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This article deals with the estimation of behavioral and welfare effects of counterfactual policy interven-
tions using dynamic structural models where all the primitive functions are nonparametrically specified
(i.e., preferences, technology, transition rules, and distribution of unobserved variables). It proves the
nonparametric identification of agents’ decision rules, before and after the policy intervention, and of the
change in agents’ welfare. Based on these results, I propose a nonparametric procedure to estimate the be-
havioral and welfare effects of a class of counterfactual policy interventions. The nonparametric estimator
can be used to construct a test of the validity of a parametric specification. I illustrate this method using
a simple model of labor force retirement, panel data with information on public pension wealth, and a
hypothetical reform that delays by three years the eligibility ages of the public pension system in Sweden.
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1. INTRODUCTION

Dynamic discrete choice structural models assume that
agents are forward looking and maximize expected intertempo-
ral payoffs. The structural functions to estimate in these mod-
els represent agents’ preferences and beliefs about uncertain
events. These functions are estimated under the principle of re-
vealed preference and using microdata on individuals’ choices
and outcomes. Dynamic discrete choice structural models have
proven useful tools for the assessment of public policy interven-
tions, hypothetical or factual, such as unemployment insurance,
social security pensions, patent regulation, educational policies,
programs on child poverty, and scrapping subsidies, among
many others. A common feature of the econometric models
in these applications is the parametric specification of the struc-
tural functions. These parametric models contrast with the em-
phasis on robustness and nonparametric specification in the lit-
erature on evaluation of treatment effects (see Heckman and
Robb 1985; Manski 1990, and, more recently, Heckman and
Smith 1998 and Heckman and Vytlacil 1999, 2005). Though
robustness is an important argument in favor of the treatment
effects approach, that methodology cannot be used to evalu-
ate counterfactual policies and it has limitations in measuring
welfare effects and in allowing for transitional dynamics and
general equilibrium effects. It is in this kind of problem where
dynamic structural models can be particularly useful. The main
purpose of this article is to determine conditions under which
nonparametrically specified dynamic structural models can be
used to estimate the effects of counterfactual policy interven-
tions.

Rust (1994) and Magnac and Thesmar (2002) have obtained
negative results on the identification of dynamic discrete struc-
tural models. These studies show that the principle of revealed
preference can identify a value function that combines both
preferences and beliefs, but it cannot identify preferences sepa-
rately from beliefs, even when the researcher “knows” the time

discount factor and agents’ beliefs. Based on this negative re-
sult, this article takes a different look at the problem of non-
parametric identification of dynamic decision models. Instead
of looking at the separate identification of preferences and be-
liefs, I study the identification of the behavioral and welfare
effects of counterfactual policy changes. I prove the identifica-
tion of agents’ optimal decision rules and value functions as-
sociated with a class of hypothetical policy interventions. This
approach is in the spirit of Marschak (1953) who was one of
the first econometricians to argue that models that are not fully
identified may contain subsets of parameters that are identified
and can be used for policy analysis (see also Heckman 2000 for
a discussion of Jacob Marschak’s approach to structural econo-
metrics and identification).

In the Rust–Magnac–Thesmar framework, the econometri-
cian observes agents’ decisions and some state variables for
a random sample of agents. In this article, I assume that the
econometrician also observes an outcome variable. This out-
come variable is neither a decision nor a state variable, but it
is a component of the utility function. Observing this outcome
variable is key for the nonparametric identification of the distri-
bution of the unobservables. However, this additional informa-
tion does not solve the Rust–Magnac–Thesmar underidentifica-
tion problem. In particular, the component of the utility function
that is not the outcome variable cannot be identified separately
from agents’ beliefs.

A first contribution of this article is to show that, for a
wide class of models and counterfactual policies, agents’ be-
haviors before and after the policy intervention, and the change
in agents’ welfare, are nonparametrically identified. Three as-
sumptions are key for this identification result. First, (a) the
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outcome variable enters additively in the utility function, and
the unobservables affecting this variable are (conditionally) in-
dependent of the other unobservables in the utility function.
Second, (b) the transition probability function and the discount
factor are not affected by the policy. And third, (c) the econo-
metrician knows the difference between the utility functions
before and after the policy change but does not know either
of these two utility functions. I show that, under condition (a),
a recursive application of a theorem put forward by Matzkin
(1992, 1994) implies the identification of the distribution of the
unobservables and of two value functions: the present value of
behaving optimally minus the present value of some arbitrary
behavior, and the present value of a one-period deviation from
the arbitrary behavior. However, knowledge of these value func-
tions is not sufficient to identify the one-period utility function
or to identify the effects of a general class of counterfactual
changes in the structural functions. Instead of imposing ad-
ditional restrictions to identify the utility function, the article
shows that knowledge of these value functions is sufficient to
identify the effects of a relevant class of counterfactual policies.
Conditions (b) and (c) characterize the class of counterfactual
policies whose effects can be identified without further assump-
tions on the primitives of the model.

A second contribution of the article is that it proposes a non-
parametric method to estimate the behavioral and welfare ef-
fects of counterfactual policy interventions. When the effect of
interest is conditional on agents’ state variables, the estimator
is subject to the standard “curse of dimensionality” in nonpara-
metric estimation: that is, its rate of convergence is not root-
n, and it declines with the number of continuous explanatory
variables. However, the estimator of the unconditional average
effect is root-n consistent. Therefore, it is possible to obtain pre-
cise estimates of policy effects even when the specification of
the structural model contains a relatively large number of state
variables. As a third contribution, I apply this method to evalu-
ate hypothetical reforms in the rules of a public pension system
using data of male blue-collar workers in Sweden. This applica-
tion illustrates how the method can be used to obtain meaning-
ful estimates of behavioral and welfare effects that do not rely
on parametric assumptions on the primitives of the model.

A recent study by Heckman and Navarro (2007) deals with
the identification of dynamic discrete structural models. Heck-
man and Navarro consider the identification of primitive struc-
tural functions; for example, the utility function and the tran-
sition probability function of state variables. Their sampling
framework is very similar to the one in this article: the re-
searcher observes agents’ actions, some state variables, and an
outcome variable. As mentioned above, observing an outcome
variable does not solve the Rust–Magnac–Thesmar underiden-
tification problem. In order to get around this underidentifi-
cation, Heckman and Navarro incorporate several restrictions.
The most substantial restriction, and the one that clearly dis-
tinguishes the Heckman and Navarro model from the approach
in this article, is that they assume that the continuation value
associated with one of the choice alternatives is known to the
researcher; for example, it is “normalized” to zero. This re-
striction is also considered in Taber (2000). Though this restric-
tion may be needed for the identification of the utility function,
I show in this article that it is not needed for the identification

of the effects of a wide and relevant class of counterfactual ex-
periments. Furthermore, if this restriction does not hold in the
“true” model, then the predicted effects of some counterfactual
policies based on the estimated model can be inconsistent. Ba-
jari and Hong (2006) study the identification of a semiparamet-
ric dynamic discrete choice game where the probability distrib-
ution of the unobservables is parametric (extreme value type 1).
Like Heckman and Navarro, they consider the identification of
primitive structural functions. They present exclusion restric-
tions that can identify players’ utility functions.

The rest of the article is organized as follows. In Section 2,
I set up the model and the basic assumptions. Section 3 presents
the identification results. Section 4 describes the estimation
procedure. The empirical application is featured in Section 5.
I summarize and conclude in Section 6. Proofs of propositions
are in the Appendix.

2. MODEL

2.1 Framework and Basic Assumptions

Time is discrete and indexed by t. Agents have preferences
defined over a sequence of states of the world between periods 0
and T , where the time horizon T can be finite or infinite. A state
of the world has two components: a vector of state variables st
that is predetermined before period t; and a discrete decision
at ∈ A = {0,1, . . . , J} that the agent chooses at period t. The set
of feasible choices at time t may depend on the state: at ∈ A(st),
with A(st) ⊆ A. The decision at period t affects the evolution of
future values of the state variables. An agent’s preferences over
possible sequences of states of the world can be represented by
the time-separable utility function

∑T
j=0 β j Ut(at+j,st+j), where

β ∈ [0,1) is the discount factor and Ut(at, st) is the current util-
ity function at period t. Agents have uncertainty about future
values of state variables. Their beliefs about future states can
be represented by a sequence of Markov transition probability
functions Ft(st+1|at, st). These beliefs are rational in the sense
that they are the true transition probabilities of the state vari-
ables. In every period t, the agent observes the vector of state
variables st and chooses an action at ∈ A(st) to maximize the
expected utility

E

(
T∑

j=0

β jUt(at+j, st+j)

∣∣∣at, st

)
. (1)

Let αt(st) and Vt(st)be the optimal decision rule and the value
function at period t, respectively. By Bellman’s principle of op-
timality, the sequence of value functions can be obtained using
the recursive expression:

Vt(st) = max
a∈A(st)

{
Ut(a, st) + β

∫
Vt+1(st+1)dFt(st+1|a, st)

}
.

(2)

The optimal decision rule αt(st) is the arg maxa∈A(st)
{Ut(a, st)+

β
∫

Vt+1(st+1)dFt(st+1|a, st)}.
The researcher observes a random sample of agents who be-

have according to this model. Agents in the sample are indexed
by i ∈ {1,2, . . . ,n}. As is typically the case in micro panels, we
observe each individual over a short period of time. I consider
that each individual is observed for two periods. It is important
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to note that in this article the time index t does not represent
calendar time but the agent-specific period in the agent’s deci-
sion problem. To emphasize this agent-specific time, I refer to
t as the agent’s age. In some parts of the article I will also em-
phasize this point by using the variable ti to represent agent i’s
age. For each agent in the sample, the econometrician observes
his action, ait, and a subvector xit of the vector of state variables
sit, that is, xit ⊂ sit, and an outcome variable yit that contains in-
formation about utility but is not one of the model’s actions or
state variables. For instance, in a model of firm behavior the re-
searcher may observe firms’ output or revenue, or in a model of
individual behavior the econometrician may observe individual
earnings. This outcome variable depends on current values of
the action and the state variables. I specify this relationship as
yit = Yt(ait, sit), where Yt(·) is the outcome function; for exam-
ple, a production function. In summary, the researcher’s dataset
is

Data = {ait,xit, yit : i = 1,2, . . . ,N; t = ti, ti + 1}. (3)

The vector of state variables sit can be decomposed into three
subvectors: sit = (xit,ωit,εit) where ωit represents unobserv-
ables that enter into the outcome function, and εit represents
unobservables that enter into the utility function but not into the
outcome function. Both ωit and εit are structural state variables
in the sense that they have an economic interpretation within the
model; for example, a productivity shock, or a temporary shock
in health status.

Assumptions 1–6 establish the key restrictions that will be
used to obtain our identification results. Assumptions 1–5 refer
to the structural functions of the model: preferences, beliefs,
and choice set. Assumption 6 (in Section 2.2) defines the class
of policy interventions that I consider in this article.

By the law of conditional probability, the transition proba-
bility of the state variables, F(si,t+1|ait, sit), can be written as
the product of two transitions, one for the unobservables (ε,ω)

and the other for the observables x: that is, F(si,t+1|ait, sit) =
Pr(εi,t+1,ωi,t+1|xi,t+1,ait, sit)Pr(xi,t+1 | ait, sit). Assumption 1
establishes conditional independence restrictions on these tran-
sition probabilities.

