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Introduction to Dynamic Discrete Choice Models in Empirical IO

Lecture 1: Introduction to Dynamic Discrete Choice
Models in Empirical IO

1. Some Basic Ideas in IO

2. Dynamic Models in Empirical IO: Examples

3. Outline of this series of lectures

4. Introduction to DDC structural models

5. Some applications
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Some Basic Ideas in IO

Some Basic Ideas in IO (1)

IO studies the behavior of firms in markets, their strategic
interactions, and the implications on profits and consumer welfare.

Some examples of type of firm decisions that we study in IO are:

- Price and Quantity choice;
- Investment in capacity, inventories, physical capital, ...;
- R&D, patents;
- Advertising;
- Geographic location of plants and stores;
- Product design;
- Entry in new markets;
- Adoption of new technologies;
- Vertical relationships;
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Some Basic Ideas in IO "New" Empirical IO

"New" Empirical IO

Emphasizes the need to:

[1] Study competition separately for each industry. Industries
are very heterogeneous in their exogenous characteristics. There is
not a common relationship between market power and concentration
across industries.

[2] Use micro-level data of individual firms, products, and
markets, on prices, quantities, number of firms, and exogenous
characteristics affecting demand or costs.

[3] Estimate structural models of consumer and firm behavior.
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Some Basic Ideas in IO Specification of a Structural Model in Empirical IO

Specification of a Structural Model in EIO (1)

To study competition in an industry, EIO researchers propose and
estimate structural models of demand and supply.

What is an structural model in empirical IO?

Models of consumer and firm behavior where consumers are utility
maximizers and firms are profit maximizers.

The parameters are structural in the sense that they describe
consumer preferences, production technology, and institutional
constraints.

Under the principle of revealed preference, these parameters are
estimated using micro data on consumers’and firms’choices and
outcomes.
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Some Basic Ideas in IO Specification of a Structural Model in Empirical IO

Specification: Typical Structure of IO Models

1. Model of consumer behavior (Demand)

- Product differentiation?

2. Model for firms’costs

- Economies of scale; Economies of scope? Entry costs? Investment
costs?

3. Equilibrium model of static competition
- Price (Bertrand), Quantity (Cournot).

4. Equilibrium model of market Entry-Exit and dynamic
competition

- Investment, advertising, quality, product characteristics, stores, etc.
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Some Basic Ideas in IO Specification of a Structural Model in Empirical IO

Specification: Example

Example based on Ryan (Econometrica, 2012).

We start with an empirical question.

US cement industry. Evaluation of the effects in this industry of the
1990 Amendments to the Air Clean Act.

The new law restricts the amount of emissions a cement plant can
make.

It requires the adoption of a "new" technology that implies lower
marginal costs but larger fixed costs than the "old" technology.
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Some Basic Ideas in IO Specification of a Structural Model in Empirical IO

Specification: Key Characteristics of the Industry

The model here, though simple, incorporates some important features
of the cement industry.

1. Homogeneous product. (We abstract from spatial differentiation).

2. Substantial fixed costs from operating a plant (cement furnace).

3. Variable costs increase in a convex way when output approaches full
capacity.

4. Capacity investment is an important strategic variable.

5. Industry is very local (due to high transportation costs per dollar
value). It can be characterized as a set of many "isolated" local
markets.

6. Oligopolist industry. Small number of firms at a local market.
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Dynamic Models in Empirical IO: Examples

Dynamic Models in Empirical IO: Examples

Dynamics in demand and/or supply are important aspects of
competition in oligopoly markets.

Dynamics in demand: consumer switching costs; habit formation;
brand loyalty; learning; and storable or durable products.

Dynamics in supply: almost every firm investment decision: market
entry; investment in capacity, inventories, or equipment; choice of
product characteristics; production if there is learning by doing;
pricing if there are menu costs, or other forms of price adjustment
costs.
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Dynamic Models in Empirical IO: Examples Example 1: Demand of a storable good

Example 1: Demand of a storable good (1)

For a storable product, purchases in a given period (week, month) are
not equal to consumption.

When the price is low consumers buy for storage and future
consumption. When the price is high they do not purchase and
consume from inventory.

Dynamics arise because:
(a) consumers’past purchases impact their current inventory and the
benefits of purchasing today;

(b) consumers’expectations about future prices impact the trade-offs
of buying today versus in the future.
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Dynamic Models in Empirical IO: Examples Example 1: Demand of a storable good

Example 1: Demand of a storable good (2)

What are the implications of ignoring these dynamics in a
model of consumer demand?

Bias estimates of both long-run and short-run demand elasticities

Bias estimates of firms’market power. Implications on merger
analysis, anti-trust cases, etc.
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Dynamic Models in Empirical IO: Examples Example 1: Demand of a storable good

Example 1: Demand of a storable good (3)

The time series of prices of many supermarket products is
characterized by "High-Low" pricing

The price fluctuates between a (high) regular price and a (low)
promotion price.

The promotion price is infrequent and last only few days, after which
the price returns to its "regular" level.

Most sales are concentrated in the very few days of promotion
prices: the typical discount of a sales promotion is between 10% and
20%, and the increase in sales can be 200% or even larger.
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Dynamic Models in Empirical IO: Examples Example 1: Demand of a storable good

Example 1: Demand of a storable good (4)

The estimation of a static demand model provides a large estimates
of the own-price elasticity, e.g., > 8.

Given this estimated demand elasticity, we may conclude that brand
manufacturers have very low market power.

However, the static model can be seriously wrong because it ignores
that a substantial part of the temporary increase in sales comes from
consumer intertemporal substitution.

The temporary price reduction induces consumers to buy for storage
today and to buy less in the future. The long-run substitution effect
is much smaller, and it is this long-run effect what is relevant to
measure firms’market power.
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Dynamic Models in Empirical IO: Examples Example 2: Demand of a new durable good

Example 2: Demand of a new durable good (1)

The price of new durable products typically declines over time during
the months after the introduction of the product.

Different factors may explain this price decline, e.g., intertemporal
price discrimination, increasing competition, exogenous cost decline,
or endogenous cost decline due to learning by doing.

As in the case of the "high-low" pricing of storable goods, explaining
this pricing dynamics requires one to take into account dynamics in
supply. For the moment, we concentrate here in the demand.

If consumers are forward looking, they expect the price will be lower
in the future and this generates an incentive to wait and buying the
good in the future.

Aguirregabiria () Introduction
Carlos III, Madrid June 26, 2017 14 /

160



Dynamic Models in Empirical IO: Examples Example 2: Demand of a new durable good

Example 2: Demand of a new durable good (2)

A static model that ignores dynamics in demand of durable goods
introduces two different type of biases:

[1] Endogenous selection in the number of potential buyers:
each period the demand curve is changing because some high
willingness-to-pay consumers have already bought the product and
left the market.

[2] Consumer forward-looking behavior: consumers willingness
to pay is downward biased because it is contaminated by the
expectation of future price declines.
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Dynamic Models in Empirical IO: Examples Example 2: Demand of a new durable good

Example 2: Demand of a new durable good (3)

To illustrate the first source of bias, consider a simple example.
Market with an initial mass of H1 consumers and a uniform
distribution of willingness to pay over [0,$100].

Demand at time t ∈ {1, 2, ...} is:

Qt = Ht Pr(vt ≥ Pt ) = Ht [1− Ft (Pt )]

Ht = Consumers still in the market at period t; i.e.,
Ht = Ht−1 −Qt−1.
Ft = Distribution function of willingness to pay for consumers who
remain in the market at period t.
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Dynamic Models in Empirical IO: Examples Example 2: Demand of a new durable good

Example 2: Demand of a new durable good (4)

Suppose that the sequence of prices is P1 = $90, P2 = $80,
P3 = $70, etc. Then,

Q1 = H1

[
1− P1

100

]
= 0.1 H1; and H2 = 0.9 H1

Q2 = 0.9 H1

[
1− P2

90

]
= 0.1 H1; and H3 = 0.8 H1

Q3 = 0.8 H1

[
1− P3

80

]
= 0.1 H1; and H4 = 0.7 H1

The sequence of quantities Q1, Q2, Q3, ... is constant over time.

A static demand model concludes that consumers are not sensitive to
price, since price is declining and demand is constant. The estimate
of the price elasticity would be zero.
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Dynamic Models in Empirical IO: Examples Example 3: Dynamics of market structure

Example 3: Dynamics of market structure (1)

Consider a technological change (or a public policy) that reduces
firms’Marginal Costs but increases Fixed Costs.

Short-run and long-run effects of this change can be very different.

To measure long-run effects we need to take into account that market
structure is endogenous but its response is not instantaneous and
adjust slowly over time.
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Dynamic Models in Empirical IO: Examples Example 3: Dynamics of market structure

Example 3: Dynamics of market structure (2)

In the short-run, the number of firms in the market does not change.
The reduction in MCs implies a reduction in prices, and increases in
output and consumer surplus.

Over time, the greater fixed cost may imply a reduction of the
number of firms in the market (exits > entries).

The reduction in the number of firms over time implies a reduction in
competition, and consequently that prices will increase over time, and
output and consumer surplus will decline.

Long-run effects may have the opposite sign than short-run effects.
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Outline of this series of lectures

Outline of this series of lectures

Lecture 1: Introduction to the Econometrics of DDC
structural models [single-agent]

Lecture 2: Empirical dynamic games of oligopoly competition

Lecture 3: Dynamic games when players have
out-of-equilibrium beliefs.

Lecture 4: Curse of dimensionality: Euler equations for the
solution and estimation of DDC structural models

Lecture 5: Unobserved heterogeneity: Consistent Fixed Effect
Estimation of DDC structural models
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Dynamic Discrete Choice Structural Models Basic assumptions

Dynamic Discrete Choice Structural Models

• In dynamic structural models, agents are forward looking and maximize
expected intertemporal payoffs.

• The parameters to be estimated are structural in the sense that they
describe agents’preferences and technological and institutional constraints.

• Under the principle of revealed preference, these parameters are
estimated using micro data on individuals’choices and outcomes.
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Dynamic Discrete Choice Structural Models Basic assumptions

Dynamic Discrete Choice Structural Models

• Econometric models in this class can be useful tools for the evaluation of
new (counterfactual) policies in settings with important dynamic aspects.

