − c(qjt, xjt, ωjt) − f jt, (12)

where qjt is the quantity sold (i.e., market share sjt times market size Ht), c(qjt, xjt, ωjt) is the

variable cost function, and f jt is the fixed entry cost. Variables ωjt and ηjt are unobserved to

the researcher.

Given firms’ entry decisions, the best response function in the Bertrand pricing game

implies the following system of pricing equations:

pjt = mcjt − djt (δ
a
t , σ)

[
∂djt (δ

a
t , σ)

∂pjt

]−1

for every j ∈ J a
t , (13)

where mcjt is the marginal cost ∂cjt/∂qjt. A solution to this system of equations is a Nash-

Bertrand equilibrium.

Let xt ≡ (xjt : j ∈ J ) denote the vector of exogenous variables observed by the researcher

that affect demand or costs, with support X (each element of which may be continuous or
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discrete). The vectors ξt and ωt are defined analogously. Let a−jt denote the vector of entry

decisions for all firms other than j. We define the function

VPjt = VPj
(
a−jt, xt, ξt, ωt

)
(14)

as firm j’s indirect variable profit, obtained by substituting into the expression pjt qjt − c(qjt; xjt, ωjt)

the equilibrium values of prices and quantities from the Nash-Bertrand equilibrium given

(ajt = 1, a−jt, xt, ξt, ωt).5

2.3 Market entry game

This section introduces a model of product entry that encompasses a broad class of games

studied in the literature. It nests complete-information frameworks such as those in Ciliberto

and Tamer (2009) and Ciliberto et al. (2021), as well as incomplete-information settings with

common knowledge unobservables, as in Grieco (2014) and Aguirregabiria and Mira (2019).

The model also allows for flexible information structures regarding firms’ knowledge of

demand shocks at the time of entry, ranging from cases with full information to those with

complete uncertainty, and including intermediate scenarios with imperfect signals. This

general formulation ensures that the identification results developed in this paper apply to a

wide spectrum of market entry environments.

Firms’ entry decisions arise as the equilibrium outcome of this game. The payoff from

remaining inactive is normalized to zero. Prior to making their entry decisions, firms may

face uncertainty about their potential profits if active in the market. Their information about

demand and cost fundamentals is therefore central to the entry process, as it shapes both

individual incentives and the joint distribution of firms’ equilibrium entry decisions.

5The pricing game may admit multiple equilibria. We do not impose any restriction on equilibrium selection
and allow each market to select its own equilibrium. For notational simplicity, we do not explicitly include an
unobservable variable —say τt— to index the equilibrium selected in the Bertrand game, although it can be
interpreted as part of the broader vector of unobservables.
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Assumption 1 summarizes our conditions on the information structure and the unobserv-

ables to the researcher.6

ASSUMPTION 1. At the time firm j makes its entry decision in market t, its information set consists

of (xt, κt, ηjt).

a. The vector xt of variables observable to the researcher is also common knowledge among all firms.

b. The vector κt represents all information about demand and cost fundamentals (ξt, ωt) and fixed

costs that is common knowledge among firms but unobserved by the researcher. In one possible

scenario, κt may include the entire vector (ξt, ωt), implying that firms face no uncertainty about

demand or variable costs at the time of entry.

c. The vector ηjt represents firm j’s private information about its own demand or cost fundamentals.

The vectors ηjt are assumed to be independently distributed across firms and independent of

(κt, xt). As a special case, variable ηjt may have a degenerate distribution, in which case the entry

game reduces to one of complete information.

d. All the unobservables for the researcher, (ξt, ωt, κt, ηjt), are assumed independent of the exoge-

nous observables in xt. ■

For simplicity, and with some abuse of notation, for the rest of the paper we represent the

vector of unobservables (ξt, ωt) using the more compact notation ξt.

Let πj(a−j, xt, κt, ηjt) be firm j’s expected profit given its information about demand and

costs and conditional on the hypothetical entry profile a−j ∈ {0, 1}J−1. Under Assumption 1:

πj(a−j, xt, κt, ηjt) =
∫

VPj(a−j, xt, ξt) dFj,ξ
(
ξt | κt, ηjt

)
− f c(xjt, κt, ηjt), (15)

6The entry game has multiple equilibria. We adopt the same general approach as for the pricing game. We do
not impose any restrictions on equilibrium selection, but for notational simplicity, we do not explicitly include
an unobservable variable to index the selected equilibrium. It can be interpreted that vector κt includes the
equilibrium selection index.
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where Fj,ξ
(
ξt | κt, ηjt

)
is a CDF and represents firm j’s beliefs about the distribution of ξt

conditional on (κt, ηjt). As Fj,ξ
(
ξt | κt, ηjt

)
is j-specific, the same market-level signal κt can

affect the beliefs about ξt of different firms in different ways. Function f (xjt, κt, ηjt) represents

the fixed cost and entry cost of operating in the market.

Assumption 1 states that this entry game can accommodate complete information if the

distribution of each ηjt is degenerate; otherwise, it is a game of incomplete information. Below,

we describe an equilibrium of the game as a Bayesian Nash Equilibrium (BNE). However,

it is essential to note that this solution concept encompasses a complete information Nash

Equilibrium (NE) when each ηjt has a degenerate probability distribution.

Given (xt, κt), a Bayesian Nash Equilibrium (BNE) of this game can be represented as a

J-tuple of entry probabilities, one for each firm, (Pjt : j ∈ J ). To describe this BNE, we first

define a firm’s expected profit function that accounts for its uncertainty about other firms’

entry decisions.

πP
j (xt, κt, ηjt) = ∑

a−j∈{0,1}J−1

(
∏
i ̸=j

[Pit]
ai [1 − Pit]

1−ai

)
πj(a−j, xt, κt, ηjt). (16)

Firm j’s best response is to enter the market if and only if this expected profit exceeds zero.

Considering this, we can define a BNE in this game as follows.

DEFINITION 1. Bayesian Nash Equilibrium. Under Assumption 1 and given (xt, κt), a Bayesian

Nash Equilibrium (BNE) can be represented as a J-tuple of probabilities {Pjt ≡ Pj(xt, κt) : j ∈ J }

that solves the following system of J best response equations in the space of probabilities:

Pjt =
∫

1{πP
j (xt, κt, ηjt) ≥ 0} dFη

(
ηjt
)

. ■ (17)

This framework accommodates various information structures corresponding to different

scenarios considered by the literature on structural market entry models. When Var(κt) = 0,
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the entry game only features private information unobservables, as examined in studies such

as Seim (2006), Sweeting (2009), and Bajari et al. (2010). As Var(ηjt) = 0, the entry game is of

complete information, as in the work by Ciliberto and Tamer (2009) and Ciliberto et al. (2021).

In instances where Var(κt) > 0 and Var(ηjt) > 0, the model describes an entry game including

both categories of unobservable factors, as in work by Grieco (2014) and Aguirregabiria and

Mira (2019).

2.4 Multi-product firms

We briefly discuss how the proposed model, the results above, and the characterization of

the selection problem in section 3 below can be extended to the case of multi-product firms.

We still use j ∈ J to index products, but now we introduce the firm sub-index f and define

J f ⊆ J as the set of products owned by firm f . The product entry decisions of firm f are

described by vector a f t ≡ (ajt : j ∈ J f ) ∈ {0, 1}|J f |.

First, note that Proposition 1’s applicability remains unaffected by the product ownership

structure. This Proposition only relies on the structure of the demand system. Therefore,

regardless of the product ownership structure, the selection problem in the estimation of the

demand of product j is still described in terms of the conditional expectation E
(
ξ jt | ajt = 1

)
.

Second, Assumption 1, which describes a firm’s information at the time of its entry deci-

sions into market t, remains unchanged. The only difference is that we need to represent a

firm’s private information using a vector with as many elements as the products owned by this

firm; that is, η f t ≡ (η f t(a f ) : a f ∈ {0, 1}|J f |). For instance, in the case of a two-product firm,

η f t(1, 0) is the latent component of entry cost when the firm offers product 1 while excluding

product 2. Under Assumption 1, equation (15), describing the expected profit of a firm, readily

extends to multi-product firms as follows:

π f

(
a f , a− f , xt, κt, η f t

)
=
∫

VPf
(
a f , a− f , xt, ξt

)
dFf ,ξ

(
ξt | κt, η f t

)
− f (x f t, η f t), (18)
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where Ff ,ξ

(
ξt | κt, η f t

)
is a CDF and represents firm j’s beliefs about the distribution of ξt

conditional on (κt, η f t).

Given this expected profit, the definition of a BNE in the entry model for multi-product

firms remains fundamentally the same as in the single-product case outlined earlier. The

only distinction is that, in the multi-product scenario, an entry probability is associated with

selecting a specific product portfolio.

The preceding discussion illustrates the similar structure shared by the selection problem

with single- and multi-product firms. Our identification and estimation procedures are

unchanged in the multi-product case.

2.5 Dynamic game of product entry and exit

Our framework and identification results can accommodate cases in which firms’ decisions

about product availability come from a Markov Perfect Equilibrium (MPE) of a dynamic game

of product entry and exit, where firms are forward-looking. In this dynamic game, a firm’s

fixed cost is denoted as f (ait, ai,t−1, xjt, ηjt), where f (1, 0, xjt, ηjt) represents the cost of entry,

f (0, 1, xjt, ηjt) is the cost of exit, f (1, 1, xjt, ηjt) is the fixed cost when a product stays in the

market, and f (0, 0, xjt, ηjt) can be normalized to zero.

ASSUMPTION 1-Dyn. Suppose that t represents time. Conditions (a) to (d) in Assumption 1 hold,

and we have the following additional conditions.

e. The vector of state variables at period t, xt, includes the entry decisions of all the firms at the

previous period, (aj,t−1 : j = 1, 2, ..., J).

f. The exogenous product characteristics in vector xt and the latent market type κt follow a first-order

Markov process or are time-invariant.

g. The private information signal ηjt is independently and identically distributed over time and

independent across firms. ■
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The conditions in Assumption 1-Dyn are standard in the literature of empirical dynamic

games of oligopoly competition (see Aguirregabiria et al., 2021). Under Assumption 1-Dyn,

the value of being or not in the market depends on the state variables (xt, κt) and on the

private information shock ηjt. Let vP
j (xt, κt, ηjt) be the difference between the value functions

of being in the market and not being in the market at period t. This function can be represented

as the sum of two functions: the difference between current profits and the difference between

expected continuation values. Similar to a BNE in a static entry game, a MPE in a dynamic

game can be characterized in terms of J conditional choice probabilities.

