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models with multiple equilibria. A key assumption is that the equilibrium selection function does not
jump discontinuously between equilibria as we continuously change the structural parameters.
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1. Introduction

Multiplicity of equilibria is a prevalent feature in static and
dynamic games in economics. This indeterminacy poses practical
problems when using these models for empirical analysis. Recent
papers show that, under some assumptions, we can identify which
equilibrium or equilibria is observed in the data, and then we
can use two-step and sequential methods to estimate structural
parameters in models with multiple equilibria.1 Nevertheless, the
indeterminacy problem associated with multiple equilibria still
remains an issue when the researcher wants to use the estimated
model to predict the effects of counterfactual changes in the
structural parameters. Assumptions that identify the equilibrium
played in the data are not enough to identify which equilibrium
will be selected in a counterfactual scenario with values of the
structural parameters that are different to the ones that we have
estimated from the data.2 Given that an attractive feature of

∗ Tel.: +1 416 978 4358; fax: +1 416 978 6713.
E-mail address: victor.aguirregabiria@utoronto.ca.

1 See Aguirregabiria (2004), Aguirregabiria and Mira (2007), Bajari et al. (2007),
Pakes et al. (2007), and Pesendorfer and Schmidt-Dengler (2008).
2 In some models, a possible approach to deal with this issue is to calculate all

of the equilibria in the counterfactual scenario and then draw conclusions that are
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structuralmodels is the possibility of implementing counterfactual
experiments, this is an important issue in structural econometrics.

This paper proposes a simple homotopy method for dealing
with multiple equilibria when undertaking counterfactual exper-
iments with an estimated model. The key assumption in our
method is that the (unknown) equilibrium selection function does
not jump discontinuously between equilibria as we change contin-
uously the value of the structural parameters. In other words, the
counterfactual equilibrium is of the same ‘type’ as the equilibrium
in the data. The method proceeds in two steps. In the first step,
and under the assumption that the equilibrium selection mecha-
nism is a smooth function, we show how to obtain an approxima-
tion of the counterfactual equilibrium. The approximation in this
first step may be inaccurate when the counterfactual experiment
does not imply marginal changes in the parameters. Therefore, in
the second step, and under the assumption that the counterfactual
equilibrium is Lyapunov stable, we combine the first-step approxi-
mationwith iterations in the equilibriummapping. The idea is that
the approximation obtained in the first step lies within the domin-
ion of attraction of the counterfactual equilibrium.

robust to whatever equilibrium is selected. Unfortunately, this approach is of very
limited applicability in empirical applicationswhere the different equilibria provide
contradictory predictions of the effects we want to measure, as it is the case in
dynamic games.
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We use a simple example to illustrate the differences between
our approach and other simple methods, such as the selection of
a counterfactual equilibrium that is closer (in Euclidean distance)
to the equilibrium in the data, or equilibrium mapping iterations
using the equilibrium in the data as the initial value. We compare
the ability of these methods to satisfy the property that the
same equilibrium ‘type’ is maintained in the factual and in the
counterfactual scenarios.

2. Model

Let x ∈ X and y ∈ Y be two vectors of random variables
with discrete and finite support.3 Let p0(y|x) be the true probability
distribution function of y conditional to x in the population under
study. We have a model for the conditional distribution p0. The
model is a parametric family of probability functions, f (y|x, θ),
where θ ∈ Θ is a vector of K parameters, and the set of parameters
Θ ⊂ RK is compact. It is convenient to represent the probability
functions p0(.|.) and f (.|., θ) as vectors in the Euclidean space.
Define the vectors P0 ≡ {p0(y|x) : (x, y) ∈ X × Y } and F(θ) ≡

{f (y|x, θ) : (x, y) ∈ X × Y } that live in the set [0, 1]|X ||Y | that we
represent asP . Let θ0 be the true value of θ in the population under
study. We assume that the model is correctly specified and that θ0
is identified from p0, i.e., θ0 is the unique value in the parameter
space such that p0(y|x) = f (y|x, θ0) for every pair (x, y) ∈ X × Y .

A key feature of the class of structural models that we consider
in this paper is that the probability distribution F(θ) is not
explicitly defined but it is only implicitly defined as a solution
of an equilibrium or fixed point problem. Let Ψ (P, θ) be a fixed-
point or equilibrium mapping from P × Θ into P such that
Ψ (P, θ) is a vector-valued function {ψ(y|x, P, θ) : (x, y) ∈ X ×

Y } and ψ(.|., P, θ) is a conditional probability function that is
twice continuously differentiable in P and θ. In models where the
mapping Ψ (., θ) has a single fixed point for each value of θ, the
vector or probability distribution F(θ) is unambiguously defined
as the solution to the fixed point problem P = Ψ (P, θ). Instead, we
consider here models with multiple equilibria. When the mapping
Ψ (., θ) has multiple fixed points, the equilibrium restrictions do
not uniquely characterize the probability distribution F(θ).