• Another attractive feature is that structural parameters have a
transparent interpretation within the theoretical model that frames the
empirical investigation.

• Seminal papers in this literature include:
* Wolpin (JPE, 1984) on fertility and child mortality
* Miller (JPE, 1984) on occupational choice
* Pakes (Econometrica, 1986) on patent renewal
* Rust (Econometrica, 1987) on machine replacement
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Dynamic Discrete Choice Structural Models Basic assumptions

Empirical applications in IO:

Demand models: Consumer switching costs; brand loyalty; storable
products; durable products; adoption of a new product.

Price competition when demand is dynamic.

Inventories, capacity, capital investment.

R&D investment; Innovation; Adoption of new technologies.

Market entry-exit; Quality choice; Product design.
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Dynamic Discrete Choice Structural Models Basic assumptions

Dynamic Discrete Choice Structural Models

Time is discrete: t = 0, 1, ...,∞. Every period t an agent observes a
vector of state variables st and makes a choice:

at ∈ A = {0, 1, ..., J}

The agent maximizes expected intertemporal payoff:

Et

[
T−t
∑
j=0

βj Ut+j (at+j , st+j )

]

Ut is the one-period utility and β ∈ (0, 1) is the discount factor.

The agent knows st but has uncertainty about future state variables
st+1, st+2, ... She has beliefs about uncertain future state variables
that can be represented as a Markov transition probability

pt (st+1|st , at )
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Dynamic Discrete Choice Structural Models Basic assumptions

Dynamic Discrete Choice Structural Models

Agents are expected utility maximizers. An agent optimal decision
rule is:

αt (st ) = argmax
at∈A

E

[
T−t
∑
j=0

βj Ut+j (at+j , st+j ) | st , at

]

Using Bellman’s principle of optimality, we can represent this optimal
decision rule as:

αt (st ) = argmax
at∈A

[
Ut (at , st ) + β

∫
Vt (st+1) pt (st+1|st , at )

]
Where:

Vt (st ) = max
at∈A

[
Ut (at , st ) + β

∫
Vt+1(st+1) pt (st+1|st , at )

]
Aguirregabiria () Introduction

Carlos III, Madrid June 26, 2017 25 /
160



Dynamic Discrete Choice Structural Models Basic assumptions

Infinite Horizon - Stationary Case

When T = ∞, Ut (.) = U(.), and pt (.) = p(.), Blackwell Theorem
establishes that the value function and the optimal decision rule are
invariant over time.

At two time periods with the same state the decision problem is
identically the same.

α(st ) = argmax
at∈A

[
U(at , st ) + β

∫
V (st+1) p(st+1|st , at )

]
and:

V (st ) = max
at∈A

[
U(at , st ) + β

∫
V (st+1) p(st+1|st , at )

]
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Dynamic Discrete Choice Structural Models Basic assumptions

Data and Unobservables

• From the point of view of the econometrician we distinguish two subsets
of state variables:

st = (xt , εit )

• The subvector xt groups variables that are observed by both the agent
and the researcher.

• The subvector εt is observed only by the agent.
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Dynamic Discrete Choice Structural Models Basic assumptions

Data and Unobservables

• The researcher observes a sample of individuals over several periods of
time:

Data = { ait , xit : i = 1, 2, ...,N ; t = 1, 2, ...,Ti}

• i is the individual subindex; N is the number of individuals in the
sample; and Ti is the number of periods over which we observe individual
i .

• In micro-econometric applications of single-agent models, we typically
have that N is relatively large and Ti is small.
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Dynamic Discrete Choice Structural Models Example: Market Entry-Exit

Example: Market Entry-Exit

at ∈ {0, 1} is the indicator of the firm being in the market.

st = (at−1, zt ), where zt is a vector of exogenous variables affecting
demand and costs.

The profit of being active in the market is:

U(1, st ) = vp(zt )− fc(zt )− 1 {at−1 = 0} ec(zt )

vp(zt ) = (p(zt )− c(zt )) q(zt ) is variable profit; fc(zt ) is fixed cost;
and ec(zt ) is an entry cost.

The profit of being in-active is:

U(0, st ) = at−1 sv(zt )

where sv(zt ) is the scrap value of the firm.
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Dynamic Discrete Choice Structural Models Example: Market Entry-Exit

Example: Market Entry-Exit (2)

The Optimal decision rule is:

{at = 1} ⇔

U(1, st ) + β
∫
V (1, zt+1) pz (zt+1|zt )

≥ U(0, st ) + β
∫
V (0, zt+1) pz (zt+1|zt )

And the Bellman equation is:

V (at−1, zt ) = max
at∈{0,1}

[
U(at , at−1, zt ) + β

∫
V (at , zt+1) pz (zt+1|zt )

]
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Estimation

Estimation

Given a dataset {ait , xit}, we are interested in estimating the
unknown parameters in the primitives {U, p, β}.

Let θ be the vector of structural parameters. We distinguish three
components in this vector:

θ = { θu , θf , θε, β }

θu = parameters in utility function U
θf = parameters in transition probability of observables
θε = parameters in distribution of observables
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Estimation

Estimation

Let gN (θ) be an estimation criterion for this model and data, such as
a likelihood or a GMM criterion.

For instance, if the data are a random sample over individuals and the
criterion is a likelihood, then gN (θ) = ∑N

i=1 li (θ), where

li (θ) = log Pr (ai1, . . . , aiTi , xi1, . . . , xiTi | θ)

= log Pr
(

α(xi1, εi1, θ) = ai1, . . . , α(xiTi , εiTi , θ) = aiTi ,
xi1, . . . , xiTi | θ

)
To evaluate gN (θ) for a particular value of θ it is necessary to know
the optimal decision rules α(sit , θ). Therefore, for each trial value of θ
the DP problem needs to be solved exactly, or its solution
approximated in some way.

Aguirregabiria () Introduction
Carlos III, Madrid June 26, 2017 32 /

160



Estimation

Two important issues

Applications of DDCSM have two deal with econometric issues which
are common in other models in empirical micro, e.g., measurement
error, endogeneity, sample selection, etc.

However, there are two econometric issues that are particularly
important in DDCSM:

Curse of dimensionality: Computational cost of computing
exactly the solution of the DP problem increases very quickly
with the dimension of the state space.

Serially correlated unobservables (e.g., time-invariant
unobserved heterogeneity).
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Estimation Assumptions on unobservables

Assumptions on unobservables

The relationship between observable and unobservable state variables,
and the stochastic process of the latter, are key modelling decisions in
the econometrics of DDSM.

Additive separability (AS) and serial independence of the
unobservables (CI ) provide the simplest framework for estimation
and has been used in many applications.
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Estimation Assumptions on unobservables

Assumptions on unobservables

• ASSUMPTION AS:

U(a, xit , εit ) = u(a, xit ) + εit (a)

where εit (a) is the a-th component the vector εit .

• ASSUMPTION CI:

p(xt+1, εt+1|at , xt , εt ) = fε(εt+1|xt+1) fx (xt+1|at , xt )
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Estimation Assumptions on unobservables

Conditional Choice Probabilities

• Define the Conditional Choice Probability (CCP) function P(ait |xit , θ)
as the integration of the optimal decision rule over the distribution of the
unobservable state variables.

P(a|x , θ) ≡
∫
1 {α(x , ε; θ) = a} fε(ε) dε

where 1{.} is the indicator function.

• An important implication of the CI Assumption is that the CCP function
is equal to the distribution of ait conditional on xit :

Pr (ait = a | xit = x) = P(a|x , θ)

• In general, this condition does not hold if εit is serially correlated
because εit and xit are not independent.

Aguirregabiria () Introduction
Carlos III, Madrid June 26, 2017 36 /

160



Estimation Assumptions on unobservables

Assumptions on unobservables

• Under Assumption CI, the contribution of individual i to the
log-likelihood function can be factored as:

li (θ) = ∑Ti
t=1 logP(ait |xit , θ)

+ ∑Ti−1
t=1 log fx (xi ,t+1|xit , θf )

+ log Pr(xi1|θ)

• The term log Pr(xi1|θ) is the contribution of the initial conditions to the
likelihood of individual i .
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Estimation Assumptions on unobservables

Assumptions on unobservables

• Another implication of AS-CI is that the alternative-specific value
functions can be decomposed as v(a, xit ) + εit (a) as in random utility
models.

• CCPs are functions of the value differences
ṽ(j , xit ) ≡ v(j , xit )− v(0, xit ):

P(a|xit , θ) = Λ(a|{ṽ(j , xit , θ) : j ∈ A})
where:

Λ(a|{ṽ(j , xit , θ) : j ∈ A}) ≡∫
1 {v(a, xit , θ) + εit (a) > v(a′, xit , θ) + εit (a′) for all a′} fε(εit ) dεit

• When {εit (a)} are independently distributed type 1 extreme value
random variables:

Λ(a|ṽ(., xit , θ)) =
exp {ṽ(a, xit , θ)}

1+∑J
j=1 exp {ṽ(j , xit , θ)}Aguirregabiria () Introduction
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Estimation Assumptions on unobservables

Time-invariant unobserved heterogeneity: Finite mixture
models

• Suppose that the unobservables have a transitory and permanent: εit (a)
and ωi (a), where are ω′i s individual-specific permanent effects with a
discrete distribution.

• Now, Assumption CI fails and the probability of the sequence of choices
cannot be factored into a product of conditional choice probabilities.

• The observable state xit is not a suffi cient statistic for ait because lagged
choices contain information about the permanent components ωi .
However, conditional on ωi the transitory components {εi (a)} do satisfy
assumption CI.
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Estimation Assumptions on unobservables

Finite mixture models

• Since ωi has discrete support, each individual’s conditional likelihood
contribution can be obtained as a finite mixture of conditional likelihoods.
Let π` ≡ Pr(ωi = ω`), then:

li (θ) = log
(

∑L
`=1 Li (θ,ω`) π`

)
where

Li (θ,ω`) = Pr
(
ai1, . . . , aiTi , xi1, . . . , xiTi | ω`, θ

)
=

[
∏Ti
t=1 P(ait |xit ,ω`, θ) ∏Ti−1

t=1 fx (xi ,t+1|xit , θf )
]

Pr(xi1|ω`, θ)

• In order to evaluate the mixture of likelihoods the DP problem needs to
be solved as many times as the number of components in the mixture.
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Estimation Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm

• The NFXP algorithm is a gradient iterative search method to obtain the
MLE of the structural parameters.