DEFINITION 2. Markov Perfect Equilibrium. Suppose that Assumptions 1-Dyn hold. Then, a

Markov Perfect Equilibrium (MPE) can be represented as a J-tuple of probability functions {Pj(xt, κt) :

j ∈ J )} that solve the following system of best response equations in the space of probability functions:

Pj (xt, κt) =
∫

1{vP
j (xt, κt, ηjt) ≥ 0} dFη

(
ηjt
)

. ■ (19)

For the rest of the paper, we will not distinguish whether the choice probabilities Pj (xt, κt)

come from a BNE of a static entry game or from a MPE of a dynamic game of entry and exit.

All our identification results apply to both cases.

3 Selection problem

For simplicity and concreteness, we describe our sample selection problem using the nested

logit demand model from Example 1 (stressing that none of our results require such a restric-

tion). We use the starred variables s∗jt and p∗jt to represent latent variables. That is, s∗jt and p∗jt

represent the latent market share and price, respectively, that we would observe if product

j were offered in market t. Using these latent variables, we can write the following demand
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system:

ln

(
s∗jt
s0t

)
= σ ln

(
s∗jt + S−jt

s0t

)
+ α p∗jt + x′jt β + ξ jt, (20)

where S−jt ≡ ∑i ̸=j,i∈rj
sit is the aggregate market share of all products in group rj other than

product j. Latent variables (s∗jt, p∗jt) are equal to the observed variables (sjt, pjt) if and only if

product j is offered in market t:

{s∗jt = sjt and p∗jt = pjt} if and only if ajt = 1. (21)

Firm j’s best response entry decision completes the econometric model:

ajt = 1
{

πP
j (xt, κt, ηjt) ≥ 0

}
. (22)

Equations (20) to (22) imply the following regression equation for any product with ajt = 1:

ln
(

sjt

s0t

)
= σ ln

(
sjt + S−jt

s0t

)
+ α pjt + x′jt β + λj(xt) + ξ̃ jt, (23)

where λj(xt) is the selection bias function, E
(
ξ jt | xt, ajt = 1

)
. That is,

λj(xt) =
∫

ξ jt 1
{

πP
j (xt, κt, ηjt) ≥ 0

} fξ,η,κ
(
ξ jt, ηjt, κt | xt

)
P̄j (xt)

d
(
ξ jt,ηjt, κt

)
, (24)

where fξ,η,κ is the joint density function of
(
ξ jt,ηjt, κt

)
conditional of xt, and P̄j (xt) is the

selection propensity score,

P̄j (xt) ≡ Pr
(
ajt = 1 | xt

)
=
∫

1
{

πP
j (xt, κt, ηjt) ≥ 0

}
fη,κ
(
ηjt, κt | xt

)
d
(
ηjt, κt

)
. (25)

In the econometrics literature on sample selection, it is well-known that estimating equation

(23) using instrumental variables, where λj(xt) + ξ̃ jt is treated as the error term, is unfeasible.

This is because λj(xt) is an unknown function of all exogenous variables in the model, leaving
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no viable candidates as valid instruments (Wooldridge, 2010). To address sample selection, a

control function approach can be employed to account for the selection term λj(xt). However,

we cannot identify demand parameters without additional structure on this selection term.

The selection term is an unknown function of all exogenous variables, preventing us from

disentangling the direct effect of xjt on consumer demand (as represented by the vector of

parameters β) from its effect through the selection term.

In this context, the standard approach in the literature is to establish conditions under

which this selection term depends solely on the selection propensity score P̄j (xt), i.e., λj(xt) =

ρj(P̄j (xt)). As such, identification and estimation follow a standard two-step procedure. In a

first step, one nonparametrically estimates P̄j (xt) from data on (ajt, xt). Then, in a second step,

one can apply the semiparametric series estimator in Das et al. (2003) and Newey (2009), or the

pairwise differencing method in Powell (2001) and Aradillas-Lopez (2012). Valid instruments

in this regression are observed x−jt characteristics of products other than j, i.e., the so-called

BLP-type instruments.

Angrist (1997) establishes necessary and sufficient conditions for the selection propensity

score to be a sufficient statistic to control for sample selection bias in a very general class of

selection models that includes our demand/entry model as a particular case. The following

Proposition 3 presents these conditions and is an adaptation of Propositions 2 and 3 in Angrist

(1997).

PROPOSITION 2. Under Assumption 1:

a. Necessary and sufficient condition: Conditioning on the propensity score P̄j (xt) controls for

selection bias in the estimation of demand parameters if and only if Pr(ξ jt, ajt | xt, P̄j(xt))

= Pr(ξ jt, ajt | P̄j(xt)).

b. Weak sufficient condition: Suppose that for any two values in the support of xt, say x0 and x1,

the sign of Pr(ajt = 1 | x1, ξ jt)− Pr(ajt = 1 | x0, ξ jt) is the same (almost surely) for every value
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ξ jt in the support of this random variable. Then, conditioning on the propensity score P̄j (xt)

controls for selection bias in the estimation of demand parameters. ■

Proposition 3(a) provides a necessary and sufficient condition for the propensity score to

control for selection. This condition, consequently, implies the identification of demand

parameters. Combining Proposition 3 with equation (22) characterizing the optimal entry

decision, the condition stated in Proposition 3(a) can be equivalently expressed as:

Pr(ξ jt, πP
j (xt, κt, ηjt) | xt, P̄j(xt)) = Pr(ξ jt, πP

j (xt, κt, ηjt) | P̄j(xt)). (26)

Unfortunately, this condition involves an equilibrium object rather than the model’s prim-

itives, making it challenging to verify in models where the expected profit function is a

complex endogenous entity. Nevertheless, the representation of this condition in equation (26)

demonstrates that assuming independence between the unobservables (ξt, κt, ηjt) and xt is

insufficient for the condition to hold. The crucial aspect is the functional form of the profit

function πP
j and the way the unobservables affect it. This is further illustrated in Examples 2

and 3.

EXAMPLE 2. Suppose that the expected profit function has the following structure:

πP
j (xt, κt, ηjt) = γ1j(xt)− γ2j(xt) γ3j(κt, ηjt), (27)

where γ1j(·), γ2j(·), and γ3j(·) are scalar real-valued functions. The optimal entry decision

becomes ajt = 1{γ3j(κt, ηjt) ≤ γ1j(xt)/γ2j(xt)}. Assume that κt and ηjt are jointly indepen-

dent of xt, which implies independence between γ3jt ≡ γ3j(κt, ηjt) and xt. Consequently, the

selection propensity score is given by P̄j(xt) = Fγ3j(γ1j(xt)/γ2j(xt)), where Fγ3j is the cumu-

lative distribution function of γ3jt. Under these conditions, it is evident that the necessary

and sufficient condition in Proposition 3(a) holds, ensuring that P̄j(xt) effectively controls for
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selection. ■

Example 2 illustrates a single-crossing structure in the the selection or entry decision function.

This single-crossing condition is in terms of the scalar function γ3j(κt, ηjt), which encapsulates

the influence of all unobservables on the expected profit function. While this condition is

sufficient but not necessary for the propensity score to account for selection, finding examples

where the conditions in Proposition 3 are satisfied without this structure is challenging.

Furthermore, for a general class of demand and entry models, this single-crossing structure

never holds. We illustrate this in Example 3.

EXAMPLE 3. This example illustrates the crucial role that the multi-dimensional aspect of

demand unobservables plays in preventing the propensity score from effectively controlling

for selection bias. To make this concrete, consider a model of market entry with complete

information (no ηjt) and no uncertainty, such that κt = ξt. For simplicity, assume there are only

two firms potentially competing in the market (J = 2). Suppose the expected profit function

for product 1 is given by:

πP
1 (xt, ξt) = γ1(xt) (x′1t β + ξ1t) + γ2(xt) (x′1t β + ξ1t) (x′2t β + ξ2t) (28)

where γ1(xt) and γ2(xt) are scalar real-valued functions. The non-additive structure in the

second additive term, involving the demands for products 1 and 2, implies that this profit

function does not exhibit the single-crossing property described in Example 2. Moreover, it

can be shown that the conditions outlined in Proposition 3 do not hold, indicating that the

propensity score alone is insufficient to control for selection bias. ■

In the remainder of this section, we derive an expression that characterizes the selection

term λj(xt) as a function of the distribution of κt and the equilibrium CCPs Pj(xt, κt). This

characterization is crucial for our identification results. For this result, we make the following
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Assumption 2.

ASSUMPTION 2. Let Pj(xt, κt) be the probability Pr(ajt = 1 | xt, κt). Conditional on κt and

Pj(xt, κt), variables (ξ jt, ajt) are jointly independent of xt. That is, Pr(ξ jt, ajt | xt, κt, Pj(xt, κt)) =

Pr(ξ jt, ajt | κt, Pj(xt, κt)). ■

A more structural condition that ensures Assumption 2 is the strict monotonicity of the

profit function with respect to ηjt. For example, in the same spirit as Example 2, a sufficient

condition for Assumption 2 is that the expected profit function takes the following form:

πP
j (xt, κt, ηjt) = γ1j(xt, κt)− γ2j(xt, κt) γ3j(ηjt).

Under Assumption 2, we have that:

Pr(ξ jt | ajt = 1, xt, κt, Pj(xt, κt)) =
Pr(ξ jt, ajt = 1 | xt, κt, Pj(xt, κt))

Pr(ajt = 1 | xt, κt, Pj(xt, κt))

=
Pr(ξ jt, ajt = 1 | κt, Pj(xt, κt))

Pj(xt, κt)
.

(29)

It then follows that,

E(ξ jt | xt, κt, ajt = 1) =
∫

ξ jt
Pr(ξ jt, ajt = 1 | κt, Pj(xt, κt))

Pj(xt, κt)
dξ jt

≡ ψj
(

Pj (xt, κt) , κt
)

.

(30)

To obtain the selection function λj(xt) ≡ E(ξ jt | xt, ajt = 1), we must integrate (30) over the

distribution of κt conditional on (xt, ajt = 1). That is:

λj(xt) =
∫

ψj
(

Pj (xt, κt) , κt
)

f j,κ (κt | xt) dκt, (31)

where f j,κ (κt | xt) denotes the distribution of κt conditional on (xt, ajt = 1) and has the
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following structure:

f j,κ(κt | xt) ≡ Pr(κt | xt, ajt = 1) =
Pj (xt, κt)

P̄j (xt)
fκ(κt | xt). (32)

Equation (31) shows that, without additional constraints, the selection term depends not only

on the propensity score P̄j (xt) but also on the distribution of κt and the entry probabilities

conditional on both xt and κt. It is important to note that the functions ψj are unknown

to the researcher and may vary with κt. Consequently, if κt has continuous support, there

could be an infinite number of these functions. Given this structure of the selection term, it

is evident that we cannot separately identify the demand parameters and the ψj functions.