Suppose that the model has a finite number T of equilibrium
‘types’ that we index by t ∈ {1, 2, . . . , T }. LetΠt(θ) be the vector
that represents equilibrium type t when the vector of parameters
is θ, such that it satisfies the equilibrium restrictions Πt(θ) =

Ψ (Πt(θ), θ). Note that some equilibrium typesmay exist only for a
subset of points in the parameter spaceΘ . Under our conditions on
the mapping Ψ (P, θ), the equilibrium probability functionsΠt(θ)
are continuous in θ. We assume that the probability distribution
F(θ) is equal to Πt̃(θ)(θ) where t̃(θ) ∈ {1, 2, . . . , T } represents
the selected equilibriumwhen the vector of parameters is θ. We can
interpret function t̃(θ) as the equilibrium selection mechanism.

In the recent literature on empirical games, most papers do not
make specific assumptions on the formof the equilibrium selection
function t̃(θ). Here we also follow that approach. Then, we say
that the model is incomplete in the sense that it does not provide a
unique distribution of the endogenous variables for each possible
value of the structural parameters.4 We assume that our model is

3 We describe our approach in the context of a class of models in which all the
variables have a discrete and finite support. This is convenient because we can use
standard derivatives to construct Taylor approximations. However, it is possible to
extend this approach to models where variables have continuous support by using
Banach spaces and Fréchet derivatives.
4 There are good reasons why researchers may not want to impose additional

restrictions on the equilibrium selection mechanism. First, incomplete models
can be point-identified, and therefore assumptions on the equilibrium selection
mechanism are not necessary for identification. And second, these additional
restrictions, if they do not hold in the population under study, can induce biases
in parameter estimates.
Fig. 1. Factual and counterfactual equilibrium mappings.

incomplete but identified, and that the researcher does not want
to impose restrictions on the equilibrium selection mechanism
in order to have a complete model. This class of econometric
models includes as particular cases discrete models with social
interactions (Brock and Durlauf, 2001), quantal response games
(McKelvey and Palfrey, 1995), and static and dynamic games of
incomplete information (Doraszelski and Satterthwaite, 2010),
among others.

Suppose that P0 and θ0 are point-identified given a random
sample on y and x. Letθ0 andP0 be our consistent estimates of
θ0 and P0, respectively. The model establishes thatP0 = F(θ0) =

Πt̃(θ0)(θ0), where the vector Πt̃(θ0)(θ0) is a fixed point of Ψ (.,θ0).
Remember that the vector F(θ0) is only implicitly defined as a
solution to the fixed point problem. An important feature of the
estimation methods that have been recently proposed and applied
to estimate games with multiple equilibria is that the researcher
does not have to compute the function(s) Πt(.). The researcher
does not know themapping F(.), because he does not knowneither
the type-specific functions Πt(.) nor the equilibrium selection
function t̃(.). The researcher knows only a single point in the graph
of the function F(.), i.e., point (θ0,P0).

3. Counterfactual experiments

Let θ∗ be a value of the vector of structural parameters that
is different to θ0. We denote θ∗ as the vector of counterfactual
values of the structural parameters. The researcher knows θ∗

and wants to obtain the counterfactual equilibrium P∗ associated
with θ∗, i.e., P∗ = F(θ∗) = Πt̃(θ∗)

(θ∗). The researcher is
interested in comparing this counterfactual equilibrium with the
one estimated from the data. There are two main issues to obtain
this counterfactual equilibrium. First, the researcher does not
know the equilibrium functionsΠt(θ) for each equilibrium type t .
And second, even if the researcher knew these functions, he does
not know the equilibrium selection mechanism t̃(θ). He does not
know which of the equilibria is selected when θ = θ∗. We need
additional information/structure to select P∗ from among the set
of equilibria associated to θ∗.

