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Abstract
This paper addresses the endogeneity of firms’ entry and exit decisions in estimating demand
for differentiated products. Under standard conditions, the selection propensity score is
insufficient to control selection bias, leading to the inconsistency of conventional methods
of handling selection. We introduce a novel, straightforward two-step approach to estimate
demand while accounting for endogenous product entry and exit. In the first step, our
method estimates a nonparametric finite mixture model of product entry and exit that
accommodates latent market types. Assuming a finite-dimensional support set for the
latent variable does not introduce misspecification bias in the product entry model or the
corresponding selection term used in demand estimation. In the second step, our method
estimates the demand parameters while controlling for selection by incorporating product
entry probabilities for each latent market type. We apply this approach to data from the
airline industry, revealing that conventional methods to address selection bias underestimate
demand price elasticities.
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1 Introduction

Since the influential work by Tobin (1958), Amemiya (1973), and Heckman (1976), addressing
endogenous selection has become a fundamental topic in microeconometrics. The need to handle
censored observations, mainly zeros, in consumer demand estimation has made this economic
application a significant driver in developing methods to account for sample selection. While
much of the early literature focused on analyzing demand for a single product, there have also
been early applications to demand systems (Amemiya, 1974, Yen, 2005, Yen and Lin, 2006).

More recently, the selection problem in estimating demand systems has attracted researchers’
attention in the context of structural models of demand and supply for differentiated products.
A key aspect distinguishing the recently proposed methods is the source of the zeros in market
shares. The first group of studies considers that the choice probabilities in the model are strictly
positive, but observed market shares may be zero because of sampling error due to a small
number of consumers in the data (Gandhi, Lu, and Shi, 2023). A second approach assumes
that some market shares are zero because consumers in certain markets exclude these products
from their choice set or consideration set (Dubé, Hortaçsu, and Joo, 2021).1 Finally, a third
group of studies examines sample selection bias in demand estimation when zeros arise from
firms’ market entry decisions (Conlon and Mortimer, 2013, Ciliberto, Murry, and Tamer, 2021;
Li, Mazur, Park, Roberts, Sweeting, and Zhang, 2022).

This paper studies the estimation of demand for differentiated products using market-level
data while accounting for censoring or selection resulting from firms not offering certain products
in specific markets or periods. Demand estimation typically relies on data collected from multiple
geographic markets and periods, where it is common for certain products to be unavailable
in specific markets or periods. When firms make their market entry decisions, they possess
information about the demand for their products, particularly regarding demand components
that are not observable to the researcher. Firms are more inclined to enter markets with higher
expected demand. Failure to consider this selection process can introduce significant biases
in estimating demand parameters. This issue arises across various demand applications and
industries, such as the demand for airlines (Berry, Carnall, and Spiller, 2006; Berry and Jia, 2010;
Aguirregabiria and Ho, 2012), supermarket chains (Smith, 2004), radio stations (Sweeting, 2013),

1There is a growing empirical literature on consideration sets, where typically all products are assumed
to be available in the market, but consumers consider subsets of these due to inattention or costly search.
These heterogeneous consideration sets are usually unobserved by the researcher. The estimators proposed to
overcome this complication do not consider the endogenous selection problem addressed in this paper (Goeree,
2008; Abaluck and Adams-Prassl, 2021; Barseghyan, Coughlin, Molinari, and Teitelbaum, 2021; Lu, 2022; and
Moraga-González, Sándor, and Wildenbeest, 2023). For more details on this literature, see Crawford, Griffith,
and Iaria (2021).
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personal computers (Eizenberg, 2014), or ice cream (Draganska, Mazzeo, and Seim, 2009).2

The selection problem in this demand-entry model exhibits a key characteristic that distin-
guishes it from more standard cases. The multi-dimensional nature of demand unobservables
and their non-additive impact on firms’ entry decisions prevent the model from meeting a cru-
cial monotonicity condition. This condition is necessary for the selection propensity score (i.e.,
the product entry probabilities) to serve as a sufficient statistic to control for selection in the
estimation of demand parameters (see Proposition 2 and 3 in Angrist, 1997). Moreover, the
model exhibits multiple equilibria in the entry and pricing games. Different equilibria may be
selected across markets, adding another potential source of non-monotonicity to the selection
equation. Consequently, the conventional identification results and two-step estimation methods
found in the literature are not applicable (Newey, Powell, and Walker, 1990; Ahn and Powell,
1993; Powell, 2001; Das, Newey, and Vella, 2003; Aradillas-Lopez, Honoré, and Powell, 2007;
Newey, 2009).

This paper studies the identification of demand parameters in a structural model of demand,
product entry, and price competition where the distribution of demand unobservables is non-
parametric. On the supply side, we consider a two-stage game in which firms first decide whether
to sell their products and then the prices to charge for the available products. The first stage
game of product entry is general, allowing for different information structures, static or dynamic
behavior, multiplicity of equilibria, and nonparametric distribution of all unobservables. The
second stage price competition game is a standard Bertrand game of complete information as in
Berry, Levinsohn, and Pakes (1995).

The main contribution of this paper is to establish the sequential (two-step) identification of
demand parameters in the presence of endogenous selection and price endogeneity. A key element
in our result is representing firms’ product entry decisions using a nonparametric finite mixture
model. Drawing on recent findings in tensor decomposition (Kargas, Sidiropoulos, and Fu, 2018),
we demonstrate that this representation is general and applies broadly to our structural model of
demand and product entry/exit decisions. This general representation holds under very general

2Recent research on nonparametric identification of demand systems accounts for product entry and exit as a
source of identifying variation in consumer choice sets. However, these studies focus on the exogenous component
of such variation and do not examine the endogenous selection problem tied to product entry and exit. See the
work of Berry and Haile, (2014, 2022), as well as the recent survey papers by Berry and Haile, (2021) and Gandhi
and Nevo, (2021). One common approach to tackle this selection problem is to incorporate fixed effects, such
as product, market, and time fixed effects while assuming that the remaining portion of the error term in the
demand equation is unknown to firms when they make their market/product entry decisions. This approach
is employed in studies by Aguirregabiria and Ho (2012), Sweeting (2013), and Eizenberg (2014). Although the
fixed effects approach is convenient in practice, it relies on assumptions regarding firms’ information that may
not be realistic in certain empirical applications. Furthermore, these assumptions can be subject to testing and
potential rejection by the data. Notably, the model considered in this paper encompasses the fixed effects model
as a specific case.
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conditions, including nonparametric distributions of unobservables with continuous support and
varying information structures in the entry/exit game, whether complete or incomplete.

The mixture model’s unobservable component, which we refer to as the unobserved market
type, encapsulates all the common knowledge that firms possess at the moment of entry regarding
demand unobservables. Despite the potential multidimensionality and continuous support of this
unobservable, Kargas, Sidiropoulos, and Fu (2018) show that using finite-dimensional support for
this latent variable — specifically, with at most 2J−1 points of support where J is the number of
products — does not misspecify the probabilities of product entry/exit. Building on this insight,
we show that the selection term in the demand equation can be represented as a convolution
of the conditional choice probabilities given the unobserved market type and the distribution of
unobserved market types. Applying results from the nonparametric finite mixtures literature,
we demonstrate that data on firms’ product entry decisions nonparametrically identify these
conditional choice probabilities and the distribution of unobserved market types. Given these
identified objects, we establish the identification of demand parameters and the function that
controls for endogenous selection. Our proof of sequential identification addresses two significant
challenges in nonparametric finite mixture models: identification up to label swapping and
establishing a lower bound on the number of unobserved market types.

Building on our constructive proof of identification, we propose a simple two-step estimator
to address endogenous selection and price endogeneity in demand estimation. In the first step,
we use a semiparametric finite mixture model to estimate the conditional choice probabilities
of product entry and the distribution of unobserved market types. By directly targeting the
nonparametric finite mixture representation by Kargas, Sidiropoulos, and Fu (2018), our first
step estimator does not require the researcher to know or to assume the details of the specific
model of product entry that generated the data, and it is still consistent with a large class of
such games. In the second step, we estimate demand parameters using a Generalized Method
of Moments (GMM) approach that controls for both endogenous product availability and price
endogeneity.

The paper illustrates the proposed method with data from the airline industry. Our findings
highlight the importance of accounting for endogenous product entry and a finite mixture of
unobserved market types, as failing to do so can lead to significant biases. Specifically, neglecting
latent classes or unobserved market types while accounting for endogenous selection results in
meaningful attenuation biases in the estimates of demand elasticities.

Our paper is motivated by the work of Draganska, Mazzeo, and Seim (2009), Ciliberto, Murry,
and Tamer (2021), and Li, Mazur, Park, Roberts, Sweeting, and Zhang (2022). These authors
develop methods for estimating structural models that combine the demand for differentiated
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products in Berry, Levinsohn, and Pakes (1995) with games of market/product entry as in
Bresnahan and Reiss (1990, 1991) and Berry (1992). They focus on the joint estimation of
all structural parameters in the model, including demand, marginal costs, entry costs, and the
probability distribution of unobservable factors. To jointly estimate the full model, these authors
employ nested fixed point algorithms, which require solving multiple times for the equilibria
of a two-step game. Consequently, they rely on strong parametric assumptions for all the
structural functions and the distribution of unobservables. In contrast, we adopt a sequential
approach to identify and estimate the structural parameters of the demand model. Our approach
yields identification in a nonparametric specification of the model that guarantees a supply-
side structure consistent with equilibrium behavior. We do not impose strong assumptions on
marginal costs, entry costs, or the distribution of unobservables. Furthermore, our estimation
method offers computational simplicity as it does not require the computation of equilibria.
Finally, the method and its computational advantages apply both to static games of market
entry and dynamic games of market entry and exit.3

We contribute to the literature on structural models of market entry and exit with the insight
that the nonparametric finite mixture representation by Kargas, Sidiropoulos, and Fu (2018)
extends the applicability of the econometric techniques developed for games with incomplete
information (as the static games in Seim (2006); Draganska, Mazzeo, and Seim (2009); Xiao
(2018); Aguirregabiria and Mira (2019) or the dynamic games in Aguirregabiria and Mira (2007);
Pakes, Ostrovsky, and Berry (2007); Sweeting (2009)) to a larger class of entry and exit games.

Our estimation method contributes to the literature on the semiparametric estimation of
sample selection models, with seminal contributions by Newey, Powell, and Walker (1990); Powell
(2001); Newey (2009). A distinctive aspect of our method is the multi-dimensionality of the
selection term in the second step of estimation. Specifically, the selection term involves the
convolution of functions representing market entry probabilities for each latent market type.
Our method builds on the semiparametric sieve method in Das, Newey, and Vella (2003); Newey
(2009) and the pairwise-differencing approach in Powell (2001); Aradillas-Lopez, Honoré, and
Powell (2007). We enhance the applicability of this method by broadening its scope in the
context of our model.