Assumption 1 (Conditional independence). (A) The unob-
served state variables have exogenous transition probabilities in
the sense that they do not depend on the agent’s current action:
Pr(εi,t+1,ωi,t+1|xi,t+1,ait, sit) = Pr(εi,t+1,ωi,t+1|xi,t+1,ωit,

εit); (B) conditional on the contemporaneous value of x,
the variables ε and ω have independent transitions, and ε

is not serially correlated: Pr(εi,t+1,ωi,t+1|xi,t+1,ωit,εit) =
Fε(εi,t+1|xi,t+1)Fω(ωi,t+1|xi,t+1,ωit); and (C) the evolution of
xit may be endogenous (i.e., dependent on the agent’s actions),
but conditional on xit and ait, the vector xi,t+1 does not depend
on ωit and εit, Pr(xi,t+1|ait,xit,ωit,εit) = Fx(xi,t+1|ait,xit).
Under these conditions, the cumulative transition probability
of the state variables factors as

F(si,t+1|ait, sit) = Fε(εi,t+1|xi,t+1)Fω(ωi,t+1|xi,t+1,ωit)

× Fx(xi,t+1|ait,xit). (4)

This assumption is similar to Rust’s conditional indepen-
dence assumption (see Rust 1994). It is weaker than Rust’s be-
cause it allows the unobservable ωit to be serially correlated.

Relative to the conditional independence assumptions in Heck-
man and Navarro (2007), Assumption 1 is neither more gen-
eral nor more restrictive. Heckman and Navarro also assume
that ε and ω are conditionally independent, but they allow for
time-invariant unobserved heterogeneity in these unobservables
(see their page 365). However, they assume that all the observed
state variables (other than the indicator of the lagged stopping
decision) follow strictly exogenous stochastic processes that do
not depend on the agent’s actions [see their theorem 4, condi-
tion (ii)].

Assumption 2 (Additivity of the outcome in the utility func-
tion). The utility function Ut is additive in the outcome func-
tion. For any possible action a ∈ A,

Ut(a, sit) = Yt(a,xit,ωit) + Ct(a,xit,εit), (5)

where Ct(·) is a real-valued function.

Together with the conditional independence in Assump-
tion 1, this assumption implies that the utility of alterna-
tive a is the sum of two random variables, Yt(a,xit,ωit) and
Ct(a,xit,εit), which are independent conditional on xit. This
assumption is not innocuous and it restricts the structure of the
utility function. For instance, in the retirement model of the
application in Section 5, this assumption implies that an indi-
vidual’s utility is the sum of annual earnings and the utility of
leisure, and that these two components are independent once
we condition on age, marital status, and pension wealth.

For our analysis, it is convenient to decompose Ct(a,xit,εit)

into two additive components: the median of Ct(a,xit,εit) con-
ditional on xit, and the deviation with respect to this median.
For any action a ∈ A we have that

Ct(a,xit,εit) = Mt(a,xit) + ηit(a), (6)

where Mt(a,xit) ≡ Median(Ct(a,xit,εit)|xit) and ηit(a) ≡
Ct(a,xit,εit) − Mt(a,xit). I use ηit to represent the vector
{ηit(0), ηit(1), . . . , ηit(J)}. By construction, the random vari-
ables in ηit have median zero and are median independent of xit.
It is possible to show that ηit and εit generate the same sigma-
algebra and that they share some properties. For instance, if εit

satisfies the conditional independence in Assumption 1, then ηit
also satisfies

F(si,t+1|ait, sit) = Fη(ηi,t+1|xi,t+1)Fω(ωi,t+1|xi,t+1,ωit)

× Fx(xi,t+1|ait,xit). (7)

Nevertheless, it is important to note that εit and ηit are different
vectors of random variables. While εit contains structural vari-
ables with a clear economic interpretation within the model,
this is not generally the case for ηit. Furthermore, the identifi-
cation of the probability distribution of ηit does not imply the
identification of the distribution of εit or of the effect of εit on
the function Ct(a,xit,εit). However, for the identification re-
sults in this article, we need to know the distribution of ηit and
it is not necessary to know the distribution of εit or the function
Ct(a,xit,εit).

Assumption 3 (Distribution of unobservables). (A) ηit is a
vector of continuous random variables with support the Euclid-
ean space; (B) for any value of x, Fη(η|x) is continuously
differentiable in η; (C) ω is a continuous random variable
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with support R; and (D) the transition probability function
Fω(ωt+1|xt+1,ωt) is such that for any value of xt+1 and any
strictly increasing function q(·), the conditional expectation
E(q(ωt+1)|xt+1,ωt) = ∫

q(ωt+1)Fω(dωt+1|xt+1,ωt) is an in-
creasing function of ωt.

Assumptions 3(A), 3(B), and 3(C) are standard. Assump-
tion 3(D) establishes that, given xt+1, ωt+1 depends positively
and monotonically on ωt. Though this is clearly a restriction
on the stochastic process of the unobservables ωt, it is also a
common and plausible assumption in many applications.

Assumption 4 (Monotonicity of the outcome function).
(A) The outcome function Yt is strictly monotonic in ωit, such
that there is an inverse function Y−1

t and ωit = Y−1
t (ait,xit, yit);

and (B) for any x ∈ X and any action a �= 0, the function
Ỹt(a,x,ω) ≡ Yt(a,x,ω) − Yt(0,x,ω) is strictly increasing in
ω, and for any value u ∈ R there exists a value ω ∈ R such that
Ỹt(a,x,ω) = u.

Assumption 4(A) is used to identify point-wise the sample
values of the unobserved variable ωit. The monotonicity of
Ỹt(a,x,ω) with respect to ω in Assumption 4(B) is used to iden-
tify the distribution function Fη(η|x) from the discrete choices.
The strict monotonicity in Assumption 4 is a strong condition
that rules out some interesting cases such as discrete or cen-
sored outcome variables. However, it can be relaxed to a cer-
tain extent. In particular, Assumption 4 can be replaced by a
similar assumption but in terms of an observable variable in the
vector x.

Assumption 4′. There is a continuous observable variable
xK ⊆ x such that ηit and ωit are independent of xKit and the func-
tion Ỹt(a,x,ω) ≡ Yt(a,x,ω) − Yt(0,x,ω) is strictly increasing
in xK , and for any value u ∈ R there exists a value xK ∈ R such
that Ỹt(a,x,ω) = u.

Under Assumption 4′, we do not need to identify point-wise
the sample values of ωit. We can exploit the monotonicity of
Ỹt(a,x,ω) with respect to xK to identify the distribution func-
tion Fη(η|x), and we can use a similar approach as in Aakvik,
Heckman, and Vytlacil (2005) to identify the distribution of ω

without having to identify point-wise the sample values of ωit.

Assumption 5. The set of feasible choice alternatives at time
t depends only on observed state variables: A(sit) = A(xit).

Assumptions 1 and 5 imply that the optimal decision rule
αt(sit) can be described as αt(sit) = arg maxa∈A(xit){vt(a,xit,

ωit) + ηit(a)}, where the functions vt(0,x,ω), vt(1,x,ω), . . . ,

vt(J,x,ω) are choice-specific value functions and they are de-
fined as

vt(a,xt,ωt) ≡ Yt(a,xt,ωt) + Mt(a,xt)

+
∫

max
a′∈A(xt+1)

{vt+1(a
′,xt+1,ωt+1) + ηt+1(a

′)}

× F(dst+1|a,xt,ωt). (8)

The optimal decision rule represents individuals’ behavior. In-
dividuals’ welfare is given by the value function Vt(st) =
maxa∈A(xt){vt(a,xt,ωt) + ηt(a)}. For the econometric analysis,
it is convenient to define versions of these functions that are

integrated over the unobservables in ηt. The choice probability
function is defined as

Pt(a|xt,ωt) ≡
∫

I{α(xt,ωt,ηt) = a}Fη(dηt|xt). (9)

The integrated-valued function is

V̄t(xt,ωt) ≡
∫

Vt(st)Fη(dηt|xt)

=
∫

max
a∈A(xt)

{vt(a,xt,ωt) + ηt(a)}Fη(dηt|xt). (10)

2.2 Policy Interventions

Consider a hypothetical policy intervention that modifies the
current utility function. Let Ut be the utility function in the data
generating process, and let U∗

t be the utility function under the
counterfactual policy. Assumption 6 describes the class of pol-
icy interventions that I consider in this article.

Assumption 6. The counterfactual policy can be represented
as a change in the utility function from function Ut to function
U∗

t such that: (A) the econometrician knows the difference be-
tween the two utility functions [i.e., the econometrician knows
the function τt(a, s) ≡ U∗

t (a, s)−Ut(a, s)]; and (B) the function
τt(a, s) does not depend on η, that is, τt(a, s) = τt(a,x,ω).

The function τt represents the policy intervention and it is
known to the researcher, though the functions Ut and U∗

t are un-
known. It may depend on (a,x,ω) in a completely unrestricted
way, but it cannot depend on the unobservable η.

Let {Pt, V̄t} and {P∗
t , V̄∗

t } be the choice probability functions
and the integrated value functions before and after the policy in-
tervention, respectively. I represent the behavioral effects of the
policy by comparing the functions P∗

t and Pt. Similarly, the dif-
ference between the functions V̄∗

t and V̄t represents the welfare
effects of the policy.

2.3 An Example: A Model of Capital Replacement

The example is a simplified version of the model in Kasahara
(2009), which examines the impact on firms’ equipment invest-
ment of a temporary increase in import tariffs in Chile. A firm
produces a good using capital (a machine) and perfectly flexi-
ble inputs. The firm has multiple plants and each plant consists
of only one machine. Production at different plants is indepen-
dent and there are constant returns to scale. Therefore, we can
concentrate on the decision problem for an individual plant or
machine. The current profit of a plant is equal to variable prof-
its minus maintenance costs and machine replacement costs.
Let xt represent the time since last machine replacement, or the
age of the existing machine at the beginning of month t. And
let at ∈ {0,1} be the indicator of the decision of replacing the
old machine by a new machine at the beginning of month t.
Therefore, the age of the machine that is used during month
t is (1 − at)xt. The variable profit during month t depends on
the age of the machine and on a productivity shock ωt, and it
is represented by the variable profit function Y((1 − at)xt,ωt).
The amount of variable inputs is a deterministic function of the
age of the machine and the productivity shock and therefore it
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is implicit in the function Y(·). The productivity shock ωt fol-
lows a Markov process, and the transition rule of the age of the
machine is xt+1 = (1 − at)(xt + 1) + at. The profit function has
the following form:

Ut = Y((1 − at)xt,ωt) − CM((1 − at)xt, ε
M
t )

− atC
R(xt, ε

R
t ). (11)

CM(·, ·) is the maintenance cost, which depends on the age of
the machine and on a random shock εM

t that is unobservable to
the researcher. CR(·, ·) is the replacement cost net of the scrap-
ping value of the retired capital. The replacement cost is paid
only if the machine is replaced, and it depends on the age of
the old machine and on a random shock εR

t that is also unob-
servable to the researcher. In this model, Assumption 1 implies
that the cost shocks εR

t and εM
t are independently distributed

over time (though their distribution may depend on the age of
the machine) and distributed independently of the productivity
shock ωt. The specification of the profit function imposes the
additive separability of Assumption 2. Using the same decom-
position as in expression (6), I can write the profit function as

Ut = Y((1 − at)xt,ωt) − Mt(at, xt) − ηt(at), (12)

where Mt(0, xt) ≡ Median(CM(xt, ε
M
t )|xt), Mt(1, xt) ≡

Median(CM(0, εM
t ) + CR(xt, ε

R
t )|xt), ηt(0) ≡ CM(xt, ε

M
t ) −

Mt(0, xt), and ηt(1) ≡ CM(0, εM
t ) + CR(xt, ε

R
t ) − Mt(1, xt). As-

sumption 1(B) implies that ηt(0) and ηt(1) are independent of
ωt.