• This algorithm nests a BHHH method (outer algorithm), that searches
for a root of the likelihood equations, with a value function or policy
iteration method (inner algorithm), that solves the DP problem for each
trial value of the structural parameters.

• The algorithm is initialized with an arbitrary vector of structural
parameters, say θ̂0. A BHHH iteration is defined as:

θ̂k+1 = θ̂k +
(

∑N
i=1 Oli (θ̂k )Oli (θ̂k )′

) (
∑n
i=1 Oli (θ̂k )

)
where Oli (θ) is the gradient in θ of the log-likelihood function for
individual i .
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Estimation Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm

• Oli (θ) is the sum of two terms: the gradient of the choice history and
the gradient of the transitions.

Oli (θ) = ∑Ti
t=1 O logΛ(ait |ṽ(., xit , θ))

+∑Ti−1
t=1 O log fx (xi ,t+1|ait , xit , θf )

• The second term is standard because the transition probability function
is a primitive of the model. However, to obtain the first term we have to
solve the DP problem for a value θ̂k of the structural parameters.
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Estimation Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm

• There are different ways to solve the DP problem. When the model has
finite horizon the standard approach is to use backward iterations. For
infinite horizon models, one can use either value function or policy
function iterations, or an hybrid of both.

• To illustrate this algorithm in more detail, consider a version of Rust
model which has been the most common in applications: a conditional
logit model where one-period utilities are linear in the parameters θu :

u(a, xit , θu) = z(a, xit )′θu ,

where z(a, xit ) is a vector of known functions.
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Estimation Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm

• For this model, the gradient Oli (θ) has the following form:

Oli (θ) = ∑Ti
t=1

[
z(ait , xit )−

(
∑J
j=0 P(j |xit , θ) z(j , xit )

)]
+∑Ti−1

t=1 O log fx (xi ,t+1|ait , xit , θf )

• The choice probabilities P(a|x , θ) have the conditional logit form:

P(a|x , θ) = exp {z(a, x)θu + β Fx (a, x)′Vε(θ)}
∑J
j=0 exp {z(j , x)θu + β Fx (j , x)′Vε(θ)}

where Vε(θ) and Fx (a, x) are the column vectors {Vε(x , θ) : x ∈ X} and
{fx (x ′|a, x) : x ′ ∈ X}, respectively.
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Estimation Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm

• The vector of values Vε(θ) can be obtained as the unique fixed point of
the following Bellman equation in vector form:

Vε(θ) = log
(
∑J
a=0 exp {z(a)θu + β Fx (a)Vε(θ)}

)
with z(a) and Fx (a) are the matrices {z(a, x) : x ∈ X} and
{Fx (a, x) : x ∈ X}, respectively.

Aguirregabiria () Introduction
Carlos III, Madrid June 26, 2017 45 /

160



Estimation Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm

• The NFXP algorithm works as follows.

(I) [Inner Algorithm] Given θ̂k , we obtain the vector Vε(θ̂k ) by
successive iterations in the Bellman equation: starting with
V0 = 0, we iterate until convergence in

Vh+1 = log(∑J
a=0 exp{z(a)θ̂u,k + βF̂x (a)Vh})

(II) Then, given θ̂k and Vε(θ̂k ) we construct the choice
probabilities P(a|x , θ̂k ) and the gradient Oli (θ̂k ) using the
expression above.
(III) [Outer iteration] We we use the gradient Oli (θ̂k ) to make
a new BHHH iteration to obtain θ̂k+1.
* We proceed in this way until the distance between θ̂k+1 and θ̂k
is smaller than a pre-specified convergence constant.
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Estimation Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm

• When the model has finite horizon, we can sequentially solve for the
value function using backward iterations in the inner algorithm of the
NFXP. That is, the sequence of value vectors at ages T , T − 1, etc, can
be obtained starting with:

VT (θ̂k ) = log(∑J
a=0 exp{zT (a)θ̂u,k})

and then using the sequential formula for t ≤ T − 1

Vt (θ̂k ) = log(∑J
a=0 exp{zt (a)θ̂u,k + βF̂x ,t (a)Vt+1(θ̂k )})
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Nested fixed point (NFXP) algorithm

• We have described the NFXP algorithm is in the context of full MLE.
However, most applications of this algorithm have considered partial MLE.
In this partial MLE approach, the parameters θf in the transition
probabilities are estimated by maximizing the partial likelihood
∑N
i=1 ∑Ti−1

t=1 log fx (xi ,t+1|ait , xit , θf ). This likelihood is very standard and
does not require one to solve the DP problem. Given this estimator of θf ,
then the parameters in the utility function, θu , are estimated using the
NFXP algorithm applied to the partial likelihood:

∑N
i=1 ∑Ti

t=1 O logΛ(ait |ṽ(., xit , θu , θ̂f ))

• This two-step approach can simplify very much the estimation problem
in models with many parameters in the transition probabilities. For
instance, this partial likelihood approach was used by Rust and Phelan
(1997) in the model that we have described in Example 1.
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Estimation Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm

• The main advantages of the NFXP algorithm are its conceptual
simplicity and, more importantly, that it provides the MLE which is the
most effi cient estimator asymptotically under the assumptions of the
model.

• The main limitation of this algorithm is its computational cost. In
particular, the DP problem should be solved for each trial value of the
structural parameters.
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Estimation Sequential (Hotz-Miller) estimators

Sequential (Hotz-Miller) estimators

• Given the cost of solving some DP problems, this characteristic of the
algorithm limits the range of applications where it can be applied.

• Hotz and Miller (1993) observed that, under the assumptions of Rust
model, it is not necessary to solve the DP problem, even once, in order to
estimate the structural parameters.

• A key idea in their method is that, using nonparametric estimates of
choice and transition probabilities, it is possible to obtain a closed-form
representation of the value function Vε(θ) for values of θ around the true
vector of structural parameters.
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Sequential (Hotz-Miller) estimators

• This closed-form expression is particularly simple (and useful for
estimation) in models where the utility function is linear-in-parameters.
For this reason, here we illustrate Hotz-Miller method for this subclass of
Rust models.

• For any θ, the vector of values Vε(θ) can be written as

Vε(θ) =W(P(θ), θf )
(

θu
1

)

* P(θ) ≡ {P(a|x , θ) : (a, x) ∈ A× X} is the vector of
conditional choice probabilities, for every state and action,
associated with the optimal decision rule given θ;
* W(P, θf ) ≡ {W(x ,P, θf ) : x ∈ X} is a valuation operator
that is defined for any arbitrary value of (P, θf ).
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Estimation Sequential (Hotz-Miller) estimators

Sequential (Hotz-Miller) estimators

• Each row of W(P, θf ) is associated with a value of x and it collects the
expected and discounted sum of current and future z ′s and ε′s which may
occur along all possible future histories originating from current state x .

• The expected future z ′s and ε′s are calculated under the assumption
that the individual behaves today and in the future according to the choice
probabilities in P. This valuation operator is defined as the unique solution
of the following contraction mapping:

W(P, θf ) = ∑J
a=0 P(a) ∗ ([z(a), e(a,P)] +β Fx (a) W(P, θf ))

* P(θ) ≡ {P(a|x , θ) : (a, x) ∈ A× X} is the vector of conditional choice
probabilities, for every state and action, associated with the optimal
decision rule given θ;

* P(a) is the column vector of choice probabilities
{P(a|x) : x ∈ X};
* e(a,P) = {e(a|x ,P) : x ∈ X}, where e(a|x ,P) is the
expectation of εit (a) conditional on xit = x and on alternative a
being the optimal choice, i.e.,

e(a|x ,P) ≡ E (εit (a)|xit = x , α(x , εit ) = a)
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Sequential (Hotz-Miller) estimators

• This conditional expectation is a function of a, P, and the distribution
Gε only. The particular functional form of e(a|x ,P) depends on the
probability distribution Gε. A well known case where e(a|x ,P) has a
closed-form expression is when ε′s are independently and identically
distributed with extreme value distribution. In that case, e(a|x ,P) is equal
to the Euler’s constant minus log (P(a|x)).

• Let θ0 = (θ0u , θ
0
f ) be the true value of θ in the population of individuals

under study.

• Let P0 be the conditional choice probabilities in the population.
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Estimation Sequential (Hotz-Miller) estimators

Sequential (Hotz-Miller) estimators

• If we knew (P0, θ0f ), we could obtain the conditional choice values
differences ṽ(a, x , θ0) as a linear function of θ0u .

ṽ(a, x , θ0) = z̃(a, x ;P0, θ0f ) θ0u + ẽ(a, x ;P
0, θ0f ) (1)

where:

z̃(a, x ;P0, θ0f ) ≡ z(a, x)− z(0, x)

+β ∑x ′ [fx (x
′|a, x , θ0f )− fx (x ′|0, x , θ0f )]Wz (x ′,P0, θ0f )

and
ẽ(a, x ;P0, θ0f ) ≡

β ∑x ′ [fx (x
′|a, x , θ0f )− fx (x ′|0, x , θ0f )]We (x ′,P0, θ0f )

with Wz (P, θf ) and We (P, θf ) being the columns of W(P, θf ) associated
with z and with e, respectively.
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Sequential (Hotz-Miller) estimators

• Though, we do not (P0, θ0f ), we can estimate consistently without
having to solve the DP problem.

* Consistent estimates of transition probabilities can be obtained
using a (partial) MLE of θ0f that maximizes the (partial)
likelihood ∑n

i=1 ∑Ti−1
t=1 log fx (xi ,t+1|ait , xit , θf ).

* Conditional choice probabilities can be estimated using
nonparametric regression methods (i.e.,
P0(a|x) = E (I{ait = a}|xit = x)) such as a Nadaraya-Watson
kernel estimator or a simple frequency estimator.