3Given estimates of demand parameters and unobservables from our method, one can obtain estimates of
marginal costs and entry costs with less stringent parametric assumptions than those required for the joint
estimation of the full structural model. Similar to Ciliberto, Murry, and Tamer (2021) and Li, Mazur, Park,
Roberts, Sweeting, and Zhang (2022), we can rely on the estimates of our model to implement a wide range of
counterfactual experiments accounting for the endogeneity of product entry and exit. Accounting for endogenous
product entry/exit is particularly valuable when simulating the effects of a merger, as demonstrated by Li,
Mazur, Park, Roberts, Sweeting, and Zhang (2022). In section 6.4, we discuss the implementation of these
counterfactuals.
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Our method also relates to the literature on estimating Conditional Average Treatment Ef-
fects (CATE) using finite mixture models for the propensity score (Haviland and Nagin, 2005;
Haviland, Nagin, Rosenbaum, and Tremblay, 2008; Lanza, Coffman, and Xu, 2013). In the
first step of our method, we follow a similar approach with the only difference played by the
conditional independence of firms’ entry decisions (which is not assumed but implied by the
representation in Kargas, Sidiropoulos, and Fu (2018)) to obtain nonparametric identification.
However, the second step of our method differs substantially. Previous studies in the latent
propensity score literature assign each individual in the sample to a latent class using techniques
such as the highest posterior probability (modal assignment) and treating the assigned class as
an observable variable. In contrast, our method recognizes that an individual’s (firm’s) latent
class remains unobservable, even after estimating the nonparametric finite mixture model using
an infinite sample. Consequently, controlling for selection bias in the second step requires the
inclusion of propensity scores for all potential latent types.

The remainder of this paper is structured as follows. Section 2 introduces our model and
underlying assumptions. Section 3 deals with the selection problem within this framework.
Our identification results are outlined in Section 4. In Section 5, we detail our estimation
methodology, followed by an empirical application to the US airline industry in Section 6. Finally,
Section 7 provides a summary and concluding remarks.

2 Model

The demand system follows the BLP framework (Berry, Levinsohn, and Pakes, 1995). For the
sake of notational simplicity, we focus on single-product firms. In section 2.4, we discuss how to
adapt our model and methodology to the case of multi-product firms. There are J firms indexed
by j ∈ J = {1, 2, ..., J} and T markets indexed by t ∈ {1, 2, ..., T}, where a market can be a
geographic location, a period, or a combination of both. Consumers living in a market t can buy
only the products available in that market. Firms’ market entry decisions, prices, and quantities
are determined as an equilibrium of a two-stage game. In the first stage, firms maximize their
expected profit by choosing whether or not to be active in the market. In the second stage,
prices and quantities of the active firms are determined as a Nash-Bertrand equilibrium of a
pricing game. This two-stage game is played separately across markets.4 Demand and price

4While this assumption is standard in the literature on empirical industrial organization, there are important
exceptions of structural models of entry which allow potential entrants to internalize network externalities across
markets, as Bontemps, Gualdani, and Remmy (2023); Jia (2008); Aguirregabiria and Ho (2012). However, these
structural models of network formation do not consider the endogenous sample selection problem we study in
this paper.
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competition are static. Our model accommodates static and dynamic games of firms’ product
entry (and exit) decisions.

2.1 Demand

The indirect utility of household h in market t from buying product j is:

Uhjt ≡ δ(pjt,xjt) + v(pjt,xjt, υht) + εhjt, (1)

where pjt and xjt are the price and other characteristics, respectively, of product j in market t;
δjt ≡ δ(pjt,xjt) is the average (indirect) utility of product j in market t; and v(pjt,xjt, υht) +

εhjt represents a household-specific deviation from the average utility. The term v(pjt,xjt, υht)

depends on the vector of random coefficients υht that is unobserved to the researcher with
distribution Fυ(·|σ), where σ is a vector of parameters. The term εhjt is unobserved to the
researcher and is i.i.d. over (h, j, t) with type I extreme value distribution. Following the
standard specification, the average utility of product j is:

δjt ≡ α pjt + x
′
jt β + ξjt, (2)

where α and β are parameters. Variable ξjt captures the characteristics of product j in market t
unobserved to the researcher. The outside option is represented by j = 0 and its indirect utility
is normalized to Uh0t = εh0t.

Let ajt ∈ {0, 1} be the indicator for product j being available in market t, and let at ≡ (ajt :

j ∈ J ) denote the vector with the indicators for the availability of every product in market
t. The outside option j = 0 is always available in every market. Every household chooses the
product that maximizes its utility. Let sjt be the market share of product j in market t, i.e.,
the proportion of households choosing product j:

sjt = djt(δt,at) ≡
∫

ajt exp (δjt + v(pjt,xjt, υ))

1 +
∑J

i=1ait exp (δit + v(pit,xit, υ))
dFυ(υ). (3)

This system of J equations represents the demand system in market t. We can represent this
system in a vector form as st = dt(δt,at).

For our analysis, it is convenient to define the sub-system of demand equations that in-
cludes market shares, average utilities, and characteristics of only those products available. We
represent this system as:

s
(a)
t = d

(a)
t (δ

(a)
t ), (4)
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where s(a)t is the subvector of st containing the market shares for only those products available.
A similar definition applies to the subvector δ(a)t . Lemma 1 establishes that the invertibility
property in Berry (1994) applies to the demand system (4) for any value of a.

LEMMA 1. Suppose that the outside option j = 0 is always available. Then, for any value of the
vector a ∈ {0, 1}J , the system s

(a)
t = d

(a)
t (δ

(a)
t ) is invertible in δ(a)t such that for every product in

this subsystem (i.e., for every product with ajt = 1) the inverse function δ
(a)
jt = d−1

jt (s
(a)
t ) exists.

■

Proof of Lemma 1. If the outside option j = 0 is available, then, for any value of the vector
a, the system of equations (4) satisfies the conditions for invertibility in Berry (1994). ■

For a product available in market t, we have:

d−1
jt (s

(at)
t ) = δjt = α pjt + x

′
jt β + ξjt if and only if ajt = 1. (5)

Importantly, this regression equation for product j only depends on the availability of product
j and not on the availability of the other products. Therefore, the selection problem in the
estimation of the demand of product j can be described in terms of the conditional expectation

E (ξjt | ajt = 1) . (6)

This characterization of the selection term is an implication of working directly with the inverse
demand system, as represented by equation (5).

To appreciate the value of this property, consider instead the case of the Almost Ideal Demand
System (AIDS) (Deaton and Muellbauer, 1980). In the AIDS, each value of the vector at implies
a different set of regressors and slope parameters in the regression equation that relates the
demand of product j to the log-prices of the available products. Therefore, in the AIDS model,
the selection bias within the demand equation for product j does not depend solely on the
availability of that particular product but rather on the availability profile of all products within
the system. In other words, the selection term cannot be represented in terms of E (ξjt | ajt = 1)

but must instead be expressed in terms of E (ξjt | ajt = 1, a−jt = a−j). Consequently, in the
AIDS model, we have a different selection term for each value of the vector a−j representing
the availability of products other than j. This structure makes the selection problem multi-
dimensional and significantly complicates identification and estimation when the number of
products J is large.

As discussed in section 2.4, Lemma 1 is unaffected in the case of multi-product firms and
so is the structure of the resulting selection term, which can still be represented in terms of
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E (ξjt | ajt = 1) even if firm j owns other products. The following Example illustrates Lemma 1
in the case of a nested logit model.

EXAMPLE 1 (Nested logit model). The J products are partitioned into R mutually ex-
clusive groups indexed by r. We denote by rj the group to which product j belongs. The indirect
utility function is Uhtj ≡ δjt + (1 − σ) vht,rj + εhtj, where variables v and ε are independently
distributed, ε and (1 − σ) v + ε are i.i.d. type I extreme value, and σ ∈ [0, 1] is a parameter
(Cardell, 1997). This model implies sjt = d

(at)
j (δt) = d

(at)
rj d

(at)
j|rj with

d
(at)
j|rj =

ajt e
δjt∑

i∈rjait e
δit

and d(at)rj
=

[∑
i∈rjait e

δit

] 1
1−σ

1 +
∑R

r=1

[∑
i∈rait e

δit
] 1
1−σ .

(7)

If ajt = 1 and s0t > 0, the inverse function d
(at)−1
j (·) exists — regardless of the value of ait for

any product i different from j. It is straightforward to show that this inverse function has the
following form:

δjt = ln

(
sjt
s0t

)
− σ ln

(∑
i∈rjsit

s0t

)
, (8)

and it implies the regression equation:

ln

(
sjt
s0t

)
= σ ln

(∑
i∈rjsit

s0t

)
+ α pjt + x

′
jt β + ξjt. (9)

Given s0t > 0, this regression equation holds whenever ajt = 1. ■

2.2 Price competition

Let Πjt be the profit of firm j if active in market t. This profit equals revenues minus costs:

Πjt = pjt qjt − c(qjt;xjt, ωjt)− f(xjt, ηjt), (10)

where qjt is the quantity sold (i.e., market share sjt times market size Ht), c(qjt;xjt, ωjt) is the
variable cost function, and f(xjt, ηjt) is the fixed entry cost. Variables ωjt and ηjt are unobserved
to the researcher.

Given firms’ entry decisions, the best response function in the Bertrand pricing game implies
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the following system of pricing equations:

pjt = mcjt − d
(at)
jt

[
∂d

(at)
jt

∂pjt

]−1

for every j ∈ J , (11)

where mcjt is the marginal cost ∂cjt/∂qjt. A solution to this system of equations is a Nash-
Bertrand equilibrium. The pricing game may have multiple equilibria. We do not restrict
equilibrium selection and allow each market to select its equilibrium. We use scalar variable
τ 2t to index the equilibrium type selected in the Bertrand game, i.e., in step 2 of the two-stage
game.

Let xt ≡ (xjt : j ∈ J ) be the vector with all exogenous variables observed by the researcher
affecting demand or costs, with support X (in which each element can be continuous or discrete).
Vectors ξt and ωt have similar definitions. Let a−jt be the vector with the entry decisions of
every firm other than j. We use V Pj(a−jt,xt, ξt,ωt, τ

2
t ) to denote the indirect variable profit

function for firm j that results from plugging into the expression pjt qjt−c(qjt;xjt, ωjt) the value
of (pjt, qjt) from the Nash-Bertrand equilibrium given (ajt = 1,a−jt,xt, ξt,ωt, τ

2
t ).

2.3 Market entry game

This section presents a game of product entry consistent with a broad class of models in the liter-
ature. It includes complete information games, as in Ciliberto and Tamer (2009) and Ciliberto,
Murry, and Tamer (2021), as well as incomplete information games with common knowledge
unobservables, as in Grieco (2014) and Aguirregabiria and Mira (2019). Our model also accom-
modates a flexible structure regarding firms’ information about demand unobservables at the
time of entry, covering extreme cases where firms have no uncertainty or no signal about these
variables or any intermediate scenario. Our identification results apply to this broad spectrum
of market entry games.

Firms’ entry decisions are determined as an equilibrium of a market entry game. The profit
of being inactive is normalized to zero. Before entry, firms may have uncertainty about their
profits when active in the market. Their information about demand and costs plays a key role
in their entry decisions and, therefore, on the implied joint probabilities of entry.