Suppose that we are interested in evaluating the effects of
a counterfactual policy that modifies firms’ replacement costs.
This policy tries to promote the retirement of old capital by
providing a replacement subsidy that depends on the age of the
old machine. The amount of the subsidy is

τ(at, xt) =

⎧⎪⎨⎪⎩
0 if xt < x∗

low

at(λ0 − λ1[xt − x∗
low]) if x∗

high ≤ xt ≤ x∗
low

0 if xt > x∗
high,

(13)

where {λ0, λ1, x∗
low, x∗

high} are parameters that characterize the
policy, and they have the following properties: λ0 > 0, λ1 > 0,
and (x∗

high − x∗
low) ≤ λ0/λ1. The subsidy is zero if replacement

takes place too early (i.e., before age x∗
low) or too late (i.e., after

age x∗
high). For replacement ages within the range [x∗

low, x∗
high],

the subsidy is strictly positive and it decreases linearly with the
age of the machine.

3. IDENTIFICATION

Suppose that we have a random sample of individuals
with information on the variables {aiti,ai,ti+1, ti,xiti,xi,ti+1, yiti,

yi,ti+1}. As usual, I study identification with a very large (i.e.,
infinite) sample of individuals. Furthermore, I assume that the
sample has variability over the whole support of the observ-
able variables, A2 × [1,T] × X2 × Y2. This assumption of full-
support variation is needed to identify the reduced form of the
model. For the sake of simplicity, I concentrate on binary choice
models: a ∈ {0,1}. For notational simplicity I use Pt(x,ω) to
denote Pt(1|x,ω). Also, to simplify notation, I use Fηt(·) to
represent the distribution of ηt conditional on xt at period t
(i.e., I omit xt as an argument).

3.1 Preliminaries

I assume that the outcome function Yt(·) is identified with-
out having to estimate the rest of the structural model. There
are different conditions under which one can consistently esti-
mate wage equations or production functions using instrumen-
tal variables or control function approaches that do not require
the estimation of the complete structural model (see Olley and
Pakes 1996 and Imbens and Newey 2006). The empirical appli-
cation of retirement behavior in Section 4 provides an example
for the identification of Yt(·). Following most of the literature
on dynamic discrete structural models, I assume that the dis-
count factor β is known to the researcher.

Given Yt(·), Assumption 4(A) implies that we can recover the
sample values of unobservables {ωit} as ωit = Y−1

t (ait,xit, yit).
That is, the sample values of ωiti and ωiti+1 are identified point-
wise, and we can treat these variables as observables. Then, As-
sumption 1 implies that the transition probability functions Fx
and Fω are nonparametrically identified. We can identify Fx on
A × X2 from the transition frequencies Pr(xi,ti+1|aiti,xiti) in the
data. Fω is also identified on R × R × X from the frequencies
Pr(ωiti+1|ωiti,xiti) in the data. It is also clear that we can iden-
tify the choice probability functions Pt(x,ω) on X × R from
the frequencies Pr(aiti = 1|xiti,ωiti, ti = t) in the data. How-
ever, without further restrictions, we cannot identify the struc-
tural functions {Ct,Fεt} or even the semi-structural functions
{Mt,Fηt}. Instead, this article considers the identification of the
functions P∗

t and (V̄∗
t − V̄t) associated with a counterfactual

policy intervention.
The following Proposition, based on Matzkin (1994), will be

used for some of the identification results.

Proposition 1 (Based on Matzkin 1994). Consider a binary
choice model, a = I{η ≤ W + ϕ(X)}, where a, W , and X are
observable variables to the econometrician, η is unobservable,
and ϕ(·) is a real-valued function. Consider the following def-
initions: SX ⊆ R

K is the support of the vector X; ϕ0is the true
function ϕ in the population; and F0

η|X is the true CDF of η

conditional on X. Assume that: (i) η and W are independent
conditional on X; (ii) for any X ∈ SX , the CDF F0

η|X is strictly
increasing in η, its support is R, and F0

η|X(0) = 0.5 (zero condi-
tional median); (iii) the distribution of W conditional on X has a
Lebesgue density that is everywhere positive on R; and (iv) for
any X ∈ SX , there is a value W ∈ R such that W + ϕ0(X) = 0.
Under these conditions, the function ϕ0 is identified on SX and
the function F0

η|X is identified on R.

An implication, or corollary, of Proposition 1 is the fol-
lowing. Consider the model and the conditions of Proposi-
tion 1. Define the counterfactual choice probability function
P∗(X,W) ≡ F0

η|X(W + ϕ0(X) + π(X,W)), where π(X,W) is
a function from SX × R into R that is known to the econometri-
cian. Then, P∗ is identified on SX × R, such that

P∗(X,W) = F0
η|X(W + ϕ0(X) + π(X,W))

= P0(X,W + π(X,W)). (14)

McFadden (1981) defined the social surplus function of a
random utility model as the difference between the expected
utility of behaving optimally minus the expected utility of an
arbitrary (suboptimal) behavior. Proposition 2 is a corollary of
theorem 5.1 in McFadden (1981), and it establishes that the so-



206 Journal of Business & Economic Statistics, April 2010

cial surplus function depends on the optimal choice probability
and the CDF of the unobservables only. In the context of a dy-
namic discrete choice model, Propositions 2 and 3 (below) are
key to showing that Matzkin’s proposition 1 can be applied re-
cursively to obtain the identification of certain value functions.

Proposition 2. Consider the utility maximization problem
max{u(0) + η(0),u(1) + η(1)}, and the following definitions.
G is the expected utility of behaving optimally minus the ex-
pected utility of choosing alternative zero (McFadden’s social
surplus), that is,

G ≡
∫

max{u(0) + η(0),u(1) + η(1)}dFη(η) − u(0).

P is the probability that alternative 1 is the optimal choice: that
is,

P ≡
∫

I{u(0) + η(0) < u(1) + η(1)}dFη(η).

And Fη̃ is the CDF of the random variable η̃ ≡ η(0) − η(1).
If Fη̃is a continuous and strictly increasing function, then the
social surplus G depends on P and Fη̃only. That is, G =∫

max{0,F−1
η̃

(P) − η̃}dFη̃(η̃).

Going back to the dynamic binary choice model, Proposi-
tion 3 provides a representation of the choice-specific value
functions vt(a,xt,ωt) that will be useful to prove the identifica-
tion results. The proposition establishes that we can decompose
additively the differential value functions vt into three func-
tions. This decomposition is not arbitrary. I show in Section 3.2
that we can identify these three components of the value func-
tion, and that these components, together with the CDF of η̃t,
can be used to construct the counterfactual choice probability
function P∗

t .

Proposition 3. For any age t, the choice-specific value func-
tion vt can be written as

vt(a,x,ω) = VY
t (a,x,ω) + VM

t (a,x) + VOPT
t (a,x,ω), (15)

where: VY
t (a,x,ω) is the expected, discounted value of the sum

of current and future realizations of the outcome variable y if
the current choice is a and then alternative 0 is chosen forever
in the future; VM

t (a,x) is the expected, discounted value of the
sum of current and future realizations of the component M of
the utility function if the current choice is a and then alterna-
tive 0 is chosen forever in the future; and VOPT

t (a,x,ω) is the
value of behaving optimally in the future minus the value of al-
ways choosing alternative 0, given that the current choice is a.
These functions can be obtained recursively as follows: at last
period T , VY

T (a,x,ω) = YT(a,x,ω), VM
T (a,x) = MT(a,x), and

VOPT
T (a,x,ω) = 0; and any period t < T ,

VY
t (a,x,ω)

= Yt(a,x,ω)

+ β

∫
VY

t+1(0,xt+1,ωt+1)dF(xt+1,ωt+1|a,x,ω),

VM
t (a,x) (16)

= Mt(a,x) + β

∫
VM

t+1(0,xt+1)dFx(xt+1|a,x),

VOPT
t (a,x,ω)

= β

∫ [
G(Pt+j(xt+1,ωt+1),Fη̃,t+j)

+ VOPT
t+1 (0,xt+1,ωt+1)

]
dF(xt+1,ωt+1|a,x,ω),

where G(P,F) is the social surplus function
∫

max{0;F−1
η̃

(P)−
η̃}dFη̃(η̃), as derived in Proposition 2.

3.2 Identification of Counterfactual Policy Effects

I present here identification results in the context of a fi-
nite horizon model, that is, T < ∞. However, the proof can
be extended to infinite horizon models. The proof of iden-
tification in a model with infinite horizon appears in an
earlier version of this article, which is available online at
ideas.repec.org. The factual choice probability function is
Pt(x,ω) = Fη̃t(vt(1,x,ω)− vt(0,x,ω)), or, given Proposition 3

Pt(x,ω) = Fη̃t
(
ṼY

t (x,ω) + ṼM
t (x) + ṼOPT

t (x,ω)
)
, (17)

where ṼY
t (x,ω) ≡ VY

t (1,x,ω) − VY
t (0,x,ω), ṼM

t (x) ≡ VM
t (1,

x) − VM
t (0,x), and ṼOPT

t (x,ω) ≡ ṼOPT
t (1,x,ω) − ṼOPT

t (0,x,

ω). The value function VOPT
t depends on the agent’s future op-

timal behavior and therefore on the optimal choice probability
functions from period t + 1 until period T . Proposition 4 es-
tablishes the identification of the functions Fη̃t, ṼY

t , ṼM
t , and

ṼOPT
t .

Proposition 4. Suppose that Assumptions 1–5 hold and that
the discount factor β is known. Then, for any period t ≤ T , the
functions Fη̃t, ṼY

t , ṼM
t , and ṼOPT

t are identified.

The value ṼM
t (x) depends on M̃t(x), the future utilities

{Mt+j(0,xt+j) : j > 0}, the transition probability function of x,
and the time discount factor β . Without further restrictions, the
identification of the functions {ṼM

t } does not provide identifica-
tion of the one-period utility function Mt(a,x), or even of the
differential utility function M̃t(x) ≡ Mt(1,x) − Mt(0,x). The
one-period utility function is not identified. As in the case of
static discrete choice models, there is a “normalization” restric-
tion that implies the identification of utility function Mt(a,x).
If we assume that Mt(0,x) = 0 for any period t and any value of
x, then, using the definition of ṼM

t in Equation (16), it is simple
to verify that VM

t (0,x) = 0 and ṼM
t (x) = VM

t (1,x) = Mt(1,x).
However, this “normalization” is not innocuous. If the normal-
ization restriction is not true (and we expect that to be the case
in most applications), the estimated model will imply incon-
sistent predictions of the effects of certain policy interventions,
such as those that modify transition probabilities of the state
variables or the time discount factor.

