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Outline

Dynamic Games: Outline

1. Structure of empirical dynamic games

2. Data and Identification

3. Estimation

4. Dealing with unobserved heterogeneity

5. Network Competition in the Airline Industry: Aguirregabiria & Ho
(2012)
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Examples of Empirical Applications

Examples of Empirical Applications

• Land use regulation (entry cost) and entry-exit and competition in the
hotel industry: Suzuki (IER; 2013);

• Subsudies to entry in small markets for the dentist industry: Dunne et
al. (RAND, 2013);

• Environmental regulation and entry-exit and capacity choice in cement
industry: Ryan (ECMA, 2012);

• Demand uncertainty and firm investment in the concret industry:
Collard-Wexler (ECMA, 2013);

• Time-to-build, uncertainty, and dynamic competition in the shipping
industry: Kalouptsidi (AER, 2014);
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Examples of Empirical Applications

Examples of Empirical Applications [2]

• Fees for musical performance rights and the choice of format (product
design) of radio stations: Sweeting (ECMA, 2013);

• Hub-and-spoke networks, route entry-exit and competition in the airline
industry: Aguirregabiria and Ho (JoE, 2012);

• Competition in R&D and product innovation between Intel and AMD:
Goettler and Gordon (JPE, 2011);

• Product innovation of incumbents and new entrants in the hard drive
industry: Igami (JPE, 2017);

• Cannibalization and preemption strategies in the Canadian fast-food
industry: Igami and Yang (QE, 2016)
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Examples of Empirical Applications

Examples of Empirical Applications [3]

• Rrelease date of a movie: Einav (EI, 2010).

• Dynamic price competition: Kano (IHIO, 2013); Ellickson, Misra, and
Nair (JMR, 2012).

• Endogenous mergers: Jeziorski (RAND, 2014).

• Explotation of a common natural resource (foshing): Huang and Smith
(AER, 2014).
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Structure of dynamic games of oligopoly competition Basic Framework and Assumptions

Dynamic Games: Basic Structure

• Time is discrete and indexed by t. The game is played by N firms that
we index by i .

• Following the standard structure in the Ericson-Pakes (1995) framework,
firms compete in two different dimensions: a static dimension and a
dynamic dimension.

• We denote the dynamic dimension as the "investment decision".

• Here I focus on the dynamic part.
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Structure of dynamic games of oligopoly competition Basic Framework and Assumptions

Dynamic Games: Basic Structure (2)

• Let ait be the variable that represents the investment decision of firm i
at period t.

• This investment decision can be an entry/exit decision, a choice of
capacity, investment in equipment, R&D, product quality, other product
characteristics, etc.

• Every period, given their capital stocks that can affect demand and/or
production costs, firms compete in prices or quantities in a static Cournot
or Bertand model. Let pit be the static decision variables (e.g., price) of
firm i at period t.
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Structure of dynamic games of oligopoly competition Basic Framework and Assumptions

Dynamic Games: Basic Structure (3)

• The action is taken to maximize the expected and discounted flow of
profits in the market,

Et (∑∞
r=0 δr Πit+r )

where δ ∈ (0, 1) is the discount factor, and Πit is firm i’s profit at period
t.

• The profits of firm i at time t:

Πit = πi (ait , a−it , xt ) + εit (ait )

a−it = Vector with opponnets´ actions
xt = Vector of common knowledge state variables
εit = (εit (0), ..., εit (J)) = Vector of variables that are private information
of player i
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Structure of dynamic games of oligopoly competition Basic Framework and Assumptions

State variables

• The vector xt includes both endogenous and exogenous state variables.

• For instance, consider a model of competition in quality, i.e., ait
represents quality choice.

• In this case, xt = (a1,t−1, ..., aN ,t−1, z1t , ...zNt ), where
(a1,t−1, ..., aN ,t−1) represents the endogenous state variables, and
zt = (z1t , ...zNt ) the exogenous.
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Structure of dynamic games of oligopoly competition Basic Framework and Assumptions

State variables (2)

• The specification of the model is completed with the transition rules of
these state variables.

• (1) Exogenous state variables follow an exogenous Markov process
with transition probability function fz (zt+1|zt ).

• (2) Private information shock εit is i.i.d. over time and independent
across firms.
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Structure of dynamic games of oligopoly competition Markov Perfect Equilibrium

Markov Perfect Equilibrium

• Most of the recent literature in IO studying industry dynamics focuses
on studying a Markov Perfect Equilibrium (MPE), as defined by Maskin
and Tirole (Econometrica, 1988).