ASSUMPTION 1. Firm j’s information at the moment of its entry decision in market t
consists of (xt, κt, τ 1t , ηjt).

A. κt is a signal for the demand-cost variables (ξt,ωt, τ
2
t ) which is common knowledge for

the firms and its probability distribution conditional on xt is fκ(κt | xt). As a possible
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scenario, the signal κt might encompass the entire vector (ξt,ωt, τ
2
t ), ensuring that firms

face no uncertainty regarding demand and variable costs at the moment of entry.

B. Variable τ 1t represents the type of equilibrium selected in the entry game.

C. Variable ηjt is a signal that is private information of firm j, independently distributed
over firms, and independent of (κt,xt) with CDF Fη. As a possible scenario, variable
ηjt can have a degenerate probability distribution such that the entry game is of complete
information.

D. Vector (ξt,ωt, τ
2
t , κt, τ

1
t , ηjt) is unobserved to the researcher. Variables (ξt,ωt) are inde-

pendent of xt. ■

For notational simplicity, we omit τ 1t and interpret κt as representing both equilibrium selection
and payoff relevant variables. Similarly, with some abuse of notation, for the rest of the paper
we represent the vector of unobservables (ξt,ωt, τ

2
t ) using the more compact notation ξt.

Let πj(a−j,xt, κt, ηjt) be firm j’s expected profit given its information about demand and
costs and conditional on the hypothetical entry profile a−j ∈ {0, 1}J−1. Under Assumption 1:

πj(a−j,xt, κt, ηjt) =

∫
V Pj(a−j,xt, ξt) dFj,ξ (ξt | κt, ηjt)− fc(xjt, κt, ηjt), (12)

where Fj,ξ (ξt | κt, ηjt) is a CDF and represents firm j’s beliefs about the distribution of ξt
conditional on (κt, ηjt). As Fj,ξ (ξt | κt, ηjt) is j-specific, the same market-level signal κt can
affect the beliefs about ξt of different firms in different ways. Function fc(xjt, κt, ηjt) represents
the fixed cost and entry cost of operating in the market.

Assumption 1(C) states that this entry game can accommodate complete information if
the distribution of each ηjt is degenerate; otherwise, it is a game of incomplete information.
Below, we describe an equilibrium of the game as a Bayesian Nash Equilibrium (BNE). However,
it is essential to note that this solution concept encompasses a complete information Nash
Equilibrium (NE) when each ηjt has a degenerate probability distribution.

Given (xt, κt), a Bayesian Nash Equilibrium (BNE) of this game can be represented as a
J-tuple of entry probabilities, one for each firm, (Pjt : j ∈ J ). To describe this BNE, we first
define a firm’s expected profit function that accounts for its uncertainty about other firms’ entry
decisions.

πPj (xt, κt, ηjt) =
∑

a−j∈{0,1}J−1

(∏
i ̸=j

[Pit]
ai [1− Pit]

1−ai

)
πj(a−j,xt, κt, ηjt). (13)

10



Firm j’s best response is to enter the market if and only if this expected profit exceeds zero.
Considering this, we can define a BNE in this game as follows.

DEFINITION 1 (BNE). Under Assumption 1 and given (xt, κt), a Bayesian Nash Equilib-
rium (BNE) can be represented as a J-tuple of probabilities {Pjt ≡ Pj(xt, κt) : j ∈ J )} that
solve the following system of J best response equations in the space of probabilities:

Pjt =

∫
1{πPj (xt, κt, ηjt) ≥ 0} dFη (ηjt) . ■ (14)

This framework accommodates various information structures corresponding to different sce-
narios considered by the literature on structural market entry models. When Var(κt) = 0, the
entry game only features private information unobservables, as examined in studies such as Seim
(2006), Sweeting (2009), and Bajari, Hong, Krainer, and Nekipelov (2010). As Var(ηjt) = 0,
the entry game is of complete information, as in the work by Ciliberto and Tamer (2009) and
Ciliberto, Murry, and Tamer (2021). In instances where Var(κt) > 0 and Var(ηjt) > 0, the
model describes an entry game including both categories of unobservable factors, as in work by
Grieco (2014) and Aguirregabiria and Mira (2019).

2.4 Multi-product firms

We briefly discuss how the proposed model, the results above, and the characterization of the
selection problem in section 3 below can be extended to the case of multi-product firms. We
still use j ∈ J to index products, but now we introduce the firm sub-index f and define Jf ⊆ J
as the set of products owned by firm f . The product entry decisions of firm f are described by
vector aft ≡ (ajt : j ∈ Jf ) ∈ {0, 1}|Jf |.

First, note that Lemma 1’s applicability remains unaffected by the product ownership struc-
ture. This Lemma only relies on the structure of the demand system. Therefore, regardless
of the product ownership structure, the selection problem in the estimation of the demand of
product j is still described in terms of the conditional expectation E (ξjt | ajt = 1).

Second, Assumption 1, which describes a firm’s information at the time of its entry decisions
into market t, remains unchanged. The only difference is that we need to represent a firm’s
private information using a vector with as many elements as the products owned by this firm;
that is, ηft ≡ (ηft(af ) : af ∈ {0, 1}|Jf |). For instance, in the case of a two-product firm, ηft(1, 0)
is the latent component of entry cost when the firm offers product 1 while excluding product 2.
Under Assumption 1, equation (12), describing the expected profit of a firm, readily extends to
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multi-product firms as follows:

πf
(
af ,a−f ,xt, κt,ηft

)
=

∫
V Pf (af ,a−f ,xt, ξt) dFf,ξ

(
ξt | κt,ηft

)
− f(xft,ηft), (15)

where Ff,ξ
(
ξt | κt,ηft

)
is a CDF and represents firm j’s beliefs about the distribution of ξt

conditional on (κt,ηft).
Given this expected profit, the definition of a Bayesian Nash Equilibrium (BNE) in the entry

model for multi-product firms remains fundamentally the same as in the single-product case
outlined earlier. The only distinction is that, in the multi-product scenario, an entry probability
is associated with selecting a specific product portfolio.

While the preceding discussion illustrates the similar structure shared by the selection prob-
lem with single- and multi-product firms, it also highlights a significant practical difference.
The dimension of the vector of choice probabilities we need to control for to deal with sample
selection bias grows exponentially with the number of products per firm. In some applications,
this can pose a substantial challenge in the practical implementation of our method.

2.5 Dynamic game of product entry and exit

Our framework and identification results can accommodate cases in which firms’ decisions about
product availability come from a Markov Perfect Equilibrium (MPE) of a dynamic game of prod-
uct entry and exit, where firms are forward-looking. In this dynamic game, a firm’s fixed cost is
denoted as f(ait, ai,t−1,xjt, ηjt), where f(1, 0,xjt, ηjt) represents the cost of entry, f(0, 1,xjt, ηjt)
is the cost of exit, f(1, 1,xjt, ηjt) is the fixed cost when a product stays in the market, and
f(0, 0,xjt, ηjt) can be normalized to zero.

ASSUMPTION 1-Dyn. Suppose that t represents time. Conditions (A) to (D) in Assumption
1 hold, and we have the following additional conditions. (E) The vector of state variables at period
t, xt, includes the entry decisions of all the firms at the previous period, (aj,t−1 : j = 1, 2, ..., J).
(F) The exogenous product characteristics in vector xt and the latent market type κt are either
time-invariant or follow a first-order Markov process. (G) The private information signal ηjt is
independently and identically distributed over time and independent across firms. ■

The conditions in Assumption 1-Dyn are standard in the literature of empirical dynamic games of
oligopoly competition (see Aguirregabiria, Collard-Wexler, and Ryan, 2021). Under Assumption
1-Dyn, the value of being or not in the market depends on the state variables (xt, κt) and on the
private information shock ηjt. Let vPj (xt, κt, ηjt) be the difference between the value functions of
being in the market and not being in the market at period t. This function can be represented
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as the sum of two functions: the difference between current profits and the difference between
expected continuation values. Similar to a BNE in a static entry game, a MPE in a dynamic
game can be characterized in terms of J conditional choice probabilities.

DEFINITION 2 (MPE). Suppose that Assumptions 1-2 hold. Then, a Markov Perfect Equi-
librium (MPE) can be represented as a J-tuple of probability functions {Pj(xt, κt) : j ∈ J )} that
solve the following system of best response equations in the space of probability functions:

Pj (xt, κt) =

∫
1{vPj (xt, κt, ηjt) ≥ 0} dFη (ηjt) . ■ (16)

For the rest of the paper, we will not distinguish whether the choice probabilities Pj (xt, κt)
come from a BNE of a static entry game or from a MPE of a dynamic game of entry and exit.
All our identification results apply to both cases.

3 Selection problem

For simplicity and concreteness, we describe our sample selection problem using the nested logit
demand model from Example 1 (stressing that none of our results require such a restriction). We
use the starred variables s∗jt and p∗jt to represent latent variables. That is, s∗jt and p∗jt represent
the latent market share and price, respectively, that we would observe if product j were offered
in market t. Using these latent variables, we can write the following demand system:

ln

(
s∗jt
s0t

)
= σ ln

(
s∗jt + S−jt

s0t

)
+ α p∗jt + x

′
jt β + ξjt, (17)

where S−jt ≡
∑

i ̸=j,i∈rjsit is the aggregate market share of all products in group rj other than
product j. Latent variables (s∗jt, p

∗
jt) are equal to the observed variables (sjt, pjt) if and only if

product j is offered in market t:

{s∗jt = sjt and p∗jt = pjt} if and only if ajt = 1. (18)

Firm j’s best response entry decision completes the econometric model:

ajt = 1
{
πPj (xt, κt, ηjt) ≥ 0

}
. (19)
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Equations (17) to (19) imply the following regression equation for any product with ajt = 1:

ln

(
sjt
s0t

)
= σ ln

(
sjt + S−jt

s0t

)
+ α pjt + x

′
jt β + λj(xt) + ξ̃jt, (20)

where λj(xt) is the selection bias function, E (ξjt | xt, ajt = 1). That is,

λj(xt) =

∫
ξjt 1

{
πPj (xt, κt, ηjt) ≥ 0

} fξ,η,κ (ξjt, ηjt, κt | xt)
P̄j (xt)

d (ξjt,ηjt, κt) , (21)

where fξ,η,κ is the joint density function of (ξjt,ηjt, κt) conditional of xt, and P̄j (xt) is the
selection propensity score,

P̄j (xt) ≡ Pr (ajt = 1 | xt) =
∫

1
{
πPj (xt, κt, ηjt) ≥ 0

}
fη,κ (ηjt, κt | xt) d (ηjt, κt) . (22)

In the econometrics literature on sample selection, it is well-known that estimating equation
(20) using instrumental variables, where λj(xt) + ξ̃jt is treated as the error term, is unfeasible.
This is because λj(xt) is an unknown function of all exogenous variables in the model, leaving no
viable candidates as valid instruments (Wooldridge, 2010). To address sample selection, a control
function approach can be employed to account for the selection term λj(xt). However, we cannot
identify demand parameters without additional structure on this selection term. The selection
term is an unknown function of all exogenous variables, preventing us from disentangling the
direct effect of xjt on consumer demand (as represented by the vector of parameters β) from its
effect through the selection term.