Next, we show that, despite the fact that we cannot identify
individuals’ utility functions, we can identify the behavioral
and welfare effects of counterfactual experiments in the class
defined in Assumption 6. Define the counterfactual outcome
function Y∗

t (a,x,ω) ≡ Yt(a,x,ω) + τt(a,x,ω), where τt(·) is
the function defined in Assumption 6. Therefore, the counter-
factual choice probability function is

P∗
t (x,ω) = Fη̃t

(
ṼY∗

t (x,ω) + ṼM∗
t (x) + ṼOPT∗

t (x,ω)
)
, (18)

http://ideas.repec.org
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where ṼY∗
t , ṼM∗

t , and ṼOPT∗
t are the counterfactual versions

of ṼY
t , ṼM

t , and ṼOPT
t , respectively. It is clear that VY∗

t is
known, and that VM∗

t = VM
t . Therefore, by Proposition 4, the

functions ṼY∗
t and ṼM∗

t are identified. Also, note that all the
primitives that enter into the value function ṼOPT∗

t (i.e., tran-
sition probabilities, distribution of η̃, and discount factor) are
policy invariant: they are the same before and after the policy
change. Therefore, the only way in which the value function
ṼOPT∗

t is affected by the policy change is through the change
in the optimal behavior between periods t + 1 and T , that is,
through the change in the optimal choice probabilities between
t + 1 and T . To emphasize this aspect, I represent the functions
VOPT

t (a,x,ω) and VOPT∗
t (a,x,ω) as ṼOPT

t (x,ω; {Pt+j : j > 0})
and ṼOPT

t (x,ω; {P∗
t+j : j > 0}), respectively. Taking into account

these considerations, we can write the counterfactual choice
probability functions as follows:

P∗
t (x,ω) = Fη̃t

(
ṼY∗

t (x,ω) + ṼM
t (x)

+ ṼOPT
t (x,ω; {P∗

t+j : j > 0})). (19)

Proposition 5 establishes the identification of the counterfactual
choice probabilities.

Proposition 5. Suppose that Assumptions 1–6 hold and
that the discount factor β is known. Then, the counterfactual
choice probability functions {P∗

t } are identified over SX × R.
These probability functions can be obtained using the follow-
ing method. Starting at the last period, t = T , the probability
P∗

t (x,ω) can be obtained recursively as

P∗
t (x,ω) = Pt(x,ω∗

t (x,ω)), (20)

where ω∗
t (x,ω) is a function from SX × R into R that is implic-

itly defined as the value ω∗
t ∈ R that solves the equation

ṼY
t (x,ω∗

t ) + ṼOPT
t (x,ω∗

t ; {Pt+j : j > 0})
= ṼY∗

t (x,ω) + ṼOPT
t (x,ω; {P∗

t+j : j > 0}). (21)

Proposition 6 establishes the identification of the welfare ef-
fect function V̄∗

t − V̄t.

Proposition 6. Under the conditions in Proposition 5, the
welfare effect function V̄∗

t − V̄t is identified. We can obtain this
function as:

V̄∗
t (x,ω) − V̄t(x,ω)

= [VY∗
t (0,x,ω) − VY

t (0,x,ω)]
+ [

G(P∗
t (x,ω),Fη̃t) − G(Pt(x,ω),Fη̃t)

]
+ [

ṼOPT
t (0,x,ω; {P∗

t+j : j > 0})
− ṼOPT

t (0,x,ω; {Pt+j : j > 0})]. (22)

4. ESTIMATION METHOD

Suppose that we observe {aiti,ai,ti+1,xiti,xi,ti+1, yiti , yi,ti+1}
for a random sample of N individuals. For any u ∈ R, define
wu

t (x) as the value of ω that solves the equation ṼY
t (x,ω) +

ṼM
t (x) + ṼOPT

t (x,ω) = u. By the zero median of η̃t,w0
t (x) is

the value of ω that solves the equation Pt(x,ω) = 0.5. The esti-
mation method proceeds in two steps.

Step 1. Estimation of the outcome function Y , transition den-
sity functions fω and fx, factual choice probability function Pt,
and threshold function w0

t .

First, we estimate the outcome function. Given this estimated
function, we can get the residuals ω̂iti = Ŷ−1

ti (yiti,aiti ,xiti) at
every observation i. For the derivation of asymptotic proper-
ties, I assume that the outcome function is either parametrically
or semiparametrically specified such that the residuals {ω̂iti} are
root-n consistent estimates of the true ω’s. This implies that the
rate of convergence of {ω̂iti} to {ωiti} is faster than the conver-
gence of the kernel estimators that I define below. Therefore,
we can ignore the estimation error in {ω̂iti} in the derivation of
the asymptotic properties of the estimator of policy effects.

Given {ω̂iti} we can construct procedures to estimate non-
parametrically transition densities fω(ω′|ω) and fx(x′|a,x),
choice probability Pt(x,ω), and threshold values w0

t (x) for ar-
bitrary values of (t,x,x′,ω,ω′,a). These procedures are called
by the estimators in Step 2. For instance, we can use a ker-
nel method to estimate the transition densities fω(ω′|ω) and
fx(x′|a,x). Similarly, a kernel estimator of the choice probabil-
ity Pt(x,ω) is

P̂t(x,ω)

=
N∑

i=1

aiti I{ti = t}K
(

x − xiti

bx
n

)
K

(
ω − ω̂iti

bω
n

)
/[

N∑
i=1

I{ti = t}K
(

x − xiti

bx
n

)
K

(
ω − ω̂iti

bω
n

)]
. (23)

An estimator of w0
t (x) can be obtained by solving in ω the equa-

tion P̂t(x,ω)−0.5 = 0. The solution to this equation can be eas-
ily obtained using Newton’s method. That is, starting at some
initial ω0, we obtain a sequence of values {ωk : k ≥ 0} using the
recursive formula ωk+1 = ωk − P̂t(x,ωk)/(∂P̂t(x,ωk)/∂ω). We
iterate in this formula until |ωk+1 − ωk| is smaller than a pre-
specified small constant. Since P̂t(x,ω) is strictly increasing in
ω, Newton’s method always converges to the unique solution
of the equation. In some applications, the kernel estimate of the
function P may not be strictly monotonic in ω. Monotonicity
of P̂ is necessary for the subsequent estimation of the effects of
the counterfactual policy. We can impose monotonicity using
the isotonic smooth (IS) kernel estimator proposed by Muker-
jee (1988) and Mammen (1991).

Step 2. Recursive (backward induction) estimation of the
functions {P∗

t }, {ṼM
t }, and {Fη̃t}.

(At period T) We estimate, in this order: (a) ω∗
T(x,ω);

(b) P∗
T(x,ω); (c) ṼM

T (x); (d) wu
T(x); and (e) F̂η̃T(u).

(a) A consistent estimator of ω∗
T(x,ω) is the value ω∗

T that
solves the equation ŶT(x,ω∗

T) = Ŷ∗
T(x,ω). For instance, sup-

pose that ỸT(x,ω) = gT(x) exp(ω), where gT(·) is a real-valued
function of x. Then there is a closed form expression for the
estimator of ω∗

T(x,ω):

ω̂∗
T(x,ω) = ω + log

(
1 + τ̃T(x,ω)

gT(x) exp{ω}
)

. (24)
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(b) Based on Proposition 5, a consistent estimator of P∗
T(x,

ω) is P̂T(x, ω̂∗
T(x,ω)), that is:

P̂∗
T(x,ω)

=
N∑

i=1

aiti I{ti = T}K
(

x − xiti

bx
n

)
K

(
ω̂∗

T(x,ω) − ω̂iti

bω
n

)
/[

N∑
i=1

I{ti = T}K
(

x − xiti

bx
n

)
K

(
ω̂∗

T(x,ω) − ω̂iti

bω
n

)]
. (25)

(c) By Proposition 4, a consistent estimator of ṼM
T (x) is

V̂M
T (x) = −ŶT(x, ŵ0

T(x)) = −gT(x) exp(ŵ0
T(x)).

(d) By definition, wu
T(x) is the value of ω that solves the

equation ỸT(x,ω) + ṼM
T (x) = u. Therefore, a consistent esti-

mator of wu
T(x) is ŵu

T(x) = ŵ0
T(x) + log(1 + u

gT (x) exp{ŵ0
T (x)} ).

(e) By Proposition 4, for u ∈ R a consistent estimator of
Fη̃T(u) is P̂T(x, ŵu

T(x)), that is:

F̂η̃T(u)

=
N∑

i=1

aiti I{ti = T}K
(

x − xiti

bx
n

)
K

(
ŵu

T(x) − ω̂iti

bω
n

)
/[

N∑
i=1

I{ti = T}K
(

x − xiti

bx
n

)
K

(
ŵu

T(x) − ω̂iti

bω
n

)]
. (26)

(At period T − 1) We estimate, in this order: (a) ṼOPT
T−1 (x,ω)

and ṼOPT∗
T−1 (x,ω); (b) ω∗

T−1(x,ω); (c) P∗
T−1(x,ω); (d) ṼM

T−1(x);

(e) wu
T−1(x); and (f) F̂η̃T−1(u).

(a) First, we obtain an estimator of ṼOPT
T−1 (x,ω):

V̂OPT
T−1 (x,ω)

= β

∫
max

{
F̂−1

η̃T (P̂T(x′,ω′)) − u;0
}
f̂η̃T(u)f̂ω(ω′|ω)

× [f̂x(x′|1,x) − f̂x(x′|0,x)]du dx′ dω′. (27)

If (x,ω) includes several continuous state variables, the multi-
ple integral may be approximated using Monte Carlo integra-
tion in order to reduce computation time. Similarly, we can ob-
tain a consistent estimator of ṼOPT∗

T−1 (x,ω).
(b) A consistent estimator of ω∗

T−1(x,ω) is the value ω∗
T−1

that solves the equation V̂Y
T−1(x,ω∗

T−1) + V̂OPT
T−1 (x,ω∗

T−1) =
V̂Y∗

T−1(x,ω) + V̂OPT∗
T−1 (x,ω). In contrast to the case at period T ,

there is not a closed-form analytical expression for the solution
to this equation. However, given that V̂Y

T−1(x,ω) + V̂OPT
T−1 (x,ω)

is strictly increasing in ω, the solution to this equation can be
easily obtained using Newton’s method.

(c) A consistent estimator of P∗
T−1(x,ω) is P̂∗

T−1(x,ω) =
P̂T−1(x, ω̂∗

T−1(x,ω)).

(d) By Proposition 4, a consistent estimator of ṼM
T−1(x) is

V̂M
T−1(x) = −V̂Y

T−1(x, ŵ0
T−1(x)) − V̂OPT

T−1 (x, ŵ0
T−1(x)).

(e) A consistent estimator of wu
T−1(x) is the value of ω that

solves the equation V̂Y
T−1(x,ω) + V̂M

T−1(x) + V̂OPT
T−1 (x,ω) = u.