• The key assumption in this solution concept is that players’strategies
are functions of only payoff-relevant state variables.

• In this model, the payoff-relevant state variables for firm i are (xt , εit ).

• Allowing strategies to depend on history xt−1, xt−2, ...
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Structure of dynamic games of oligopoly competition Markov Perfect Equilibrium

Markov Perfect Equilibrium (2)

• Let α = {αi (xt , εit ) : i ∈ {1, 2, ...,N}} be a set of strategy functions,
one for each firm.

• A MPE is a set of strategy functions α∗ such that every firm is
maximizing its value given the strategies of the other players.

• For given strategies of the other firms, the decision problem of a firm is
a single-agent dynamic programming (DP) problem.
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Structure of dynamic games of oligopoly competition Markov Perfect Equilibrium

Markov Perfect Equilibrium (3)

• Let V α
i (xt , εit ) be the value function of the DP problem that describes

the best response of firm i to the strategies α−i of the other firms.

• This value function is the unique solution to the Bellman equation:

V α
i (xt , εit ) = maxait


Πα
i (ait , xt )− εit (ait )

+δ
∫
V α
i (xt+1, εit+1) fε(εit+1) f

α
i (xt+1|ait , xt ) dεit+1 dxt+1


where Πα

i (ait , xt ) and F
α
i (xt+1|ait , xt ) are the expected one-period profit

and the expected transition of the state variables, respectively, for firm i
given the strategies of the other firms.
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Structure of dynamic games of oligopoly competition Conditional Choice Probabilities

MPE and Conditional Choice Probabilities

• Given a strategy function αi (xt , εit ), we can define the corresponding
Conditional Choice Probability (CCP) function as :

Pi (a|x) ≡ Pr (αi (xt , εit ) = a | xt = x)

=
∫
1{αi (xt , εit ) = a} fε(εit+1) dεit+1

• The expected profit function and the transition probability function, Πα
i

and f α
i , can be represented in terms of CCPs, ΠP

i and f
P
i .
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Structure of dynamic games of oligopoly competition Conditional Choice Probabilities

MPE in terms of CCPs

• Based on the concept of CCP, we can represent the equilibrium mapping
and a MPE in way that is particularly useful for the econometric analysis.

• This representation has two main features:
(1) a MPE is a vector of CCPs;
(2) a player’s best response is an optimal response not only to the

other players’strategies but also to his own strategy in the future.
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Structure of dynamic games of oligopoly competition Conditional Choice Probabilities

MPE in terms of CCPs (2)

• A MPE is a vector of CCPs, P ≡ {Pi (ai |x) : for any (i , ai , x)}, such
that:

Pi (ai | x) = Pr
(
ai = argmax

j

{
vPi (j , x)− εi (j)

}
| x
)

• vPi (ai , x) = Value of firm i if the firm chooses alternative ai today:
- firm i behaves according to CCP Pi in the future;
- all the other firms behave according to their respective CCPs in P now
and in the future.

• The Representation Lemma in Aguirregabiria and Mira (2007) shows
that every MPE in this dynamic game can be represented using this
mapping.
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Structure of dynamic games of oligopoly competition Conditional Choice Probabilities

MPE in terms of CCPs (3)

• The form of this equilibrium mapping depends on the distribution of εi .

• For instance, in the entry/exit model, if εi is N(0, σ2ε ):

Pi (1|x) = Φ
(
vPi (1, x)− vPi (0, x)

σε

)

• In the model with endogenous quality choice, if εi (a)’s are extreme value
type 1 distributed:

Pi (a|x) =
exp

{
vPi (a, x)

σε

}
∑A
a′=0 exp

{
vPi (a

′, x)
σε

}
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Structure of dynamic games of oligopoly competition Example of computing MPE

Computing values and best response probs

• Let V Pi (x) be the value function of firm i when all the firms behave
according to their CCPs in P. By definition:

V Pi (xt ) =
A

∑
ait=0

Pi (ait |xt )
[

ΠP
i (ait , xt ) + δ ∑

xt+1
V Pi (xt+1) f

P
i (xt+1|ait , xt )

]

with
ΠP
i (ait , xt ) = ∑

a−it

P−i (a−it |xt ) πi (ait , a−it , xt )

f Pi (xt+1|ait , xt ) = ∑
a−it

P−i (a−it |xt ) fx (xt+1|ait , a−it , xt )
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Structure of dynamic games of oligopoly competition Example of computing MPE

Computing values and best response probs [2]