In this context, the standard approach in the literature is to establish conditions under
which this selection term depends solely on the selection propensity score P̄j (xt), i.e., λj(xt) =
ρj(P̄j (xt)). As such, identification and estimation follow a standard two-step procedure. In a
first step, we nonparametrically estimate P̄j (xt) from data on (ajt,xt). Then, in a second step,
one can apply the semiparametric series estimator in Das, Newey, and Vella (2003) and Newey
(2009), or the pairwise differencing method in Powell (2001) and Aradillas-Lopez (2012). Valid
instruments in this regression are observed x−jt characteristics of products other than j, i.e., the
so-called BLP instruments.

Angrist (1997) establishes necessary and sufficient conditions for the selection propensity
score to be a sufficient statistic to control for sample selection bias in a very general class of
selection models that includes our demand/entry model as a particular case. The following
Lemma 2 presents these conditions and is an adaptation of Propositions 2 and 3 in Angrist
(1997).
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LEMMA 2. (A) [Necessary and sufficient condition] Conditioning on the propensity score
P̄j (xt) controls for selection bias in the estimation of demand parameters if and only if Pr(ξjt, ajt |
xt, P̄j(xt)) = Pr(ξjt, ajt | P̄j(xt)). (B) [Weak sufficient condition] Suppose that for any two val-
ues in the support of xt, say x0 and x1, the sign of Pr(ajt = 1 | x1, ξjt)−Pr(ajt = 1 | x0, ξjt) is
the same (almost surely) for every value ξjt in the support of this random variable. Then, con-
ditioning on the propensity score P̄j (xt) controls for selection bias in the estimation of demand
parameters. ■

Lemma 2(A) provides a clear, necessary, and sufficient condition for the propensity score to
control for selection. This condition, consequently, implies the identification of demand param-
eters. Combining Lemma 2 with equation (19) characterizing the optimal entry decision, the
condition stated in Lemma 2(A) can be equivalently expressed as follows:

Pr(ξjt, π
P
j (xt, κt, ηjt) | xt, P̄j(xt)) = Pr(ξjt, π

P
j (xt, κt, ηjt) | P̄j(xt)). (23)

Unfortunately, this condition involves an endogenous equilibrium object rather than the model’s
primitives, making it challenging to verify in models where the expected profit function is a
complex endogenous entity. Nevertheless, the representation of this condition in equation (23)
demonstrates that assuming independence between the unobservables (ξt, κt, ηjt) and xt is in-
sufficient for the condition to hold. The functional form of the profit function πPj , particularly
how the unobservables enter into this function, is crucial. This is further illustrated in Examples
2 and 3.

EXAMPLE 2. Suppose that the expected profit function has the following structure:

πPj (xt, κt, ηjt) = γ1j(xt)− γ2j(xt) γ3j(κt, ηjt), (24)

where γ1j(.), γ2j(.), and γ3j(.) are scalar real-valued functions. Given this structure, the op-
timal entry decision becomes ajt = 1{γ3j(κt, ηjt) ≤ γ1j(xt)/γ2j(xt)}. Assume that κt and ηjt

are jointly independent of xt, which implies independence between γ3jt ≡ γ3j(κt, ηjt) and xt.
Consequently, the selection propensity score is given by P̄j(xt) = Fγ3j(γ1j(xt)/γ2j(xt)), where
Fγ3j is the cumulative distribution function of γ3jt. Under these conditions, it is evident that the
necessary and sufficient condition in Lemma 2(A) holds, ensuring that P̄j(xt) effectively controls
for selection. ■

Example 2 illustrates a single-crossing structure in the the selection or entry decision function.
This single-crossing condition is in terms of the scalar function γ3j(κt, ηt), which encapsulates the
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influence of all unobservables on the expected profit function. While this condition is sufficient
but not necessary for the propensity score to account for selection, finding examples where the
conditions in Lemma 2(A) or 2(B) are satisfied without this structure is challenging. Further-
more, for a general class of demand and entry models, this single-crossing structure never holds.
We illustrate this in Example 3.

EXAMPLE 3. This example illustrates the crucial role that the multi-dimensional aspect
of demand unobservables plays in preventing the propensity score from effectively controlling
for selection bias. To make this concrete, consider a model of market entry with complete
information (no ηjt) and no uncertainty, such that κt = ξt. For simplicity, assume there are only
two firms potentially competing in the market (J = 2). Suppose the expected profit function
for product 1 is given by:

πP1 (xt, ξt) = γ1(xt) (x1t β + ξ1t) + γ2(xt) (x1t β + ξ1t) (x2t β + ξ2t) (25)

where γ1(xt) and γ2(xt) are scalar real-valued functions. The non-additive structure in the
second additive term, involving the demands for products 1 and 2, implies that this profit
function does not exhibit the single-crossing property described in Example 2. Moreover, it can
be shown that the conditions outlined in Lemma 2 do not hold, indicating that the propensity
score alone is insufficient to control for selection bias. ■

In the remainder of this section, we derive an expression that characterizes the selection
term λj(xt) as a function of the distribution of κt and the equilibrium CCPs Pj(xt, κt). This
characterization is crucial for our identification results. For this result, we make the following
Assumption.

ASSUMPTION 2. Let Pj(xt, κt) be the probability Pr(ajt = 1 | xt, κt). Conditional on κt and
Pj(xt, κt), variables (ξjt, ajt) are jointly independent of xt. That is, Pr(ξjt, ajt | xt, κt, Pj(xt, κt)) =
Pr(ξjt, ajt | κt, Pj(xt, κt)). ■

A more structural condition that ensures Assumption 2 is the strict monotonicity of the profit
function with respect to ηjt. For example, in the same spirit as Example 2, a sufficient condition
for Assumption 2 is that the expected profit function takes the following form: πPj (xt, κt, ηjt) =
γ1j(xt, κt)− γ2j(xt, κt) γ3j(ηjt).
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Under Assumption 2, we have that:

Pr(ξjt | ajt = 1,xt, κt, Pj(xt, κt)) =
Pr(ξjt, ajt = 1 | xt, κt, Pj(xt, κt))
Pr(ajt = 1 | xt, κt, Pj(xt, κt))

=
Pr(ξjt, ajt = 1 | κt, Pj(xt, κt))

Pj(xt, κt)
.

(26)

It then follows that,

E(ξjt | xt, κt, ajt = 1) =

∫
ξjt

Pr(ξjt, ajt = 1 | κt, Pj(xt, κt))
Pj(xt, κt)

dξjt

≡ ψj (Pj (xt, κt) , κt) .

(27)

To obtain the selection function λj(xt) ≡ E(ξjt | xt, ajt = 1), we must integrate (27) over the
distribution of κt conditional on (xt, ajt = 1). That is:

λj(xt) =

∫
ψj (Pj (xt, κt) , κt) fj,κ (κt | xt) dκt, (28)

where fj,κ (κt | xt) denotes the distribution of κt conditional on (xt, ajt = 1) and has the following
structure:

fj,κ(κt | xt) ≡ Pr(κt | xt, ajt = 1) =
Pj (xt, κt)

P̄j (xt)
fκ(κt | xt). (29)

Equation (28) shows that, without additional constraints, the selection term depends not
only on the propensity score P̄j (xt) but also on the distribution of κt and the entry probabilities
conditional on both xt and κt. It is important to note that the functions ψj are unknown to
the researcher and may vary with κt. Consequently, if κt has continuous support, there could
be an infinite number of these functions. Given this structure of the selection term, it is evident
that we cannot separately identify the demand parameters and the ψj functions. This holds true
even in the hypothetical scenario in which the researcher is able to identify, in a preliminary step
based on firms’ entry decisions, the distribution of κt and the entry probabilities conditional on
both xt and κt.

To address this identification challenge, we strengthen Assumption 2 in the following way.

ASSUMPTION 2∗. Let κ∗t be a proxy variable for κt with finite support K. Define Pj(xt, κ∗t ) ≡
Pr(ajt = 1 | xt, κ∗t ). Conditional on κ∗t and Pj(xt, κ∗t ), variables (ξjt, ajt) are jointly independent
of xt. That is, Pr(ξjt, ajt | xt, κ∗t , Pj(xt, κ∗t )) = Pr(ξjt, ajt | κ∗t , Pj(xt, κ∗t )). ■
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Under Assumptions 1 and 2∗ and supposing that the proxy κ∗t is unobserved to the researcher,
the same derivations as above show that the selection term can be expressed as:

λj(xt) =
∑
κ∗t∈K

ψj (Pj (xt, κ
∗
t ) , κ

∗
t ) fj,κ∗ (κ

∗
t | xt) , (30)

with fj,κ∗ (κ
∗
t | xt) ≡

Pj(xt,κ
∗
t )

P̄j(xt)
fκ∗(κ

∗
t | xt). In the reminder of the paper, we refer to the unob-

served κ∗t interchangeably as latent class, unobserved market type, or unobserved proxy.

4 Identification

4.1 Data and sequential identification

Suppose that each of the J firms is a potential entrant in every local market. The researcher
observes these firms in a random sample of T markets. For every market t, the researcher
observes the vector of exogenous variables xt ∈ X and the vectors of firms’ entry decisions
at ∈ {0, 1}J . The space X can be discrete or continuous. For those firms active in market t, the
researcher observes prices pt and market shares st.

Let θ ∈ Θ be the vector of all the parameters in the model, where Θ is the parameter space.
This vector has infinite dimension because some of the structural parameters are real-valued
functions. The vector θ has the following components: demand parameters θδ ≡ (α,β,σ);
probability distribution of proxies for the demand/cost variables, fκ∗ ≡ (fκ∗(κ

∗ | x) : for every
κ∗,x); the corresponding conditional entry probabilities, P κ∗ ≡ (Pj(x, κ

∗) : for every j,x, κ∗);
the probability distribution of private information Fη, and the conditional distribution of the
demand unobservables, fξ|η,κ∗ :

θ ≡
(
θδ, P κ∗ , fκ∗ , fξ|η,κ∗ , Fη

)
. (31)

In this paper, we are interested in the identification of demand parameters θδ when the distri-
butions fκ∗ and fξ|η,κ∗ and the entry probabilities P κ∗ are nonparametrically specified.