Again, the unique solution to this equation can be obtained us-
ing Newton’s method.

(f) A consistent estimator of Fη̃,T−1(u) is F̂η̃,T−1(u) =
P̂T−1(x, ŵu

T−1(x)).

(At period t < T) We proceed in the same way as for t =
T − 1.

Remark 1. The computational cost of estimating the se-
quence of choice probability functions {P∗

t } is equivalent to the
cost of solving the dynamic programming problem once.

Remark 2. Under standard regularity conditions, our kernel
estimator of {P∗

t } is consistent and asymptotically normal, and

its rate of convergence is
√

Nbk
N , where bN is the bandwidth

and k is the number of continuous variables in the vector of
state variables (x,ω). The speed of convergence declines with
the number of continuous regressors. In applications with more
than two or three continuous state variables, the estimator of
the function P∗

t can be quite imprecise unless the number of
observations in our dataset is very large. However, there are
situations in which we may be interested in partial means of the
policy effects. A partial mean of the policy effect is an average
of P∗

t (xti ,ωti) − Pt(xti ,ωti) over some state variables holding
other state variables constant. In the literature on evaluation of
treatment effects, these partial means are called (conditional)
average treatment effects (ATE). Let zi be a vector included in
(xti,ωti), and let x(−z)i represent the vector (xti,ωti) excluding
zi, such that (xti ,ωti) = (zi,x(−z)i). Then, the ATE conditional
on zi taking a constant value z is:

ATE(z) = E
[
P∗

ti

(
z,x(−z)i

) − Pti

(
z,x(−z)i

)]
. (28)

When zi does not include any variable, we have the uncondi-
tional ATE, that is, ATE = E(P∗

ti(xti ,ωti)− Pti(xti ,ωti)). A con-
sistent estimator of the (conditional or unconditional) ATE is
simply the sample mean of the kernel estimator P̂∗

ti(z,x(−z)i) −
P̂ti(z,x(−z)i), that is,

ÂTE(z) = 1

N

N∑
i=1

P̂∗
ti

(
z,x(−z)i

) − P̂ti

(
z,x(−z)i

)
. (29)

Newey (1994) studies the asymptotic properties of a partial
mean of kernel estimates. He shows that averaging out some
continuous conditional variables implies an improvement in the
rate of convergence of the estimator. Furthermore, averaging
over all the (continuous) state variables to obtain the uncon-
ditional ATE provides an estimator that is root-n consistent.
Therefore, the nonparametric approach in this article may pro-
vide precise and meaningful estimates of average policy effects
even when the model has a relatively large number of continu-
ous state variables and the dataset does not contain many obser-
vations. The empirical application in Section 5 is an example of
this.

Remark 3. Based on the results presented in Remark 2, it is
possible to use our estimator of ATE, based on our nonpara-
metric model, to define the following test of a parametric spec-
ification. Let ÂTEnp and ÂTEp be the estimators of ATE using
our nonparametric model and using a parametric model, respec-
tively. Under the null hypothesis that the parametric model is
correctly specified, we have that

ÂTEnp − ÂTEp√
Var(ÂTEnp − ÂTEp)

∼a N(0,1), (30)
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where ∼a means “is asymptotically distributed as.” The asymp-
totic variance Var(ÂTEnp − ÂTEp) can be approximated using a
bootstrap method (see Remark 4 below). An interesting feature
of the test of specification is that it tests the validity of a para-
metric model only in the context of estimating a specific pol-
icy effect. That is, some specifications may be invalid for some
policy experiments but perfectly valid for other policy experi-
ments.

Remark 4. In the empirical application in Section 5, I use
a bootstrap method to approximate the standard errors of esti-
mated average policy effects (unconditional ATEs). The method
is a nonparametric bootstrap that resamples the data and repli-
cates the whole estimation procedure for each bootstrap sam-
ple. Define a block as an individual’s history of observable
choices and state variables in the sample. The sample can be
described as N blocks, which are independent random draws
from a certain population. The bootstrap sampling method that
I use takes random draws (independent and with replacement)
of blocks from the sample. I take B = 500 bootstrap sam-
ples of size N; that is, each bootstrap sample has the same
number of blocks/individuals as the original sample. The boot-
strap standard error of the estimate ÂTE is just the square root
of (B − 1)−1 ∑B

b=1(ÂTEb − ATE)2, where ÂTEb is the esti-
mate of the ATE using the bth bootstrap sample and ATE is
B−1 ∑B

b=1 ÂTEb.

5. AN APPLICATION

This section presents an application of this methodology to
evaluate the effects of a hypothetical reform in the social secu-
rity pension system in Sweden. The main purpose of this ap-
plication is to illustrate the implementation of the method and
to show that it can provide meaningful results. Our model of
retirement behavior follows Rust and Phelan (1997) and Karl-
strom, Palme, and Svensson (2004). The hypothetical reform
consists of a delay of three years in the eligibility ages of the
public pension system. The minimum age to claim a public pen-
sion increases from 60 to 63 years and the normal retirement
age increases from 65 to 68. This type of reform has been and
is still being considered in many Organization for Economic
Cooperation and Development (OECD) countries.

Additivity of the outcome variable in the utility function (As-
sumption 2) and conditional independence between the unob-
servables in the outcome function and in the rest of the util-
ity function (Assumption 1) are key conditions to implement
our method. In order to have a model of retirement that satis-
fies these assumptions, I impose the following restrictions in
the model below: (a) the utility function is additively separa-
ble in consumption and leisure; (b) the utility of consumption
belongs to the CRRA family and the relative risk aversion pa-
rameter is known to the researcher; (c) in every period, con-
sumption is equal to disposable income; and (d) conditional on
age, marital status, and public pension wealth, there is indepen-
dence between the unobservable in labor earnings and the unob-
servables in the utility of leisure. These are strong assumptions.
In particular, assumption (c) rules out consumption smoothing

and accumulation of private wealth, which is an obvious substi-
tute for public pension wealth. Therefore, in our policy analy-
sis we assume that when the public pension system becomes
less generous (through a delay in eligibility ages), individuals
do not decide to reduce their consumption before retirement in
order to accumulate wealth and to retire not much later than
they planned before the policy change. This type of response
is ignored by our model. Interestingly, this assumption is also
present in most of the literature on structural models of retire-
ment behavior, for example, Berkovec and Stern (1991), Rust
and Phelan (1997), Karlstrom, Palme, and Svensson (2004), or,
more recently, Bound, Stinebrickner, and Waidmann (2009).
Some important exceptions are the recent papers by French
(2005), Blau (2008), and van der Klaauw and Wolpin (2008).

5.1 A Model of Retirement Behavior

Every year, individuals decide whether to continue working
(at = 1) or to retire and claim social security pension benefits
(at = 0). This decision is irreversible. Individuals have a utility
function that is additively separable in consumption (Ct) and
leisure (Lt). More specifically,

Ũt = UC(Ct) + UL(Lt, t,mt,εt), (31)

where t represents age, mt is marital status, and εt is an indi-
vidual idiosyncratic shock in the utility of leisure that is unob-
servable to the econometrician (e.g., unobserved health status).
These variables capture individual heterogeneity in the utility
of leisure. If the individual works, hours of leisure are equal
to L̄1 and annual earnings are equal to labor earnings Wt. If
the individual decides to retire, then hours of leisure are L̄0
and earnings are equal to retirement benefits Bt. Thus, we can
write leisure as Lt = atL̄1 + (1 − at)L̄0 and annual earnings as
Yt = atWt + (1 − at)Bt. Labor earnings depend on age, marital
status, and a wage shock:

Wt = exp{hW(mt, t) + ωt+1}. (32)

hW(·) is a function and ωt+1 is a wage shock. This shock fol-
lows a Markov process with transition rule ωt+1 = ρ(ωt)+ξt+1,
where ρ(·) is a function and ξt+1 is the innovation of the
process. The individual knows ωt when he decides whether to
retire at age t, but he does not know the innovation ξt+1. This
assumption is similar to the one in Rust and Phelan (1997), and
it is important for the identification of the wage function (see
below). Retirement benefits depend on current age (t), retire-
ment age (rat), and pension points (ppt) : Bt = B(t,mt, rat,ppt).
I describe this function in Section 5.2 below.

The state variables of the model are εt, ωt, and xt =
(t,mt, rat,ppt). Note that retirement status (i.e., at−1) is im-
plicitly given by retirement age. Since the individual has uncer-
tainty about current labor earnings, the relevant current utility
is the expected utility Ut ≡ Et(Ũt), where the information set at
period t is (at,xt,ωt,εt):

Ut ≡ Et(Ũt)

= Et(UC(Ct)) + UL(atL̄1 + (1 − at)L̄0, t,mt,εt). (33)

In order to have a utility function Ut with the form postulated
in Assumptions 1 and 2, we need the value of Et(UC(Ct)) to
be an observable outcome variable yt for the researcher. If we
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could observe individuals’ consumption Ct, we would need rel-
atively weak assumptions to have that structure. However, we
do not observe individual consumption. Instead, we observe la-
bor earnings Wt for those individuals who are working and re-
tirement benefits Bt (either potential or actual benefits) for every
individual, working or not. I assume that consumption is equal
to earnings, Ct = Yt, and that the utility of consumption is a
CRRA function; that is, UC(Ct) = Cα

t , where α is the parame-
ter of relative risk aversion. Furthermore, I also assume that the
risk aversion parameter is known to the researcher. Under these
conditions, we have that

Et(UC(Ct))

≡ Y(at,xt,ωt)

=
{

exp{hW(mt, t) + ρ(ωt) + μ}α if at = 1

B(xt)
α if at = 0,

(34)

where μ is a parameter that represents ln(E(exp{ξt+1})). Define
the functions M(0,xt) and M(1,xt) and the variables ηt(0) and
ηt(1) such that, for a = 0,1 : M(a,xt) ≡ Median{UL(aL̄1 + (1−
a)L̄0, t,mt,εt)|xt} and ηt(a) ≡ UL(aL̄1 + (1 − a)L̄0, t,mt,εt) −
M(a,xt). Using these definitions, we can rewrite the utility
function as Ut = Y(at,xt,ωt) + M(at,xt) + ηt(at).

I conclude this subsection by presenting sufficient conditions
for the identification of the outcome function Y(·). Since the
pension benefits function B(xt) is known and the risk aver-
sion parameter α is assumed to be known to the econome-
trician, we have to identify only the labor earnings function.
A least-squares estimation of the log-wage equation log(Wt) =
hW(mt, t)+ωt+1 (using the sample of observations with at = 1)
suffers from selection bias because ωt+1 is not mean inde-
pendent of the individual’s choice at period t. However, the
Markov structure of the wage shock and our assumption on
the arrival of information provide moment conditions that can
be used to nonparametrically estimate the functions hW(·) and
ρ(·). Consider the subsample of individuals working at pe-
riods t and t − 1, that is, at = at−1 = 1. For these individ-
uals, we have that: (a) ln Wt = hW(xt) + ρ(ωt) + ξt+1; and
(b) ωt = ln Wt−1 − hW(xt−1). Solving Equation (b) into Equa-
tion (a), we have that

ln Wt = hW(xt) + ρ(ln Wt−1 − hW(xt−1)) + ξt+1

if at = at−1 = 1. (35)

The innovation ξt+1 is iid over time and unknown to the indi-
vidual when he makes his working decision at period t, or at
period t − 1. This implies that ξt+1 is independent of (at,at−1),
and it is also independent of xt and Wt−1. The orthogonality
conditions E(ξt+1|at = 1,at−1 = 1,xt,Wt−1) = 0 provide mo-
ment conditions that can be used to estimate the functions hW(·)
and ρ(·).

