INCAE PhD SUMMER ACADEMY DYNAMIC GAMES IN EMPIRICAL IO

Lecture 2:

Single-agent dynamic discrete choice: Estimation

Victor Aguirregabiria (University of Toronto)

June 21, 2022

LECTURE 2: Single-agent dynamic discrete choice: Estimation

- 1. Data
- Maximum Likelihood Estimation (MLE): Nexted Fixed Point (NFXP) Algorithm
- 3. Two-Step Hotz-Miller Methods and Finite Dependence

1. Data

DATA

- The researcher has panel data of N individuals (e.g., firms) over T periods of time.
- For each individual i and time t, the researcher observes action y_{it} and vector of state variables \mathbf{x}_{it}

Data =
$$\{ y_{it}, \mathbf{x}_{it} : i = 1, 2, ..., N ; t = 1, 2, ..., T \}$$

• In micro-econometric applications of single-agent models, we typically have that N is large (e.g., hundreds or thousands) and T is small, i.e., short panel.

EXAMPLE: MARKET ENTRY-EXIT

- We have an industry, e.g., supermarket industry.
- Firms operate in local markets, e.g., cities, neighborhoods. That is, consumer demand, output prices, and input prices are determined at the local market level.
- In this context, an "individual" *i* is a combination of a "firm + local market": e.g., Walmart's entry-exit decision in North-East Toronto.
- The dataset consists of $\{y_{it}, \mathbf{x}_{it} : i = 1, 2, ..., N; t = 1, 2, ..., T\}$:
 - y_{it} = indicator that firm-market i is active at period t.
 - \mathbf{x}_{it} = vector of local market characteristics affecting the profit of an active firm, e.g., consumer population, average income, input prices.

2. Maximum Likelihood Estimation: NFXP ALgorithm

ESTIMATION: GENERAL IDEAS

- Given a panel dataset $\{y_{it}, \mathbf{x}_{it}\}$, we are interested in estimating the unknown parameters in the primitives $\{\pi(.), f_{\mathbf{x}}(.), \delta\}$.
- Let θ be the vector of structural parameters. We distinguish three components in this vector:

$$\theta = \{ \theta_{\pi}, \theta_{f}, \delta \}$$

where:

 $heta_{\pi} = ext{parameters in utility function } \pi$

 $heta_f = ext{parameters}$ in transition probability of observable state var.

ESTIMATION OF θ_f

- ullet The parameters $oldsymbol{ heta}_f$ can be estimated separately from parameters $oldsymbol{ heta}_\pi.$
- More specifically, the estimation of parameters θ_f is quite standard as it does not require solving the DP problem.
- **Example.** Market size follows an AR(1) process:

$$s_{it} = \theta_{f,0} + \theta_{f,1} \ s_{i,t-1} + e_{it}.$$

- We can estimate $\theta_{f,0}$ and $\theta_{f,1}$ by OLS in this AR(1) regression eq.
- More generally, given the parametric transition probability function $f_x(\mathbf{x}_{i,t+1}|y_{it},\mathbf{x}_{it};\theta_f)$, we can estimate θ_f by Maximum Likelihood:

$$\widehat{\boldsymbol{\theta}}_{f} = \operatorname{argmax}_{\boldsymbol{\theta}_{f}} \ell_{f}\left(\boldsymbol{\theta}_{f}\right) = \sum_{i=1}^{N} \sum_{t=1}^{T-1} \log f_{x}\left(\mathbf{x}_{i,t+1} \middle| y_{it}, \mathbf{x}_{it}; \boldsymbol{\theta}_{f}\right)$$

MAXIMUM LIKELIHOOD ESTIMATION OF $heta_{\pi}$

- We can estimate θ_{π} by maximizing the likelihood of $(y_{i1},...,y_{iT})$ conditional on $(\mathbf{x}_{i1},...,\mathbf{x}_{iT})$
- This log-likelihood function is:

$$\ell(\boldsymbol{\theta}_{\pi}) = \sum_{i=1}^{N} \log \Pr(y_{i1}, \dots, y_{iT} \mid \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}; \boldsymbol{\theta}_{\pi})$$

$$= \sum_{i=1}^{N} \log \Pr(\alpha(\mathbf{x}_{i1}, \varepsilon_{i1}; \boldsymbol{\theta}_{\pi}) = y_{i1}, \dots, \alpha(\mathbf{x}_{iT}, \varepsilon_{iT}; \boldsymbol{\theta}_{\pi}) = y_{iT})$$

$$= \sum_{i=1}^{N} \sum_{t=1}^{T} \log P(y_{it} | \mathbf{x}_{it}; \boldsymbol{\theta}_{\pi})$$

where $P(y_{it}|\mathbf{x}_{it};\boldsymbol{\theta}_{\pi})$ is the CCP function.

ullet To evaluate $\ell(oldsymbol{ heta}_\pi)$ we need to solve the DP problem for this value $oldsymbol{ heta}_\pi$:

NESTED FIXED POINT ALGORITHM (NFXP)