This holds true even in the hypothetical scenario in which the researcher is able to identify,

in a preliminary step based on firms’ entry decisions, the distribution of κt and the entry

probabilities conditional on both xt and κt.

To address this identification challenge, we strengthen Assumption 2 as follows.

ASSUMPTION 2∗. Let κ∗t be a proxy variable for κt with finite support K. Define Pj(xt, κ∗t ) ≡

Pr(ajt = 1 | xt, κ∗t ). Conditional on κ∗t and Pj(xt, κ∗t ), variables (ξ jt, ajt) are jointly independent of xt.

That is, Pr(ξ jt, ajt | xt, κ∗t , Pj(xt, κ∗t )) = Pr(ξ jt, ajt | κ∗t , Pj(xt, κ∗t )). ■

Under Assumption 2 and 2∗ and supposing that the proxy κ∗t is unobserved to the researcher,

the same derivations as above show that the selection term can be expressed as:

λj(xt) = ∑
κ∗t ∈K

ψj
(

Pj (xt, κ∗t ) , κ∗t
)

f j,κ∗ (κ
∗
t | xt) , (33)

with f j,κ∗ (κ
∗
t | xt) ≡

Pj(xt,κ∗t )
P̄j(xt)

fκ∗(κ∗t | xt). In the reminder of the paper, we refer to the unob-

served κ∗t interchangeably as latent class, unobserved market type, or unobserved proxy.
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4 Identification

4.1 Data and sequential identification

Suppose that each of the J firms is a potential entrant in every local market. The researcher

observes these firms in a random sample of T markets. For every market t, the researcher

observes the vector of exogenous variables xt ∈ X and the vectors of firms’ entry decisions

at ∈ {0, 1}J . The space X can be discrete or continuous. For those firms active in market t, the

researcher observes prices pt and market shares st.

Let θ ∈ Θ be the vector of all the parameters in the model, where Θ is the parameter space.

This vector has infinite dimension because some of the structural parameters are real-valued

functions. The vector θ has the following components: demand parameters θδ ≡ (α, β, σ);

probability distribution of proxies for the demand/cost variables, f κ∗ ≡ ( fκ∗(κ∗ | x) : for every

κ∗, x); the corresponding conditional entry probabilities, Pκ∗ ≡ (Pj(x, κ∗) : for every j, x, κ∗);

the probability distribution of private information Fη, and the conditional distribution of the

demand unobservables, fξ|η,κ∗ :

θ ≡
(

θδ, Pκ∗ , f κ∗ , fξ|η,κ∗ , Fη

)
. (34)

In this paper, we are interested in the identification of demand parameters θδ when the

distributions f κ∗ and fξ|η,κ∗ and the entry probabilities Pκ∗ are nonparametrically specified.

We consider a two-step sequential procedure for the identification of θδ. First, given

the empirical distribution of firms’ entry decisions, we establish the identification of the

equilibrium probabilities Pκ∗ and the distribution f κ∗ . Then, given the structure of the selection

bias function in (33), we show the identification of θδ.

23



4.2 First step: Game of market entry

4.2.1 A general representation of the probability of entry profiles

In this section, we show that for a broad class of market entry games, and under minimal

assumptions, the probabilities of firms’ entry profiles, Pr(a1t, a2t, ..., aJt|xt), can be conveniently

represented as a nonparametric finite mixture. Recent advances in tensor or multi-way linear

algebra have proven useful in the representation of general high-dimensional arrays in terms of

simpler lower-dimensional ones and are now ubiquitously applied in the fields of, e.g., signal

processing, statistics, data mining, and machine learning (Sidiropoulos et al., 2017; Kolda and

Bader, 2009). By interpreting multivariate probability mass functions as multi-way arrays,

these tensor decomposition techniques have helped researchers represent potentially complex

multivariate probabilistic processes in terms of simpler univariate probabilities (Dunson and

Xing, 2009; Yang and Dunson, 2016).

In the context of market entry games, the observed joint probability of the entry decisions

at ∈ {0, 1}J of J firms conditional on a vector of exogenous variables xt ∈ X can be seen as

a bounded (between 0 and 1) J-way tensor. Leveraging properties of the canonical polyadic

decomposition (Harshman et al., 1970; Carroll and Chang, 1970), Kargas et al. (2018) show that

any J-dimensional probability mass function admits a very convenient nonparametric finite

mixture or latent class representation. The following Proposition ?? summarizes this result

and is an adaptation to our context of Proposition 1 by Kargas et al. (2018).

PROPOSITION 3. For any (a, x) ∈ {0, 1}J ×X with J ≥ 3, any arbitrary probability mass function

Pr (at = a | xt = x) admits the nonparametric finite mixture representation:

Pr (at = a | xt = x) = ∑
κ∗∈K(x)

fκ∗(κ
∗ | x)

[
∏J

j=1

[
Pj(x, κ∗)

]aj
[
1 − Pj(x, κ∗)

]1−aj
]

, (35)

with K(x) a discrete and finite collection of latent classes with at most |K(x)| ≤ 2J−1 components,

fκ∗(κ∗ | x) the probability of latent class κ∗ conditional on x, and Pj(x, κ∗) the probability of entry of
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firm j conditional on x and latent class κ∗. ■

This result states that any arbitrary probability mass function Pr (at = a | xt = x), which could

arise from any game of product entry, can be represented as a convenient nonparametric

finite mixture with: (i) a finite number of latent classes κ∗ ∈ K(x) with at most |K(x)| ≤ 2J−1

components and (ii) the entry probability Pj(x, κ∗) of each firm j conditionally independent from

the others Pi(x, κ∗), i ̸= j. Finite mixture representation (35) is inherently nonparametric in

that Proposition ?? does not pose any further restriction on fκ∗(κ∗ | x) and Pj(x, κ∗) beyond

the fact that these are probability mass functions. Moreover, it is pointwise with respect to

x, as for any different value of x ∈ X the probability mass function Pr (at = a | xt = x) may

admit a different nonparametric finite mixture representation (e.g., with a different number

of latent classes, different probabilities fκ∗(κ∗ | x) and Pj(x, κ∗)). Finally, while Proposition ??

guarantees the existence of at least “a” representation as in (35), such a representation may

not be unique. We return to the issue of uniqueness in section 4.2 when discussing about

identification (see also related discussion in Kargas et al. (2018)).

Remarkably, nonparametric finite mixture representation (35) resembles the joint prob-

ability of entry implied by the games of incomplete information studied in Aguirregabiria

and Mira (2019); Xiao (2018). More formally, Proposition ?? shows that any arbitrary joint

probability of entry Pr (at = a | xt = x) can be represented “as if” the J firms were playing an

entry game of incomplete information along the lines of those proposed by Aguirregabiria

and Mira (2019); Xiao (2018). Importantly, and perhaps surprisingly, Proposition ?? highlights

how both the discrete and finite number of latent classes (or unobserved market types) K(x)

and the conditional independence of the firms’ entry decisions are without loss of generality.

The identification of the entry probabilities Pκ∗ and the distribution f κ∗ in the nonparamet-

ric finite mixture representation in (35) has been studied by Hall and Zhou (2003), Hall et al.

(2005), Allman et al. (2009), and Kasahara and Shimotsu (2014), among others. Identification

is based on the independence between firms’ entry decisions once we condition on xt and κ∗t .

25



In this first step, the proof of identification is pointwise for each value of x. To simplify

notation, for the rest of this subsection we then omit both x and the market subscript t .

4.2.2 Identification of the number of latent market types

The number of components |K| in finite mixture (35) is typically unknown to the researcher.

Following ideas similar to Bonhomme et al. (2016), Xiao (2018), and Aguirregabiria and Mira

(2019), we start our first-step identification argument by providing sufficient conditions for

the unique determination of |K| from observables. In particular, we adapt to our context

Proposition 2 in Aguirregabiria and Mira (2019) and Lemma 1 in Xiao (2018).

Suppose that J ≥ 3 and let (Y1, Y2, Y3) be three random variables that represent a partition

of the vector of firms’ entry decisions (a1, a2, ..., aJ) such that Y1 is equal to the entry decision of

one firm (if J is odd) or two firms (if J is even), and variables Y2 and Y3 evenly divide the entry

decisions of the rest of the firms. Denote by J̃ the number of firms collected in Yi, i = 2, 3, such

that J̃ = (J − 1)/2 if J is odd, and J̃ = (J − 2)/2 if J is even. For i = 1, 2, 3, let PYi(κ
∗) be the

matrix of probabilities for each possible value of Yi — in the rows of the matrix — conditional

on every possible value of κ∗ — in the columns of the matrix. The main idea is then to identify

the number of components |K| from the observed joint distribution of Y2 and Y3:

Pr(Y2 = y2, Y3 = y3) =
|K|

∑
κ∗=1

Pr(Y2 = y2 | κ∗) Pr(Y3 = y3 | κ∗) fκ∗(κ
∗) (36)

or, in matrix notation,

PY2,Y3 = PY2|κ∗ diag( f κ∗) P′
Y3|κ∗ , (37)

where: PY2,Y3 is the 2 J̃ × 2 J̃ matrix with elements P(y2, y3); PYi|κ∗ is the 2 J̃ × |K| matrix with

elements Pr(Yi = y | κ∗); and diag( f κ∗) is the |K| × |K| diagonal matrix with the probabilities

fκ∗(κ∗).
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PROPOSITION 4. Without further restrictions, Rank(PY2,Y3) is a lower bound for the true value

of parameter |K|. Furthermore, if (i) |K| < 2 J̃ and (ii) for i = 2, 3 the |K| vectors PYi(κ
∗ = 1),

PYi(κ
∗ = 2), ..., PYi(κ

∗ = |K|) are linearly independent, then |K| = Rank(PY2,Y3). ■

The point identification of the number of components |K| from the observed matrix PY2,Y3

hinges on a “large enough” number of firms J̃ and on the matrices PY2|κ∗ and PY3|κ∗ being of

full column rank, so that the entry probabilities associated to each component κ∗ cannot be

obtained as linear combinations of the others.