• Let P̂0 and θ̂f 0 be the estimators of P0 and θ0f , respectively. Based on
these estimates, Hotz and Miller propose the GMM estimator that solves
in θu the sample moment conditions:

n
∑
i=1

Ti
∑
t=1
Wit

[
ait −Λ

(
ait |{z̃(j , xit ; P̂0)θu + ẽ(j , xit ; P̂0)}

)]
= 0

where Wit is a vector of instruments (i.e., functions of xit).Aguirregabiria () Introduction
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Sequential (Hotz-Miller) estimators

• The main advantage of this estimator is its computational simplicity.
Nonparametric estimation of choice probabilities is a simple task. The
main computational cost comes from the construction of W(P̂0, θ̂f 0)
using the valuation operator. However, W(P̂0, θ̂f 0) is calculated just once
and it remains fixed in the search for the Hotz-Miller estimator. In
contrast, the NFXP algorithm requires one to compute this valuation
operator many times, i.e., several times for each trial value θ

• Previous conventional wisdom was that Hotz-Miller estimator achieved a
significant computational gain at the expense of effi ciency, both in finite
samples and asymptotically. Thus, researchers had the choice between two
extremes: a full solution NFXP-ML estimator with the attendant
computational burden, or the much faster but less effi cient Hotz-Miller
estimator.

• Aguirregabiria and Mira (2002) showed that a pseudo maximum
likelihood (instead of GMM) version of Hotz-Miller estimator is
asymptotically equivalent to partial MLE.Aguirregabiria () Introduction
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Sequential (Hotz-Miller) estimators

• The pseudo maximum likelihood (PML) estimator is defined as the value
of θu that maximizes the pseudo likelihood function:

lPL(θu , P̂0, θ̂f 0) =

∑n
i=1 ∑Ti

t=1 logΛ
(
ait |{z̃(j , xit ; P̂0)θu + ẽ(j , xit ; P̂0)}

)
• The asymptotic variance of this two-step PML estimator is just equal to
the variance of the partial MLE.

• The initial nonparametric estimator of P0 and the PML estimator of θ0u
are asymptotically independent (i.e., E (∂2lPLi /∂θu∂P′) = 0) and therefore
there is not any asymptotic effi ciency loss from using an ineffi cient initial
estimator P0.

Aguirregabiria () Introduction
Carlos III, Madrid June 26, 2017 57 /

160



Estimation Sequential (Hotz-Miller) estimators

Sequential (Hotz-Miller) estimators

• Though the two-step PML estimator is asymptotically equivalent to
partial MLE, the Monte Carlo experiments in Aguirregabiria and Mira
(2002) show that the finite sample bias of the Hotz-Miller estimator can be
much larger than the one of the MLE. Imprecise initial estimates of choice
probabilities do not affect the asymptotic properties of the estimator, but
they can generate serious small sample biases in Hotz-Miller estimator.

• This problem motivated Aguirregabiria and Mira to propose a recursive
extension of the two-step method that they called the Nested Pseudo
Likelihood method and that we describe below.
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Sequential (Hotz-Miller) estimators

• Given the two-step PML estimator of θ0u it is possible to construct
estimates of choice probabilities which exploit the structure of the model.

• By using estimates of choice probabilities that exploit the structure of
the model, one can get estimates of structural parameters with smaller
finite sample bias an variance.

• Let P̂1 = {P̂1(a|x)} such that:

P̂1(a|x) = Λ(a|{z̃(j , x ; P̂0, θ̂f 0)θ̂
PL
u,1 + ẽ(j , x ; P̂0, θ̂f 0) : j ∈ A}

For instance, for the conditional logit model:

P̂1(a|x) =
exp

{
z̃(j , x ; P̂0, θ̂f 0)θ̂

PL
u,1 + ẽ(j , x ; P̂0, θ̂f 0)

}
1+∑J

j=1 exp
{
z̃(j , x ; P̂0, θ̂f 0)θ̂

PL
u,1 + ẽ(j , x ; P̂0, θ̂f 0)

}
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Sequential (Hotz-Miller) estimators

• Given the new estimates P̂1, we can get the valuation operator
W(P, θf ) now evaluated at (P̂1, θ̂f 0), and then obtain new value
differences z̃(a, x ; P̂1, θ̂f 0) and ẽ(a, x ; P̂1, θ̂f 0), a new pseudo likelihood
function lPL(θ, P̂1, θ̂f 0), and a new PML estimator that maximizes this
function, say θ̂

PL
u,2.

• We can proceed in this way an generate a sequence of estimators of
structural parameters and conditional choice probabilities
{θ̂u,K , P̂K : K = 1, 2, ...} such that for any K ≥ 1:

θ̂u,K = argmax
θ∈ˆ

lPL(θ, P̂K−1, θ̂f 0)

and

P̂K (a|x) = Λ(a|{z̃(j , x ; P̂K−1, θ̂f 0)θ̂
PL
u,K + ẽ(j , x ; P̂K−1, θ̂f 0)}
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Sequential (Hotz-Miller) estimators

• All the estimators in this sequence are asymptotically equivalent to
partial MLE and to one-step PML. Therefore, iterating in this procedure
does not provide any asymptotic gain because the initial PML estimator is
already asymptotically effi cient.

• The NPL procedure has two interesting features:
(I) It is an algorithm to compute the MLE which can be
computationally cheaper than NFXP.
(II) It is a method to reduce the bias of the two-step Hotz-Miller
estimator.
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Sequential (Hotz-Miller) estimators

• (I) Upon convergence this procedure provides, exactly, the MLE. This
result holds regardless the initial estimator of P0 is consistent or not. The
NPL procedure can be computationally much cheaper than NFXP. This is
because the number of times that the valuation operator is solved can be
much smaller under the NPL than under NFXP.

• (II) If the NPL is initialized with a consistent estimator of P0, NPL
iterations reduce the finite sample bias and variance of the estimator of θu .
This has been proved formally by Kasahara and Shimotsu (2005) using
higher order expansions for the bias and variance of the sequence of PML
estimators.
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Empirical Applications Patent Renewal Models

Patent Renewal Decisions (PAKES, 1986)

• What is the value of a patent? How to measure it?

• The valuation of patents is very important for: merger & acquisition
decisions; using patents as collateral for loans; value of innovations; value
of patent protection.

• Very few patents are traded, and there is substantial selection. An
"hedonic" approach is very limited.

• The number of citations of a patent is a very imperfect measure of
patent value.

• Multiple patents are used in the production of multiple products, and in
generating new patents. A "production function approach" is very
challenging.
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Empirical Applications Patent Renewal Models

Pakes (1986)

• Pakes proposes using information on patent renewal fees together with a
Reveal Preference approach to estimate the value of a patent.

• Every year, a patent holder should pay a renewal fee to keep her patent.

• If the patent holder decides to renew, it is because her expected value of
holding the patent is greater than the renewal fee (that is publicly known).

• Therefore, observed decisions on patent renewal / non renewal contain
information on the value of a patent.
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Empirical Applications Patent Renewal Models

Model: Basic Framework

• Consider a patent holder who has to decide whether to renew her patent
or not. We index patents by i .

• This decision should be taken at ages t = 1, 2, ...,T where T < ∞ is the
regulated term of a patent (e.g., 20 years in US, Europe, or Canada).

• Patent regulation also establishes a sequence of Renewal Fees
{ct : t = 1, 2, ...,T}. This sequence of renewal fees is deterministic such
that a patent owner knows with certainty future renewal fees.

• The schedule {ct : t = 1, 2, ...,T} is typically increasing in patent age t.
It may go from a few hundred dollars to a few thousand dollars.
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Empirical Applications Patent Renewal Models

Model: Basic Framework

• A patent generates a sequence of profits {πit : t = 1, 2, ...,T}.

• At age t, a patent holder knows current profit πit but has uncertainty
about future profits πi ,t+1, πi ,t+2, ...

• The evolution of profits depends on the following factors:

(1) the initial "quality" of the idea/patent;

(2) innovations (new patents) which are substitutes of the patent and
therefore, depreciate its value or even make it obsolete;

(3) innovations (new patents) which are complements of the patent and
therefore, increase its value.
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Empirical Applications Patent Renewal Models

Model: Stochastic process of patent profits

• Pakes proposes the following stochastic process for profits, that tries to
capture the three forces mentioned above.

• A patent profit at the first period is a random draw from a log-normal
distribution with parameters µ1 and σ1:

ln(πi1) ∼ N(µ1, σ21)

• After the first year, profit evolves according to the following formula:

πi ,t+1 = τi ,t+1 max
{

δ πit ; ξ i ,t+1
}

• δ ∈ (0, 1) is the depreciation rate. In the absence of unexpected shocks,
the value of the patent depreciates according to the rule: πi ,t+1 = δ πit .
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Empirical Applications Patent Renewal Models

Model: Stochastic process of patent profits

πi ,t+1 = τi ,t+1 max
{

δ πit ; ξ i ,t+1
}

• τi ,t+1 ∈ {0, 1} is a binary variable that represents that the patent
becomes obsolete (i.e., zero value) due to competing innovations. The
probability of this event is a decreasing function of profit at previous year:

Pr(τi ,t+1 = 0 | πit , t) = exp{−λ πit}

• The largest is the profit of the patent at age t, the smallest is the
probability that it becomes obsolete.
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Empirical Applications Patent Renewal Models

Model: Stochastic process of patent profits

πi ,t+1 = τi ,t+1 max
{

δ πit ; ξ i ,t+1
}

• Variable ξ i ,t+1 represents innovations which are complements of the
patent and increase its profitability.

• ξ i ,t+1 has an exponential distribution with mean γ and standard
deviation φtσ:

p(ξ i ,t+1 | πit , t) =
1

φtσ
exp

{
−

γ+ ξ i ,t+1
φtσ

}

• If φ < 1, the variance of ξ i ,t+1 declines over time (and the
E (max

{
x ; ξ i ,t+1

}
) value declines as well).