We propose an approach that tries to impose minimum
additional restrictions on the characteristics of the counterfactual
equilibrium. Our approach is quite agnostic with respect to the
equilibrium selection mechanism. We assume that there is such
a mechanism, that it is a function, and that it does not ‘‘jump’’
between the possible equilibria when we move continuously over
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the parameter space. However, we do not specify any particular
form for the equilibrium selection mechanism.
Assumption IET (Invariant Equilibrium Type): There is a convex subset
S of the parameter space Θ that includesθ0 and θ∗ and where the
equilibrium selection mechanism t̃(θ) is constant, i.e., for any θ ∈

S, t̃(θ) = t̃(θ0) = t̃(θ∗).
Assumption IET establishes that the equilibrium type does not

change when we move from θ̂0 to θ∗. While this seems a strong
assumption when evaluating a factual policy change, it is more
reasonable when the researcher is interested in the prediction of
the effects of a counterfactual new policy. When evaluating the
effects of a factual policy change using data before and after the
new policy, the data can identify the type of equilibrium that we
have for each of the two subsamples. However, that is not the case
when we want to predict the effects of a counterfactual change
in parameters. In this situation, there is no data to identify the
selected equilibriumafter implementing thenewpolicy. Therefore,
we need tomake some assumptions about equilibrium selection in
the counterfactual scenario. It seems natural to start assuming that
the policy change does not affect the selected equilibrium type.5

An implication of assumption IET is that the function F(θ) =

Πt̃(θ)(θ) is continuously differentiable within the convex set S that
includesθ0 and θ∗.6 Some equilibrium ‘types’may disappearwhen
we move along the parameter space. Assumption IET implicitly
considers that the type of equilibrium t̃(θ0) does not disappear
when we move from θ̂0 to θ∗. In principle, the researcher does
not know if that is the case. However, we describe at the end
of Section 4 a simple procedure to check for this departure from
Assumption IET.
Example. Consider the following model within the class of models
described above. P is a scalar. The equilibrium mapping Ψ is the
function G(α+ βh(P)), where G(.) is a continuously differentiable
CDF of a random variable with support on the whole real line,
α and β are parameters with β > 0, and h(P) is a real-
valued continuously differentiable function with h′(P) > 0. Letθ0 = (α0,β0) andP0 be consistent estimates of the true values
of the parameters and of the factual equilibrium, respectively.
Fig. 1 presents the estimated (or factual) equilibrium mapping
G(α0+β0h(P)), the estimated equilibriumP0, and a counterfactual
equilibriummappingG(α0+β

∗h(P)). In that figure, an equilibrium
is a value of P for which the curve meets with the 45° line. For the
estimated equilibrium mapping there are three types of equilibria
that we represent as A, B, and C . The values of these equilibria
areΠA(θ0),ΠB(θ0), andΠC (θ0). EquilibriaΠA(θ0) andΠC (θ0) are
Lyapunov stable, i.e., the derivative ∂G(α0 +β0h(P))/∂P is smaller
than 1 at P = ΠA(θ0) and at P = ΠC (θ0). Equilibrium ΠB(θ0) is
not stable, i.e., the derivative ∂G(α0 +β0h(P))/∂P is greater than
1 at P = ΠB(θ0). Suppose that the data has been generated by
equilibrium C such thatP0 = F(θ0) = ΠC (θ0). The researcher is
interested in the effect of a counterfactual change in the parameter
β , keeping α0 constant. As shown in Fig. 1, a larger value of β
implies an increase in the slope of the equilibrium mapping for
every value of P . Also, in this example, an increase in β implies that
the equilibrium function moves upwards for high values of P and
downwards for low values of P . Let S be an interval in the real line

5 However, it is true that Assumption IET is more likely to hold for marginal
policy changes (e.g., 10% increase in a license fee; or a 5% points increase in a sales
tax) than for completely new policies. In fact, this caveat generally applies to most
counterfactual experiments.
6 Following Doraszelski and Escobar (2010), it is possible to show that

Assumption IET implies that for any vector of parameters θ in the interior of
the set S, the equilibrium F(θ) = Πt̃(θ)(θ) is regular, and the Jacobian matrix
I − ∂Ψ (F(θ), θ)/∂P′ is non-singular.
Fig. 2. Type-specific equilibria as a function of β .

such that: (i) the interval containsβ0; and (ii) type-C equilibrium
exists for any β in this interval and keeping α = α0. For the sake
of illustration, we assume that equilibrium types A and B also exist
for any β within S. Fig. 2 presents the type-specific equilibrium
functions ΠA(α0, β),ΠB(α0, β), and ΠC (α0, β) over the interval
S. In this example, the probability function F(α0, β) is equal to
ΠC (α0, β) for any value of β within S.