4.2.3 Identification of equilibrium CCPs and distribution of latent types

Allman et al. (2009) study the identification of nonparametric multinomial finite mixtures

that include our binary choice model as a particular case. They establish that a mixture with

|K| components is identified if J ≥ 3 and |K| ≤ 2J/(J + 1). The following Proposition 5 is an

adaptation of Theorem 4 and Corollary 5 in Allman et al. (2009).

PROPOSITION 5. Suppose that: (i) J ≥ 3; (ii) |K| ≤ 2J/(J + 1); and (iii) for i = 1, 2, 3, the |K|

vectors PYi(κ
∗ = 1), PYi(κ

∗ = 2), ..., PYi(κ
∗ = |K|) are linearly independent. Then, the probability

distribution of κ∗ — i.e., fκ∗(κ∗) for κ∗ = 1, 2, ..., |K| — and the equilibrium CCPs — i.e., Pj(κ
∗) for

j = 1, 2, ..., J and κ∗ = 1, 2, ..., |K| — are uniquely identified up to label swapping. ■

Note that order condition (i) in Proposition 4 is in general more stringent than order condition

(ii) in Proposition 5: that is, for J ≥ 3, we have that 2 J̃ ≤ 2J/(J + 1). In this sense, for any

J ≥ 3, when the conditions in Proposition 4 hold and the |K| vectors PY1(κ
∗ = 1), PY1(κ

∗ = 2),

..., PY1(κ
∗ = |K|) are linearly independent, then |K| = Rank(PY2,Y3) and the distribution of κ∗

and the equilibrium CCPs are uniquely identified.

The identification of the distribution of κ∗t and the equilibrium CCPs is up to label swapping,

and pointwise or separately for each value of the observable xt. In the absence of additional
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assumptions, the combination of these two features leads to an identification issue in the

second step of our method. In fact, in the estimation of the demand equation in the second

step, we need to include fκ∗(κ∗ | xt) and Pj(κ
∗, xt) for every value of κ∗ as additional regressors,

or more precisely as control variables. To construct these regressors, we need to be able to

“match” the same latent type κ∗ across different observed values of xt in the sample. However,

this task is not feasible without further assumptions.

Aguirregabiria and Mira (2019) discuss alternative assumptions that can solve this matching-

latent-types problem. In our empirical application, we opt for the independence between κt

and xt. This assumption addresses the challenge by altering the nature of identification in the

first step: rather than being pointwise with respect to xt, identification holds uniformly across

all values of xt. Therefore, though identification is still up to label swapping, the same label κ∗

will apply to all values of xt, effectively removing the problem of matching-latent-types.

4.3 Second Step: Identification of Demand Parameters

Following the discussion in section 2.1, we represent the demand system using the inverse

d(a)−1
j (s(a)

t , p(a)
t , x(a)

t ) from Proposition 1. For those markets with ajt = 1, the demand equation

can be expressed as:

δj(st, σ) = α pjt + x′jt β + ξ jt, for ajt = 1 (38)

where we use the notation δj(st, σ) to emphasize that δjt is a function of the parameters σ char-

acterizing the distribution of the random coefficients υh. The selection problem arises because

the unobservable ξ jt is not mean independent of the market entry (or product availability)

condition ajt = 1. Therefore, moment conditions that are valid under exogenous product

selection are no longer valid when ξ jt and ajt are not independent.

Suppose for a moment that the market type or proxy κ∗t were observable to the researcher

after identification in the first step. In this case, the selection term would be ψj
(

Pj(xt, κ∗t ), κ∗t
)
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from equation (30) and we would have a standard selection problem represented by the

semiparametric partially linear model:

δj(st, σ) = α pjt + x′jt β + ψj
(

Pj(xt, κ∗t ), κ∗t
)
+ ξ̃ jt. (39)

A key complication of the selection problem in our model is that the market type or proxy κ∗t

is unobserved to the researcher. After the first step of the identification procedure, we do not

know the unobserved type of a market but only its probability distribution conditional on xt.

Therefore, in the second step, we cannot condition on κ∗t as in equation (39). We instead need

to deal with the more complex selection bias function:

λj(xt) ≡ E
(
ξ jt | xt, ajt = 1

)
=

|K(xt)|

∑
κ∗=1

f j,κ∗(κ
∗ | xt) ψj

(
Pj(xt, κ∗), κ∗

)
= f ′j,κ∗,t ψj(Pj,t), (40)

where f j,κ∗,t, Pj,t, and ψj(Pj,t) are all vectors of dimension |K(xt)|× 1. Therefore, the regression

equation of our model is:

δj(st, σ) = α pjt + x′jt β + f ′j,κ∗,t ψj(Pj,t) + ξ̃ jt. (41)

Define f κ∗,t ≡ ( fκ∗(κ∗ | xt) : κ∗ = 1, 2, ..., |K(xt)|). Note that as f j,κ∗(κ
∗ | xt) is a known

function of (Pj,t, f κ∗,t), equation (41) then clarifies that (Pj,t, f κ∗,t) is a sufficient statistic for the

selection bias function.

Proposition 6 establishes a necessary and sufficient condition for the identification of

θδ ≡ (α, β, σ) from equation (41). It is an application of Theorem 6 in Rothenberg (1971).

PROPOSITION 6. Define the vector Z jt ≡
(

E
(

∂δj(st,σ)
∂σ | xt

)
, E

(
pjt | xt

)
, x′jt

)′
, and let Z̃ jt be the

deviation (or residual) Z jt −E(Z jt | Pj,t, f κ∗,t). Then, given that E
(

ξ̃ jt | xt

)
= E

(
ξ̃ jt | Pj,t, f κ∗,t

)
=

0, a necessary and sufficient condition for the identification of θδ ≡ (α, β, σ) in equation (41) is that
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matrix E
(

Z̃ jt Z̃
′
jt

)
is full-rank. ■

Intuitively, Proposition 1 says that the identification of θδ requires that, after differencing out

any dependence with respect to (Pj,t, f κ∗,t), there should be no perfect collinearity in the vector

of explanatory variables Z jt ≡ (E(∂δjt/∂σ | xt), E(pjt | xt), x′jt)
′.

Proposition 1 does not provide identification conditions that apply directly to the primitives

of the model. However, on the basis of this Proposition, it is straightforward to establish

necessary identification conditions that apply to primitives of the model, or to objects which

are more closely related to primitives. First, we need J ≥ 2, otherwise there would not

be exclusion restrictions to deal with price endogeneity, i.e., E(pjt | xt) would be a linear

combination of xjt. Second, the vector of entry probabilities Pj,t should depend on xit for

i ̸= j. Otherwise, keeping Pj,t fixed would also imply fixing xjt and the vector of parameters β

would not be identified. Hence, there should be effective competition in firms’ market entry

decisions. For instance, without observable variables affecting entry but not demand, the

model would not be identified under monopolistic market structure. Third, the number of

points in the support of κ should be smaller than the number of variables in vector xt: i.e.,

|K(xt)| < dim(xt). Otherwise, controlling for Pj,t would be equivalent to controlling for the

whole vector xt, and no parameter in θδ would be identified.

5 Estimation and inference

In this section, we present a two-step estimation method that mimics our sequential identifi-

cation result. In the first step, we use a nonparametric sieve maximum likelihood method to

estimate the distribution of unobserved market types, the vector of entry probabilities for each

unobserved type, and the number of unobserved market types. In the second step, we use

sieves to approximate the selection bias term as a function of the densities and entry probabili-
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ties estimated in the first step.7 Then, we apply GMM to jointly estimate the coefficients in

the sieve approximation and the structural demand parameters. The standard errors of the

second-step demand estimates can be computed using either the asymptotic approximations

and formulas in Newey (2009) or the bootstrap procedure we detail in Appendix B. A key

computational advantage of the proposed bootstrap procedure is that it does not require the

repeated estimation of the first step, which, even for moderate |K|, may take up to several

hours for each individual execution.

5.1 First step: Estimation of CCPs and distribution of latent types

We use sieves to approximate the nonparametric functions fκ∗(κ∗t | xt) and Pj(xt, κt) (Hirano

et al., 2003, Chen, 2007). Let r f
t ≡

(
r f

1(xt), r f
2(xt), ..., r f

L f
(xt)

)′
be a vector with a finite number

L f of basis functions. The density function fκ∗(κ∗t | xt) has the following sieves multinomial

logit structure:

fκ∗(κ
∗ | xt) =

exp{r f ′
t γ

f
κ}

∑|K|
κ′=1 exp{r f ′

t γ
f
κ′}

, (42)

where, for κ∗ = 1, 2, ..., |K|, γ
f
κ∗ is a vector of parameters with dimension L f × 1 and normal-

ization γ f (1) = 0. Similarly, let rP
t ≡

(
rP

1 (xt), rP
2 (xt), ..., rP

LP
(xt)

)′
be a vector with a finite

number LP of basis functions. For any product j and any unobserved type or proxy κ∗, the

entry probability function Pj(xt, κ∗) has the following sieves binary logit structure:

Pj(xt, κ∗) = Λ
(

rP′
t γP

jκ∗

)
, (43)

where Λ(·) is the logistic function. For j = 1, 2, ..., J and κ∗ = 1, 2, ..., |K|, we have that γP
jκ∗ is a

vector of parameters of dimension LP × 1. The log-likelihood function of this nonparametric

7The second step could alternatively be based on differencing out the selection bias term using a matching
estimator as in Ahn and Powell (1993), Powell (2001), and Aradillas-Lopez et al. (2007).

31



finite mixture model is:

ℓ(γ f ,P) =
T

∑
t=1

ln

( |K|

∑
κ∗=1

fκ∗(κ
∗ | xt, γ f )

J

∏
j=1

Λ
(

rP′
t γP

jκ∗

)ajt
[
1 − Λ

(
rP′

t γP
jκ∗

)]1−ajt

)
, (44)

where γ f ,P is a vector collecting the parameters {γ
f
κ∗ , γP

jκ∗ : κ∗ = 1, 2, ..., |K|; j = 1, 2, ..., J},

with a total of L f (|K| − 1) + LP|K|J parameters.

We estimate the vector of parameters γ f ,P by Maximum Likelihood (MLE) using the EM

algorithm (Pilla and Lindsay, 2001). Recent papers considering MLE and the EM algorithm to

estimate nonparametric mixtures in discrete choice models include Bunting (2022), Bunting

et al. (2022), Hu and Xin (2022), and Williams (2020). Following this statistical literature, we

use Akaike and Bayesian Information Criteria (AIC and BIC, respectively) to determine the

number of latent classes |K|.

When xt is discrete, the nonparametric MLE is
√

T-consistent and asymptotically normal.