• If φ > 1, the variance of ξ i ,t+1 increases over time (and the
E (max

{
x ; ξ i ,t+1

}
) value increases as well).
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Model: Stochastic process of patent profits

• Under this specification, profits {πit} follow a non-homogeneous
Markov process with initial density πi1 ∼ lnN(µ1, σ21), and transition
density function:

fε (πit+1|πit , t) =



exp{−λ πit} if πit+1 = 0

Pr (ξ it+1 < δπit | πit , t) if πit+1 = δπit

1
φtσ

exp
{
−γ+ πit+1

φtσ

}
if πit+1 > δπit

• The vector of structural parameters is θ = (λ, δ,γ, φ, σ, µ1, σ1).
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Empirical Applications Patent Renewal Models

Model: Dynamic Decision Model

• Vt (π) is the value of an active patent of age t and current profit π.

• Let ait ∈ {0, 1} be the decision variable that represents the event "the
patent owner decides to renew the patent at age t".

• The value function is implicitly defined by the Bellman equation:

Vt (πit ) = max
{
0 ; πit − ct + β

∫
Vt+1(πi ,t+1) fε(dπi ,t+1 | πit , t)

}
with Vt (πit ) = 0 for any t ≥ T + 1.

• The value of not renewal (ait = 0) is zero. The value of renewal
(ait = 1) is the current profit πit − ct plus the expected and discounted
future value.
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Empirical Applications Patent Renewal Models

Model: Solution (Backwards induction)

• We can use backwards induction to solve for the sequence of value
functions {Vt} and optimal decision rules {αt}:

• Starting at age t = T , for any profit π:

VT (π) = max { 0 ; π − cT }
and

αT (π) = 1 { π − cT ≥ 0 }

• Then, for age t < T , and for any profit π:

Vt (π) = max
{
0 ; π − ct + β

∫
Vt+1(π′) fε(dπ′|π, t)

}
and

αt (π) = 1
{

π − ct + β
∫
Vt+1(π′) fε(dπ′|π, t) ≥ 0

}
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Empirical Applications Patent Renewal Models

Model: Solution - A useful result

• Given the form of fε(π′|π, t), the future and discounted expected value,
β
∫
Vt+1(π′) fε(dπ′|π, t), is increasing in current π.

• This implies that the solution of the DP problem can be described as a
sequence of threshold values for profits {π∗t : t = 1, 2, ...,T} such that
the optimal decision rule is:

αt (π) = 1 { π ≥ π∗t }

• π∗t is the level of current profits that leaves the owner indifferent
between renewing the patent or not: Vt (π∗t ) = 0.
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Model: Solution - A useful result

• These threshold values are obtained using backwards induction:

• At period t = T :
π∗T = cT

• At period t < T , π∗t is the unique solution to the equation:

π∗t − ct + E
(

T

∑
s=t+1

βs−t max{ 0 ; πt+1 − π∗t+1 } | πt = π∗t

)
= 0

• Solving for a sequence of threshold values is much simpler that solving
for a sequence of value functions.
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Data

• Sample of N patents with complete (uncensored) durations
{di : i = 1, 2, ...N}, where di ∈ {1, 2, ...,T + 1} is patent i’s duration or
age at its last renewal period.

• The information in this sample can be summarized by the empirical
distribution of {di}:

p̂(t) =
1
N

N

∑
i=1
1{di = t}
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Estimation: Likelihood

• The log-likelihood function of this model and data is:

l(θ) =
N

∑
i=1

T+1

∑
t=1

1{di = t} ln Pr(di = t|θ)

= N
T+1

∑
t=1

p̂(t) lnP(t|θ)

where:
P(t|θ) = Pr (πs ≥ π∗s for s ≤ t − 1,and πt < π∗t | θ)

=

∞∫
π∗1

...

∞∫
π∗t−1

π∗t∫
0

dF (π1, ...,πt−1,πt )

• Computing P(t|θ) involves solving an integral of dimension t. For t
greater than 4 or 5, it is computationally very costly to obtain the exact
value of these probabilities. Instead, we approximate these probabilities
using Monte Carlo simulation.Aguirregabiria () Introduction
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Estimation: Simulation of Probabilities

• For a given value of θ, let {πsimt (θ) : t = 1, 2, ...,T} be a simulated
history of profits for patent i .

• Suppose that, for a given value of θ, we simulate R independent profit
histories. Let {πsimrt (θ) : t = 1, 2, ...,T ; r = 1, 2, ...,R} be these histories.

• Then, we can approximate the probability P(t|θ) using the following
simulator:

P̃R (t|θ) =
1
R

R

∑
r=1

1{πsimrs (θ) ≥ π∗s for s ≤ t − 1,and πsimrt < π∗t }
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Estimation: Simulation-Based Estimation

• The estimator of θ (Simulated Method of Moments estimator) is the
value that solves the system of T equations: for t = 1, 2, ...T :

1
N

N

∑
i=1

[
1{di = t} − P̃R ,i (t|θ)

]
= 0

where the subindex i in the simulator P̃R ,i (t|θ) indicates that for each
patent i in the sample we draw R independent histories and compute
independent simulators.

• Effect of simulation error. Note that P̃R ,i (t|θ) is unbiased such that
P̃R ,i (t|θ) = P(t|θ) + ei (t, θ), where ei (t, θ) is the simulation error. Since
the simulation errors are independent random draws:

1
N

N

∑
i=1
ei (t, θ)→p 0 and

1√
N

N

∑
i=1
ei (t, θ)→d N(0,VR )

The estimator is consistent an asymptotically normal for any R. The
variance of the estimator declines with R.Aguirregabiria () Introduction
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Identification

• Since there are only 20 different values for the renewal fees {ct} we can
at most identify 20 different points in the probability distribution of patent
values.

• The estimated distribution at other points is the result of interpolation
or extrapolation based on the functional form assumptions on the
stochastic process for profits.

• It is important to note that the identification of the distribution of
patent values is NOT up to scale but in dollar values.

• For a given patent of with age t, all what we can say is that: if ait = 0 ,
then Vit < V (π∗t ); and if ait = 1 , then Vit ≥ V (π∗t ).
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Empirical Questions

• The estimated model can be used to address important empirical
questions.

• Valuation of the stock of patents. Pakes uses the estimated model to
obtain the value of the stock of patents in a country.

• According to the estimated model, the value of the stock of patents in
1963 was $315 million in France, $385 million in UK, and $511 in Germany.

• Combining these figures with data on R&D investments in these
countries, Pakes calculates rates of return of 15.6%, 11.0% and 13.8%,
which look like quite reasonable.
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Empirical Questions

• Factual policies. The estimated model shows that a very important
part of the observed between-country differences in patent renewal can be
explained by differences in policy parameters (i.e., renewal fees and
maximum length).

• Counterfactual policy experiments. The estimated model can be used
to evaluate the effects of policy changes (in renewal fees and/or in
maximum length) which are not observed in the data.
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Temporary sales and inventories

• Recent empirical papers show that temporary sales account for
approximately half of all price changes of retail products in US: Hosken
and Reiffen (RAND, 2004); Nakamura and Steinsson (QJE, 2008);
Midrigan (Econometrica, 2011).

• Understanding the determinants of temporary sales is important to
understand price stickiness and price dispersion, and it has important
implications on the effects of monetary policy.

• It has also important implications in the study of firms’market power
and competition.

• Different empirical models of sales promotions: Slade (1998)
[Endogenous consumer loyalty], Aguirregabiria (1999) [Inventories],
Pesendorfer (2002) [Intertemporal price discrimination], and Kano (2013).
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Temporary Sales and Firm Inventories

• This paper studies how retail inventories, and in particular (S,s)
inventory behavior, can explain both price dispersion and sales promotions
in retail markets.

• Three factors are key for the explanation provided in this paper:

(1) Fixed (lump-sum) ordering costs, that generates (S,s) inventory
behavior.

(2) Demand uncertainty.
(3) Sticky prices (Menu costs) that, together with demand

uncertainty, creates a positive probability of excess demand (stockout).
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Model: Basic framework

• Consider a retail firm selling a product. We index products by i .

• Every period (month) t the firm decides the retail price and the quantity
of the product to order to manufacturers/wholesalers

• Monthly sales are the minimum of supply an demand:

yit = min { dit ; sit + qit }

• yit = sales in physical units
• dit = demand
• sit = inventories at the beginning of month t
• qit = orders (and deliveries) during month t
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Demand and Expected sales

• The firm has uncertainty about current demand:

dit = deit exp (ξ it )

• deit = expected demand
• ξ it = zero mean demand shock unknown to the firm at t.

• Therefore, expected sales are:

y eit =
∫
min {deit exp (ξ) ; sit + qit } dFξ(ξ)

• Assume monopolistic competition. Expected Demand depends on the
own price, pit , and a demand shock ωit . The functional form is isoelastic:

deit = exp {γ0 − γ1 ln(pit ) +ωit }

where γ0 and γ1 > 0 are parameters.
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Price elasticity of expected sales

• Demand uncertainty has important implications for the relationship
between prices and inventories.

• The price elasticity of expected sales is a function of the
supply-to-expected-demand ratio (sit + qit )/deit :

ηy e |p ≡
−∂y e

∂p
p
y e

= −
[∫
I {de exp (ξ) ; s + q } dFξ(ξ)

] ∂de

∂p
p
y e

= γ1 Fξ

(
log
[
s + q
de

])
de

y e

• And we have that:

ηy e |p −→


γ1 as (s + q)/de −→ ∞

0 as (s + q)/de −→ 0
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Price elasticity of expected sales

ηy e |p = γ1 Fξ

(
log
[
s + q
de

])
de

y e

[FIGURE: ηy e |p increasing in
s + q
de

, with asymptote at γ1]

• When the supply-to-expected-demand ratio is large, the probability of
stockout is very small and y e ' de , so the elasticity of expected sales is
just the elasticity of demand.

• However, when the supply-to-expected-demand ratio is small, the
probability of stockout is large and the elasticity of expected sales can be
much lower than the elasticity of demand.
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Markup and inventories (myopic case)

• This has potentially important implications for the optimal price of an
oligopolistic firm.

• To give some intuition, consider the pricing decision of the monopolistic
firm without forward-looking behavior. That optimal price is:

p − c
p

=
1

ηy e |p
OR
p − c
c

=
1

ηy e |p − 1

• Variability over time in the supply-to-expected-demand ratio can
generate significant fluctuations in price-cost margins. It can also explain
temporary sales promotions.