4. A simple homotopy method

We want to obtain the counterfactual equilibrium associated
with θ∗, that we denote P∗. We know thatP0 = F(θ0) = Πt0(

θ0)

where t0 ≡ t̃(θ0), and under Assumption IET, P∗ = F(θ∗) =

Πt0(θ∗). WhileP0,θ0, and θ∗ are known to the researcher, P∗ and
the functions F(.) and Πt0(.) are unknown. The method proceeds
in two steps.
Step 1 (Taylor approximation). Under Assumption IET, we can use
a first order Taylor expansion to obtain an approximation to the
counterfactual equilibrium F(θ∗) around the estimated vectorθ0.
We do not know the function F(.) but it is possible to use the
equilibrium condition to obtain the Jacobian matrix ∂F(θ0)/∂θ

′

in terms of derivatives of the equilibrium mapping evaluated at
(P0,θ0). A Taylor expansion of F(θ∗) aroundθ0 implies that:

P∗ = F(θ∗) = F(θ0)+
∂F(θ0)

∂θ′
(θ∗ −θ0)+ O(‖θ∗ −θ0‖

2). (1)

Note that F(θ0) = P0 that is known. Taking into account that
F(θ0) = Ψ (F(θ0),θ0), differentiating this expression with respect
to θ, and solving for ∂F(θ0)/∂θ

′, we can represent this Jacobian
matrix in terms of Jacobians of Ψ (P, θ) evaluated at the estimated
values (P0,θ0). That is,

∂F(θ0)

∂θ′
=


I −

∂Ψ (P0,θ0)

∂P′

−1
∂Ψ (P0,θ0)

∂θ′
(2)

where I is the identity matrix, and Assumption IET implies that the
matrix I − ∂Ψ (P0,θ0)/∂P′ is non-singular. Solving expression (2)
into (1), we have that F(θ∗) =P∗ + O(‖θ∗ −θ0‖

2), where:

P∗ ≡P0 +


I −

∂Ψ (P0,θ0)

∂P′

−1
∂Ψ (P0,θ0)

∂θ′
(θ∗ −θ0). (3)

Therefore, when ‖θ∗ −θ0‖
2 is small, the vectorP∗ provides a good

approximation to the true counterfactual equilibrium P∗. Note that
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all the elements in the expression that describesP∗ are known to
the researcher.

In someapplications, the counterfactual experiments of interest
are far from being marginal changes in the parameters. In such a
situation, a first order Taylor approximation could be inaccurate.
Higher-order approximations to F(θ∗) can be used. It is possible
to show that higher-order derivatives of F(.) atθ0 depend only on
derivatives of Ψ at (P0,θ0), which are known to the researcher.
However, in applications where the dimension of the vector P is
large (e.g., in dynamic games with heterogeneous players), the
numerical computation of high-order derivatives ofΨ with respect
to P can be computationally very demanding. An alternative
approach for improving the accuracy of our approximation is
to combine the approach described above with iterations in the
equilibrium mapping. That is Step 2 in our proposed method.
Step 2 (Equilibrium mapping iterations). Suppose that the equilib-
rium P∗ is Lyapunov stable. This implies that there is a neigh-
borhood of P∗, say N , such that if we iterate in the equilibrium
mapping Ψ (., θ∗) starting with a P ∈ N , then we converge to
P∗, i.e., if P1 ∈ N and Pk+1 = Ψ (Pk, θ∗) for any k ≥ 1, then
limk→∞ Pk = P∗ (Judd, 1998, Therorem 5.4.2). The neighborhood
N is called the dominion of attraction of the stable equilibrium P∗.
Suppose that the Taylor approximation is precise enough such thatP∗ belongs to the dominion of attraction of P∗. Then, by iterating in
the equilibriummapping Ψ (., θ∗) starting atP∗ we will obtain the
counterfactual equilibrium P∗.

5. An example

We use the example presented at the end of Section 3 to
illustrate the method.7 We also compare the proposed method
with two alternative approaches for calculating a counterfactual
equilibrium: (1) equilibrium mapping iteration using P0 as the
initial value; and (2) equilibrium selection based on minimum
Euclidean distance toP0. We compare these methods in terms of
their ability to satisfy the property that the same equilibrium ‘type’
is maintained in the factual and in the counterfactual scenarios.

