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Introduction / Motivation

Introduction

In any Dynamic Panel Data (DPD) model (either reduced form or
structural), a key econometric issue is distinguishing between "true
dynamics" (or "true state dependence") and "spurious dynamics"
due to serially correlated unobservables.

With short panels, the (reduced form) literature has concentrated on
time-invariant unobserved heterogeneity.

E (xit ηi ) 6= 0

There are two main approaches to deal with this problem:

(1) the Fixed effects approach;
(2) the Correlated Random Effects approach.
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Introduction / Motivation

Fixed effects (FE) models / methods

This approach does not impose any restriction on the joint
distribution of (xi1, xi2, ..., xiT ) and ηi .

CDF (ηi | xi1, xi2, ..., xiT ) is completely unrestricted. In this sense,
the FE model is nonparametric with respect the distribution CDF (ηi
| xi ).

Typically, fixed effects methods are based on some transformation of
the model that eliminates the individual effects, or that make them
redundant in a conditional likelihood function.
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Introduction / Motivation

Correlated Random Effects (CRE) models / methods

The CRE model imposes some restrictions on the distribution CDF (αi
| xi1, xi2, ..., xiT ).

The stronger restriction is that ηi is independent of (xi1, xi2, ..., xiT )
and iid(0, σ2η). Some textbooks define RE in this restrictive way.

However, there are more general RE models. For instance,
Chamberlain’s CRE model:

ηi = λ0 + x′i1 λ1 + ...+ x′iT λT + ei

where ei is independent of (xi1, xi2, ..., xiT ).
Based on this assumption, we estimate the parameters β and λ′s. It
is a parametric approach because it depends on a parametric
assumption on the distribution of {xi1, xi2, ..., xiT } and ηi .
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Introduction / Motivation

Advantages and limitations of FE and CRE models

(a) FE is more robust because it does not depend on additional
assumptions. If the assumption of the CRE is not correct the CRE
estimator may be inconsistent.

(b) The FE transformation may eliminate sample variability of the
regressors that is exogenous and useful to estimate the model.
Therefore, the FE estimator may be less precise or effi cient than the
CRE estimator (provided the CRE assumption is consistent).

(c) For some models (e.g., some nonlinear dynamic models) there is
not a root-N consistent FE method, e.g., Chamberlain (ECMA, 2010
on dynamic probit models).
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Introduction / Motivation

FE and CRE in Dynamic DC Structural Models

All the literature on DDC structural models with unobserved
heterogeneity has focused on CRE models.

The "common wisdom" is that the FE approach does not work in
DDC structural models.

In these models, unobserved heterogeneity ηi appears nonlinearly in
the value function and interacting with observable state variable.

It seems impossible to "transform" the model or obtain suffi cient
statistics that control for the unobserved heterogeneity ηi .

Here I will present results from a recent working paper with my
colleagues Jiaying Gu and Yao Luo where we propose FE estimators
for some DDC structural models.
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Outline

Outline

[1] Review of FE estimators in Non-structural DDC
Panel Data Models

[2] DDC Structural Models: Assumptions

[3] Identification Results

[4] Estimation
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Review of FE estimators in Non-structural DDC

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

1. Review of FE estimators
in Non-structural DDC

– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Review of FE estimators in Non-structural DDC

Review of FE estimators in Non-structural DDC

Consider the PD Binary Choice Model:

Yit = 1 { Xit β+ ηi + εit ≤ 0 }

N is large and T small.

Xit and ηi can be correlated and we do not impose any restriction on
the joint distribution of these variables (FE model).

Estimators that ignore the correlation between Xit and ηi are
inconsistent.

The MLE that controls for ηi by including individual-dummies and
jointly estimates β and η = (η1, η2, ..., ηN ) [Dummy variables - MLE]
is inconsistent.
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Review of FE estimators in Non-structural DDC

Review of FE estimators in Non-structural DDC

Manski´s Maximum Score estimator of β is consistent when Xit
contains only strictly exogenous variables, but it is inconsistent when
Xit includes pre-determined endogenous variables (i.e., in dynamic
models).