We consider a two-step sequential procedure for the identification of θδ. First, given the
empirical distribution of firms’ entry decisions, we establish the identification of the equilibrium
probabilities P κ∗ and the distribution fκ∗ . Then, given the structure of the selection bias
function in (30), we show the identification of θδ.
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4.2 First step: Game of market entry

4.2.1 A general representation of the probability of entry profiles

In this section, we show that for a broad class of market entry games, and under minimal as-
sumptions, the probabilities of firms’ entry profiles, Pr(a1t, a2t, ..., aJt|xt), can be conveniently
represented as a nonparametric finite mixture. Recent advances in tensor or multi-way linear
algebra have proven useful in the representation of general high-dimensional arrays in terms of
simpler lower-dimensional ones and are now ubiquitously applied in the fields of, e.g., signal pro-
cessing, statistics, data mining, and machine learning (Sidiropoulos, De Lathauwer, Fu, Huang,
Papalexakis, and Faloutsos, 2017; Kolda and Bader, 2009). By interpreting multivariate prob-
ability mass functions as multi-way arrays, these tensor decomposition techniques have helped
researchers represent potentially complex multivariate probabilistic processes in terms of simpler
univariate probabilities (Dunson and Xing, 2009; Yang and Dunson, 2016).

In the context of market entry games, the observed joint probability of the entry decisions
at ∈ {0, 1}J of J firms conditional on a vector of exogenous variables xt ∈ X can be seen as
a bounded (between 0 and 1) J-way tensor. Leveraging properties of the canonical polyadic
decomposition (Harshman et al., 1970; Carroll and Chang, 1970), Kargas, Sidiropoulos, and
Fu (2018) show that any J-dimensional probability mass function admits a very convenient
nonparametric finite mixture or latent class representation. The following Lemma summarizes
this result and is an adaptation to our context of Proposition 1 by Kargas, Sidiropoulos, and Fu
(2018).

LEMMA 3. For any (a,x) ∈ {0, 1}J × X with J ≥ 3, any arbitrary probability mass function
Pr (at = a | xt = x) admits the nonparametric finite mixture representation:

Pr (at = a | xt = x) =
∑

κ∗∈K(x)

fκ∗(κ
∗ | x)

[∏J
j=1 [Pj(x, κ

∗)]aj [1− Pj(x, κ
∗)]1−aj

]
, (32)

with K(x) a discrete and finite collection of latent classes with at most |K(x)| ≤ 2J−1 compo-
nents, fκ∗(κ∗ | x) the probability of latent class κ∗ conditional on x, and Pj(x, κ∗) the probability
of entry of firm j conditional on x and latent class κ∗. ■

This result states that any arbitrary probability mass function Pr (at = a | xt = x), which could
arise from any game of product entry, can be represented as a convenient nonparametric finite
mixture with: (i) a finite number of latent classes κ∗ ∈ K(x) with at most |K(x)| ≤ 2J−1

components and (ii) the entry probability Pj(x, κ
∗) of each firm j conditionally independent

from the others Pi(x, κ∗), i ̸= j. Finite mixture representation (32) is inherently nonparametric
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in that Lemma 3 does not pose any further restriction on fκ∗(κ
∗ | x) and Pj(x, κ

∗) beyond the
fact that these are probability mass functions. Moreover, it is pointwise with respect to x, as
for any different value of x ∈ X the probability mass function Pr (at = a | xt = x) may admit
a different nonparametric finite mixture representation (e.g., with a different number of latent
classes, different probabilities fκ∗(κ∗ | x) and Pj(x, κ∗)). Finally, while Lemma 3 guarantees the
existence of at least “a” representation as in (32), such a representation may not be unique. We
return to the issue of uniqueness in section 4.2 when discussing about identification (see also
related discussion in Kargas, Sidiropoulos, and Fu (2018)).

Remarkably, nonparametric finite mixture representation (32) resembles the joint probability
of entry implied by the games of incomplete information studied in Aguirregabiria and Mira
(2019); Xiao (2018). More formally, Lemma 3 shows that any arbitrary joint probability of
entry Pr (at = a | xt = x) can be represented “as if” the J firms were playing an entry game
of incomplete information along the lines of those proposed by Aguirregabiria and Mira (2019);
Xiao (2018). Importantly though, and perhaps surprisingly, Lemma 3 highlights how both
the discrete and finite number of latent classes (or unobserved market types) K(x) and the
conditional independence of the firms’ entry decisions are without loss of generality.

The identification of the entry probabilities P κ∗ and the distribution fκ∗ in the nonparametric
finite mixture representation in (32) has been studied by Hall and Zhou (2003), Hall, Neeman,
Pakyari, and Elmore (2005), Allman, Matias, and Rhodes (2009), and Kasahara and Shimotsu
(2014), among others. Identification is based on the independence between firms’ entry decisions
once we condition on xt and κ∗t .

In this first step, the proof of identification is pointwise for each value of x. To simplify
notation, for the rest of this subsection we then omit both x and the market subscript t .

4.2.2 Identification of the number of latent market types

The number of components |K| in finite mixture (32) is typically unknown to the researcher.
Following ideas similar to Bonhomme, Jochmans, and Robin (2016), Xiao (2018), and Aguirre-
gabiria and Mira (2019), we start our first step identification argument by providing sufficient
conditions for the unique determination of |K| from observables. In particular, we adapt to our
context Proposition 2 in Aguirregabiria and Mira (2019) and Lemma 1 in Xiao (2018).

Suppose that J ≥ 3 and let (Y1, Y2, Y3) be three random variables that represent a partition
of the vector of firms’ entry decisions (a1, a2, ..., aJ) such that Y1 is equal to the entry decision of
one firm (if J is odd) or two firms (if J is even), and variables Y2 and Y3 evenly divide the entry
decisions of the rest of the firms. Denote by J̃ the number of firms collected in Yi, i = 2, 3, such
that J̃ = (J − 1)/2 if J is odd, and J̃ = (J − 2)/2 if J is even. For i = 1, 2, 3, let P Yi(κ

∗) be the
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matrix of probabilities for each possible value of Yi — in the rows of the matrix — conditional
on every possible value of κ∗ — in the columns of the matrix. The main idea is then to identify
the number of components |K| from the observed joint distribution of Y2 and Y3:

Pr(Y2 = y2, Y3 = y3) =

|K|∑
κ∗=1

Pr(Y2 = y2 | κ∗) Pr(Y3 = y3 | κ∗) fκ∗(κ∗) (33)

or, in matrix notation,
P Y2,Y3 = P Y2|κ∗ diag(fκ∗) P

′
Y3|κ∗ , (34)

where: P Y2,Y3 is the 2J̃ × 2J̃ matrix with elements P (y2, y3); P Yi|κ∗ is the 2J̃ × |K| matrix with
elements Pr(Yi = y | κ∗); and diag(fκ∗) is the |K| × |K| diagonal matrix with the probabilities
fκ∗(κ

∗).

LEMMA 4. Without further restrictions, Rank(P Y2,Y3) is a lower bound for the true value of
parameter |K|. Furthermore, if (i) |K| < 2J̃ and (ii) for i = 2, 3 the |K| vectors P Yi(κ

∗ = 1),
P Yi(κ

∗ = 2), ..., P Yi(κ
∗ = |K|) are linearly independent, then |K| = Rank(P Y2,Y3). ■

The point identification of the number of components |K| from the observed matrix P Y2,Y3

hinges on a “large enough” number of firms J̃ and on the matrices P Y2|κ∗ and P Y3|κ∗ being of
full column rank, so that the entry probabilities associated to each component κ∗ cannot be
obtained as linear combinations of the others.

4.2.3 Identification of equilibrium CCPs and distribution of latent types

Allman, Matias, and Rhodes (2009) study the identification of nonparametric multinomial finite
mixtures that include our binary choice model as a particular case. They establish that a mixture
with |K| components is identified if J ≥ 3 and |K| ≤ 2J/(J + 1). The following Lemma 5 is an
adaptation of Theorem 4 and Corollary 5 in Allman, Matias, and Rhodes (2009).

LEMMA 5. Suppose that: (i) J ≥ 3; (ii) |K| ≤ 2J/(J + 1); and (iii) for i = 1, 2, 3, the
|K| vectors P Yi(κ

∗ = 1), P Yi(κ
∗ = 2), ..., P Yi(κ

∗ = |K|) are linearly independent. Then, the
probability distribution of κ∗ — i.e., fκ∗(κ∗) for κ∗ = 1, 2, ..., |K| — and the equilibrium CCPs —
i.e., Pj(κ∗) for j = 1, 2, ..., J and κ∗ = 1, 2, ..., |K| — are uniquely identified up to label swapping.
■

Note that order condition (i) in Lemma 4 is in general more stringent than order condition (ii)
in Lemma 5: that is, for J ≥ 3, we have that 2J̃ ≤ 2J/(J+1). In this sense, for any J ≥ 3, when
the conditions in Lemma 4 hold and the |K| vectors P Y1(κ

∗ = 1), P Y1(κ
∗ = 2), ..., P Y1(κ

∗ = |K|)
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are linearly independent, then |K| = Rank(P Y2,Y3) and the distribution of κ∗ and the equilibrium
CCPs are uniquely identified.

The identification of the distribution of κ∗t and the equilibrium CCPs is up to label swapping,
and pointwise or separately for each value of the observable xt. In the absence of additional
assumptions, the combination of these two features leads to an identification issue in the second
step of our method. In fact, in the estimation of the demand equation in the second step, we
need to include fκ∗(κ∗ | xt) and Pj(κ∗,xt) for every value of κ∗ as additional regressors, or more
precisely as control variables. To construct these regressors, we need to be able to “match” the
same latent type κ∗ across different observed values of xt in the sample. However, this task is
not feasible without further assumptions.

Aguirregabiria and Mira (2019) discuss alternative assumptions that can solve this matching-
latent-types problem. In our empirical application, we opt for the independence between κt and
xt. This assumption addresses the challenge by altering the nature of identification in the first
step: rather than being pointwise with respect to xt, identification holds uniformly across all
values of xt. Therefore, though identification is still up to label swapping, the same label κ∗ will
apply to all values of xt, effectively removing the problem of matching-latent-types.

4.3 Second Step: Identification of Demand Parameters

Following the discussion in section 2.1, we represent the demand system using the inverse
d
(a)−1
j (s

(a)
t , p

(a)
t , x

(a)
t ) from Lemma 1. For those markets with ajt = 1, the demand equation can

be expressed as:
δj(st,σ) = α pjt + x

′
jt β + ξjt, for ajt = 1 (35)

where we use the notation δj(st,σ) to emphasize that δjt is a function of the parameters σ char-
acterizing the distribution of the random coefficients υh. The selection problem arises because
the unobservable ξjt is not mean independent of the market entry (or product availability) con-
dition ajt = 1. Therefore, moment conditions that are valid under exogenous product selection
are no longer valid when ξjt and ajt are not independent.