With continuous variables in xt, the nonparametric MLE cannot achieve a
√

T rate. However,

under standard regularity conditions, this does not affect the
√

T-consistency and asymptotic

normality of the estimator of the demand parameters in the second step. The proof of this

result follows from Hirano et al. (2003) and Das et al. (2003).

5.2 Second step: Estimation of demand parameters

Following Das et al. (2003), we use the method of sieves and approximate each function

ψj
(

Pj(xt, κ∗), κ∗
)

using a polynomial of order Lψ in the logarithm of the entry probability

Pj(xt, κ∗):

ψj
(

Pj(xt, κ∗), κ∗
)

≈ rψ
(

Pj(xt, κ∗)
)′

γ
ψ
jκ∗

=
[
1, ln Pj(xt, κ∗), ln Pj(xt, κ∗)2, ..., ln Pj(xt, κ∗)Lψ

]
γ

ψ
jκ∗ ,

(45)
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where γ
ψ
jκ∗ ≡ (γ

ψ
0,jκ∗ , γ

ψ
1,jκ∗ , ..., γ

ψ
Lψ,jκ∗)

′ is a vector of parameters. Given this approximation, the

selection function is linear in γ
ψ
jκ∗ and has the following expression:

f ′j,κ∗,tψj(Pj,t) ≈ h′
j,t γ

ψ
j =

|K|

∑
κ∗=1

Lψ

∑
ℓ=0

γ
ψ
ℓ,jκ∗ f j,κ∗(κ

∗ | xt)
(
ln Pj(xt, κ∗)

)ℓ (46)

where h′
j,t is a vector with dimension 1× (Lψ + 1)|K| and elements { f j,κ∗(κ

∗ | xt)
(
ln Pj(xt, κ∗)

)ℓ :

ℓ = 0, 1, ..., Lψ; κ∗ = 1, ..., |K|}, and γ
ψ
j is a vector of parameters of the same dimension and

with elements {γ
ψ
ℓ,jκ∗ : ℓ = 0, 1, ..., Lψ; κ∗ = 1, ..., |K|}.

Plugging equation (46) into demand equation (41), we obtain the regression equation:

δj(st, σ) = α pjt + x′jt β + h′
j,t γ

ψ
j + ξ̃ jt. (47)

Equation (47) can be estimated by GMM. Following Das et al. (2003), one can show that this

two-step estimator of the vector of demand parameters θδ is
√

T-consistent and asymptotically

normal.

6 Empirical application

6.1 Data and descriptive statistics

We apply our method to estimate demand in the US airline industry. The challenge of

endogenous product entry in demand estimation in this industry has recently been explored

by Ciliberto et al. (2021) and Li et al. (2022).

We use publicly available data from the US Department of Transportation for our analysis.

Our working sample consists of the DB1B and T100 datasets. Specifically, we use quarterly data

spanning 2012-Q1 to 2013-Q4 for routes between the airports at the 100 largest Metropolitan

Statistical Areas (MSA) in the United States. These account for 108 airports, as there are a few
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MSAs with more than one airport.

In terms of airlines’ entry decisions, we define a market as a non-directional airport pair,

where, for example, Chicago O’Hare (ORD) to New York La Guardia (LGA) is the same market

as LGA to ORD. There are potentially 5,778 non-directional markets between the 108 airports,

i.e., 108 × 107/2. However, many of these markets have not had an incumbent airline with

non-stop flights for several decades. These are typically airport pairs that are geographically

too close or in smaller MSAs. In our sample, we only consider non-directional markets which

were served in at least 50 quarters between 1994 and 2018. This results in 2,230 non-directional

markets and 17,155 market-quarter observations.8 We consider an airline a potential entrant

in a non-directional airport pair in a given quarter if it operates non-stop flights from either

origin or destination airport (toward or from any airport), while an airline is an entrant in a

non-directional airport pair in a given quarter if it operates non-stop flights between the origin

and destination airports.

A product is defined as the combination of directional airport pair, airline, and an indicator

for non-stop flight. For example, an American Airlines non-stop flight from LGA to ORD

is a product. The airlines included in our analysis are American (AA), Delta (DL), United

(UA), US Airways (US), Southwest (WN), a combined group of Low-Cost Carriers (LCC), and

a combined group of the remaining carriers (Others).9 Given the large number of carriers

included in Others, we do not consider this combined group as a player in the entry game.

Following the empirical literature on the airline industry, we define market size as the

geometric mean of the populations in the metropolitan areas (MSAs) of the two airports and

market distance as the geodesic distance between the two airports.

Table 1 presents the distribution of the number of entrants and averages of the market

8Given 2,230 non-directional markets and eight quarters, the total number of market-quarter observations in
our sample is 2, 230 × 8 = 17, 840. We however discard from the analysis 685 market-quarter observations for
which we either do not observe some of the regressors or none of the six airlines included in the entry model is
a potential entrant.

9Following Ciliberto et al. (2021), the list of airlines included in the group LCC is: Alaska, JetBlue, Frontier,
Allegiant, Spirit, Sun Country, and Virgin. The carriers in the group Others are small regional carriers, charters,
and private jets.
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characteristics. Notably, in a significant portion of these markets (almost 30%), there are no

airlines providing non-stop flights, and they are exclusively served with stop flights. Among

the markets with non-stop flights, more than 90% are monopolies or duopolies. Furthermore,

there is a strong positive correlation between the number of incumbents, market size, and

distance.

Table 1: Distribution of Markets by Number of Entrants

Frequency Avg. market size Avg. market distance
Number of airlines # markets-quarters (%) in millions of people in miles

0 airlines 5,117 (29.83%) 7.09 734
1 airline 8,217 (47.90%) 8.82 913

2 airlines 2,637 (15.37%) 10.95 960
3 airlines 869 (5.07%) 13.00 1,117
4 airlines 233 (1.36%) 12.60 1,140
5 airlines 72 (0.42%) 20.16 1,255

≥ 6 airlines 10 (0.06%) 17.54 320

Total 17,155 (100.00%) 8.95 882

Table 2 presents entry frequencies for each airline and the average market size and distance

associated with their entry. We observe significant variation in airlines’ entry probabilities,

with WN and AA having the highest (27.5%) and the lowest (10.6%) entry probabilities,

respectively. Furthermore, there is substantial heterogeneity in the correlations between entry,

market size, and distance among airlines. For example, while WN enters markets that are not

significantly different in size from the markets it does not enter (8.7 million people versus 9

million people), AA tends to enter markets with much larger average population (13.3 million

people versus 8.4 million people). Different entry strategies are also evident on the basis of

market distance. DL and US typically enter markets with an average distance of around 875-95

miles, whereas the markets served by LCC have an average distance of 1,171 miles.
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Table 2: Entry Frequency by Airline

Frequency Avg. market size Avg. market distance
Airline # markets-quarters (%) in millions of people in miles

WN 4,714 (27.48%) 8.71 989
DL 3,285 (19.15%) 10.68 875
UA 3,244 (18.91%) 11.56 968

LCC 2,386 (13.91%) 11.42 1,171
US 2,001 (11.66%) 9.52 894

AA 1,820 (10.61%) 13.28 965

6.2 Estimation of the model of market entry

For the entry decisions, we consider the nonparametric sieve finite mixture Logit described in

equations (42) and (43). The vector of explanatory variables xt includes: market size; market

distance (see definitions above); the airline’s own hub-size in the market, as measured by the

sum of the airline’s hub-sizes in the two airports; the average hub-sizes of the other airlines;

and time indicators for each of the eight quarters in the sample.10

In the analysis, we focus on specifications of the mixture Logit model in which the dis-

tribution of κ∗t is independent of xt.11 Our choice stems from the robustness of our demand

estimates to incorporating dependence between κ∗t and xt, and because this form of indepen-

dence effectively addresses the identification challenge of matching latent market types due

to label swapping (see discussion in Section 4.2.3). The robustness of our results to relaxing

independence between κ∗t and xt is intuitive, as this assumption does not impose any exclusion

restriction necessary to control for selection bias in the estimation of the demand parameters.

Furthermore, there is a practical computational rationale behind this decision. While

estimating the mixture Logit model under the assumption of independence and with two or

10We define the hub-size of an airline in an airport as the number of non-stop routes that the airline operates
from that airport.

11Although we assume that fκ∗(κ
∗
t | xt) = fκ∗(κ

∗
t ), the distribution of κ∗t conditional on ajt = 1, f j,κ∗(κ

∗
t | xt) ≡

Pj(xt ,κ∗t )
P̄j(xt)

fκ∗(κ
∗
t ), is still a function of xt. See equation (51) below.
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three unobserved market types requires only a few hours, and the Expectation-Maximization

(EM) algorithm consistently converges, introducing dependence significantly complicates

computations. The estimation process, even with just two unobserved market types, extends

over several days of EM iterations, and the EM algorithm often fails to converge. While

the model with dependence is theoretically identified, the practical implementation of the

estimator considerably complicates in our empirical application.

We explored various specifications of the mixture Logit model based on two key elements:

the polynomial order in xt used to construct the basis rP
t and the number of elements in the

support of κ∗t . As our estimates of the demand parameters are robust to the selection of

the basis rP
t in the entry model, we only present results for the specification with rP

t = xt.

Regarding the specification of the number of unobserved market types |K|, Table 3 presents

the goodness-of-fit statistics obtained from estimating four nested specifications of the mixture

Logit model. The choice of the preferred specification is guided by the Akaike Information

Criterion (AIC) and the Bayesian Information Criterion (BIC), along with the convergence

performance of the EM algorithm, the accuracy of the parameter estimates of the entry model,

and the robustness of the estimates of the demand model.

The introduction of unobserved market heterogeneity κ∗t improves the entry model’s

goodness-of-fit. Comparing the specification without κ∗t and the one with two unobserved

market types in Table 3, we see a substantial increase in the log-likelihood and a decrease in

both AIC and BIC. This form of unobserved market heterogeneity captures a strong correlation

among airline entry decisions, a correlation not captured by the observable market and

airline characteristics in xt. The inclusion of additional unobserved market types continues to

positively impact the goodness-of-fit. However, this improvement has diminishing returns

and it is very small when moving from three to four unobserved market types. While the EM

algorithm converges rapidly to the MLE in the specifications with two and three unobserved

market types, we experience convergence issues in the specification with four unobserved

market types. In this case, we obtain imprecise estimates for some of the parameters of the
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entry model. These considerations, combined with the marginal improvement observed in

the AIC and BIC criteria, lead us to favor the specification with |K| = 3. Moreover, this

choice is also motivated by the implied estimates of the demand model. As we illustrate

below, the estimated own-price elasticities of demand with |K| = 3 and |K| = 4 are practically

indistinguishable. In contrast, with |K| ≤ 2 we obtain estimates of the own-price elasticities

which are substantially smaller.