Chamberlain´s Conditional MLE: For the Logit model with
strictly exogenous Xit , we have that there is a suffi cient statistic for
the individual effect ηi .

Let Ỹi ≡ (Yi1, ...,YiT ), X̃i ≡ (Xi1, ...,XiT ), and Si ≡ ∑T
t=1 Yit . Then:

Pr
(
Ỹi | X̃i ,Si , ηi , β

)
= Pr

(
Ỹi | X̃i , Si , β

)
This result implies that we can estimate consistently β by using an

MLE based on the probabilities Pr
(
Ỹi | X̃i ,Si , β

)
.
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Review of FE estimators in Non-structural DDC

Chamberlain CMLE in DDC models

Unfortunately, when Xit includes pre-determined endogenous
variables (i.e., in dynamic models), Si is no longer a suffi cient
statistic for ηi , and the CMLE described above is inconsistent.

However, Chamberlain (1985) shows that for a simple AR(1) PD
Logit model, it is possible to obtain other suffi cient statistic for ηi
and construct a consistent CMLE.

This result is in the same spirit as the approach we use for structural
model, so I spend some slides here describing it in some detail.
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Review of FE estimators in Non-structural DDC

Chamberlain CMLE in DDC models (2)

Consider the dynamic panel data logit model

Yit = 1 { β Yi ,t−1 + ηi + εit ≤ 0 }

where uit has a logistic distribution.

We need T ≥ 4. Suppose that T = 4 and let Ỹi = {yi1, yi2, yi3, yi4}
be the choice history for individual i .

Conditional on y1 and y4, we can distinguish four sets of choice
histories:

A = {y1, 1, 0, y4}
B = {y1, 0, 1, y4}
C = {y1, 1, 1, y4}
D = {y1, 0, 0, y4}
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Review of FE estimators in Non-structural DDC

Chamberlain CMLE in DDC models (3)

Define the statistic Si = {y1, y4, yi2 + yi3 = 1}.

It is possible to show that:

Pr
(
Ỹi | Si , ηi , β

)
= Pr

(
Ỹi | Si , β

)
i.e., Si is a suffi cient statistic for ηi , and [very importantly]

Pr
(
Ỹi | Si , β

)
still depends on β.

More specifically,

Pr
(
Ỹi = A | Si , β

)
=

exp (β [y1 − y4])
1+ exp (β [y1 − y4])

= Λ(β [y1 − y4])
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Review of FE estimators in Non-structural DDC

Chamberlain CMLE in DDC models (4)

The CMLE is the value of β that maximizes the Conditional
log-likelihood function:

lC (β) = ∑i 1{yi2 = 1, yi3 = 0} lnΛ(β [y1i − y4i ])

+ 1{yi2 = 0, yi3 = 1} lnΛ(−β [y1i − y4i ])

where Λ(.) is the logistic function.

This likelihood is globally concave in β.
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Review of FE estimators in Non-structural DDC

Chamberlain CMLE in DDC models (5)

The approach can be extended to T > 4 and it is still straightforward
to implement.

Let S(Ỹi ) = {yi1 yiT ,∑T−1
t=2 yit}. Then,

Pr
(
Ỹi | ηi , S(Ỹi )

)
=

exp
(

β ∑T−1
t=2 yit yit−1

)
∑d: S (d)=S (Ỹi )

exp
(

β ∑T−1
t=2 dt dt−1

)
where, for d = (d1, d2, ..., dT ) ∈ {0, 1}T , we have that

S(d) =

{
d1, dT ,

T−1
∑
t=2

dt

}
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Review of FE estimators in Non-structural DDC

Honore and Kyriadzidou (ECMA, 2000)

Consider the dynamic panel data logit model

Yit = 1
{

β Yi ,t−1 + X ′it δ+ ηi + εit ≤ 0
}

where εit is i .i .d . and has a logistic distribution, and Xit is a vector of
strictly exogenous regressors with respect to εit .