• When the space X is discrete we can obtain V Pi as the solution of a
system of linear equations:

VPi =

[
A

∑
ait=0

Pi (ait ) ∗ΠP
i (ait )

]
+ δ

[
A

∑
ai=0

Pi (ait ) ∗ FPi (ai )
]
VPi

such that:

VPi =

(
I− δ

[
A

∑
ai=0

Pi (ait ) ∗ FPi (ai )
])−1 [ A

∑
ait=0

Pi (ait ) ∗ΠP
i (ait )

]

• The main computational cost in this valuation comes from the inverse
matrix.
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Structure of dynamic games of oligopoly competition Example of computing MPE

Computing values and best response probs [3]

• The conditional choice value function is:

vPi (ait , xt ) = ΠP
i (ait , xt ) + δ ∑

xt+1
V Pi (xt+1) f

P
i (xt+1|ait , xt )

• And the best response mapping in the space of CCPs becomes:

Pi (ait | xt ) = Pr
(
ait = argmax

j

{
vPi (j , xt ) + εi (j)

}
| x
)

• This is a continuous mapping in the space of CCPs.

• An equilbrium exists. In general, there are multiple equilibria.
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Data, Identification, and Estimation

Data

• The researcher observes a random sample of M markets, indexed by m,
over T periods of time, where the observed variables consists of players’
actions and state variables.

• For the moment, we consider that the industry and the data are such
that:

(a) each firm is observed making decisions in every of the M markets;
(b) the researcher knows all the payoff relevant market characteristics

that are common knowledge to the firms, x.
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Data, Identification, and Estimation

Data

• With this type of data we can allow for rich firm heterogeneity that is
fixed across markets and time by estimating firm-specific structural
parameters, θi .

• This ’fixed-effect’approach to deal with firm heterogeneity is not
feasible in data sets where most of the competitors can be characterized as
local players, i.e., firms specialized in operating in a few markets.

• Condition (b) rules out the existence of unobserved market
heterogeneity. Though it is a convenient assumption, it is also unrealistic
for most applications in empirical IO. Later I present estimation methods
that relax conditions (a) and (b) and deal with unobserved market and
firm heterogeneity.
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Data, Identification, and Estimation

Data

• Suppose that we have a random sample of M local markets, indexed by
m, over T periods of time, where we observe:

Data = {amt , xmt : m = 1, 2, ...,M; t = 1, 2, ...,T}

• We want to use these data to estimate the model parameters in the
population that has generated this data: θ0 = {θ0i : i ∈ I}.
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Data, Identification, and Estimation Identification

Identification

• A significant part of this literature has considered the following
identification assumptions.

Assumption (ID 1): Single equilibrium in the data. Every observation
in the sample comes from the same Markov Perfect Equilibrium, i.e., for
any observation (m, t), P0mt = P0.

Assumption (ID 2): No unobserved common-knowledge variables.
The only unobservables for the econometrician are the private information
shocks εimt and the structural parameters θ.
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Data, Identification, and Estimation Identification

Identification (2)

• Under assumptions ID-1 & ID-2, the equilibrium that has generated the
data, P0, can be estimated consistently and nonparametrically from the
data. For any (i , ai , x):

P0i (ai |x) = Pr(aimt = ai | xmt = x)

For instance, we can estimate consistently P0i (ai |x) using the following
simple kernel estimator:

P0i (ai |x) =
∑m,t 1{aimt = ai} K

(
xmt − x
bn

)
∑m,t K

(
xmt − x
bn

)
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Data, Identification, and Estimation Identification

Identification (3)

• Note that under the single-equilibrium-in-the-data assumption, the
multiplicity of equilibria in the model does not play any role in the
identification of the structural parameters.

• The single-equilibrium-in-the-data assumption is a suffi cient for
identification but it is not necessary.

• Sweeting (2013) and Aguirregabiria and Mira (2015) present conditions
for the point-identification of games of incomplete information when there
are multiple equilibria in the data.
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Data, Identification, and Estimation Identification

Identification (4)

• Given that P0 is identified, the payoff function πi (ait , a−it , xt ) is
nonparametrically identified under the following assumptions (suffi cient
conditions):

Assumption (ID 3): The distribution of the unobservables ε is known to
the researcher.

Assumption (ID 4): The discount factor δ is known to the researcher.