• That can be the case under (S , s) inventory behavior.
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Evolution of inventories and price without menu cost

Aguirregabiria () Introduction
Carlos III, Madrid June 26, 2017 89 /

160



Empirical Applications Temporary sales and inventories

Evolution of inventories and price with menu cost

Aguirregabiria () Introduction
Carlos III, Madrid June 26, 2017 90 /

160



Empirical Applications Temporary sales and inventories

Empirical Application

• The paper investigates this hypothesis using a data from a supermarket
chain, with rich information on prices, sales, inventories, orders, and
wholesale prices for many different products.

• Reduced form estimations present evidence that supports the hypothesis:
(1) Inventories of many products follow (S,s) cycles.
(2) Price (and markup) declines beginning of an (S,s) cycle (when an

new order is made) and increases monotonically during the cycle until the
next order.

• I estimate the parameters in the profit function (demand parameters,
ordering costs, inventory holding costs) and use the estimated model to
analyze how much of price variation and temporary sales promotions can
be explained by firm inventories.
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Profit function

• Expected current profits are equal to expected revenue, minus
ordering costs, inventory holding costs and price adjustment costs:

πit = pit y eit −OCit − ICit − PACit

• OCit = ordering costs
• ICit = inventory holding costs
• PACit = price adjustment (menu) costs

• Ordering costs:

OCit =


0 if qit = 0

Foc + εocit − cit qit if qit > 0

• Foc = fixed (lump-sum) ordering cost. Parameter.
• εocit = zero mean shock in the fixed ordering cost.
• cit = wholesale price
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• Inventory holding costs:

ICit = α sit

• Menu costs:

PACit =



0 if pit = pi ,t−1

F (+)mc + ε
mc (+)
it if pit > pi ,t−1

F (−)mc + ε
mc (−)
it if pit < pi ,t−1

• F (+)mc and F (−)mc are price adjustment cost parameters
• ε

mc (+)
it and ε

mc (−)
it are zero mean shocks in menu costs
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State variables

• The state variables of this DP problem are:sit , cit , pi ,t−1, ωit︸ ︷︷ ︸
xit (obs)

, εocit , ε
mc (+)
it , ε

mc (+)
it︸ ︷︷ ︸

εit (unobs)


• The decision variables are qit and ∆pit ≡ pit − pi ,t−1. We use ait to
denote (qit ,∆pit ).

• Let V (xit , εit ) be the value of the firm associated with product i . This
value function solves the Bellman equation:

V (xit , εit ) = max
ait


π(ait , xit , εit )

+β
∫
V (xi ,t+1, εi ,t+1) dF (xi ,t+1, εi ,t+1|ait , xit , εit )


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Discrete Decision variables

• Most of the variability of qit and ∆pit in the data is discrete. For
simplicity, we assume that these variables have a discrete support.

qit ∈ {0 , κi}

∆pit ∈ {0 , δ
(+)
i , δ

(−)
i }

where κi > 0, δ
(+)
i > 0, and δ

(−)
i < 0 are parameters.

• Therefore, the set of choice alternatives at every period t is:

ait ∈ A =
{
(0, 0), (0, δ(+)i ), (0, δ(−)i ), (κi , 0), (κi , δ

(+)
i ), (κi , δ

(−)
i )

}
• The transition rules for the state variables are:

si ,t+1 = sit + qit − yit
pit = pi ,t−1 + ∆pit
ci ,t+1 ∼ AR(1)
ωi ,t+1 ∼ AR(1)

εit ∼ i .i .d .Aguirregabiria () Introduction
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(Integrated) Bellman Equation

• The components of εit are independently and extreme value distributed
with dispersion parameter σε.

• Therefore, as in Rust (1987), the integrated value function V̄ (xit ) is the
unique fixed point of the integrated Bellman equation:

V̄ (xit ) = σε ln

(
∑
a∈A

exp
{
v(a, xit )

σε

})

where:

v(a, xit ) = π̄(a, xit ) + β ∑
xi ,t+1

V̄ (xi ,t+1) fx (xi ,t+1|a, xit )
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Discrete choice profit function

• π̄(a, xit ) is the part of current profit which does not depend on εit :

π̄(a, xit ) =



Rit (0, 0)− α sit if a = (0, 0)

Rit (0, δ
(+)
i )− α sit − F (+)mc if a = (0, δ(+)i )

Rit (0, δ
(−)
i )− α sit − F (−)mc if a = (0, δ(−)i )

Rit (κi , 0)− α sit − Foc − citκi if a = (κi , 0)

Rit (κi , δ
(+)
i )− α sit − Foc − citκi − F (+)mc if a = (κi , δ

(+)
i )

Rit (κi , δ
(−)
i )− α sit − Foc − citκi − F (−)mc if a = (κi , δ

(−)
i )

where Rit (., .) is the expected revenue function.
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Some predictions of the model

• Fixed ordering cost Foc generate infrequent orders: (S, s) inventory
policy.

• (S , s) inventory behavior, together demand uncertainty (i.e., optimal
prices depend on the supply-to-expected demand ratio) generate a cyclical
pattern in the price elasticity of sales.

• Prices decline significantly when an order is placed (sales promotion).

• This price decline and the consequently inventory reduction generate a
price increase.

• Then, as inventories decline between two orders, prices tend to increase.
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Data

• Data from the central warehouse of a supermarket chain in the Basque
Country (Spain).

• Monthly data: period January 1990 to May 1992.

Aguirregabiria () Introduction
Carlos III, Madrid June 26, 2017 100 /

160



Empirical Applications Temporary sales and inventories

Data: Products
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Descriptive Statistics
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Reduced Form estimation of decision rules
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Evolution of markup between two orders
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Estimation of Structural Parameters
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Counterfactual Experiments
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Demand of Storable Products and Intertemporal Price
Discrimination

• Erdem, Imai, and Keane (2003): "Brand and Quantity Choice Dynamics
under Price Uncertainty," Quantitative Marketing and Economics

• Hendel and Nevo (2006): "Measuring the Implications of Sales and
Consumer Inventory Behavior," Econometrica.

• Hendel and Nevo (2013): "Intertemporal Price Discrimination in
Storable Goods Markets," American Economic Review.
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Introduction: Intertemporal Price Discrimination

• Consumer heterogeneity (in preferences, income, transportation,
search, and storage costs) generate firm incentives to price discriminate.

• Consumer types are typically unobservable to firms. Therefore, firms
need to design screening mechanisms to achieve separation of consumer
types.

• Intertemporal Price Discrimination (IPD) is a specific screening
mechanism that firms can use in markets of durable products or
storable products.

• In the case of storable products, IPD can take the form of temporary
sales (high-low pricing).
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Introduction: Consumers Stockpiling

• Consumers stockpiling behavior can introduce significant differences
between short-run and long-run responses of demand to price changes.

• The response of demand to a price change depends on consumers’
expectations/beliefs about how permanent the price change is.

• If a price reduction is perceived by consumers as very transitory (e.g., a
sales promotion), then a significant proportion of consumers may choose
to increase purchases today, stockpile the product and reduce their
purchases during future periods when the price will be higher.

• If the price reduction is perceived as permanent, this intertemporal
substitution of consumer purchases will be much lower or even zero.
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Introduction: Consumers Stockpiling (2)

• Ignoring consumers’stockpiling and forward-looking behavior can
introduce serious biases in estimated own- and cross- price demand
elasticities.

• These biases can be particularly serious when the time series of prices is
characterized by temporary sales.

• The price fluctuates between a (high) regular price and a (low)
promotion price. The promotion price is infrequent and last only few days,
after which the price returns to its "regular" level. Most sales are
concentrated in the very few days of promotion prices.
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Introduction: Biases of ignoring dynamics

• Static demand models assume that all the substitution is either between
brands or product expansion. They rule out intertemporal substitution.

• This can imply serious biases in the estimated demand elasticities. With
High-Low pricing, we expect the static model to over-estimate the
own-price elasticity.

• The bias in the estimated elasticities implies also a biased in the
estimated Price Cost Margins (PCM). We expect PCMs to be
underestimated. These biases have serious implications on policy analysis,
such as merger analysis and antitrust cases.

Aguirregabiria () Introduction
Carlos III, Madrid June 26, 2017 111 /

160



Empirical Applications Dynamic Demand of Storable Products

Introduction

• Here we discuss two papers that have estimated dynamic structural
models of demand of differentiated products using consumer level data
(scanner data): Hendel and Nevo (Econometrica, 2006) and Erdem, Keane
and Imai (QME, 2003).

• These papers extend microeconometric discrete choice models of
product differentiation to a dynamic setting, and contains useful
methodological contributions.

• Their empirical results show that ignoring the dynamics of demand can
lead to serious biases.

• Also the papers illustrate how the use of micro level data on
household choices (in contrast to only aggregate data on market shares)
is key for credible identification of the dynamics of differentiated product
demand.
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Outline

1. Introduction

2. Data and descriptive evidence

3. Model

4. Estimation
4.1. Estimation of Brand Choice
4.2. Estimation of Quantity Choice

5. Empirical Results
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Type of Data (Consumer Scanner Data)

• We assume that the researcher has access to consumer level data.

• Such data is widely available from several data collection companies and
recently researchers in several countries have been able to gain access to
such data for academic use.

• The data include the history of shopping behavior of a consumer over a
period of one to three years.

• The researcher knows whether a store was visited, if a store was visited
then which one, and what product (brand and size) was purchased and at
what price.

• From the view point of the model, the key information that is not
observed is consumer inventory and consumption decisions.
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Dataset in Hendel-Nevo (2006)

• Hendel and Nevo use consumer-level scanner data from Dominicks, a
supermarket chain that operates in the Chicago area.

• The dataset comes from 9 supermarket stores and it covers the period
June 1991 to June 1993.

• Purchases and price information is available in real (continuous) time
but for the analysis in the paper it is aggregated at weekly frequency.
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Dataset (structure)

• The dataset has two components: store-level and household-level data.

• Store level data: For each detailed product (brand—size) in each store
in each week we observe the (average) price charged, (aggregate) quantity
sold, and promotional activities.

• Household level data: For a sample of households, we observe the
purchases of households at the 9 supermarket stores: supermarket visits
and total expenditure in each visit; purchases (units and value) of detailed
products (brand-size) in 24 different product categories (e.g., laundry
detergent, milk, etc).