Table 3: Estimation of Market Entry Model — Goodness-of-Fit Statistics

Logit Mixture Logit Mixture Logit Mixture Logit
Statistics # types = 1 # types = 2 # types = 3 # types = 4

Observations 17, 155 17, 155 17, 155 17, 155
Parameters 72 145 218 287
Log-likelihood −20, 378 −18, 985 −18, 022 −17, 621
AIC 40, 900 38, 261 36, 481 35, 817
BIC 41, 458 39, 385 38, 170 38, 041

6.3 Estimation of demand parameters

For the demand system, we follow Ciliberto et al. (2021) and estimate a nested logit model

with two nests: a nest for all the airlines and another nest for the outside option.

ln
(

sjt

s0t

)
= α pjt + x′jt β + σ ln

(
sjt

1 − s0t

)
+ h′

jt γ
ψ
j + ξ̃ jt. (48)

We compute each directional route-specific market share in a given quarter sjt as the total

number of passengers who traveled that directional route with a non-stop flight of a specific

airline in that given quarter (times 10, as the data are a survey of 10% of total traffic) divided

by market size. The vector of product characteristics xjt includes market distance and market

distance squared, airline j’s hub-size in the origin airport, airline j’s hub-size in the destination

airport, and airline × quarter fixed effects (indicators). The expression for the selection term,
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h′
jt γ

ψ
j , varies with the specification of the market entry model, from the more restrictive

parametric Logit model to the more general semiparametric finite mixture Logit model.

1. Parametric Logit specification. We consider the entry model ajt = 1{ηjt ≤ x′jtγ
P
j }, with

ηjt ∼ Logistic, and ξ jt = γ
ψ
j,1 ηjt + vjt, with vjt independent of ηjt and xt. In this paramet-

ric specification, the selection term takes the following form:

E
(
ξ jt | ajt = 1, xt

)
= γ

ψ
j,1 E

(
ηjt | ηjt ≤ x′jtγ

P
j

)
= γ

ψ
j,1

[
Euler − ln Λ

(
x′t γP

j

)]
. (49)

where Euler ≈ 0.5772 represents Euler’s constant. For the parametric Logit model, the

term Euler − ln Λ
(

x′tγ
P
j

)
is analogous to the inverse Mills ratio in the context of the

parametric Probit model.

2. Semiparametric Logit without κ∗t . The entry model is still the Logit ajt = 1{ηjt ≤ x′jtγ
P
j },

with ηjt ∼ Logistic, but now E
(
ξ jt | ajt = 1, xt

)
is a third order polynomial in Euler −

ln Λ
(

x′tγ
P
j

)
.12 Therefore, the vector of regressors controlling for endogenous selection

is:

h′
jt =

[(
Euler − ln Λ

(
x′tγ

P
j

))ℓ
: ℓ = 1, 2, 3

]
. (50)

This semiparametric approach to control for selection follows Newey (2009).

3. Semiparametric mixture Logit. The entry model is the mixture Logit with entry decision

ajt = 1{ηjt ≤ x′jtγ
P
jκ∗} for unobserved market type κ∗t = κ∗, and with conditional mixture

distribution f j,κ∗(κ
∗ | xt) =

Λ
(

x′tγ
P
jκ∗
)

fκ∗ (κ
∗)

∑
|K|
ι=1 Λ

(
x′tγ

P
jι

)
fκ∗ (ι)

. Conditional on κ∗t = κ∗, the selection

term E
(
ξ jt | ajt = 1, xt, κ∗t = κ∗

)
is a third order polynomial in Euler − ln Λ

(
x′tγ

P
jκ∗

)
.

Accordingly, the vector of regressors controlling for endogenous selection is:

h′
jt =

[
f j,κ∗(κ

∗ | xt)
(

Euler − ln Λ
(

x′tγ
P
jκ∗

))ℓ
: ℓ = 1, 2, 3, and κ∗ = 1, 2, ..., |K|

]
. (51)

12Both in this and in the case of the semiparametric mixture Logit, estimates are very similar by approximating
the selection function with polynomials of higher orders.
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For all the 2SLS estimators, we use as instruments the number of competitors in the market

and the average hub-size of the rest of the airlines, separately for origin and destination. We

compute standard errors on the basis of the bootstrap procedure detailed in Appendix B.

Table 4 presents the estimates of the demand parameters, while Table 5 reports the average

demand elasticities and Lerner indexes derived from these estimates. Comparing the estimates

obtained using OLS with those from the standard 2SLS method — not accounting for potential

selection bias — we observe a significant change in all parameter estimates when address-

ing the endogeneity of prices and within-nest market shares. Controlling for endogeneity

meaningfully affects the average estimated own-price elasticity, which decreases from −1.60

to −5.55, and the corresponding average Lerner index, which decreases from 68.8% to 19.9%.

Turning to the consequences of controlling for endogenous market entry, we note the

important role played by finite mixture unobserved heterogeneity. The estimates of parameters

α and σ of a finite mixture model with |K| = 3 are, compared to those of “Semiparametric”

(assuming |K| = 1), 15.9% and 28.8% higher (in absolute terms). These changes translate into

an increase in the average estimated own-price elasticities of around 30%. Consequently, the

corresponding average estimated Lerner index decreases from 18.9% to 15.1%. These effects

are of substantial importance and lead to meaningful economic implications.

Parameter estimates and implied own-price elasticities of the standard 2SLS (not controlling

for selection) and those of “Heckman” or “Semiparametric” (assuming |K| = 1) are relatively

similar. In contrast, parameter estimates and corresponding own-price elasticities remarkably

change when we allow |K| > 1. Although the estimated own-price elasticities of a model with

|K| = 2 are still meaningfully different from those of a model with |K| = 3, the estimates

implied by models with |K| = 3 and |K| = 4 are essentially indistinguishable. Collectively,

these results stress the importance of allowing for “some” unobserved market heterogeneity

to effectively control for endogenous selection, but also that as few unobserved market types

as three may already be sufficient.

Figure 1 plots the empirical distributions of the estimated own-price elasticities. Each row
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Table 4: Estimation of Demand Parameters

Not control. for sel. Controlling for endogenous selection
OLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Heckman Semipar. Fin.-Mix. Fin.-Mix. Fin.-Mix.
|K| = 1 |K| = 1 |K| = 2 |K| = 3 |K| = 4

Price (100$) (α) −0.643 −2.180 −2.193 −2.261 −2.392 −2.621 −2.697
(0.0105) (0.1378) (0.2065) (0.2077) (0.2201) (0.2448) (0.2716)

Within Share (σ) 0.371 0.409 0.413 0.431 0.494 0.555 0.546
(0.0058) (0.0351) (0.0529) (0.0559) (0.0622) (0.0717) (0.0821)

Distance (1000mi) 0.729 2.130 2.196 2.264 2.387 2.503 2.624
(0.0306) (0.1372) (0.2074) (0.2055) (0.2133) (0.2390) (0.2648)

Distance2 −0.216 −0.424 −0.453 −0.462 −0.493 −0.525 −0.502
(0.0112) (0.0244) (0.0398) (0.0392) (0.0401) (0.0440) (0.0483)

hub-size orig. (100s) 1.637 2.272 1.999 1.320 1.709 1.677 1.444
(0.0263) (0.0382) (0.0767) (0.0919) (0.1085) (0.1206) (0.1244)

hub-size dest. (100s) 1.613 2.242 1.995 1.310 1.703 1.674 1.436
(0.0267) (0.0385) (0.0784) (0.0933) (0.1106) (0.1228) (0.1266)

Airline×Quarter FE Y Y Y Y Y Y Y
# control var. entry 0 0 6 18 36 54 72
Observations 35, 763 35, 763 35, 763 35, 763 35, 763 35, 763 35, 763

Bootstrap standard errors account for estimation error in the first step using the method described in Appendix B.

corresponds to an airline, while each column to a different 2SLS estimator: the first column

plots results for the estimator that does not control for selection, the second column plots

results for the estimator that controls for selection using a sieve method but no mixture, and

the third column plots results for the estimator with three unobserved market types.

The histograms in this figure are constructed based on estimates of own-price elasticities

at the airline-market-quarter level. The equation describing each own-price elasticity only

depends on data on price pjmt, market shares sjmt and s0mt, and parameter estimates α̂ and σ̂.

It is important to note that the data regarding prices and market shares remain constant across

the various columns in the figure. Therefore, any change in empirical distributions can only

be attributed to changes in the values of the estimates α̂ and σ̂ across the different estimators.
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Table 5: Average Own-Price Elasticities and Lerner Indexes

Not control. for sel. Controlling for endogenous selection
OLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Heckman Semipar. Fin.-Mix. Fin.-Mix. Fin.-Mix.
|K| = 1 |K| = 1 |K| = 2 |K| = 3 |K| = 4

Own-Price Elasticity −1.596 −5.549 −5.601 −5.849 −6.524 −7.605 −7.746

AA −1.722 −6.013 −6.071 −6.363 −7.143 −8.399 −8.543
DL −1.761 −6.082 −6.133 −6.382 −7.024 −8.067 −8.236
UA −1.887 −6.573 −6.636 −6.936 −7.766 −9.090 −9.253
US −1.665 −5.801 −5.856 −6.122 −6.854 −8.023 −8.167

WN −1.354 −4.680 −4.719 −4.913 −5.411 −6.220 −6.350
LCC −1.370 −4.808 −4.857 −5.095 −5.784 −6.870 −6.977

Others −1.332 −4.705 −4.757 −5.006 −5.750 −6.915 −7.009

Lerner Index 68.8% 19.9% 19.7% 18.9% 17.2% 15.1% 14.7%

AA 62.7% 18.0% 17.9% 17.1% 15.5% 13.5% 13.2%
DL 60.4% 17.5% 17.3% 16.7% 15.3% 13.4% 13.1%
UA 56.9% 16.4% 16.2% 15.6% 14.1% 12.3% 12.1%
US 65.9% 19.0% 18.9% 18.1% 16.5% 14.5% 14.2%

WN 78.4% 22.8% 22.6% 21.8% 20.1% 17.8% 17.4%
LCC 82.1% 23.5% 23.3% 22.2% 19.9% 17.1% 16.8%

Others 79.2% 22.5% 22.3% 21.3% 18.9% 16.0% 15.8%

Observations 35, 763 35, 763 35, 763 35, 763 35, 763 35, 763 35, 763
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Figure 1: Distribution of Estimated Own-Price Elasticities (Airline-Market-Quarter level)

0

.1

.2

.3

.4

A
A

-20 -16 -12 -8 -4 0

2SLS

-20 -16 -12 -8 -4 0

Semiparametric ( |K*| = 1 )

-20 -16 -12 -8 -4 0

Finite Mixture ( |K*| = 3 )

0

.1

.2

.3

.4

D
L

-20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0

0

.1

.2

.3

.4

U
A

-20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0

0

.1

.2

.3

.4

U
S

-20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0

0

.1

.2

.3

.4

W
N

-20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0

0

.1

.2

.3

.4

LC
C

-20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0

0

.1

.2

.3

.4

O
th

er
s

-20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0 -20 -16 -12 -8 -4 0

43



The empirical distributions in the first two columns of Figure 1 are very similar. In contrast,

the empirical distributions based on the finite mixture estimates show substantially different

locations and dispersions. Across all airlines, the larger estimates of α̂ and σ̂ using the mixture

method lead to a leftward shift and an amplification in the spread of the empirical distributions.