For T = 4, they show that Si = (yi1, yi4, yi2 + yi3) is a suffi cient
statistic for ηi only if we condition on xi3 = xi4.

Using this approach we can identify β but not β and δ.

They propose a modified version of the CMLE that incorporates
kernel weights that depend on the distance ‖xi3 − xi4‖.
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Dynamic Structural models

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

2. DDC Structural models
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Dynamic Structural models

DDC Structural models: Framework

Decision variable: Yit ∈ Y = {0, 1, ..., J}.

Expected & discounted intertemporal payoff
Et

[
∑T−t
j=0 δji Ui ,t+j (Yi ,t+j )

]
One-period payoff:

Uit (y) = α (y , ηi ,Zit ) + β (y ,Xit ) + εit (y).

Zit and Xit are observable; εit and ηi are unobservable.

Zit = exogenous state var. with Markov process fz(Zi ,t+1|Zit ).

Xit is a vector of endogenous state variables.
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Dynamic Structural models

DDC Structural models: Framework (2)

The unobservable variables {εit (y) : y ∈ Y} are i .i .d . over (i , t, y)
with a extreme value type I distribution.

Variable(s) ηi represents unobserved heterogeneity from the point of
view of the researcher.

This unobserved heterogeneity can be related with the observable
state variables Zit and Xit in an unrestricted way, and has a
distribution that is nonparametrically specified, i.e., fixed effects
model.
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Dynamic Structural models

DDC Structural models: Framework (3)

α (., ., .) and β (., .) are functions that are nonparametrically specified
and bounded.

For choice alternative y = 0, the functions α (0, ηi ,Zit ) and β (0,Xit )
are normalized to zero.
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Dynamic Structural models

Endogenous State Variables

Two types of endogenous state variables that correspond to two
different types of state dependence: Xit = (Yi ,t−1,Dit ).

(a) dependence on the lagged decision variable, Yi ,t−1 ∈ Y .

(b) duration dependence, Dit ∈ {0, 1, ..., d∗}, where Dit is the
number of periods since the last change in choice.

Duration variable is right-censored at the positive integer value
d∗ > 0.
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Dynamic Structural models

Transition of Endogenous State Variables

We use function Xi ,t+1 = x(y ,Xit ) to represent in a compact form
the transition rule of the two endogenous state variables when the
choice at period t is Yit = y .

Xi ,t+1 = x(y ,Xit ) =
[

y
1 {y = Yi ,t−1} min {Dit + 1, d∗}

]
A key feature of this transition rule is that when the choice is
y 6= Yi ,t−1, the process of the endogenous state variables losses its
"memory" and is re-initialized, i.e.,

x(y 6= Yi ,t−1,Xit ) = (y , 0)

that does not depend on Xit .
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Dynamic Structural models

Structural State Dependence

The term β (y ,Xit ) in the payoff function captures the dynamics of
the model, i.e., structural state dependence.

We distinguish two additive components in this function:

β (y ,Xit ) = 1{y = Yi ,t−1} βd (y ,Dit )+ 1{y 6= Yi ,t−1} βy (y ,Yi ,t−1)

βd (y ,Dit ) captures duration dependence, e.g., the effect of
experience in occupation.

βy (y ,Yi ,t−1) represents switching costs, e.g., the cost of switching
from occupation Yi ,t−1 to occupation y .

We can set βy (y , y) = 0 and βd (y , 0) = 0 for any y .
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Dynamic Structural models

Examples

(1) Market entry-exit models. Binary choice. Parameter βy (1, 0)
represents the entry cost. βd (1, d) represents the effect of market
experience on the firm’s profit. The entry-exit model can be extended
to J markets.

(2) Machine replacement models. Replacing a machine or not. The
only endogenous state variable is the number of periods since the last
replacement, Dit .

(3) Occupational choice models. A worker chooses between J
occupations. There are costs of switching occupations. There is also
learning that increases productivity in the current occupation.