• The paper studies demand of laundry detergent products.
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Descriptive evidence

• Table I in the paper presents summary statistics on household
demographics, purchases, and store visits.
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Descriptive evidence

• Table II in the paper presents the market shares of the main brands of
laundry detergent in the data.

• The market is significantly concentrated, especially the market for
Powder laundry detergent where the concentration ratios are CR1 = 40%,
CR2 = 55%, and CR3 = 65%.

• For most brands, the proportion of sales under a promotion price is
important.

• However, this proportion varies importantly between brands, showing
that different brands have different patterns of prices.
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Descriptive evidence

• H&N present descriptive evidence which is consistent with household
inventory holding. See also Hendel and Nevo (RAND, 2006).

• Though household purchase histories are observable, household
inventories and consumption are unobservable. Therefore, empirical
evidence on the importance of household inventory holding is indirect.

• (a) Time duration since previous purchase has a positive effect on (1)
probability of next purchase and (2) quantity purchased.

• (b) Indirect measures of low storage costs (e.g., house size) are
positively correlated with households’propensity to buy on sale.
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Model: Basic Assumptions

• Main challenge: allow for intertemporal substitution, but also for flexible
substitution patterns between products.

• Every week a household has some level of inventories of the product and
decides:

(a) how much to consume from its inventory;
(b) how much to purchase (if any) of the product,
(c) the brand to purchase.
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Model: Basic Assumptions

• With J brands or products, an unrestricted dynamic deamnd model
includes as state variables: the household inventories of the J products;
and prices of the J products.

• This is impractical using a full-solution method.

• The authors impose important simplifying assumptions to reduce this
very large state space.

• Assumption 1: Consumers care about brand choice when they purchase
the product, but not when they consume or store it.

• Of course, the assumption imposes some restrictions on the
intertemporal substitution between brands, and I will discuss this point too.
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Utility function: Total utility

• The subindex t represents time, the subindex j represents a brand, and
the subindex h represents a consumer or household.

• A household current utility function is:

uh(cht , vht )− Ch(ih,t+1) +mht

• uh(cht , vht ) is the utility from consumption of the storable product;
• Ch(ih,t+1) represents inventory holding costs;
• mht represents utility from product differentiation, and from the
numerary good.
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Utility from Consumption

• uh(cht , vht ) is the utility from consumption of the storable product.

• cht represents consumption (of any brand of laundry detergent).

• vht is a shock in the utility of consumption:

• Utility function from consumption is:

uh(cht , vht ) = γh ln (cht + vht )
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Inventory holding costs

• Ch(ih,t+1) is the household inventory holding cost.

• ih,t+1 is the level of inventory at the end of period t, after consumption
and new purchases.

• Again, inventory does not distinguish brands, such that:

ih,t+1 = iht − cht + qht

• The inventory cost function is:

Ch(ih,t+1) = δ1h ih,t+1 + δ2h [ih,t+1]
2
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Utility from Brand Choice

• mht is the indirect utility function from consumption of the composite
good (outside good) plus the utility from brand choice (i.e., the utility
function in a static discrete model of differentiated product):

mht =
J

∑
j=1

X

∑
x=0

dhjxt
(

βh ajxt − αh pjxt + ξ jxt + εhjxt
)

j ∈ {1, 2, ...., J} is the brand index. x ∈ {0, 1, 2, ...,X} is the index of
quantity choice, where X = 4 is the maximum size.

• Brands with different sizes are standardized such that the same
measurement unit is used in x .

• The variable dhjxt ∈ {0, 1} is a binary indicator for the event "household
h purchases x units of brand j at week t".
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Utility from Brand Choice (2)

• pjxt is the price of x units of brand j at period t. Note that the models
allows for nonlinear pricing, i.e., for some brands and weeks pjxt and
x ∗ pj1t can take different values.

• ajxt is a vector of product characteristics other than price that is
observable to the researcher. In this application, the most important
variables in ajxt are those that represent store-level advertising, e.g.,
display of the product in the store, etc.

• The variable ξ jxt is a random variable that is unobservable to the
researcher and that represents all the product characteristics which are
known to consumers but not in the set of observable variables in the data.
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Utility from Brand Choice (3)

• αh and βh represent the marginal utility of income and the marginal
utility of product attributes in ajxt , respectively.

• As it is well-known in the empirical literature of demand of differentiated
products, it is important to allow for heterogeneity in these marginal
utilities in order to have demand systems with flexible and realistic own
and cross elasticities or substitution patterns.

• Allowing for heterogeneity is simpler with consumer level data than with
aggregate market share data.

• In particular, micro level datasets can include information on a rich set
of household socio-economic characteristics such as income, family size,
age, education, gender, occupation, house-type, etc, that can be included
as observable variables that determine the marginal utilities αh and βh.

• That is the approach in Hendel and Nevo’s paper.
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Utility from Brand Choice (4)

• Finally, εhjxt is a consumer idiosyncratic shock that is independently and
identically distributed over (h, j , x , t) with an extreme value type 1
distribution.

• This is the typical logit error that is included in most discrete models of
demand of differentiated products.

• Note that while εhjxt vary over individuals, ξ jxt do not.
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Dynamic decision model

• Let pt be the vector of product characteristics, observable or
unobservable, for all the brands and sizes at period t:

pt ≡
{
pjxt , ajxt , ξ jxt : j = 1, 2, ..., J and x = 1, 2, ...,X

}
• Every week t, the household knows his level of inventories, iht , observes
product attributes pt , and idiosyncratic shocks in preferences vht and εht .

• Given this information, the household decides consumption of the
storable product, cht , and how much to purchase and which product.

• The household makes this decision to maximize his expected and
discounted stream of current and future utilities,

Et

(
∞

∑
s=0

δs [uh(cht+s , vht+s )− Ch(ih,t+s+1) +mht+s ]
)

where δ is the discount factor.
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Dynamic decision model (2)

• The vector of state variables of this DP problem is {iht , vht , εht , pt}.
The decision variables are cht and dht .

• To complete the model we need to make some assumptions on the
stochastic processes of the state variables.

• The idiosyncratic shocks vht and εht are assumed iid over time.

• The vector of product attributes pt follows a Markov processes.

• Finally, consumer inventories iht has the obvious transition rule:

ih,t+1 = iht − cht +
(

∑J
j=1 ∑X

x=0 dhjxt x
)

where ∑J
j=1 ∑X

x=0 dhjxt x represents the units of the product purchased by
household h at period t.
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Dynamic decision model (3)

• Let Vh(sht ) be the value function of a household, where sht is the vector
of state variables (iht , vht , εht , pt ).

• A household decision problem can be represented using the Bellman
equation:

Vh (sht ) = max
{cht ,dht}

 uh(cht , vht )− Ch(ih,t+1) +mht

+δ E (Vh (sht+1) | sht , cht , dht )



• The expectation E (. | sht , cht , dht ) is over the distribution of
sht+1 conditional on (sht , cht , dht ).

• The solution of this DP problem implies optimal decision rules for
consumption and purchasing decisions: cht = c∗h (sht ) and dht = d

∗
h (sht )

where c∗h (.) and d
∗
h (.) are the decision rules.
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Estimation of structural parameters

• The optimal decision rules c∗h (.) and d∗h (.) depend on the structural
parameters of the model: the parameters in the utility function, and in the
transition probabilities of the state variables.

• In principle, we could use the equations cht = c∗h (sht ) and
dht = d∗h (sht ) and our data on (some) decision and state variables to
estimate the parameters of the model.

• To apply this revealed preference approach, there are three main issues
we have to deal with.
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Econometric issues (1)

• The dimension of the state space of sht is extremely large.

• In most applications of demand of differentiated products, there are
dozens (or even more than a hundred) products. Therefore, the vector of
product attributes pt contains more than a hundred continuous state
variables.

• Solving a DP problem with this state space, or even approximating the
solution with enough accuracy using Monte Carlo simulation methods, is
computationally infeasible even with the most sophisticated computer
equipment.

• We will see how Hendel and Nevo propose and implement a method to
reduce the dimension of the state space. The method is based on some
assumptions that we discuss below.
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Econometric issues (2)

• Though we have good data on households purchasing histories,
information on households’consumption and inventories of storable
goods is not available.

• In this application, consumption and inventories, cht and iht , are
unobservable to the researchers.

• A household inventory is a key state variable in a dynamic demand
model of demand of a storable good.

• We will discuss below the approach used by Hendel and Nevo to deal
with this issue, and also the approach used by Erdem, Imai, and Keane
(2003).
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Econometric issues (3)

• As usual in the estimation of a model of demand, we should deal with
the endogeneity of prices.

• Of course, this problem is not specific of a dynamic demand model.
However, dealing with this problem may not be independent of the other
issues mentioned above.
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Reducing the state space

• Given that the state variables (vht , εht ) are independently distributed
over time, it is convenient to reduce the dimension of this DP problem by
using a value function that is integrated over these iid random variables.
The integrated value function is defined as:

V̄h(iht ,pt ) ≡
∫
Vh(sht ) dFε(εht ) dFv (vht )

where Fε and Fv are the CDFs of εht and vht , respectively.

• Associated with this integrated value function there is an integrated
Bellman equation. Given the distributional assumptions on the shocks εht
and vht , the integrated Bellman equation is:

V̄h(iht ,pt ) = max
cht ,dht

∫
ln

 J
∑
j=1
exp


uh(ch, vht )− Ci (iht+1) +mht (j)

+δ E [V̄h(iht+1,pt+1) | iht ,pt , cht , dht ]


 dFv (vht ).

This Bellman equation is a contraction mapping.
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Reducing state space

• Note that the assumption that there is only one inventory, the aggregate
inventory of all the products, and not one inventory for each brand, {ihjt},
has already reduced importantly the dimension of the state space.

• This assumption not only reduces the state space but, as we see below,
it also allows us to modify the dynamic decision problem, which can
significantly aid in the estimation of the model.

• Taken literally, this assumption implies that there is no differentiation in
consumption: the product is homogenous in use.