For the comparison of these methods in our example, it is
important to take into account the dominion of attraction of
each equilibrium type when iterating in the equilibrium mapping.
Looking at Fig. 1, it should be clear that the dominion of attraction
of an equilibrium type A is the interval [0,ΠB). If we iterate in
the equilibriummapping starting at some probability P within the
interval [0,ΠB), we should converge to the stable equilibriumΠA.
Similarly, the dominion of attraction of an equilibrium type C is
the interval (ΠB, 1]. And for non-stable equilibrium type B, the
dominion of attraction is just the single pointΠB.

Consider Fig. 2 with the type-specific equilibria as functions of
β over the interval S. Given this figure, and taking into account
the dominion of attraction of each equilibrium type, we can
derive the predicted values for the counterfactual equilibrium P∗

for every value β∗ in the interval S, and for each of the three
methods. In Fig. 3 we present the prediction of our method.
The schedule of predicted values P∗ is represented using the
thick curve. The straight line tangent to curve ΠC (α0, β) at point
(β0,P0) represents the first order Taylor approximation around
(β0,P0), that we denoteP∗.8When this straight line is above the

7 Aguirregabiria and Ho (in press) have applied this method to implement
counterfactual experiments in an empirical dynamic game of oligopoly competition
of the airline industry.
8 In this example, this first order approximation has the following form:

P∗ =P0 +
g(α0 +β0h(P0))

1 −β0h(P0)g(α0 +β0h(P0)) (β∗ −β0)

where g(.) is the density function of the CDF G(.).
Fig. 3. Predicted counterfactual equilibrium proposed method (as a function of β).

Fig. 4. Predicted counterfactual equilibrium (as a function ofβ).Method: Iterations
starting from factual equilibrium.

curve for equilibrium type ΠB (i.e., P∗ > ΠB) we have that
the Taylor approximation lies in the dominion of attraction of
equilibrium type C , and therefore Step-2 of the method provides
a counterfactualP∗ = ΠC (α0, β∗) that satisfies the smoothness
condition. The straight line for the Taylor approximation crosses
curve ΠB at point K1. For values of β smaller than K1 we have
that P∗ < ΠB, such that the Taylor approximation lies in the
dominion of attraction of equilibrium type A, and the prediction
of this method is P∗ = ΠA(α0, β∗) that does not satisfy the
smoothness condition. For values of β∗ within the interval S and
smaller than K1, the Taylor approximation (first step) provides a
better approximation to the counterfactual equilibrium than the
combination of Steps 1 and 2.

Fig. 4 presents the predicted counterfactual equilibrium when
using equilibrium mapping iterations initialized atP0. For values
of β∗ such that P0 > ΠB(α0, β∗), we have that P0 lies in the
dominion of attraction of equilibrium type C , and therefore the
prediction is P∗ = ΠC (α0, β∗) that satisfies the smoothness
condition. When P0 < ΠB(α0, β∗), we have that P0 lies in the
dominion of attraction of equilibrium type A and the prediction
of this method is P∗ = ΠA(α0, β∗) that does not satisfy the
smoothness condition. It is important to note that this method
provides different predictions than our method. Each method may
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Fig. 5. Predicted counterfactual equilibrium (as a function ofβ).Method:Minimum
distance to factual equilibrium.

not satisfy the smoothness condition for different range of values
of the counterfactual parameters.

Finally, Fig. 5 presents the predicted counterfactual equilibrium
when using minimum distance toP0 as the equilibrium selection
criterion.9 We see that it also fails to satisfy the smoothness
condition, and it does it for a different range of values than the
other two methods.

This example also illustrates that there is a trade-off when
using ‘Step-2’ (i.e., equilibriummapping iterations) in our method.
A method that applies only the Taylor approximation in ‘Step-1’
is more conservative in the sense that it always satisfies the
smoothness condition at the cost of providing, ‘‘typically’’, a worse
approximation. In contrast, the application of ‘Step-2’ ‘‘typically’’
provides a better approximation but it involves the potential risk
of switching to a different equilibrium type and not satisfying the
smoothness condition.

9 Note that thismethod requires one to calculate all the equilibria of themapping
Ψ (., θ∗) and then selecting the equilibriumwith the smallest Euclidean distance toP0 . In general, this method will be computationally more costly to implement that
the other two methods.
Fig. 3 (and 4) suggests a straightforward extension of our
proposed method (though with additional computational cost)
that can deal with the potential problem of switching to a different
equilibrium type when applying Step 2. Instead of calculating the
counterfactual equilibrium only for the counterfactual value β∗,
we can calculate the schedule of counterfactual equilibria for a
fine grid of points within the interval [β0, β∗]. Then, we can check
whether this schedule is a continuous function of β .
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