Assumption (ID 5): Normalization: πi (ait , a−it , xt ) = 0

Assumption (ID 6): Exclusion restriction: xt = (s1t , s2t , ..., sNt ,wt ) such
that:

πi (ait , a−it , xt ) = πi (ait , a−it , sit ,wt )
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Estimation

Estimation

I will describe the following estimators:

1. Two-step Pseudo MLE
2. Recursive K-step Pseudo MLE

For illustration, I focus on a binary probit model with:

πi (ait , a−it , xt ) = z (ait , a−it , xt ) θi

where z (ait , a−it , xt ) is a vector of known function and θi is a vector
of unknown parameters.
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Estimation

Estimation (2)

The equilibrium mapping is:

Pi (ait | xt , θi ) = Φ
([
z̃Pi (1, xt )− z̃Pi (0, xt )

]
θi

)
z̃Pi (1, xt ) and z̃

P
i (0, xt ) present values can be calculated by solving a

system of inear equations (see valuation operator above) for given
vector of CCPs and the function z().
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Estimation

Pseudo Likelihood Function

For the description of the different estimators, it is convenient to
define the following Pseudo Likelihood function:

Q(θ,P) =
M
∑
m=1

N
∑
i=1

T
∑
t=1
aimt lnΦ

([
z̃Pi (1, xmt )− z̃Pi (0, xmt )

]
θi

)
+ (1− aimt ) ln

[
1−Φ

([
z̃Pi (1, xmt )− z̃Pi (0, xmt )

]
θi

)]

This pseudo likelihood function treats firms’beliefs P as parameters
to estimate together with θ.

Note that for given P, the function Q(θ,P) is the likelihood of a
Probit model.
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Estimation Two-step methods

Two-step methods

Suppose that we knew the equilibrium in the population, P0.

Given P0 we can construct the variables z̃P
0

i (1, xmt )− z̃P
0

i (0, xmt )
and then obtain a very simple estimator of θ0.

θ̂ = argmax
θ

Q(θ,P0)

This estimator is root-M consistent and asymptotically normal under
the standard regularity conditions. It is not effi cient because it does
not impose the equilibrium constraints (only asymptotically).

While equilibrium probabilities are not unique functions of structural
parameters, the best response probabilities that appear in Q(θ,P) are
unique functions of structural parameters and players’beliefs.
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Estimation Two-step methods

Two-step methods (2)

The previous method is infeasible because P0 is unknown.

However, under the Assumptions
"No-unobserved-market-heterogeneity" and
"One-MPE-in-the-data" we can estimate P0 consistently and at
with a convergence rate such that the two-step estimator θ̂ is root-M
consistent and asymptotically normal.

For instance, a kernel estimator of P0 is:

P̂0i (x) =
∑M
m=1 ∑T

t=1 aimt K
(
xmt − x
b

)
∑M
m=1 ∑T

t=1 K
(
xmt − x
b

)
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Estimation Two-step methods

Two-step methods: Finite sample properties (1)

The most attractive feature of two-step methods is their relative
simplicity.

However, they suffer of a potentially important problem of finite
sample bias.

The finite sample bias of the two-step estimator of θ0 depends very
importantly on the properties of the first-step estimator of P0. In
particular, it depends on the rate of convergence and on the variance
and bias of P̂0.

It is well-known that there is a curse of dimensionality in the NP
estimation of a regression function such as P0.
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Estimation Two-step methods

Two-step methods: Finite sample properties (2)

In particular, the rate of convergence of P̂0 declines, and the variance
and bias increase, very quickly as the number of conditioning
regressors increases.

In our simple example, the vector xmt contains only three variables:
the binary indicators aim,t−1 and the (continuous) market size Smt . In
this case, the NP estimator of P0 has a relatively high rate of
convergence an its variance and bias can be small even with relatively
small sample.

However, there are applications with more than two (heterogeneous)
players and where firm size, capital stock or other predetermined
continuos firm-specific characteristics are state variables.

Even with binary state variables (aim,t−1), when the number of
players is relatively large (e.g., more than 10) .....
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Estimation Recursive K-step estimator

Recursive K-step estimator

K-step extension of the 2-step estimator. Given an initial consistent

(NP) estimator P̂0, the sequence of estimators {θ̂K , P̂K : K ≥ 1} is
defined as:

θ̂K+1 = argmax
θ

Q
(

θ,P̂K
)

where:

P̂Ki (x) = Φ
([
z̃ P̂K−1i (1, x)− z̃ P̂K−1i (0, x)

]
θ̂Ki

)
Aguirregabiria and Mira (2002, 2007) present Monte Carlo
experiments which illustrate how this recursive estimators can have
significantly smaller bias than the two-step estimator.