Suppose for a moment that the market type or proxy κ∗t were observable to the researcher after
identification in the first step. In this case, the selection term would be ψj (Pj(xt, κ∗t ), κ∗t ) from
equation (27) and we would have a standard selection problem represented by the semiparametric
partially linear model:

δj(st,σ) = α pjt + x
′
jt β + ψj (Pj(xt, κ

∗
t ), κ

∗
t ) + ξ̃jt. (36)

A key complication of the selection problem in our model is that the market type or proxy κ∗t
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is unobserved to the researcher. After the first step of the identification procedure, we do not
know the unobserved type of a market but only its probability distribution conditional on xt.
Therefore, in the second step, we cannot condition on κ∗t as in equation (36). We instead need
to deal with the more complex selection bias function:

λj(xt) ≡ E (ξjt | xt, ajt = 1) =

|K(xt)|∑
κ∗=1

fj,κ∗(κ
∗ | xt) ψj (Pj(xt, κ∗), κ∗) = f ′

j,κ∗,t ψj(P j,t), (37)

where f j,κ∗,t, P j,t, and ψj(P j,t) are all vectors of dimension |K(xt)|×1. Therefore, the regression
equation of our model is:

δj(st,σ) = α pjt + x
′
jt β + f ′

j,κ∗,t ψj(P j,t) + ξ̃jt. (38)

Define fκ∗,t ≡ (fκ∗(κ
∗ | xt) : κ∗ = 1, 2, ..., |K(xt)|). Note that as fj,κ∗(κ∗ | xt) is a known

function of (P j,t,fκ∗,t), equation (38) then clarifies that (P j,t,fκ∗,t) is a sufficient statistic for
the selection bias function.

Proposition 1 establishes a necessary and sufficient condition for the identification of θδ ≡
(α,β,σ) from equation (38). It is an application of Theorem 6 in Rothenberg (1971).

PROPOSITION 1. Define the vector Zjt ≡
(
E
(
∂δj(st,σ)

∂σ
| xt

)
, E (pjt | xt) , x′

jt

)′
, and let

Z̃jt be the deviation (or residual) Zjt − E(Zjt | P j,t,fκ∗,t). Then, given that E
(
ξ̃jt | xt

)
=

E
(
ξ̃jt | P j,t,fκ∗,t

)
= 0, a necessary and sufficient condition for the identification of θδ ≡

(α,β,σ) in equation (38) is that matrix E
(
Z̃jt Z̃

′
jt

)
is full-rank. ■

Intuitively, Proposition 1 says that the identification of θδ requires that, after differencing out
any dependence with respect to (P j,t,fκ∗,t), there should be no perfect collinearity in the vector
of explanatory variables Zjt ≡ (E(∂δjt/∂σ | xt), E(pjt | xt), x′

jt)
′.

Proposition 1 does not provide identification conditions that apply directly to the primitives
of the model. However, on the basis of this Proposition, it is straightforward to establish
necessary identification conditions that apply to primitives of the model, or to objects which are
more closely related to primitives. First, we need J ≥ 2, otherwise there would not be exclusion
restrictions to deal with price endogeneity, i.e., E(pjt | xt) would be a linear combination of
xjt. Second, the vector of entry probabilities P j,t should depend on xit for i ̸= j. Otherwise,
keeping P j,t fixed would also imply fixing xjt and the vector of parameters β would not be
identified. Hence, there should be effective competition in firms’ market entry decisions. For
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instance, without observable variables affecting entry but not demand, the model would not
be identified under monopolistic competition. Third, the number of points in the support of κ
should be smaller than the number of variables in vector xt: i.e., |K(xt)| < dim(xt). Otherwise,
controlling for P j,t would be equivalent to controlling for the whole vector xt, and no parameter
in θδ would be identified.

5 Estimation and inference

In this section, we present a two-step estimation method that mimics our sequential identifi-
cation result. In the first step, we use a nonparametric sieve maximum likelihood method to
estimate the distribution of unobserved market types, the vector of entry probabilities for each
unobserved type, and the number of unobserved market types. In the second step, we use sieves
to approximate the selection bias term as a function of the densities and entry probabilities
estimated in the first step.5 Then, we apply GMM to jointly estimate the coefficients in the
sieve approximation and the structural demand parameters. We calculate asymptotic standard
errors of the estimates in the second step using the method and formulas in Newey (2009).

5.1 First step: Estimation of CCPs and distribution of latent types

We use sieves to approximate the nonparametric functions fκ∗(κ∗t | xt) and Pj(xt, κt) (Hirano,

Imbens, and Ridder, 2003, Chen, 2007). Let rft ≡
(
rf1 (xt), r

f
2 (xt), ..., r

f
Lf
(xt)

)′
be a vector with

a finite number Lf of basis functions. The density function fκ∗(κ∗t | xt) has the following sieves
multinomial logit structure:

fκ∗(κ
∗ | xt) =

exp{rf ′t γfκ}∑|K|
κ′=1 exp{r

f ′
t γ

f
κ′}

, (39)

where, for κ∗ = 1, 2, ..., |K|, γfκ∗ is a vector of parameters with dimension Lf×1 and normalization
γf (1) = 0. Similarly, let rPt ≡

(
rP1 (xt), r

P
2 (xt), ..., r

P
LP

(xt)
)′ be a vector with a finite number LP

of basis functions. For any product j and any unobserved type or proxy κ∗, the entry probability
function Pj(xt, κ∗) has the following sieves binary logit structure:

Pj(xt, κ
∗) = Λ

(
rP ′
t γPjκ∗

)
, (40)

5The second step could alternatively be based on differencing out the selection bias term using a matching
estimator as in Ahn and Powell (1993), Powell (2001), and Aradillas-Lopez, Honoré, and Powell (2007).
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where Λ(·) is the logistic function. For j = 1, 2, ..., J and κ∗ = 1, 2, ..., |K|, we have that γPjκ∗ is
a vector of parameters of dimension LP × 1. The log-likelihood function of this nonparametric
finite mixture model is:

ℓ(γf,P ) =
T∑
t=1

ln

 |K|∑
κ∗=1

fκ∗(κ
∗ | xt,γf )

J∏
j=1

Λ
(
rP ′
t γPjκ∗

)ajt [
1− Λ

(
rP ′
t γPjκ∗

)]1−ajt , (41)

where γf,P is a vector collecting the parameters {γfκ∗ ,γPjκ∗ : κ∗ = 1, 2, ..., |K|; j = 1, 2, ..., J},
with a total of Lf (|K| − 1) + LP |K|J parameters.

We estimate the vector of parameters γ by Maximum Likelihood (MLE) using the EM
algorithm (Pilla and Lindsay, 2001). Recent papers considering MLE and the EM algorithm
to estimate nonparametric mixtures in discrete choice models include Bunting (2022), Bunting,
Diegert, and Maurel (2022), Hu and Xin (2022), and Williams (2020). Following this statistical
literature, we use Akaike and Bayesian Information Criteria (AIC and BIC, respectively) to
determine the number of latent classes |K|.

When xt is discrete, the nonparametric MLE is
√
T -consistent and asymptotically normal.

With continuous variables in xt, the nonparametric MLE cannot achieve a
√
T rate. However,

under standard regularity conditions, this does not affect the
√
T -consistency and asymptotic

normality of the estimator of the demand parameters in the second step. The proof of this result
follows from Hirano, Imbens, and Ridder (2003) and Das, Newey, and Vella (2003).

5.2 Second step: Estimation of demand parameters

Following Das, Newey, and Vella (2003), we use the method of sieves and approximate each func-
tion ψj (Pj(xt, κ∗), κ∗) using a polynomial of order Lψ in the logarithm of the entry probability
Pj(xt, κ

∗):

ψj (Pj(xt, κ
∗), κ∗) ≈ rψ (Pj(xt, κ

∗))′ γψjκ∗

=
[
1, lnPj(xt, κ

∗), lnPj(xt, κ
∗)2, ..., lnPj(xt, κ

∗)Lψ
]
γψjκ∗ ,

(42)

where γψjκ∗ ≡ (γψ0,jκ∗ , γ
ψ
1,jκ∗ , ..., γ

ψ
Lψ ,jκ∗

)′ is a vector of parameters. Given this approximation, the
selection function is linear in γψjκ∗ and has the following expression:

f ′
j,κ∗,tψj(P j,t) ≈ h′

j,t γ
ψ
j =

|K|∑
κ∗=1

Lψ∑
ℓ=0

γψj,ℓ(κ
∗) fj,κ∗(κ

∗ | xt) (lnPj(xt, κ
∗))ℓ (43)
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where h′
j,t is a vector with dimension 1×(Lψ+1)|K| and elements {fj,κ∗(κ∗ | xt) (lnPj(xt, κ

∗))ℓ :

ℓ = 0, 1, ..., Lψ;κ
∗ = 1, ..., |K|}, and γψj is a vector of parameters of the same dimension and with

elements {γψj,ℓ(κ∗) : ℓ = 0, 1, ..., Lψ;κ
∗ = 1, ..., |K|}.

Plugging equation (43) into demand equation (38), we obtain the regression equation:

δj(st,σ) = α pjt + x
′
jt β + h′

j,t γ
ψ
j + ξ̃jt. (44)

Equation (44) can be estimated by GMM. Following Das, Newey, and Vella (2003), one can
show that this two-step estimator of the vector of demand parameters θδ is

√
T -consistent and

asymptotically normal.

6 Empirical application

6.1 Data and descriptive statistics

We apply our method to estimate demand in the US airline industry. The challenge of accounting
for endogenous product entry in demand estimation in this industry has recently been explored
by Ciliberto, Murry, and Tamer (2021) and Li, Mazur, Park, Roberts, Sweeting, and Zhang
(2022).

We use publicly available data from the US Department of Transportation for our analysis.
Our working sample consists of data from the DB1B and T100 databases. Specifically, we
use quarterly data spanning from 2012-Q1 to 2013-Q4 for routes between the airports at the
100 largest Metropolitan Statistical Areas (MSA) in the United States. This accounts for 108
airports, as there are a few MSAs with more than one airport.

In terms of airlines’ entry decisions, we define a market as a non-directional airport pair,
where, for example, Chicago O’Hare (ORD) to New York La Guardia (LGA) is considered
equivalent to LGA to ORD. There are potentially 5, 778 non-directional markets between the
108 airports, i.e., 108 ∗ 107/2. However, many of these markets have never had an incumbent
airline with non-stop flights for several decades. These are typically airport pairs that are
geographically too close or in smaller MSAs. In our sample, we consider only non-directional
markets which were served in at least 50 quarters between the years 1994 to 2018. This accounts
for 2, 230 non-directional markets in our sample, and 17, 155 market-quarter observations.6 We
consider an airline a potential entrant in a non-directional airport pair in a given quarter if it

6Given 2, 230 non-directional markets and eight quarters, the total number of market-quarter observations in
our sample is 2, 230 × 8 = 17, 840. We however discard from the analysis 685 market-quarter observations for
which we either do not observe some of the regressors or none of the six airlines included in the entry model is a
potential entrant.
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operates non-stop flights from either origin or destination airport (toward or from any airport),
while an airline is an entrant in a non-directional airport pair in a given quarter if it operates
non-stop flights between the origin and destination airports.

A product is defined as the combination of directional airport pair, airline, and an indicator
for non-stop flight. For example, an American Airlines non-stop flight from LGA to ORD is a
product. The airlines included in our analysis are American (AA), Delta (DL), United (UA), US
Airways (US), Southwest (WN), a combined group of Low-Cost Carriers (LCC), and a combined
group of the remaining carriers (Others).7 Given the large number of carriers included in Others,
we do not consider this combined group as a player in the entry game.