These changes in the empirical distributions’ location and dispersion may have important

economic implications in any application that requires demand estimates as input for further

analyses — irrespective of whether endogenous product entry and/or exit is in itself of any

economic interest.

6.4 Estimation of costs and counterfactual experiments

In this paper, we focus on the consistent estimation of demand parameters in the presence

of endogenous product entry. However, relying on the structure of our model, it is straight-

forward for researchers to estimate marginal costs, entry costs, and the joint distribution of

unobservable variables. Given these estimated primitives, a variety of counterfactual experi-

ments can be performed. In this subsection, we discuss these additional estimation procedures

in the context of our empirical application.

6.4.1 Marginal costs

Based on an assumption about the nature of competition, such as Bertrand-Nash competition,

the researcher would be able to estimate marginal costs at the airline-market-quarter level as

the residuals from the pricing equation. It is important to note that these marginal costs can be

computed only for those airlines that are observed to be active in the market.

For some empirical questions, given the marginal costs, the researcher may need to further

estimate a marginal cost function: that is, a function that represents the effect of product

characteristics and output on marginal costs. For this purpose, the researcher needs to estimate

the parameters of a regression in which the dependent variable is the marginal cost estimate
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and the explanatory variables are the exogenous product characteristics xjt and, in the case of

non-linear returns to scale, the output qjt. As in this case of demand, this regression is subject

to selection bias due to endogenous product entry. Remarkably, the structure of the selection

term in this equation mirrors that in the demand equation. We can then control for selection

bias in the estimation of the marginal cost function using exactly the same control variables

that we have used for the estimation of the demand parameters.

We now illustrate these points in the context of our application. Following Ciliberto et al.

(2021), we assume that the airlines engage in Bertrand-Nash competition and that each airline

has marginal cost function that does not depend on output. Then, given demand equation (48),

the marginal cost function of airline j in market-quarter t can be estimated from the following

pricing equation:

pjt +
1 − σ

α(1 − σsjt|g − (1 − σ)sjt)
= mcjt, (52)

where g denotes the nest that contains all the airlines and the marginal cost mcjt is specified as:

mcjt = x′jt φ+ h′
jt γ

ψ,mc
j + ω̃jt, (53)

with both xjt and hjt defined as in the case of demand equation (48), while the unobserved

component of marginal cost is ωjt ≡ E
(
ωjt | ajt = 1, xt

)
+ ω̃jt. Similarly to the case of demand,

the selection term is E
(
ωjt | ajt = 1, xt

)
= h′

jt γ
ψ,mc
j and we consider the same specifications

for hjt as those described in section 6.3.

Table 6 reports the average marginal costs obtained from equation (52) and the demand

estimates in Table 4 (see Appendix Figure 2 for the corresponding empirical distributions),

while Table 7 presents our estimates of φ from equation (53). The estimates of φ in each column

of Table 7 rely on the corresponding demand estimates of Table 4, so that, for example, the

first column of Table 7 reports estimates of φ obtained by using the estimates of α and σ (i.e.,

plugging them in the left-hand side of (52)) from the first column of Table 4. Collectively, these

results illustrate that although endogeneity of prices and of within-nest market shares play
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Table 6: Average Marginal Costs

Not control. for sel. Controlling for endogenous selection
OLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Heckman Semipar. Fin.-Mix. Fin.-Mix. Fin.-Mix.
|K| = 1 |K| = 1 |K| = 2 |K| = 3 |K| = 4

Marginal Cost (100$) 0.766 1.718 1.721 1.736 1.769 1.810 1.817

AA 0.901 1.829 1.832 1.847 1.881 1.924 1.930
DL 1.049 2.032 2.036 2.050 2.082 2.123 2.130
UA 1.134 2.072 2.075 2.090 2.123 2.165 2.171
US 0.830 1.779 1.782 1.797 1.830 1.871 1.878

WN 0.464 1.461 1.464 1.478 1.510 1.549 1.557
LCC 0.434 1.330 1.333 1.349 1.384 1.427 1.432

Others 0.362 1.220 1.224 1.239 1.276 1.319 1.323

Observations 35, 763 35, 763 35, 763 35, 763 35, 763 35, 763 35, 763

an important role on the implied marginal cost estimates from equation (52), endogenous

selection seems to have less of an impact. Moreover, the parameter estimates of equation (53)

(which uses the estimated mcjt as a dependent variable) look remarkably similar across all

columns of Table 7, including in the case of the OLS. From these findings, we can conclude

that — at least in our sample — the unobserved component of entry ηjt appears to be strongly

correlated with the unobserved component of demand ξ jt but not with that of marginal cost

ωjt. In other words, heterogeneity in airlines’ entry decisions appears to be primarily explained

by demand-side rather than by marginal cost-side unobserved heterogeneity.

6.4.2 Demand and marginal cost unobservables

The consistent estimation of demand and marginal cost parameters yields consistent estimates

of the corresponding unobservable variables, ξ jmt and ωjmt, which can be obtained as residuals

from the estimated equations. While the estimation of these equations is subject to selection

bias, controlling for selection enables the researcher to achieve consistent estimation of the

unobservable variables ξ jmt and ωjmt for the airlines that are observed to be active in the
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Table 7: Estimation of Marginal Cost Parameters

Not control. for sel. Controlling for endogenous selection
OLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Heckman Semipar. Fin.-Mix. Fin.-Mix. Fin.-Mix.
|K| = 1 |K| = 1 |K| = 2 |K| = 3 |K| = 4

Distance (1000mi) 0.971 0.927 0.938 0.935 0.934 0.937 0.965
(0.014) (0.014) (0.023) (0.022) (0.024) (0.023) (0.025)

Distance2 −0.150 −0.139 −0.146 −0.144 −0.147 −0.149 −0.149
(0.006) (0.006) (0.008) (0.008) (0.009) (0.009) (0.010)

hub-size orig. (100s) 0.247 0.382 0.237 0.103 0.326 0.348 0.288
(0.013) (0.013) (0.024) (0.031) (0.034) (0.034) (0.034)

hub-size dest. (100s) 0.243 0.377 0.241 0.105 0.330 0.353 0.290
(0.013) (0.013) (0.024) (0.031) (0.035) (0.034) (0.034)

Airline×Quarter FE Y Y Y Y Y Y Y
# control var. entry 0 0 6 18 36 54 72
Observations 35, 763 35, 763 35, 763 35, 763 35, 763 35, 763 35, 763

Bootstrap standard errors account for estimation error in the first step using the method described in Appendix B.

market.13

Naturally, the more complex estimation of the probability distribution governing these

unobservables for all products requires one to address an additional extrapolation problem for

the products observed to be inactive in the market. See related discussion in subsection 6.4.4

below.

6.4.3 Counterfactuals at the intensive margin

Once the challenge of endogenous selection has been addressed in the estimation of demand

and marginal cost parameters, counterfactual experiments that hold constant the set of airlines

and market structure can be performed without further complications.

13Importantly, in calculating ξ̂ jmt and ω̂jmt, one should not remove the estimated selection term from these
residuals.
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Figure 2: Distribution of Estimated Marginal Costs (Airline-Market-Quarter level)
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6.4.4 Counterfactuals at the extensive margin

Another class of counterfactual experiments involves changes to the set of active firms and/or

products within the market. In this category, the most straightforward experiment is the

exogenous removal of certain products from the market. Given the availability of data on

the exogenous demand and marginal cost attributes of all products, performing this type

of counterfactual does not significantly differ from the counterfactuals at the intensive margin

discussed above. This type of counterfactual includes as a particular case the evaluation of a

merger which ignores firms’ endogenous responses at the extensive margin.14

Counterfactual experiments that involve the introduction of new products require data

on the exogenous attributes of the new or hypothetical products. In our empirical analysis of

the airline industry, we observe xjmt for every airline-market-quarter product, irrespective of

whether the airline is active in the market. Specifically, data on the airline’s hub-size at both

the origin and destination airports, as well as the airline-quarter fixed effects, are available for

both active airlines and potential entrants. However, the unobservable factors ξ jmt and ωjmt

are unknown to the researcher for potential entrants. To perform this type of counterfactual,

the researcher needs to determine the values of these unobservables also for the potential

entrants.

In principle, the researcher could set the values of ξ jmt and ωjmt for potential entrants at

the unconditional mean of these variables, which is zero. However, this approach raises a

significant concern: it contradicts the fact that these airlines opted not to enter this particular

market. To find values of ξ jmt and ωjmt that are consistent with observed endogenous entry

decisions, one must consider E
(
ξ jmt|xmt, ajmt = 0

)
and E

(
ωjmt|xmt, ajmt = 0

)
, respectively.

While our estimation method yields consistent semiparametric estimates of the expected

values E(ξ jmt|xmt, ajmt = 1) and E(ωjmt|xmt, ajmt = 1), it is silent with respect to E(ξ jmt|xmt, ajmt =

14In this class of models, the evaluation of the effects of a counterfactual merger requires making an assumption
about the values of exogenous product characteristics for the new merging entity/firm. However, this
complication is present regardless of the endogenous product selection issue that we address in this paper.
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0) and E(ωjmt|xmt, ajmt = 0). Achieving point identification for the latter requires supplemen-

tary constraints, such as parametric assumptions or symmetry restrictions. An alternative

approach instead involves estimating semiparametric bounds for these expected values. This

information can then be used to choose appropriate values for ξ jmt and ωjmt.