Kasahara and Shimotsu (2008) derive a second order approximation
to the bias of these K-stage estimators. They show that, if the
equilibrium in the population is stable, then this recursive procedure
reduces the bias.
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Dealing with the curse of dimensionality

Dealing with the curse of dimensionality

The main computation cost comes from the valuation operator that
requires solving a system of linear equations with dimension |X |.

The cost of solving this system is O(|X |3).

When players are heterogeneous (state variables specific of each
player), |X | = |S|N .

Examples: Four state variables per player; each state variable takes 10
values (i.e., |S| = 104); N = 5 players: then, |X | = |S|5 = 1020.
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Dealing with the curse of dimensionality

Dealing with the curse of dimensionality

Different approaches have been proposed / applied to deal with this
curse of dimensionality:

1. No permanent heterogeneity across players / firms.
2. Oblivious equilibrium.
3. Monte Carlo simulation methods.
4. Euler equations / Finite dependence
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Dealing with the curse of dimensionality Counterfactual Experiments with an Estimated Model

Counterfactual Experiments with Estimated Model (1)

One of the most attractive features of structural models is that they
can be used to predict the effects of new policies or changes in
parameters (counterfactuals).

However, this a challenging exercise in a model with multiple
equilibria.

The data can identify the "factual" equilibrium. However, under the
counterfactual scenario, which of the multiple equilibria we should
choose?
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Dealing with the curse of dimensionality Counterfactual Experiments with an Estimated Model

Counterfactual Experiments with Estimated Model (2)

Different approaches have been implemented in practice.

Select the equilibrium to which we converge by iterating in the
(counterfactual) equilibrium mapping starting with the factual
equilibrium P0

Select the equilibrium with maximum total profits (or alternatively,
with maximum welfare).

Homotopy method: Aguirregabiria and Ho (2007)

Aguirregabiria () Dynamic Games
Carlos III, Madrid June 27, 2017 39 /

70



Dealing with the curse of dimensionality Counterfactual Experiments with an Estimated Model

Counterfactual Experiments: Homotopy method

Let θ be the vector of structural parameters in the model. An let
Ψ(θ,P) be the equilibrium mapping such that an equilibrium
associated with θ can be represented as a fixed point:

P = Ψ(θ,P)

The model could be completed with an equilibrium selection
mechanism: i.e., a criterion that selects one and only one equilibrium
for each possible θ.

Suppose that there is a "true" equilibrium selection mechanism in the
population under study, but we do not know that mechanism.

Our approach here (both for the estimation and for counterfactual
experiments) is completely agnostic with respect to the equilibrium
selection mechanism.
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Dealing with the curse of dimensionality Counterfactual Experiments with an Estimated Model

Counterfactual Experiments: Homotopy method

We only assume that there is such a mechanism, and that it is a
smooth function of θ.

Let π(θ) be the (unique) selected equilibrium, for given θ, if we
apply the "true" selection mechanism.

Since we do not know the mechanism, we do not know π(θ) for
every possible θ.

However, we DO know π(θ) at the true θ0 because we know that:

P0 = π(θ0)

and both P0 and θ0 are identified.
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Dealing with the curse of dimensionality Counterfactual Experiments with an Estimated Model

Counterfactual Experiments: Homotopy method

Let θ0 and P0 be the the population values. Let (θ̂0, P̂0) be our
consistent estimator.

We do not know the function π(θ). All what we know is that the
point (θ̂0, P̂0) belongs to the graph of this function π.

Let θ∗ be the vector of parameters under a counterfactual scenario.

We want to know the counterfactual equilibrium π(θ∗).
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Dealing with the curse of dimensionality Counterfactual Experiments with an Estimated Model

Counterfactual Experiments: Homotopy method

A Taylor approximation to π(θ∗) around our estimator θ̂0 implies
that:

π(θ∗) = π
(

θ̂0
)
+

∂π
(

θ̂0
)

∂θ′

(
θ∗ − θ̂0

)
+O

(∥∥∥θ∗ − θ̂0

∥∥∥2)

= P̂0 +
∂π
(

θ̂0
)

∂θ′

(
θ∗ − θ̂0

)
+O

(∥∥∥θ∗ − θ̂0

∥∥∥2)

To get a first-order approximation to π(θ∗) we need to know

∂π
(

θ̂0
)

∂θ′
.
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Dealing with the curse of dimensionality Counterfactual Experiments with an Estimated Model

Counterfactual Experiments: Homotopy method

We know that π
(

θ̂0
)
= Ψ(θ̂0, P̂0), and this implies that:

∂π
(

θ̂0
)

∂θ′
=

(
I − ∂Ψ(θ̂0, P̂0)

∂P′

)−1
∂Ψ(θ̂0, P̂0)

∂θ′

Then, π(θ∗) =

P̂0+

(
I − ∂Ψ(θ̂0, P̂0)

∂P′

)−1
∂Ψ(θ̂0, P̂0)

∂θ′

(
θ∗ − θ̂0

)
+O

(∥∥∥θ∗ − θ̂0

∥∥∥2)

Therefore, P̂0 +
(
I − ∂Ψ(θ̂0,P̂0)

∂P′

)−1
∂Ψ(θ̂0,P̂0)

∂θ′

(
θ∗ − θ̂0

)
is a first-order

approximation to the counterfactual equilibrium P∗.
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Network Competition in the Airline Industry: Aguirregabiria & Ho
(2012)

Motivation

This paper:

1. Proposes a dynamic game of network competition in the
airline industry.

2. Proposes methods to solve, estimate, and perform
counterfactual experiments using the model.

3. Uses the model to study empirically the role of strategic
entry deterrence as a factor to explain why many companies in the
US airline industry operate using hub-and-spoke networks.
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Network Competition in the Airline Industry: Aguirregabiria & Ho
(2012)

Motivation: The Model

Structural games of competition in the airline industry take into
account the existence of network effects, but they treat them as
exogenous factors.

These models do not specify explicitly the links between the costs and
benefits of an airline at different city-pairs.

To answer important policy questions, we need to take into account
these links and to endogenize airlines networks.

We build on and extend the work of Hendricks et al (1995, 1999) to
present a dynamic game of airlines’network competition that can
be estimated using publicly available data.
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Network Competition in the Airline Industry: Aguirregabiria & Ho
(2012)

Motivation: Methods

By combining simplifying assumptions (decentralizing the decision
problem; inclusive-values) and Monte Carlo simulation, we develop a
method to solve and to estimate this dynamic game.

We propose a method to implement counterfactual experiments using
the estimated model and taking into account the existence of multiple
equilibria in the model.
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Network Competition in the Airline Industry: Aguirregabiria & Ho
(2012)

Motivation Empirical Application

We study empirically the contribution of demand, cost, and strategic
factors to explain why many companies in the US airline industry
operate using hub-and-spoke networks.

We place particular attention to the role of strategic entry
deterrence.

We estimate the model and use counterfactual experiments to obtain
the contribution of different factors (and in particular of entry
deterrence) to explain hub-and-spoke networks.
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Network Competition in the Airline Industry: Aguirregabiria & Ho
(2012)

Hub-and-Spoke Networks

What is a hub-and-spoke network?

Since the deregulation of the US airline industry in 1978, most airlines
have adopted network structures that concentrate their operation in a
few airports.

Southwest Airlines is an important exception: Point-to-Point network.

Strategic Entry Deterrence: Hendricks, Piccione and Tan (1997).
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Network Competition in the Airline Industry: Aguirregabiria & Ho
(2012)

’Hubbing’in the US Airline Industry: Year 2004
Airline (Code) 1st largest hub 2nd largest hub

(# connections) CR1 (# connections) CR2

Southwest (WN) Las Vegas (35) 9.3 Phoenix (33) 18.2

American (AA) Dallas (52) 22.3 Chicago (46) 42.0

United (UA) Chicago (50) 25.1 Denver (41) 45.7

Delta (DL) Atlanta (53) 26.7 Cincinnati (42) 48.0

Continental (CO) Houston (52) 36.6 New York (45) 68.3

Northwest (NW) Minneapolis (47) 25.6 Detroit (43) 49.2

US Airways (US) Charlotte (35) 23.3 Philadelphia (33) 45.3

Source: DB1B Database form the US Bureau of Transportation. Year 2004.
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Model

Model: Airlines, Cities, and Routes

N airlines and C cities, exogenously given.

Given the C cities, there are M ≡ C (C − 1)/2 non-directional
city-pairs (or markets).

For each city-pair, an airline decides whether to operate non-stop
flights.

A route (or path) is a directional round-trip between 2 cities. A
route may or may not have stops.

A route-airline is a product, and there is a demand for each
route-airline product.

Airlines choose prices for each route they provide.
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Model

Model: Networks

We index city-pairs by m, airlines by i , and time (quarters) by t.

ximt ∈ {0, 1} is a binary indicator for the event "airline i operates
non-stop flights in city-pair m"

xit ≡ {ximt : m = 1, 2, ...,M} is the network of airline i at period t.