5.2 Social Security Pensions and the
Counterfactual Reform

I present here a brief description of Sweden’s public pen-
sion system during the sample period 1983–1997. For a more
detailed explanation, see section 2 in Karlstrom, Palme, and

Svensson (2004, hereafter KPS). I discuss first the pension ben-
efits function, B(x), and then the rules for accumulation of pen-
sion points.

In Sweden, the measurement unit for the amount of pension
benefits is the so-called basic amount (BA). This measure is in-
dexed by the consumer price index (CPI), and it was equal to
$4,765 U.S. dollars in 2003. Notice that to translate Swedish
kronas into U.S. dollars (of the year 2003), I have used an ex-
change rate of 8.1 Swedish kronas per U.S. dollar. An individ-
ual younger than 60 years old is not entitled to receive public
pension benefits. Therefore, B(x) = 0 for t < 60. Of course, in-
dividuals can retire before age 60, but they cannot claim and
receive benefits until they become 60 years old. Let B̄65(m,pp)

represent the amount of annual pension benefits that the individ-
ual is entitled to if he/she retires at age 65 (see below). Then,
for ages t ≥ 60, we have that

B(x) =

⎧⎪⎪⎨⎪⎪⎩
B̄65(m,pp)(1 − κ1(65 − 60)) if ra < 60

B̄65(m,pp)(1 − κ1(65 − ra)) if 60 ≤ ra < 65

B̄65(m,pp)(1 + κ2(ra − 65)) if 65 ≤ ra < 70

B̄65(m,pp)(1 + κ2(70 − 65)) if ra ≥ 70.

(36)

κ1 is a permanent actuarial reduction in benefits per year of
early retirement. κ2 is a permanent actuarial increase in benefits
per year of delayed retirement. For our sample period, 1983–
1997, the values of these parameters were κ1 = 6.0% per year
(0.5% per month) and κ2 = 8.4% per year (0.7% per month).
The amount B̄65(m,pp) is the combination of three pension
programs: basic pension (BP), special supplementary pension
(SSP), and normal supplementary pension (NSP). More specif-
ically,

B̄65(m,pp) = BP(m) + min{SSP,NSP(pp)}. (37)

The basic pension BP(m) depends on marital status but not on
the individual’s pension points. It is equal to 96.0% of the BA
(i.e., $4,574 per year) if the individual is single and 78.5% of
the BA (i.e., $3,740 per year) if married. The SSP applies only
if the individual’s normal supplementary pension is not large
enough, that is, if NSP(pp) < SSP. It is the same for every in-
dividual and is equal to 55.5% of the BA. The normal supple-
mentary pension NSP(pp) is the most important part of pension
benefits for most individuals. It is proportional to the individ-
ual’s pension points: NSP(pp) = 0.6 ∗ pp ∗ BA. As I described
below, pension points can take values between 0 and 6.5. There-
fore, the range of variation of the annual pension benefits upon
retirement at age 65 (i.e., the range of variation of B̄65(x)) is
[1.515∗BA,7.46∗BA] (i.e., between $7,219 and $35,547) for a
single person, and [1.34∗BA,7.285∗BA] (i.e., between $6,385
and $34,713) for a married person. The range of variation of
actual pension benefits is larger because individuals retire at
different ages, before and after age 65.

Pension points are a deterministic function of an individual’s
whole history of earnings. Every year, an individual with an-
nual labor earnings W greater than BA obtains an amount of so-
cial security points between 0 and 6.5, according to the formula
max{6.5; W

BA − 1}. The pension points are equal to the average
social security points over an individual’s best 15 years of earn-
ings, adjusted by a factor that depends on the total number of
years with earnings greater than the BA. In order to provide an
explicit formula, let {W(1),W(2), . . . ,W(15)} be the annual labor
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earnings over an individual’s best 15 years. Let nW be the num-
ber of years in which the individual obtained annual earnings
greater than the BA. Then,

pp = min

{
1,

nW

30

}
∗

(
1

15

15∑
j=1

max

{
6.5; W(j)

BA
− 1

})
. (38)

KPS show that the evolution of an individual’s pension points
over time, though not Markovian, can be very closely approx-
imated by a first-order Markov process. This is also the case
for public pension wealth in the U.S. Social Security System,
as shown by Rust and Phelan (1997). Following these previ-
ous studies, I consider a deterministic Markov rule for pension
points; that is, ln(ppt+1) = hpp(t,ppt), where hpp(·, ·) is a func-
tion that I estimate from the data. I consider a specification with
pension point in logs because this variable always takes positive
values. As shown below, the R-squared coefficient from this re-
gression is very close to one (i.e., 0.998), which justifies treating
the transition of pension points as deterministic.

The counterfactual policy that I evaluate is a three-year delay
in the eligibility ages. The new eligibility ages are 63 (the “min-
imum”), 68 (the “normal”), and 73 (the “maximum”). Given
that the discount for early retirement is κ1 = 6.0% per year, an
individual who would have retired at age 65 before the policy
change will have an 18% reduction in annual pension if he/she
still retires at the same age. The function τ(a,x) represents the
change in the one-period utility induced by the policy. The new
policy does not affect the utility function when working, and
therefore τ(1,x) = 0. The effect of the utility when retired is
τ(0,x) = B∗(x) − B(x), where B∗ and B are the benefits func-
tions after and before the reform, respectively.

5.3 Data

The data come from the Swedish Longitudinal Individual
Panel (LINDA). This dataset has been used before by KPS
to estimate a (parametric) dynamic structural model of retire-
ment. Following KPS, I apply the following filters for the se-
lection of the working sample: (a) sample period 1983–1997;
(b) men; (c) blue-collar workers; (d) born between 1927 and

1940; (e) exclude individuals who exit from the labor force
through the disability insurance program; and (f) exclude indi-
vidual year observations in which the individual is younger than
50 years old. The working sample contains 3,129 individuals
and 34,593 observations during the sample period 1983–1997.

The dataset also reports annual labor earnings for the year in
which an individual retires. However, the average value of an-
nual labor earnings for the year of retirement is clearly lower
than before retirement. This is because the individual works
only part of the retirement year. Therefore, I exclude observa-
tions on labor earnings for the year of retirement, both for the
summary statistics in Table 1 and for the estimation of the earn-
ings equation. That is, I consider that the individual is retired
during the whole year in which he decides to retire. For the
same reason, for the estimation of the transition rule of pension
points, I exclude observations of the year of retirement.

Table 1 presents summary statistics for retirement age, labor
earnings, and pension wealth as measured by entitled benefits
upon retirement at age 65. The dispersion of labor earnings in
this sample is quite small: at age 59, more than 80% of individ-
uals have annual earnings between $18,600 and $31,000. As
expected, the distribution of public pension wealth is even more
concentrated: at age 59, more than 80% of individuals have en-
titled benefits (upon retirement at age 65) between $14,000 and
$20,400. Interestingly, from age 59 to age 65, median labor
earnings and median pension wealth decline with age. Given
that it is very unlikely that, for a given individual, pension
wealth declines with age, this effect is most likely due to se-
lection; that is, individuals with higher earnings and pension
wealth are more likely to retire between ages 60 and 65. This
trend reverses after age 65, and median earnings and median
pension wealth increase between ages 65 and 68. Therefore,
it seems that the selection effect is weaker after age 65. The
quantiles of the distribution of retirement age are based on a
Kaplan–Meier estimator that takes into account the existence
of right-censored spells. Figure 1 presents the Kaplan–Meier
estimator of the CDF of retirement age. The median retirement
age is between 64 and 65.

The dataset includes information on aggregate mortality rates
for men in these cohorts. I have used this information to con-
struct an age variant discount factor that accounts for mortality

Table 1. Summary statistics: 3,129 male blue-collar workers; cohorts 1927–1940; years 1983–1997

Variable Median Quantile 10% Quantile 90% No. of observation

Annual labor earnings(1):
Age 59 24.0 18.6 31.0 2323
Age 62 23.3 18.3 30.4 1286
Age 65 22.8 16.7 30.7 176
Age 68 24.0 19.5 35.8 23

Entitled benefits upon retirement at 65(1):
Age 59 16.8 14.0 20.4 2342
Age 62 16.7 14.0 20.5 1332
Age 65 16.4 13.7 20.2 557
Age 68 17.2 14.4 21.4 30

Retirement age(2) 64.5 62.0 69.0 3,129

(1)In thousands of U.S. dollars of 2003. Exchange rate: U.S.$ 1  8.1 Swedish kronas.
(2)Based on Kaplan–Meier estimator of the CDF of retirement age.
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Figure 1. Kaplan–Meier estimator of CDF of retirement age. Sam-
ple of 3,129 male blue-collar workers.

risk. The discount factor at age t is βt ≡ β̄ λt, where λt is the
mortality rate at age t and β̄ is equal to 0.95.

5.4 Wage Function, Choice Probabilities,
and Transitions

(a) Wage equation and stochastic process of the wage shock.
From Section 5.1, we have that

ln(Wit) = hW(xit) + ρ(ln Wi,t−1 − hW(xi,t−1)) + ξi,t+1

if ait = ai,t−1 = 1. (39)

I consider a polynomial series approximation to the functions
hW and ρ. I use Akaike’s information criterion (AIC) to choose
the orders of these polynomials. Given the polynomial series
approximation, Equation (39) is a regression model with non-
linear restrictions between the parameters. I estimate this model
using nonlinear least squares. Table 2 presents the estimated
functions, and Figure 2 shows the age profile of annual labor
earnings for the case of married men with median value of
ω. The functions hW(·) and ρ(·) are quadratic. Labor earnings

Figure 2. Estimated labor earnings function. Married men with
ω = 0.

reach their life-cycle maximum at age 62, both for married and
for unmarried men. There is very strong persistence in the evo-
lution of the shock ω. The significance of the regressor “square
ωt−1” in the estimated function ρ(·) illustrates that this persis-
tence is larger at high values of ω. Given the residuals of this
regression, {ξ̂it}, I estimate the density function of the innova-
tion ξ using a kernel method with Gaussian kernel and cross-
validation for the choice of bandwidth. The estimated density,
not reported here, has strong kurtosis at zero and a thick left
tail. Innovations in labor earnings are typically very close to
zero, but there is a nonnegligible probability of having a very
negative shock (e.g., a period of unemployment).

(b) Transition rule of pension points. Table 3 presents the
estimation of different specifications of the transition function
hpp(t,ppt). Following AIC, I select the specification in col-
umn (3).

(c) Transition of marital status. Not surprisingly (especially
for males, given that their mortality rate is higher than for fe-
males), there is very high persistence in marital status at these
ages. The estimated probabilities Pr(mt+1 = 1|mt = 1, t) and
Pr(mt+1 = 0|mt = 0, t) are very close to one for every age t.