• Note, that through ξ jxt and εijxt the model allows differentiation in
purchase, as is standard in the IO literature. It is well known that this
differentiation is needed to explain purchasing behavior. This seemingly
creates a tension in the model: products are differentiated at purchase but
not in consumption.
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Quantity and Brand choice

• Two components in dht : quantity choice, xht , and brand choice jht .

• Conditional on a quantity choice, say xht = x , the optimal brand
choice is static:

jht = arg max
j∈{1,2,...,J}

{
βh ajxt − αh pjxt + ξ jxt + εhjxt

}

• Conditional on a quantity choice, the brand choice is a standard static
demand model of differentiated product that we can estimate using
standard assumptions.
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Brand choice

• Note also, that expression that describes the optimal brand choice,

jht = arg max
j∈{1,2,...,J}

{βhajxt − αhpjxt + ξ jxt + εhjxt}

is a "standard" multinomial logit model with the caveat that prices are
endogenous explanatory variables because they depend on the unobserved
attributes in ξ jxt .

• We describe below how to deal with this endogeneity problem.

• With household level data, dealing with the endogeneity of prices is
much simpler than with aggregate data on market shares. More
specifically, we do not need to use Monte Carlo simulation techniques, or
an iterative algorithm to compute the "average utilities" {δjxt}.
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Quantity choice: Inclusive values approach

• If the quantity choice is made before knowledge of the ε′s, then the
component mht of the utility function can be written as:

mht =
X

∑
x=0

ωh(x ,pt )

where ωht (x ,pt ) is the inclusive value:

ωh(x ,pt ) ≡ Eε

(
max

j∈{1,2,...,J}

{
βh ajxt − αh pjxt + ξ jxt + εhjxt

})

= ln

(
J
∑
j=1
exp

{
βh ajxt − αh pjxt + ξ jxt

})
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Inclusive values approach (2)

• Therefore, the dynamic decision problem becomes:

V̄h(iht ,pt ) = max
cht ,xht

∫ 
uh(cht , vht )− Ci (iht+1) +ωh(x ,pt )

+δ E [V̄h(iht+1,pt+1) | iht+1,pt ]

 dFv (vht )

• In words, the problem can seen as a choice between sizes, each with a
utility given by the size-specific inclusive value.

• The dimension of the state space is still very large and includes all
product attributes, because we need these attributes to compute the
evolution of the inclusive value. However, in combination with additional
assumptions the modified problem is easier to estimate.
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Restriction on Process of Inclusive Values

• To reduce the dimension of the state space, Hendel and Nevo (2006)
introduce the following assumption.

• Let ωh(pt ) be the vector with the inclusive values for every possible size
{ωh(x ,pt ) : x = 1, 2, ...,X}.

Assumption: The vector ωh(pt ) is a suffi cient statistic of the
information in pt that is useful to predict ωh(pt+1):

Pr(ωh(pt+1) | pt ) = Pr(ωh(pt+1) | ωh(pt ))
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Restriction on Process of Inclusive Values (2)

• In words, the vector ωh(pt ) contains all the relevant information in pt
to obtain the probability distribution of ωh(pt+1) conditional on pt .

• Instead of all the prices and attributes, we only need a single index for
each size.

• Two vectors of prices that yield the same (vector of) current inclusive
values imply the same distribution of future inclusive values.

• This assumption is violated if individual prices have predictive power
above and beyond the predictive power of ωh(pt ).
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Restriction on Process of Inclusive Values (3)

• The inclusive values can be estimated outside the dynamic demand
model.

• Therefore, the restriction can be tested and somewhat relaxed by
including additional statistics of prices in the state space.

• Note, that ωh(pt ) is consumer specific: different consumers value a
given set of products differently and therefore this assumption does not
further restrict the distribution of heterogeneity.
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Inclusive values approach

• Given this restriction, the integrated value function is V̄h(iht ,ωht ) that
includes only X + 1 variables, instead of 3 ∗ J ∗ X + 1 state variables.

• With X = 4 and J = 50, this means a reduction of the state space from
601 to 5 continuous state variables.
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Estimation of static brand choice model

• Let jht represent the brand choice of household h at period t.

• Under the assumption that there is product differentiation in purchasing
but not in consumption or in the cost of inventory holding, a household
brand choice is a static decision problem.

• Given xht = x , with x > 0, the optimal brand choice is:

jht = arg max
j∈{1,2,...,J}

{
βh ajxt − αh pjxt + ξ jxt + εhjxt

}
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Estimation of static brand choice model

• The estimation of demand models of differentiated products, either
static or dynamic, should deal with two important issues.

• First, the endogeneity of prices. The model implies that pjxt depends on
observed and unobserved products attributes, and therefore pjxt and ξ jxt
are not independently distributed.

• The second issue, is that the model should allow for rich heterogeneity in
consumers marginal utilities of product attributes, βh and αh.

• Using consumer-level data (instead of aggregate market share data)
facilities significantly the econometric solution of these issues.
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Estimation of static brand choice model

• Consumer-level scanner datasets contain rich information on household
socio-economic characteristics.

• Let zh be a vector of observable socio-economic characteristics that have
a potential effect on demand, e.g., income, family size, age distribution of
children and adults, education, occupation, type of housing, etc.

• We assume that βh and αh depend on this vector of household
characteristics:

βh = β0 + (zh − z̄)σβ

αh = α0 + (zh − z̄)σα

• β0 and α0 are scalar parameters that represent the marginal utility of
advertising and income, respectively, for the average household in the
sample.
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Estimation of static brand choice model

• And σβ and σα are K × 1 vectors of parameters that represent the effect
of household attributes on marginal utilities.

• Therefore, the utility of purchasing can be written as:[
β0 + (zh − z̄)σβ

]
ajxt − [α0 + (zh − z̄)σα] pjxt + ξ jxt + εhjxt

= δjxt + (zh − z̄) σjxt + εhjxt

where
δjxt ≡ β0ajxt − α0pjxt + ξ jxt

σjxt ≡ ajxtσβ − pjxtσα

δjxt is a scalar that represents the utility of product (j , x , t) for the average
household in the sample. σjxt is a vector and each element in this vector
represents the effect of a household attribute on the utility of product
(j , x , t).
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Estimation of static brand choice model

• Given this representation of the brand choice model, the probability that
a household with attributes zh purchases brand j at period t given that he
buys x units of the product is:

Phjxt =
exp {δjxt + (zh − z̄) σjxt}

∑J
k=1 exp {δkxt + (zh − z̄) σkxt}

• Given a sample with a large number of households, we can estimate δjxt
and σjxt for every (j , x , t) in a multinomial logit model with probabilities
{Phjxt}.

• For instance, we can estimate these "incidental parameters" δjxt and σjxt
separately for every value of (x , t).
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Estimation of static brand choice model

• For (t = 1,x = 1) we select the subsample of households in sample who
purchase x = 1 unit of the product at week t = 1. Using this subsample,
we estimate the vector of J(K + 1) parameters {δj11, σj11 : j = 1, 2, ..., J}
by maximizing the multinomial log-likelihood function:

H

∑
h=1

1{xh1 = 1}
J

∑
j=1
1{jh1 = j} lnPhj11

We can proceed in the same way to estimate all the parameters
{δjxt , σjxt}.
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Estimation of static brand choice model

• Then, given these estimates of δjxt and σjxt , we can estimate demand
parameters using an IV approach in the equations:

δ̂jxt ≡ β0 ajxt − α0 pjxt + ξ jxt

σ̂jxt ≡ ajxt σβ − pjxt σα
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Construction of inclusive values

• Once we have estimated (β0, α0, σβ, σα), we can also obtain estimates
of ξ jxt as residuals from the estimated equation.

• We can get also consistent estimates of the marginal utilities βh and αh
as:

β̂h = β̂0 + (zh − z̄)σ̂β

α̂h = α̂0 + (zh − z̄)σ̂α

• Finally, we can get estimates of the inclusive values:

ω̂hxt = ln

(
J
∑
j=1
exp

{
β̂h ajxt − α̂h pjxt + ξ̂ jxt

})
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Construction of inclusive values

• And given the estimated inclusive values ω̂hxt we can estimate the
stochastic process of these state variables.

• H&N propose an estimate a Vector Autoregressive (VAR) models for the
vector of inclusive values.
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Estimation of dynamic quantity choice

• As mentioned above, the lack of data on household inventories is a
challenging econometric problem because this is a key state variable in a
dynamic demand model of demand of a storable good.

• Also, this is not a "standard" unobservable variable in the sense that it
follows a stochastic process that is endogenous. That is, not only
inventories affect purchasing decision, but also purchasing decisions affect
the evolution of inventories.
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Estimation of dynamic quantity choice

• The approach used by Erdem, Imai, and Keane (2003) to deal with this
problem is to assume that household inventories is a (deterministic)
function of "number of weeks (duration) since last purchase", Tht , and
the quantity purchased in the last purchase, x lastht :

iht = fh(x
last
ht ,Tht )

• In general, this assumption holds under two conditions: (1) consumption
is deterministic; and (2) when a new purchase is made, the existing
inventory at the beginning of the week is consumed or scrapped.
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Estimation of dynamic quantity choice

• For instance, suppose that these conditions hold and that the level of
consumption is constant cht = ch. Then,

iht+1 = max
{
0 ; x lastht − ch Tht

}
• The constant consumption can be replace by a consumption rate that
depends on the level of inventories. For instance, cht = λh iht . Then:

iht+1 = max
{
0 ; (1− λh)

Tht x lastht

}
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Estimation of dynamic quantity choice

• Using this approach, the state variable iht should be replaced by the
state variables (x lastht ,Tht ), but the rest of the features of the model
remain the same.

• The parameters ch or λh can be estimated together with the rest of
parameters of the structural model. Also, we may not need to solve for the
optimal consumption decision.
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Estimation of dynamic quantity choice

• There is no doubt that using observable variables to measure inventories
is very useful for the estimation of the model and for identification.

• It also provides a more intuitive interpretation of the identification of the
model.
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Estimation of dynamic quantity choice

• Regarding the identification of storage costs, consider the following
example.

• Suppose we observe two consumers who face the same price process and
purchase the same amount over a relatively long period.

• However, one of them purchases more frequently than the other. This
variation leads us to conclude that this consumer has higher storage costs.

• Therefore, the storage costs are identified from the average duration
between purchases.
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