The network xit describes all the routes (products) that the airline
provides, and whether they are non-stop or stop routes.

Industry network: xt ≡ {xit : i = 1, 2, ...,N}
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Model

Model: Airlines’Decisions

An airline network xit determines the set of routes that the airline
provides, L(xit ).

Every period, active airlines in a route compete in prices

Price competition determines variable profits for each airline.

Every period (quarter), each airline decides its network for next
period. There is time-to-build.

We represent this decision as ait ≡ {aimt : m = 1, 2, ...,M}, though
aimt ≡ ximt+1.
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Model

Model: Profit Function

The airline’s total profit function is:

Πit = ∑
r∈L(xit )

(pirt − cirt )qirt

−
M

∑
m=1

aimt (FCimt + (1− ximt ) ECimt )

(pirt − cirt )qirt = Variable profit in route r .

FCimt and ECimt are fixed cost and entry cost
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Model

Model Network effects in demand and costs

An important feature of the model is that demand, variable costs,
fixed costs, and entry costs depend on the scale of operation (number
of connections) of the airline in the origin and destination airports of
the city-pair.

For instance,

FCimt = γFC1 + γFC2 HUBimt + γFC3 DISTm + γFC4i + γFC5c

ECimt = ηEC1 + ηEC2 HUBimt + ηEC3 DISTm + ηEC4i + ηEC5c

This implies that markets are interconnected through these hub-size
effects. Entry-exit in a market has implications of profits in other
markets.
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Model

Dynamic Game / Strategy Functions

Airlines maximize intertemporal profits, are forward-looking, and take
into account the implications of their entry-exit decisions on future
profits and on the expected future reaction of competitors.

Airlines’strategies depend only on payoff-relevant state variables, i.e.,
Markov perfect equilibrium assumption.

An airline’s payoff-relevant information at quarter t is {xt , zt , εit}.

Let σ ≡ {σi (xt , zt , εit ) : i = 1, 2, ...,N} be a set of strategy
functions, one for each airline.

A MPE is a set of strategy functions such that each airline’s strategy
maximizes the value of the airline for each possible state and taking
as given other airlines’strategies.
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Model Dynamic game of network competition

Dynamic Game: Reducing the dimensionality

Given the number of cities and airlines in our empirical analysis, the
number of possible industry networks is |X | = 2NM ' 1010,000.

We consider two types of simplifying assumptions that reduce the
dimension of the dynamic game and make its solution and estimation
manageable.

1. An airline’s choice of network is decentralized in terms of
the separate decisions of local managers.

2. The state variables of the model can be aggregated in a
vector of inclusive-values that belongs to a space with a much
smaller dimension than the original state space.
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Model Dynamic game of network competition

Decentralizing the Airline’s Choice of Network

Each airline has M local managers, one for each city-pair.

A local manager decides whether to operate or not non-stop flights in
his local-market: i.e., he chooses aimt .

Let Rimt be the sum of airline i’s variable profits over all the routes
that include city-pair m as a segment.

ASSUMPTION: Local managers maximize the expected and
discounted value of

Πimt ≡ Rimt − aimt (FCimt + (1− ximt )ECimt ) .

IMPORTANT: A local manager internalizes the effects of his own
entry-exit decision in many other routes. Entry deterrence.
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Model Dynamic game of network competition

Inclusive-Values

Decentralization of the decision simplifies the computation of players’
best responses, but the state space of the decision problem of a local
manager is still huge.

Notice that the profit of a local manager depends only on the state
variables:

x∗imt ≡ (ximt , Rimt , HUBimt )

ASSUMPTION: The vector x∗imt follows a controlled first-order
Markov Process:

Pr
(
x∗im,t+1 | x∗imt , aimt , xt , zt

)
= Pr

(
x∗im,t+1 | x∗imt , aimt

)
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Model Dynamic game of network competition

Dynamic Game: Reducing the dimensionality

A MPE of this game can be describe as a vector of probability
functions, one for each local-manager:

Pim(x∗imt ) : i = 1, 2, ...,N; m = 1, 2, ...,M

Pim(x∗imt ) is the probability that local-manager (i ,m) decides to be
active in city-pair m given the state x∗imt .

An equilibrium exits.

The model typically has multiple equilibria.
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Data

Data

Airline Origin and Destination Survey (DB1B) collected by the Offi ce
of Airline Information of the BTS.

Period 2004-Q1 to 2004-Q4.