Table 2. Wage equation and stochastic process of wage shock

Wage equation Process of wage shock
lm(W) = hW,0 + hW,1married + hW,2age + hW,3age2 ωt = ρ1 ωt−1 + ρ2 ω2

t−1 + ξt

Estimate Estimate
Parameter (Std. error) Parameter (Std. error)

hW,0 (constant) 2.5709 ρ1 0.9144
(0.2064) (0.0038)

hW,1 (married) 0.0816 ρ2 0.0952
(0.0020) (0.0023)

hW,2 (age) 0.0170 Std. dev. ξt 0.163
(0.0072)

hW,3 (age2) −0.00014
(0.00006)

R-square 0.050 R-square 0.701
No. of observations 30,630 No. of observations 30,630
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Table 3. Transition rule of pension points

(1) (2) (3) (4) (5)
Estimate Estimate Estimate Estimate Estimate

Parameter (Std. error) (Std. error) (Std. error) (Std. error) (Std. error)

constant 0.0326 0.0535 0.0782 0.0532 0.0279
(0.0005) (0.0011) (0.0012) (0.0148) (0.0160)

ln(pp) 0.9837 0.9840 0.9437 0.9438 0.9634
(0.0003) (0.0003) (0.0009) (0.0009) (0.0049)

age −0.0004 −0.0004 0.0005 0.0009
(0.00002) (0.00002) (0.0005) (0.0005)

ln(pp)2 0.0161 0.0161 0.0161
(0.0004) (0.0004) (0.0004)

age2 −7.7 × 10−6 −6.64 × 10−6

(4.5 × 10−6) (4.53 × 10−6)
ln(pp) × age −0.0003

(0.0001)

Std. dev. η 0.012 0.012 0.012 0.012 0.012
R-square 0.9969 0.9970 0.9971 0.9971 0.9971
No. of observations 30,630 30,630 30,630 30,630 30,630

(d) Choice probability function P. For the choice probabil-
ity function, I have considered a logit model with a polyno-
mial specification in terms of the state variables (x,ω). Note
that this specification of P(·) does not imply that we impose
a logistic probability distribution for the unobservable η̃t. The
polynomial specification of the function P with respect to ω im-
plies a flexible specification of the CDF Fη̃ . In fact, as shown
below, our estimate of P generates an estimate of the CDF of
η̃t that is significantly different from the CDF of a logistic ran-
dom variable. Table 4 presents the estimated logit model, and
Figure 3 shows the age profile of the probability of working.
The selected specification is the one that minimizes AIC within
the class of polynomial functions of (t,m, ln(pp),ω). It is im-
portant to note that including age dummies does improve very
significantly the goodness of fit and even AIC. However, a spec-
ification with age dummies generates a very implausible predic-
tion, that is, that the probability of working declines very sig-
nificantly at age 65 and then increases very abruptly at age 66.
Given the age profile of pension benefits and of the estimated

Table 4. Reduced form probability of working logit model

Variable Estimate (SE)

constant 97.46 (21.57)

married 0.1038 (0.0888)

ω 12.42 (3.441)

ω2 0.3250 (0.1455)

ln(pp) −10.76 (5.352)

ln(pp)2 −0.3325 (0.2472)

age −2.119 (0.6496)

age2 0.0096 (0.0051)

age × ln(pp) 0.1768 (0.0856)

age × ω −0.1666 (0.0509)

ln(pp) × ω −0.5352 (0.3526)

log-like −2359.75
Akaike AIC 4741.49
No. of observations 31,464

labor earnings function, the only way in which the model can
generate this nonmonotonicity is through the utility of leisure.
The difference between the utility of leisure if working minus
the utility of leisure if retired should decline (abruptly) at age
65 and then increase very significantly at age 66. The increase
at age 66 is very unrealistic. A more plausible interpretation of
this evidence is that the nonmonotonicity is due to persistent un-
observed heterogeneity in health status that we do not account
for in this model. Individuals who continue working after age
65 may have significantly better health status than those who
retire at age 65. Since we do not observe health status, and the
model does not allow for persistent unobserved heterogeneity in
the utility of leisure, it seems as if the utility of leisure if work-
ing increases at age 66. To avoid this spurious interpretation,
I omit age dummies in the estimation of the choice probability
function.

Figure 3. Estimated probability of working P(t,m,pp,ω). At me-
dian values of (m,pp) and at quantiles 1%, 50%, and 99% of ω.
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5.5 Distribution of the Unobserved Utility of Leisure

I briefly discuss here the estimates of the distribution of un-
observables Fη̃ and of the value function ṼM

t associated with
the utility of leisure. Figure 4 presents the estimated CDF of
the unobservable η̃t at ages 58, 60, and 62 for a married man
with median pension points. For any age, the distribution is very
asymmetrical around the median η̃ = 0. For values lower than
zero, the distribution is concentrated around zero. However, for
values greater than zero, the distribution has a very thick tail.
Furthermore, when the individual gets older, the right tail of
the distribution becomes thicker. This effect is even stronger
for ages older than 64. The reason is that in order to explain
why some individuals are still working at ages older than 64,
we need a nonnegligible probability that the unobservable η̃

(the unobserved utility of leisure when working minus the un-
observed utility of leisure when not working) takes very high
values; that is, we need a nonnegligible probability of a very
high preference for working.

Figure 5 presents estimates of the value ṼM
t (x) at ages be-

tween 56 and 68 and for the median values of the state variables
(m,pp). In the context of this retirement model, this value func-
tion represents the value of leisure if retirement is delayed one
more year (relative to the value of leisure if retired today). This
value remains quite constant until age 65, and then it declines
very rapidly after that age.

5.6 Policy Effects on the Distribution of Retirement Age

Let rai and ra∗
i be individual i’s retirement age under the fac-

tual and counterfactual social security policies, respectively. Let
(mi51,ppi51,ωi51) be the values of marital status, public pen-
sion points, and wage shock at age 51 for individual i in the
sample. Conditional on this initial value of the state variables,
the retirement ages ra∗

i and rai are random variables. The ex-
pected effect of the policy change on individual i’s retirement
age is TEi ≡ E(ra∗

i − rai|mi51,ppi51,ωi51). The (unconditional)
average treatment effect is ATE ≡ E(ra∗

i − rai). To estimate the
ATE, first I estimate, for each individual i in the sample, the

Figure 4. CDF of the unobservable η̃.

Figure 5. Value Ṽt(m,pp) at median values of (m,pp).

probability distribution of the random variables ra∗
i and rai con-

ditional on the individual’s initial condition (mi51,ppi51,ωi51).
Then, I use these distributions to obtain an estimate of TEi, and
finally I estimate the (unconditional) average treatment effect
using the sample mean N−1 ∑N

i=1 T̂Ei.
I describe here some details of the estimation of the distri-

butions of the retirement ages ra∗
i and rai conditional on the

individual’s state at age 51, (mi51,ppi51,ωi51). Retirement age
depends on the realization of the state variables (mit,ppit,ωit)

between ages 51 and 75. For each individual in the sample,
I use the estimated transition probabilities of the state vari-
ables and the initial condition (mi51,ppi51,ωi51) to simulate 200
complete histories of the state variables. Given a simulated his-
tory, say {m̃it, p̃pit, ω̃it : t = 51,52, . . . ,75}, and using the back-
ward induction procedure described in Section 4, I obtain es-
timates of the factual and counterfactual choice probabilities
Pt(m̃it, p̃pit, ω̃it) and P∗

t (m̃it, p̃pit, ω̃it) at every age t ∈ [51,75].
These hazard rates provide the distribution of retirement age of
individual i conditional on the simulated history {m̃it, p̃pit, ω̃it :
t = 51,52, . . . ,75}:

P̃r(rai = t) =
[

t−1∏
j=51

Pt(m̃ij, p̃pij, ω̃ij)

]
× (1 − Pt(m̃it, p̃pit, ω̃it)),

(40)

P̃r(ra∗
i = t) =

[
t−1∏
j=51

P∗
t (m̃ij, p̃pij, ω̃ij)

]

× (1 − P∗
t (m̃it, p̃pit, ω̃it)).

To obtain the distribution of retirement age rai (and ra∗
i ) condi-

tional only on the state at age 51 (and not on the whole history),
I average the distributions P̃r(rai = t) over the 200 simulated
histories. Though 200 seems a small number of simulations,
notice that the transitions of marital status and pension points
are almost deterministic, and ω is also a very persistent state
variable. In fact, most of the simulated histories of an individ-
ual are very similar to each other such that the distribution of
retirement ages using 200 simulations is practically equal to the
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Figure 6. Factual and counterfactual distribution of retirement age.

one using only 50 simulations. Based on these distributions, we
can obtain an estimate of the expected retirement age for indi-
vidual i under the factual and counterfactual policies, that is,∑75

t=51 Pr(rai = t) ∗ t and
∑75

t=51 Pr(ra∗
i = t) ∗ t, respectively.

Therefore, an estimate of TEi is
∑75

t=51[Pr(ra∗
i = t) − Pr(rai =

t)] ∗ t.
Figure 6 presents the estimated PDFs of retirement age un-

der the factual and counterfactual policies for an individual with
median values of the initial conditions (mi51,ppi51,ωi51). The
figure shows that the effect of the policy change on the retire-
ment behavior of the median individual in this population is
very minor. Figure 7 presents the empirical distribution (PDF)
of the individual-specific treatment effects TEi for the 3,129 in-
dividuals in the sample. As expected, every individual in the
sample increases his (expected) retirement age. However, this
increase is very small for most individuals, with almost all
the values between 0.1 and 0.4 years. Table 5 reports differ-
ent characteristics of the distribution of the treatment effect as

Figure 7. Empirical distribution of individual-specific expected
treatment effects: TEi ≡ E(ra∗

i − rai|mi51,ppi51,ωi51).

well as bootstrap standard errors. I also report the estimated ef-
fect in KPS (table III, column S1a). KPS find that the effect of
the policy change on the average retirement age is 0.78 years
(65.58 − 64.80). They do not report standard errors. Instead,
our estimate of the ATE is 0.22 with a standard error of 0.0743.
The test of specification that I described in Section 4 clearly re-
jects the parametric specification for the evaluation of this pol-
icy change. Given that the most important difference between
the KPS parametric model and our model is in the distribution
of the unobservable η̃, it seems that the age invariant logistic
specification in KPS has a significant incidence in the ATE and
that we can reject that feature of their model. To verify this
supposition, I have estimated a semiparametric version of the
model using the same approach as before but imposing a logis-
tic distribution for η̃. The last row of Table 5 reports the ATE for
this semiparametric model. It shows that the estimated effect is
very similar to the one reported by KPS.

This empirical application, though useful to illustrate the im-
plementation of the method, has some limitations. First, a more
complete analysis should include estimates of the model under
different values of the relative risk aversion parameter within
the class of a constant relative risk aversion (CRRA) utility
function. That analysis would include risk neutrality (i.e., rel-
ative risk aversion equal to zero) and log-utility function (i.e.,
relative risk aversion equal to one) as extreme cases. I have pre-
sented here results for one of these extreme cases. Second, as
discussed in Section 5.4(d), the lack of information on health
status can introduce significant biases in our estimates of choice
probabilities and policy effects. Third, the model ignores la-
bor market institutions such as mandatory retirement at age 65,
which may be generating important incentives to retire at age
65 in the population under study. I would expect that, in reality,
companies’ mandatory retirement rules would change together
with the social security policy; that is, mandatory retirement
might move from age 65 to age 68. In this sense, the estimated
ATE measures the ceteris paribus of the change in social secu-
rity pension benefits keeping other (related) social norms and
labor market institutions constant.