(4) Dynamic demand of differentiated products.
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Dynamic Structural models

Optimal Decision Rule

Agent i chooses Yit to maximize its expected and discounted
intertemporal payoff. The optimal choice at period t is:

Yit = argmax
y∈Y


α (y , ηi ,Zit ) + β (y ,Xit ) + εit (y)

+δi EZi ,t+1 |Zit [Vi ,t+1 (x(y ,Xit ),Zi ,t+1)]


The CCP function has the following form:

Pit (y |Xit ,Zit ) =

exp
{

α (y , ηi ,Zit ) + β (y ,Xit )
+δi EZi ,t+1 |Zit [Vi ,t+1 (x(y ,Xit ),Zi ,t+1)]

}
∑
j∈Y

exp
{

α (j , ηi ,Zit ) + β (j ,Xit )
+δi EZi ,t+1 |Zit [Vi ,t+1 (x(j ,Xit ),Zi ,t+1)]

}
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Dynamic Structural models

CCP: Stationary model

When the model has infinite horizon (T = ∞), and payoff and
transition prob functions are time homogeneous, Blackwell’s Theorem
establishes that optimal decision rules and CCP functions are
time-invariant.

The CCP function of the stationary model is:

Pi (y |Xit ,Zit ) =
exp { αi (y ,Zit ) + β (y ,Xit ) + vi (y ,Xit ,Zit ) }
∑
j∈Y

exp { αi (j ,Zit ) + β (j ,Xit ) + vi (j ,Xit ,Zit ) }

For the sake of notational simplicity, we use αi (y ,Zit ) to represent
α (y , ηi ,Zit ) and vi (y ,Xit ,Zit ) to represent

vi (y ,Xit ,Zit ) ≡ δi


EZi ,t+1 |Zit [Vi (x(y ,Xit ),Zi ,t+1)]

−EZi ,t+1 |Zit [Vi (x(0,Xit ),Zi ,t+1)]
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Identification results

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

3. Identification results
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Identification results

Data

The researcher observes panel data of individuals over several periods
of time:

Data = { yit , xit , zit : i = 1, 2, ...,N ; t = 1, 2, ...,T}

N is large and T is small.

Given these data and the restrictions from the model, the researcher
is interested in the estimation of the structural parameters that
capture "true dynamics" or "true state dependence", i.e., βd (y ,Dit )
and βy (y ,Yi ,t−1).

We denote these structural parameters using the vector β.
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Identification results

Identification

Let ỹi = {yi1, yi2, ..., yiT } and z̃i = {zi1, zi2, ..., ziT }. Define
θi ≡ (ηi , δi ). The model implies that:

P (ỹi | xi1, z̃i , θi ) =
T

∏
t=1

exp { αi (yit , zit ) + β (yit , xit ) + vi (yit , xit , zit ) }
∑
j∈Y

exp { αi (j , zit ) + β (j , xit ) + vi (j , xit , zit ) }

We look for an statistic Si that is suffi cient θi but does not
completely remove the dependence with respect to β, such that:

P (ỹi | xi1, z̃i , θi , Si , β) = P (ỹi | xi1, z̃i , Si , β)
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Identification results

Identification Results

Propositions 1 and 2 present our main identification result for
single-agent models.

Proposition 1 deals with the identification of switching costs
parameters βy (y , y0).

Proposition 2 deals with the identification of duration dependence
parameters βd (y , d).

Before presenting these propositions, I start presenting identification
results for the simpler versions of the model.
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Identification results

Identification of Switching Costs

Conditional on yi0 = y0 and yi3 = y3, and given arbitrary values y
and y ∗ with y 6= y ∗, define the choice histories

A = {y0, y , y ∗, y3}

B = {y0, y ∗, y , y3}

Define Sy ,y
∗

i as:

Sy ,y
∗

i = 1


zit = zi for t = 1, 2, 3; yi0 = y0; yi3 = y3;

and ỹi ∈ A∪ B


Then:

P
(
ỹi | xi1, z̃i , θi , S

y ,y ∗

i , β
)
= P

(
ỹi | xi1, z̃i , Sy ,y

∗

i , β
)

and the whole vector β is identified.
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Identification results

Example: Entry-Exit Model

Consider an entry exit model with switching (entry) cost but without
duration dependence.