7 Conclusions

In local geographic markets, we typically find only a subset of all the differentiated products

in an industry. Firms strategically select specific products that better match the preferences of

local consumers. When making market entry decisions, firms possess information about the

demand for their products, particularly regarding unobservable demand components. Firms

tend to enter markets with higher expected demand. Neglecting this selection process can

introduce significant biases in the estimation of demand parameters. This issue is common

across various demand applications and industries. Existing methods to address this issue

typically rely on strong parametric assumptions about demand unobservables and firms’

information.

In this paper, we investigate the identification of demand parameters within a structural

model that encompasses demand, price competition, and market entry (static or dynamic),

while specifying the distribution of demand unobservables in a nonparametric finite mixture

manner. The paper makes three main contributions. First, it establishes sequential identifi-

cation of the demand parameters in this model. We demonstrate that the selection term in

the demand equation results from a convolution of the probabilities of product entry for each

discrete unobserved market type and the densities associated with these market types. We

show that data on firms’ product entry decisions nonparametrically identify the probabilities

of product entry conditional on the market type and the density of unobserved market types.

Under mild conditions on the observable variables, demand parameters are identified after

controlling for the nonparametric entry probabilities and densities for each market type.
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Second, we propose a simple two-step estimator to address endogenous selection. In

the first step, we estimate a nonparametric finite mixture model to determine the choice

probabilities of product entry. In the second step, demand parameters are estimated using a

Generalized Method of Moments (GMM) approach that accounts for both endogenous product

availability and price endogeneity.

Third, we illustrate the proposed method by applying it to data from the airline industry.

The findings highlight the importance of allowing for a finite mixture of unobserved market

types when controlling for endogenous product entry, as failure to do so can lead to significant

biases.
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Appendices

A Proofs of Propositions

A.1 Proof of Proposition 1

For j ∈ {0} ∪ J a, let dj(δ
a, σ), as defined in equation (4), denote the model’s prediction for

the market share sj. Define Pj(δ
a, σ, υ) as the multinomial logit choice probability, whose

integral over the distribution of υ yields the demand function dj(δ
a, σ). Based on the model

assumptions as described in section 2, this demand function satisfies the following properties:

P1. Continuously differentiable in δa.

P2. Non-degenerate: For any argument (δa, σ) with ajt = 1, we have, 0 < dj(δ
a, σ) < 1.

P3. Strict monotonicity: For any product j ∈ J a:

∂dj(δ
a, σ)

∂δj
=
∫

Pj(δ
a, σ, υ)

(
1 − Pj(δ

a, σ, υ)
)

dFυ(υ) > 0.

Similarly, for i ̸= j ∈ J a:

∂dj(δ
a, σ)

∂δi
= −

∫
Pj(δ

a, σ, υ) Pi(δ
a, σ, υ) dFυ(υ) < 0.

P4. Jacobian matrix with strict diagonal dominance: Let D(δa) denote the |Ja| × |Ja| Jacobian

matrix with entries Dij(δ
a) =

∂dj(δ
a,σ)

∂δi
. Taking into account the structure of demand as

an integral of a multinomial logit probability, it is possible to show that for any j ∈ J a:

|Djj(δ
a)| > ∑

i ̸=j
|Dij(δ

a)|.

P5. Globally invertible Jacobian matrix: By Levy–Desplanques, the strict diagonal dominance
of the Jacobian matrix implies that this matrix is non-singular.

P6. Boundary bevavior: Using monotonicity of the logit probabilities together with the Domi-
nated Convergence Theorem, we have that

lim
δj→−∞

dj(δ
a, σ) =

∫
lim

δj→−∞
Pj(δ

a, σ, υ) dFυ(υ) =
∫

0 dFυ(υ) = 0
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lim
δj→+∞

dj(δ
a, σ) =

∫
lim

δj→+∞
Pj(δ

a, σ, υ) dFυ(υ) =
∫

1 dFυ(υ) = 1

Based on properties P1 to P6, we prove the global invertibility result in Proposition 1.

Given a target vector of market shares s∗ ∈ ∆|J a| with each component satisfying 0 <

s∗j < 1 for j ∈ J a, we can establish existence of mean utilities that generate these shares. To
formally establish existence using a fixed-point approach, we construct a rectangle:[

δ, δ
]

= {δ ∈ R|J a| : δj ≤ δj ≤ δj for j ∈ J a},

where we choose δj sufficiently negative and δj sufficiently positive such that:

dj(δj, δa
−j) < s∗j < dj(δj, δa

−j)

for any fixed δa
−j in the rectangle. The boundary behavior established in P6 above guarantees

the existence of such values.
We define a continuous function H :

[
δ, δ
]
→ R|J a| by:

Hj(δ) = δj + ln(s∗j )− ln
[
dj(δ

a)
]

Next, define a mapping G :
[
δ, δ
]
→
[
δ, δ
]

by:

Gj(δ
a) =


δj if Hj(δ

a) < δj,

Hj(δ
a) if δj ≤ Hj(δ

a) ≤ δj,

δj if Hj(δ
a) > δj,

By Property P1, function G is continuous. Since ∆ is compact and convex, Brouwer’s Fixed
Point Theorem guarantees the existence of δ∗ ∈ ∆ such that G(δ∗) = δ∗.

B Bootstrap Procedure for Second-Step Standard Errors

Our estimation procedure involves two steps (see section 5 for details). In the first step, we
use a nonparametric sieve MLE to estimate the vector of L f (|K| − 1) + LP|K|J parameters

γ f ,P with elements {γ
f
κ∗ , γP

jκ∗ : κ∗ = 1, 2, ..., |K|; j = 1, 2, ..., J}, which govern the distribution of
unobserved market types and the vector of entry probabilities for each unobserved type.

In the second step, we use sieves to approximate the selection bias term as a function of
the densities and entry probabilities estimated in the first step. Then, we use a GMM to jointly
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estimate the coefficients of the sieve approximation and the structural demand parameters
θδ ≡ (α, β, σ). In particular, we approximate the selection bias term by h′

j,t γ
ψ
j , where h′

j,t

is a vector of dimension 1 × (Lψ + 1)|K| with elements { f j,κ∗(κ
∗ | xt)

(
ln Pj(xt, κ∗)

)ℓ : ℓ =

0, 1, ..., Lψ; κ∗ = 1, ..., |K|}, and where γ
ψ
j is a vector of parameters of the same dimension with

elements {γ
ψ
ℓ,jκ∗ : ℓ = 0, 1, ..., Lψ; κ∗ = 1, ..., |K|}.

Following Das et al. (2003), one can show that this two-step estimator of the vector of
demand parameters θδ is

√
T-consistent and asymptotically normal. However, given the

sequential nature of the estimator, the standard errors of the estimates in the second step need
to be corrected. One way to do this is to use the asymptotic approximations and formulas
in Newey (2009). Given the complexity of our model, these however result in laborious
calculations whose practical implementation must be adapted to the number of unobserved
market types |K|. For any given |K|, the asymptotic formulas differ and the computer code
must be modified accordingly.15 To avoid this practical hurdle, we propose a convenient
two-step bootstrap procedure. Importantly, this procedure does not require to repeatedly
estimate the first step, which, even for moderate |K|, may take up to several hours for each
individual execution.

To avoid repeatedly estimating the first step (as in a nonparametric bootstrap), we use a
two-step bootstrap procedure consisting of a first-step parametric bootstrap, based on the
asymptotic normality of the first-step nonparametric MLE (which holds under standard
regularity conditions),16 followed by a second-step nonparametric bootstrap. In practice, the
proposed two-step bootstrap procedure consists of the following steps:

1. Using the first-step estimates γ̂ f ,P and their estimated variance-covariance matrix V̂ f ,P,

draw a vector of parameters γ̂
f ,P
b from the multivariate normal distribution N

(
γ̂ f ,P, V̂ f ,P

)
.

2. For each draw γ̂
f ,P
b , calculate a corresponding hb

j,t to be used in regression equation (47).

3. Generate S bootstrap samples. For given hb
j,t and each of these bootstrap samples

s = 1, ..., S, obtain an estimate θ̂
b,s
δ from regression equation (47).

4. Repeat B times steps 1-3, with b = 1, ..., B.

15Prior research has established the value of two-step bootstrap procedures, with notable applications in Arm-
strong et al. (2014), Gonçalves et al. (2023), and Cattaneo et al. (2019), among others. In particular, Gonçalves
et al. (2023) demonstrate that in two-stage MLE procedures, bootstrap methods can effectively bypass coding
errors that often arise when calculating asymptotic standard errors that involve complex first- and second-order
derivatives.

16When xt is discrete, the first-step nonparametric MLE estimator is
√

T-consistent and asymptotically normal,
while with continuous xt the rate of convergence will be slower than

√
T. Importantly, as discussed in section

5, this slower rate of convergence of the first-step estimator does not, however, affect the
√

T-consistency and
asymptotic normality of the second-step estimator of the demand parameters θδ.
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This procedure generates B × S bootstrap estimates
(

θ̂
b,s
δ

)
b=1,...,B;s=1,...,S

, which can be finally

used to compute the standard errors of θ̂δ.
The consistency of two-step bootstrap procedures, such as the one we propose, is studied

by Gonçalves et al. (2023). The validity of the procedure requires two main types of assump-
tions. First, one needs the two-step estimator to be consistent, including consistency of the
first-step estimator and its asymptotic linear representation, along with regularity conditions
on the second-step objective function. These conditions are inherently satisfied by our model’s
two-step estimation framework. Second, one needs additional regularity conditions such
as Assumption BG∗ in Gonçalves et al. (2023), which can be easily verified in our context: (i)
The bootstrap estimator in the first step must be consistent and the first-step estimator must
have a linear asymptotic representation. (ii) The second-step bootstrap objective function
must be consistent. (iii) First-order derivatives of the second-step moment condition must
satisfy a bootstrap uniform law of large numbers (ULLN). (iv) Bootstrap standardized mo-
ment conditions must converge in distribution to the original sample standardized moment
conditions.

Our methodology also satisfies these additional assumptions. Our first-step estimator
has a linear asymptotic representation and the first step of our bootstrap procedure involves
parameter draws from the first-step estimator’s distribution, satisfying the first requirement
of BG∗.17 Our second-step estimator is then a standard GMM, making the verification of the
remaining conditions in Assumption BG∗ straightforward.

17We implement the first-step estimator using Stata’s gsem and incorporating restrictions sufficient to prevent
label swapping and corner solutions. Given this, our first-step estimator has a linear asymptotic representation.
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