6. SUMMARY AND CONCLUSIONS

This article presents a nonparametric approach to evaluating
the behavioral and welfare effects of counterfactual policies us-
ing a dynamic structural model. The nonparametric structural
model retains all of the economic assumptions of a structural
model (e.g., exogeneity/endogeneity assumptions, equilibrium
concept, rational expectations, transition rules, independence
assumptions, agents’ information), but it is more robust than
a parametric model because it relaxes parametric assumptions.
There are situations in which a parametric model can be pre-
ferred, either because of its parsimony or to obtain more pre-
cise estimates. In these cases, our nonparametric approach can
be used to test for the validity of a parametric specification and
to search for a valid parametric model.

APPENDIX

Proof of Proposition 1

Let P0(X,W) be the choice probability function in the pop-
ulation, that is, P0(X,W) ≡ Pr(a = 1|X,W). I t is clear that P0
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Table 5. Distribution of treatment effects on retirement age

Std. error Median Test(2)

Model ATE of ATE(1) TE (p-value)

Nonparametric 0.237 0.0743 0.234
Parametric (KPS)(3) 0.78 5.864

(0.0000)

Semiparametric (logit η̃) 0.612 0.0621 0.607 4.050
(0.0000)

NOTE: (1) Bootstrap standard errors based on 500 bootstrap samples with the same number of individuals as the original sample. (2) Test statistic = |ATEparametric −
ATEnonparametric|/SE(ATEparametric −ATEnonparametric). (3) KPS do not report a standard error for the estimated average effect. For the test, I use the same value of SE(ATEparametric −
ATEnonparametric)as I obtained for the semiparametric model.

is identified on its support SX × R. By definition, P0(X,W) =
F0

η|X(W +ϕ0(X)). By the conditions of Proposition 1, the func-

tion P0(X,W) is strictly increasing in W and there is a unique
value W that solves the equation P0(X,W) = 0.5. Let w0(X) be
the value of W that solves the equation P0(X,W) = 0.5. By the
zero conditional median of η, we have that w0(X)+ϕ0(X) = 0.
Therefore, for any X ∈ SX , we have that ϕ0(X) = −w0(X), and
ϕ0(X) is identified. Then, for any real u:

F0
η|X(u) = Pr(η ≤ u|X,u)

= Pr
(
η ≤ W + ϕ0(X)|X,u,W = u − ϕ0(X)

)
= Pr

(
a = 1|X,u,W = u − ϕ0(X)

) = P0(X,u − ϕ0(X)).

Therefore, F0
η|X is identified on R.

Proof of Proposition 2

By definition, the optimal choice probability P is equal to
Fη̃(u(1)− u(0)). Since Fη̃ is continuous and strictly increasing,
we have that u(1) − u(0) = F−1

η̃
(P), where F−1

η̃
is the inverse

function of Fη̃. Then, by the definition of social surplus func-
tion, we have that

G =
∫

max{0,u(1) − u(0) − η̃}dFη̃(η̃)

=
∫

max{0,F−1
η̃

(P) − η̃}dFη̃(η̃).

Proof of Proposition 3

For notational simplicity I omit ω as an argument in the dif-
ferent functions. By definition, the choice-specific value func-
tion can be written as,

vt(a,x) = Yt(a,x) + Mt(a,x) + β

∫
V̄t+1(xt+1)dF(xt+1|a,x),

where V̄t is the integrated value function as defined in Equa-
tion (10). Given the definitions of the integrated value func-
tion and of the surplus function G(P,F), in Proposition 2, we
have that: V̄t(xt) = vt(0,xt) + G(Pt(xt),Fη̃,t). Solving this ex-
pression into the previous formula of the choice-specific value
function, we get

vt(a,x) = Yt(a,x) + Mt(a,x) + β

∫ [
vt+1(0,xt+1)

+ G(Pt+1(xt+1),Fη̃,t+1)
]

dF(xt+1|a,x,ω).

Therefore, at the last period T , vT(a,x) = VY
T (a,x)+ VM

T (a,x),
with VY

T (a,x) = YT(a,x), VM
T (a,x) = MT(a,x), and VOPT

T (a,

x) = 0. Going backward, at period T − 1, we have that

vT−1(a,x) = YT−1(a,x) + MT−1(a,x)

+ β

∫ [
VY

T (0,xT) + VM
T (0,xT)

+ G(PT(xT),Fη̃T)
]

dF(xT |a,x)

= VY
T−1(a,x) + VY

T−1(a,x) + VOPT
T−1 (a,x),

where VY
T−1(a,x) = YT(a,x) + β

∫
VY

T (0,xT)dF(xT |a,x,

ω), VM
T−1(a,x) = MT(a,x) + β

∫
VM

T (0,xT)dF(xT |a,x,ω),
and where VOPT

T−1 (a,x) = β
∫ [VOPT

T (0,xT) + G(PT(xT),

Fη̃T)]dF(xT |a,x,ω). Applying backward induction, we obtain
that for any t, vt(a,x) = VY

t (a,x) + VM
t (a,x) + VOPT

t (a,x).

Proof of Proposition 4

The proof proceeds in three steps, (a), (b), and (c).

(a) The value function ṼY
t only depends on the sequence

of outcome functions and transition probabilities {Yt+j(·),
Fx,t+j(·),Fω,t+j(·) : j > 0}. Therefore, ṼY

t is identified at every
period t.

(b) At any period t, define the variable Wt ≡ ṼY
t (xt,ωt) +

ṼOPT
t (xt,ωt). Given this definition, the discrete choice model at

period t can be represented as at = I{η̃t ≤ Wt + ṼM
t (xt)}. For the

moment, suppose that ṼOPT
t (xt,ωt) (and therefore Wt) is ob-

servable to the econometrician. Now, we show that, under As-
sumptions 1–6, this discrete choice model satisfies conditions
(i)–(iv) of Proposition 1: (i) η̃t and Wt are independent condi-
tional on xt [by Assumption 1]; (ii) for any xt ∈ SX , the CDF
Fη̃t is strictly increasing in η̃t, has support R, and Fη̃t(0) = 0.5
[by Assumption 3]; (iii) the distribution of Wt conditional on xt

has a Lebesgue density that is everywhere positive on R [by As-
sumptions 3(C), 3(D), and 4]; and (iv) for any xt ∈ SX , there is a
value Wt ∈ R such that Wt + ṼM

t (xt) = 0 [by Assumptions 3(C),
3(D), and 4]. Therefore, if Wt is observable, then by Proposi-
tion 1 the function ṼM

t (·) is identified on SX , and the function
Fη̃t is identified on R.

(c) It remains to prove that, at any period t, ṼOPT
t (xt,ωt) is

identified (and therefore Wt is observable). We apply backward
induction. At the last period, it is clear that ṼOPT

T (xT ,ωT) = 0.
Therefore, WT is observable and, applying point (b), the func-
tions ṼM

T and Fη̃T are identified. The identification of PT(·) and
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Fη̃T(·) implies the identification of the value function ṼOPT
T−1 . To

see this, note that ṼOPT
T−1 (x,ω) = VOPT

T−1 (1,x,ω)−VOPT
T−1 (0,x,ω),

and

ṼOPT
T−1 (x,ω) = β

∫
G(PT(x′,ω′),Fη̃T)dF̃T−1(x′,ω′|x,ω)

= β

∫ ∫
max

{
F−1

η̃T (PT(x′,ω′)) − u;

0
}

dFη̃T(u)dF̃T−1(x′,ω′|x,ω),

where F̃T−1(x′,ω′|x,ω) ≡ [Fx,T−1(x′|1,x) − Fx,T−1(x′|0,

x)]Fω,T−1(ω
′|ω). Then, WT−1 = ṼY

T−1(xT−1,ωT−1) +
ṼOPT

T−1 (xT−1,ωT−1) is observable. Since WT−1 is observable,

point (b) above implies that the functions ṼM
T−1 and Fη̃,T−1 are

identified. And, in turn, this implies that the function ṼOPT
T−2 is

identified. Applying this argument backward we can show the
identification of the function ṼOPT

t at any period t.

Proof of Proposition 5

The proof proceeds in three steps, (a), (b), and (c).

(a) By Proposition 4, the functions Pt, ṼY
t , ṼM

t , ṼOPT
t , and

Fη̃t are identified.
(b) By Assumptions 3 and 4, for any value of x ∈ SX , the

function ṼY
t (x,ω) + ṼOPT

t (x,ω) is strictly monotonically in-
creasing in ω and its range of variation R. Therefore, for any
(x,ω) ∈ SX × R, the threshold value ω∗

t (x,ω) exists and is
unique, that is, ω∗

t (x,ω) is a well-defined function from SX ×R

into R. Using the definition of the function ω∗
t (x,ω), we have

that P∗
t (x,ω) = Pt(x,ω∗

t (x,ω)).
(c) At period T , there is no future and therefore the deci-

sion problem is static. ω∗
T(x,ω) is implicitly defined as the

value ω∗
T ∈ R that solves the equation ỸT(x,ω∗

T) = Ỹ∗
T(x,ω).

It is clear that the function ω∗
T is identified over SX × R.

Therefore, P∗
T(x,ω) = PT(x,ω∗

T(x,ω)) is also identified over
SX × R. Given P∗

T and Fη̃|x,T , the function ṼOPT
T−1 (x,ω; {P∗

T}) is
known. Now, consider the counterfactual choice probability at
any period t < T given that the function ṼOPT

t (x,ω; {P∗
t+j : j >

0}) is known. The function ω∗
t (x,ω), that is implicitly de-

fined as the solution in ω∗
t to the equation ṼY

t (x,ω∗
t ) +

ṼOPT
t (x,ω∗

t ; {Pt+j : j > 0}) = ṼY∗
t (x,ω)+ṼOPT

t (x,ω; {P∗
t+j : j >

0}), is identified over SX × R. This implies that P∗
t (x,ω) =

Pt(x,ω∗
t (x,ω)) is identified.

Proof of Proposition 6

By the definition of the value functions V̄∗
t and V̄t, we have

that

V̄∗
t (x,ω) − V̄t(x,ω) = [v∗

t (0,x,ω) − vt(0,x,ω)]
+ G(P∗

t (x,ω),Fη̃t) − G(Pt(x,ω),Fη̃t).

We know from Proposition 3 that v(0,x,ω) = VY
t (0,x,ω) +

VM
t (0,x,ω) + VOPT

t (0,x,ω) and v∗(0,x,ω) = VY∗
t (0,x,ω) +

VM
t (0,x,ω) + VOPT∗

t (0,x,ω). Solving these expressions into
the equation for V̄∗

t (x,ω) − V̄t(x,ω), we can get Equation (22).

Propositions 4 and 5 establish the identification of all the func-
tions in the right-hand side of this equation.
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