Pi (yi ,t−1, zit ) =
exp { αi (zit ) + β yi ,t−1 + vi (zit ) }

1+ exp { αi (zit ) + β yi ,t−1 + vi (zit ) }
where remember vi (zit ) ≡ vi (1, zit )− vi (0, zit ).

A key property of this model is that the continuation values
vi (yit , zit ) do not depend on yi ,t−1.

Therefore, the structure the model is very similar to Honore &
Kyriadzidou (2000):

Pi (yi ,t−1, zit ) =
exp { α̃i (zit ) + β yi ,t−1 }

1+ exp { α̃i (zit ) + β yi ,t−1 }
where α̃i (zit ) ≡ αi (zit ) + vi (zit ).
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Identification results

Example: Multinomial case

Consider the multinomial case with switching costs but without
duration dependence.

Pi (y | yi ,t−1, zit ) =
exp { αi (y , zit ) + β(y , yi ,t−1) + vi (y , zit ) }

1+ ∑
j 6=0
exp { αi (j , zit ) + β(j , yi ,t−1) + vi (j , zit ) }

Again, a key property of this model is that the continuation values
vi (yit , zit ) do not depend on yi ,t−1.

Therefore, the structure the model is:

Pi (y | yi ,t−1, zit ) =
exp { α̃i (y , zit ) + β(y , yi ,t−1) }

1+ ∑
j 6=0
exp { α̃i (j , zit ) + β(j , yi ,t−1) }

where α̃i (y , zit ) ≡ αi (y , zit ) + vi (y , zit ).
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Identification results

Identification of Duration Dependence

Suppose that T ≥ d∗ + 2. Consider that the initial condition is
xi1 = (y0, d∗ − 1), and define the following two types of choice
histories:

A =
{
y0, yA1 = 0, y

A
t = y for t = 2, ..., d

∗ + 2
}

B =
{
y0, yB1 = y , y

B
t = y for t = 2, ..., d

∗ + 2
}

Define Sdi as:

Sdi = 1


zit = zi for t = 1, .., d∗ + 2; yi0 = y0;

and ỹi ∈ A∪ B


Then:

P
(
ỹi | xi1, z̃i , θi , S

y ,y ∗

i , βd
)
= P

(
ỹi | xi1, z̃i , Sy ,y

∗

i , βd
)

and the βd (y , d∗)− βd (y , d∗ − 1) is identified.
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Identification results

Example: Machine replacement

Consider a binary choice machine replacement model

Pi (dit , zit ) =
exp

{
αi (zit ) + βd (dit ) + vi (dit , zit )

}
1+ exp

{
αi (zit ) + βd (dit ) + vi (dit , zit )

}
where vi (dit , zit ) ≡ vi (0, zit )− vi (min {dit + 1, d∗} , zit ).

A key property of this model is that the continuation value
vi (dit , zit ) is the same for dit = d∗ − 1 and dit = d∗, i.e., the
continuation value does not depend on dit .

Therefore, for dit ∈ {d∗ − 1, d∗}:

Pi (dit , zit ) =
exp

{
α̃i (zit ) + βd (dit )

}
1+ exp

{
α̃i (zit ) + βd (dit )

}
where α̃i (zit ) ≡ αi (zit ) + vi (0, zit )− vi (d∗, zit ).
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Identification results

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

4. Estimation
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Identification results

Fixed Effect Estimation of DDC Structural Models

Based on the previous identification results, we can use
Chamberlain´s or Honore-Kyrazidou´s Conditional MLE to estimate
the structural parameters βy and βd .

The implementation of the CMLE is very similar to the one for
"non-structural" DDC models.
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