C = 55 largest metropolitan areas. N = 22 airlines.

City Pairs: M = (55 ∗ 54)/2 = 1, 485.
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Data

Airlines: Passengers and Markets

Airline (Code) # Passengers # City-Pairs

(in thousands) (max = 1,485)

1. Southwest (WN) 25,026 373

2. American (AA)(3) 20,064 233

3. United (UA)(4) 15,851 199

4. Delta (DL)(5) 14,402 198

5. Continental (CO)(6) 10,084 142

6. Northwest (NW)(7) 9,517 183

7. US Airways (US) 7,515 150

8. America West (HP)(8) 6,745 113

9. Alaska (AS) 3,886 32

10. ATA (TZ) 2,608 33

11. JetBlue (B6) 2,458 22
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Data

Distribution of City-Pairs by # Airlines with non-stop flights

Markets with 0 airlines 35.44%

Markets with 1 airline 29.06%

Markets with 2 airlines 17.44%

Markets with 3 airlines 9.84%

Markets with 4 or more airlines 8.22%
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Data

Number of Monopoly Markets by Airline

Southwest 157

Northwest 69

Delta 56

American 28

Continental 24

United 17
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Data

Entry and Exit

All Quarters

Distribution of Markets by Number of New Entrants

Markets with 0 Entrants 84.66%

Markets with 1 Entrant 13.37%

Markets with 2 Entrants 1.69%

Markets with 3 Entrants 0.27%

Distribution of Markets by Number of Exits

Markets with 0 Exits 86.51%

Markets with 1 Exit 11.82%

Markets with 2 Exits 1.35%

Markets with more 3 or 4 Exits 0.32%
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Estimation of the structural model

Estimation of the Structural Model

Our estimation approach proceeds in three stages.

1 Estimation of demand system. IV estimation (a la BLP) where the
IV’s are the competitors’hub-sizes.

2 Estimation of marginal cost functions.

3 Estimation of dynamic game of entry-exit. Nested Pseudo
Likelihood (NPL) method.
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Estimation of the structural model Estimation of the dynamic entry-exit game

Estimation of Dynamic Game of Entry-Exit
Data: 1,485 markets × 22 airlines × 3 quarters = 98,010 observations

Estimate (Std. Error)
(in thousand $)

Fixed Costs (quarterly):
Fixed cost (average) 119.15 (5.233)

Effect of hub-size on FC -1.02 (0.185)

Effect of distance on FC 4.04 (0.317)

Entry Costs:
Entry cost (average) 249.56 (6.504)

Effect of hub-size on EC -9.26 (0.140)

Effect of distance on EC 0.08 (0.068)

σε 8.402 (1.385)

β 0.99 (not estimated)
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Estimation of the structural model Disentangling demand, cost and strategic factors

Counterfactual Experiments
Zero Hub-Size Effects in:

Carrier Observed var. profits fixed costs entry costs No entry-deter

Southwest 18.2 17.3 15.6 8.9 16.0

American 42.0 39.1 36.5 17.6 29.8

United 45.7 42.5 39.3 17.8 32.0

Delta 48.0 43.7 34.0 18.7 25.0

Continental 68.3 62.1 58.0 27.3 43.0

Northwest 49.2 44.3 36.9 18.7 26.6

US Airways 45.3 41.7 39.0 18.1 34.4
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Conclusions

Summary of empirical results

1 Hub-size effects on demand, variable costs and fixed operating
costs are significant but can explain very little of the propensity
to hub-spoke networks.

2 Hub-size effects on Sunk Entry Costs are large. This is the most
important factor to explain hub-spoke networks.

3 Strategic factors: hub-spoke network as a strategy to deter
entry is the second most important factor for some of the largest
carriers (Northwest and Delta).

4 Sunk Entry Costs are positively with Entry Deterrence. Airlines
with larger entry costs tend to have higher propensity to use
hub-and-spoke networks to deter entry of competitors.
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Conclusions

Ongoing Research

Though the estimated provides a very good fit to the Quarterly data
for 2004, it has limitations to explain some important features for the
evolution of airline networks for the period 1990-2008.

For instance, some airlines experienced very abrupt changes in their
network structure: e.g., closings of large hubs, almost ’instantaneous
birth’of new hubs.

Explaining the transition of some airlines from almost pure
hub-and-spoke networks to point-to-point networks is also challenging.

Economic interpretation of the negative effect of hub-size on entry
costs: is it due to technological reasons, OR it has to do with
contracts between airports and airlines ???
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