Following the empirical literature on the airline industry, we define market size as the ge-
ometric mean of the populations in the metropolitan regions (MSAs) of the two airports and
market distance as the geodesic distance between the two airports.

Table 1 presents the distribution of the number of entrants and the average value of market
characteristics. Notably, in a significant portion of these markets (30%), there are no airlines
providing non-stop flights, and they are exclusively served with stop flights. Among the markets
with non-stop flights, more than 90% are monopolies or duopolies. Furthermore, there is a
strong positive correlation between the number of incumbents, market size, and distance.

Table 1: Distribution of Markets by Number of Entrants

Frequency Avg. market size Avg. market distance
Number of airlines # markets-quarters (%) in millions of people in miles

0 airlines 5,117 (29.83%) 7.09 734
1 airline 8,217 (47.90%) 8.82 913

2 airlines 2,637 (15.37%) 10.95 960
3 airlines 869 (5.07%) 13.00 1,117
4 airlines 233 (1.36%) 12.60 1,140
5 airlines 72 (0.42%) 20.16 1,255

≥ 6 airlines 10 (0.06%) 17.54 320

Total 17,155 (100.00%) 8.95 882

Table 2 presents entry frequencies for each airline and the average market size and distance
associated with their entry. We observe significant variation in airlines’ entry probabilities, with
WN and AA having the highest (27.5%) and the lowest (10.6%) entry propensities, respectively.

7Following Ciliberto, Murry, and Tamer (2021), the list of airlines included in the group LCC is: Alaska,
JetBlue, Frontier, Allegiant, Spirit, Sun Country, and Virgin. The carriers in the group Others are small regional
carriers, charters, and private jets.
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Furthermore, substantial heterogeneity exists across airlines concerning the correlations between
entry and market size and distance. For example, while WN enters markets that are not signif-
icantly different in size from the markets it does not enter (8.7 million people versus 9 million
people), AA tends to enter markets with much larger average size (13.3 million people versus
8.4 million people). Moreover, different entry strategies are evident based on market distance.
DL and US typically enter markets with an average distance of around 875-95 miles, whereas
the markets served by LCC have an average distance of 1,171 miles.

Table 2: Entry Frequency by Airline

Frequency Avg. market size Avg. market distance
Airline # markets-quarters (%) in millions of people in miles

WN 4,714 (27.48%) 8.71 989
DL 3,285 (19.15%) 10.68 875
UA 3,244 (18.91%) 11.56 968

LCC 2,386 (13.91%) 11.42 1,171
US 2,001 (11.66%) 9.52 894
AA 1,820 (10.61%) 13.28 965

6.2 Estimation of the model for market entry

For the entry decisions, we consider the nonparametric sieve finite mixture Logit described in
equations (39) and (40). The vector of explanatory variables in xt includes: market size; market
distance (see definitions above); the airline’s own hub-size in the market, as measured by the
sum of the airline’s hub-sizes in the two airports; the average hub-sizes of the other airlines; and
time indicators for each of the eight quarters in the sample.8

We have estimated various versions of the Logit entry model based on two key factors: the
polynomial order in xt used to construct the basis rPt and the number of points in the support of
κ∗t . Notably, the parameters of the entry model are specific to each airline and are unrestricted
across airlines. Our estimation results for demand parameters are robust in relation to the
selection of the basis rPt in the entry model. For brevity, we then present results only for
the specification with rPt = xt. Regarding the selection of the number of unobserved market
types |K| and its influence on the estimation of demand parameters, as illustrated in Table 4
below, the primary and most substantial effect arises from allowing for some unobserved market

8We define the hub-size of an airline in an airport as the number of non-stop routes that the airline operates
from that airport.
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heterogeneity κ∗t . Specifically, transitioning from a model without κ∗t (i.e., one unobserved
market type) to a model with two unobserved market types induces a noteworthy impact. Once
we account for this type of unobserved market heterogeneity, demand estimates are however
very similar among specifications that allow for two, three, or four unobserved market types.9

In this section, we present the estimation results for mixture Logit models, focusing on
cases where the distribution of κ∗t is independent of xt. Our choice stems from the robustness
of our demand estimates to incorporating dependence between κ∗t and xt, and because this
independence assumption effectively addresses the identification challenge of matching latent
market types due to label swapping (see discussion in Section 4.2.3). The robustness of our
results to relaxing independence between κ∗t and xt is intuitive, as this assumption does not
impose any exclusion restriction necessary to control for selection bias in the estimation of the
demand parameters.

Furthermore, there is a practical computational rationale behind this decision. While esti-
mating the mixture Logit model under the assumption of independence and with two or three
unobserved market types requires only a few hours, and the Expectation-Maximization (EM) al-
gorithm consistently converges, introducing dependence significantly complicates computations.
The estimation process, even with just two unobserved market types, extends over several days
of EM iterations, and the EM algorithm often fails to converge. While the model with de-
pendence is theoretically identified, the practical implementation of the estimator considerably
complicates in our empirical application.

Table 3 presents the goodness-of-fit statistics obtained from estimating four nested specifi-
cations of the market entry model. The selection of the preferred model is guided by the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC), alongside other cru-
cial considerations such as the convergence performance of the EM algorithm, the accuracy of
parameter estimates of the entry model, and the robustness of the demand parameter estimates.

The introduction of unobserved market heterogeneity κ∗t improves the model’s goodness-
of-fit. This is demonstrated by a substantial increase in the log-likelihood and a decrease in
both AIC and BIC when comparing the model without κ∗t and the model with two unobserved
market types. This form of unobserved market heterogeneity captures a strong correlation among
airlines’ entry decisions, a correlation beyond the explanatory power of the observable market
and airline characteristics in the vector xt.

The inclusion of additional unobserved market types continues to positively impact the
goodness-of-fit. However, this impact shows diminishing returns, with small improvements when

9To simplify exposition, the estimation results for the model with four unobserved market types are not
reported in Table 4 but are qualitatively similar to those for models with two or three unobserved market types.
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we move from three to four unobserved market types. While the EM algorithm converges rapidly
to the MLE in the specifications with two and three unobserved market types, we experience
convergence problems in the model with four unobserved market types. In this case, we obtain
imprecise estimates for some of the parameters in the entry model. These factors, combined with
the marginal improvement observed in the AIC and BIC criteria as we transition from three to
four unobserved market types, lead us to favor the model with |K| = 3 unobserved market types.

Table 3: Estimation of Market Entry Model — Goodness-of-Fit Statistics

Logit Mixture Logit Mixture Logit Mixture Logit
Statistics # types = 1 # types = 2 # types = 3 # types = 4

Observations 17, 155 17, 155 17, 155 17, 155
Parameters 72 145 218 287
Log-likelihood −20, 378 −18, 985 −18, 022 −17, 621
AIC 40, 900 38, 261 36, 481 35, 817
BIC 41, 458 39, 385 38, 170 38, 041

6.3 Estimation of demand parameters

For the demand system, we follow Ciliberto, Murry, and Tamer (2021) and estimate a nested logit
demand with two nests: a nest for all the airlines and another nest for the outside alternative.

ln

(
sjt
s0t

)
= α pjt + x

′
jtβ + σ ln

(
sjt

1− s0t

)
+ h′

jt γ
ψ
j + ξ̃jt. (45)

We compute each directional route-specific market share in a given quarter sjt as the total
number of passengers who travelled that directional route by a specific airline in that given
quarter (times 10, as the data is a survey of 10% of total traffic) divided by market size. The
vector of product characteristics xjt includes market distance and market distance squared,
airline j’s hub-size in the origin airport, airline j’s hub-size in the destination airport, and
airline × quarter fixed effects (indicators). The expression for the selection bias term, h′

jt γ
ψ
j ,

varies across the specifications of the market entry model, from the more restrictive parametric
Logit model to the more general semiparametric finite mixture Logit model.

1. Parametric Logit specification. We consider the entry model ajt = 1{ηjt ≤ x′
jtγ

P
j }, with

ηjt ∼ Logistic, and ξjt = γψj,1 ηjt + vjt, with vjt independent of ηjt and xt. Under this
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parametric Logit selection model, the selection term has the following form:

E (ξjt | ajt = 1,xt) = γψj,1 E
(
ηjt | ηjt ≤ x′

jtγ
P
j

)
= γψj,1

[
Euler − ln Λ

(
x′
t γ

P
j

)]
(46)

where Euler represents Euler’s constant ≈ 0.5772. For the parametric Logit model, the
term Euler − ln Λ

(
x′
tγ

P
j

)
is analogous to the inverse Mills ratio in the context of the

parametric Probit model.

2. Semiparametric Logit without κ∗t . The entry model is still the Logit ajt = 1{ηjt ≤ x′
jtγ

P
j },

with ηjt ∼ Logistic, but now E (ξjt | ajt = 1,xt) is a third order polynomial in Euler −
ln Λ

(
x′
tγ

P
j

)
. Therefore, the vector of regressors controlling for endogenous selection is:

h′
jt =

[(
Euler − ln Λ

(
x′
tγ

P
j

))ℓ
: ℓ = 1, 2, 3

]
(47)

This semiparametric approach to control for selection follows Newey (2009).

3. Semiparametric mixture Logit. The entry model is the mixture Logit with entry deci-
sion ajt = 1{ηjt ≤ x′

jtγ
P
jκ∗} for unobserved market type κ∗, and with mixture distribution

Pr(κ∗t = κ∗) = fκ∗(κ
∗). Conditional on κ∗t = κ∗, the selection term E (ξjt | ajt = 1,xt, κ

∗
t = κ∗)

is a third order polynomial in Euler− ln Λ
(
x′
tγ

P
jκ∗

)
. Accordingly, the vector of regressors

controlling for endogenous selection is:

h′
jt =

[
fκ∗(κ

∗)
(
Euler − ln Λ

(
x′
tγ

P
jκ∗

))ℓ
: ℓ = 1, 2, 3, and κ∗ = 1, 2, ..., |K|

]
(48)

For all the 2SLS estimators, we use as instrumental variables the number of competitors
in the market and the average hub-size of the rest of the airlines (separately for origin and
destination airports).

Table 4 presents the estimates of the demand parameters, while Table 5 provides the average
demand elasticities and Lerner indexes derived from these estimates. Comparing the estimates
obtained using OLS with those from various 2SLS methods — whether accounting for selection
effects or not — we observe a significant adjustment in all parameter estimates when addressing
the endogeneity of price and within-nest market share. This correction notably impacts the
average own-price elasticity, shifting it from −1.59 to values below −5.54, and the corresponding
Lerner index, which transitions from 69% to less than 20%.

In the context of this paper, the most significant findings arise from our investigation into
the effects of controlling for the endogeneity of market entry. Remarkably, the most pronounced
impacts materialize when we introduce finite mixture unobserved heterogeneity to address se-
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lection bias. Upon incorporating a finite mixture, parameters α and σ experience absolute value
increases of more than 18% and 34%, respectively. This change translates to an absolute value
increase exceeding 50% in the average own-price elasticities. Consequently, the corresponding
average Lerner index shifts from approximately 19% to 15%. These effects hold substantial
importance, carrying meaningful economic implications.

Notably, the estimates of demand parameters and their corresponding elasticities exhibit
considerable robustness concerning the selection of the number of mixtures. We observe a
modest increase in price sensitivity of demand as we transition from two to three unobserved
market types. The main impact stems from the introduction of a finite mixture to address
selection bias, with the number of mixtures contributing overall less significantly.

Figure 1 presents the empirical distributions of estimated own-price elasticities. Each row
corresponds to an airline, while each column pertains to a different 2SLS estimator: the first
column presents the estimator without controlling for selection, the second column illustrates
the estimator that controls for selection using a sieve method but no mixture, and the third
column presents the estimator with a three-type mixture.

The histograms in this figure are constructed based on estimates of elasticities at the airline-
market-quarter level. The equation describing each elasticity solely depends on data on price
pjmt, market shares sjmt and s0mt, and parameter estimates α̂ and σ̂. It is important to note
that the data regarding prices and market shares remain constant across the various columns
in the figure. Therefore, any shift in the distribution can be attributed solely to changes in the
values of estimates α̂ and σ̂.
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Table 4: Estimation of Demand Parameters

Not control. for sel. Controlling for endogenous selection
OLS 2SLS 2SLS 2SLS 2SLS 2SLS

Heckman Semi-P. Fin-Mix Fin-Mix
|K| = 2 |K| = 3

Price (100$) (α) −0.643 −2.180 −2.193 −2.261 −2.574 −2.708
(0.0105) (0.1378) (0.1348) (0.1298) (0.1549) (0.1662)

Within Share (σ) 0.371 0.409 0.413 0.431 0.547 0.570
(0.0058) (0.0351) (0.0389) (0.0372) (0.0509) (0.0565)

Distance (1000mi) 0.729 2.130 2.196 2.264 2.497 2.472
(0.0306) (0.1372) (0.1365) (0.1310) (0.1524) (0.1572)

Distance2 −0.216 −0.424 −0.453 −0.462 −0.496 −0.511
(0.0112) (0.0244) (0.0252) (0.0250) (0.0276) (0.0289)

hub-size orig. (100s) 1.637 2.272 1.999 1.320 1.593 1.383
(0.0263) (0.0382) (0.0593) (0.0625) (0.0869) (0.0989)

hub-size dest. (100s) 1.613 2.242 1.995 1.310 1.587 1.377
(0.0267) (0.0385) (0.0595) (0.0633) (0.0872) (0.0994)

Airline×Quarter FE Y Y Y Y Y Y
# control var. entry 0 0 6 18 36 54
Observations 35, 763 35, 763 35, 763 35, 763 35, 763 35, 763

Asymptotic standard errors account for estimation error in the first step using the method in Newey (2009).
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Table 5: Average Own-Price Elasticities and Lerner Indexes

Not control. for sel. Controllin for endogenous selection
OLS 2SLS 2SLS 2SLS 2SLS 2SLS

Heckman Semi-P. Fin-Mix Fin-Mix
|K| = 2 |K| = 3

Own-Price Elasticity −1.596 −5.549 −5.601 −5.849 −7.406 −8.000

AA −1.722 −6.013 −6.071 −6.363 −8.169 −8.857
DL −1.761 −6.082 −6.133 −6.382 −7.871 −8.450
UA −1.887 −6.573 −6.636 −6.936 −8.847 −9.573
US −1.665 −5.801 −5.856 −6.122 −7.809 −8.450

WN −1.354 −4.680 −4.719 −4.913 −6.068 −6.517
LCC −1.370 −4.808 −4.857 −5.095 −6.674 −7.265

Others −1.332 −4.705 −4.757 −5.006 −6.706 −7.337

Lerner Index 68.8% 19.9% 19.7% 18.9% 15.4% 14.4%

AA 62.7% 18.0% 17.9% 17.1% 13.8% 12.8%
DL 60.4% 17.5% 17.3% 16.7% 13.7% 12.8%
UA 56.9% 16.4% 16.2% 15.6% 12.6% 11.7%
US 65.9% 19.0% 18.9% 18.1% 14.8% 13.8%

WN 78.4% 22.8% 22.6% 21.8% 18.2% 17.1%
LCC 82.1% 23.5% 23.3% 22.2% 17.5% 16.3%

Others 79.2% 22.5% 22.3% 21.3% 16.4% 15.2%

Observations 35, 763 35, 763 35, 763 35, 763 35, 763 35, 763
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Figure 1: Empirical Distribution of Estimated Elasticities (Airline-Market-Quarter level)
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The histograms depicted in the first two columns are very similar. In contrast, the histograms
based on the finite mixture estimates showcase significant alterations in both the location and
the dispersion of the distribution of elasticities. Across all airlines, the incorporation of larger
estimates for α̂ and σ̂ using the mixture method leads to a noticeable leftward shift and an
amplification in the spread of the histograms. These changes in the distributions’ location and
dispersion have important economic implications.

6.4 Estimation of costs and counterfactual experiments

In this paper, we focus on the consistent estimation of demand parameters in the presence of
endogenous product entry. However, relying on the structure of our model, it is straightforward
for researchers to estimate marginal costs, entry costs, and the joint distribution of unobservable
variables. Given these estimated primitives, a variety of counterfactual experiments can be
performed. In this subsection, we overview these supplementary estimation procedures within
the framework of our empirical application.

6.4.1 Marginal costs

Based on an assumption about the nature of competition, such as Bertrand-Nash competition,
we are able to estimate marginal costs at the airline-market-quarter level as the residuals from
the pricing equation. It is important to note that these marginal costs can be computed only
for those airlines that we observe being active in the market.

For some empirical questions, the researcher may need to estimate the marginal cost function:
that is, the function that represents the causal effect of product characteristics and output on
marginal costs. For this purpose, the researcher needs to estimate the parameters of a regression
wherein the dependent variable is the marginal cost estimate and the the explanatory variables
are the exogenous product characteristics xjt and the output qjt. A crucial consideration is that
this regression is subject to selection bias due to endogenous product entry. Remarkably, the
structure of the selection term in this equation mirrors that in the demand equation. We can
then control for selection bias in the estimation of the marginal cost function using exactly the
same control variables that we have used for the estimation of the demand parameters.

6.4.2 Demand and marginal cost unobservables

The consistent estimation of demand and marginal cost parameters inherently yields consistent
estimates for the corresponding unobservable variables: ξjmt and ωjmt. These unobservables are
estimated as residuals from the estimated equations. While the estimation of these equations is
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subject to selection bias, the introduction of controls for selection enables us to achieve consistent
estimation of the structural parameters and of the variables ξjmt and ωjmt for the airlines active
in the market.10

Naturally, the more complex estimation of the probability distribution governing these unob-
servables for all products, both those observed being active and inactive in the market, requires
one to address the issue of endogenous selection.

6.4.3 Counterfactuals at the intensive margin

Once the challenge of endogenous selection has been addressed in the estimation of demand and
marginal cost parameters, counterfactual experiments that hold constant the set of airlines and
market structure can be performed without further complications.

6.4.4 Counterfactuals at the extensive margin

Another class of counterfactual experiments involves changes to the set of active firms and/or
products within the market. In this category, the most straightforward experiment is the ex-
ogenous removal of certain products from the market. Given the availability of data on the
exogenous demand and marginal cost attributes of all products, performing this type of coun-
terfactual does not significantly differ from the counterfactuals at the intensive margin discussed
above. This type of counterfactual includes as a particular case the evaluation of a merger which
ignores firms’ endogenous responses at the extensive margin.11

Counterfactual experiments that involve the introduction of new products require data on the
exogenous attributes of the new or hypothetical products. In our empirical analysis of the airline
industry, we observe xjmt for every airline-market-quarter product, irrespective of whether the
airline is active in the market. Specifically, data on the airline’s hub-size at both the origin
and destination airports, as well as the airline-quarter fixed effects, are available for both active
airlines and potential entrants. However, the unobservable factors ξjmt and ωjmt are unknown
to the researcher for potential entrants. To perform this type of counterfactual, the researcher
needs to determine the values of these unobservables also for the potential entrants.

In principle, the researcher could set values for ξjmt and ωjmt for the potential entrants at the
unconditional mean of these variables, which is zero. However, this approach raises a significant
concern: it contradicts the fact that these airlines opted not to enter in this particular market.

10Importantly, in calculating ξ̂jmt and ω̂jmt, one should not remove the estimated selection term from these
residuals.

11In this class of models, the evaluation of the effects of a counterfactual merger requires making an assumption
about the values of exogenous product characteristics for the new merging entity/firm. However, this complication
is present regardless of the endogenous product selection issue that we address in this paper.
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To establish values of ξjmt and ωjmt that align with observed endogenous entry decisions, one
must consider E (ξjmt|xmt, ajmt = 0) and E (ωjmt|xmt, ajmt = 0) respectively.

While our estimation method yields consistent semiparametric estimates of the expected val-
ues E(ξjmt|xmt, ajmt = 1) and E(ωjmt|xmt, ajmt = 1), it is silent with respect to E(ξjmt|xmt, ajmt =
0) and E(ωjmt|xmt, ajmt = 0). Achieving point identification for the latter requires supplementary
constraints, such as parametric assumptions or symmetry restrictions. An alternative approach
instead involves estimating semiparametric bounds for these expected values. This information
can then be used to select appropriate values for ξjmt and ωjmt.

7 Conclusions

In local geographic markets, we typically find only a subset of all the differentiated products
available in an industry. Firms strategically select specific products that better match the
preferences of local consumers. When making market entry decisions, firms possess information
about the demand for their products, particularly regarding unobservable demand components.
Firms tend to enter markets with higher expected demand. Neglecting this selection process can
introduce significant biases in the estimation of demand parameters. This issue is common across
various demand applications and industries. Existing methods to address this issue typically rely
on strong parametric assumptions about demand unobservables and firms’ information.

In this paper, we investigate the identification of demand parameters within a structural
model that encompasses demand, price competition, and market entry (static or dynamic), while
specifying the distribution of demand unobservables in a nonparametric finite mixture manner.
The paper makes three main contributions. First, it establishes sequential identification of the
demand parameters in this model. We demonstrate that the selection term in the demand equa-
tion results from a convolution of the probabilities of product entry for each discrete unobserved
market type and the densities associated with these market types. We show that data on firms’
product entry decisions nonparametrically identify the probabilities of product entry conditional
on the market type and the density of unobserved market types. Under mild conditions on the
observable variables, demand parameters are identified after controlling for the nonparametric
entry probabilities and densities for each market type.

Second, we propose a simple two-step estimator to address endogenous selection. In the first
step, we estimate a nonparametric finite mixture model to determine the choice probabilities
of product entry. In the second step, demand parameters are estimated using a Generalized
Method of Moments (GMM) approach that accounts for both endogenous product availability
and price endogeneity.
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Third, we illustrate the proposed method by applying it to data from the airline industry.
The findings highlight the importance of allowing for a finite mixture of unobserved market types
when controlling for endogenous product entry, as failure to do so can lead to significant biases.
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