- The NFXP algorithm is a gradient iterative search method to obtain the MLE of the structural parameters.
- This algorithm nests a BHHH method (outer algorithm), that searches for a root of the likelihood equations, with a value function iteration method (inner algorithm) that solves the DP problem for each trial value of the structural parameters.
- The algorithm is initialized with an arbitrary vector of structural parameters, say θ_{π}^{0} . At BHHH iteration $n \geq 0$:

$$\widehat{\boldsymbol{\theta}}_{\pi}^{n+1} = \widehat{\boldsymbol{\theta}}_{\pi}^{n} + \left(\sum_{i,t} \nabla \log P_{it} \left(\widehat{\boldsymbol{\theta}}_{\pi}^{n}\right) \nabla \log P_{it} \left(\widehat{\boldsymbol{\theta}}_{\pi}^{n}\right)'\right)^{-1} \left(\sum_{i,t} \nabla \log P_{it} \left(\widehat{\boldsymbol{\theta}}_{\pi}^{n}\right)'\right)^{-1}$$

and $\nabla \log P_{it}\left(oldsymbol{ heta}_{\pi}
ight)$ is the gradient of log-CCP with respect to $oldsymbol{ heta}_{\pi}$.

Nested fixed point (NFXP) algorithm (2/4)

 To illustrate this algorithm in more detail, consider a logit model where the utility function is linear in parameters:

$$\pi(y_{it}, \mathbf{x}_{it}, \boldsymbol{\theta}_{\pi}) = \mathbf{z}(y_{it}, \mathbf{x}_{it})' \boldsymbol{\theta}_{\pi}$$

where $\mathbf{z}(y_{it}, \mathbf{x}_{it})$ is a vector of known functions.

For this model, the gradient of log-CCP is:

$$\nabla \log P_{it}(\theta_{\pi}) = \mathbf{z}(y_{it}, \mathbf{x}_{it}) - \sum_{j=0}^{J} P(j|\mathbf{x}_{it}, \theta_{\pi}) \mathbf{z}(j, \mathbf{x}_{it})$$

• The CCP function is:

$$P(y|\mathbf{x}, \boldsymbol{\theta}_{\pi}) = \frac{\exp\left\{\mathbf{z}(y, \mathbf{x})\boldsymbol{\theta}_{\pi} + \delta \; \mathbf{F}_{x}(y, \mathbf{x})'\mathbf{V}^{\sigma}(\boldsymbol{\theta}_{\pi})\right\}}{\sum_{j=0}^{J} \exp\left\{\mathbf{z}(j, \mathbf{x})\boldsymbol{\theta}_{\pi} + \delta \; \mathbf{F}_{x}(j, \mathbf{x})'\mathbf{V}^{\sigma}(\boldsymbol{\theta}_{\pi})\right\}}$$

Nested fixed point (NFXP) algorithm (3/4)

• The vector of values $\mathbf{V}^{\sigma}(\boldsymbol{\theta}_{\pi})$ can be obtained as the unique fixed point of the following Integrated Bellman equation in vector form:

$$\mathbf{V}^{\sigma} = \log \left(\sum_{j=0}^{J} \exp \left\{ \mathbf{z}(j) \boldsymbol{\theta}_{\pi} + \delta \ \mathbf{F}_{\mathbf{x}}(j) \mathbf{V}^{\sigma}
ight\} \right)$$

with $\mathbf{z}(j)$ and $\mathbf{F}_{x}(j)$ are the matrices $\{z(j,x):x\in X\}$ and $\{\mathbf{F}_{x}(j,x):x\in X\}$, respectively.

Nested fixed point (NFXP) algorithm (4/4)

- The NFXP algorithm works as follows.
 - (I) [Inner Algorithm] Given $\widehat{\boldsymbol{\theta}}_{\pi}^{n}$, we obtain the vector $\mathbf{V}^{\sigma}(\widehat{\boldsymbol{\theta}}_{\pi}^{n})$ by successive iterations in the Integrated Bellman equation.
 - **(II)** Given $\widehat{\boldsymbol{\theta}}_{\pi}^{n}$ and $\mathbf{V}^{\sigma}(\widehat{\boldsymbol{\theta}}_{\pi}^{n})$, we construct the CCPs $P(y_{it}|\mathbf{x}_{it},\widehat{\boldsymbol{\theta}}_{\pi}^{n})$ and the gradients of these CCPs using the expression above.
 - (III) [Outer iteration] We apply a BHHH iteration to obtain a new $\widehat{\boldsymbol{\theta}}_{\pi}^{n+1}$.
 - * We proceed in this way until the distance between $\widehat{\theta}_{\pi}^{n+1}$ and $\widehat{\theta}_{\pi}^{n}$ is smaller than a pre-specified convergence constant.

3. Two-Step Hotz-Miller Methods and Finite Dependence

MAIN IDEAS

- The cost of solving some DP problems (the "curse of dimensionality"), limits the range of applications where the NFXP can be applied.
- Hotz and Miller (REStud, 1993) observed that, under standard assumptions in this model, it is not necessary to solve the DP problem, even once, to estimate the structural parameters.
- Hotz-Miller approach is based on two main ideas:
- CCPs can be estimated nonparametrically in a first-step, and these estimates can be used to contruct agent's present discounted values without solving the DP problem.
- 2. A large class of models have a **Finite Dependence** property. This property implies moment conditions that involve CCPs and utilities at only a small number of time periods (sometimes as small as 2).

MAIN IDEAS (2/2)

- Here I present the Finite Dependence version of Hotz-Miller approach, based on Arcidiacono & Miller (2011).
- I present this approach in the context of a dynamic multinomial logit model.

MODEL

Integrated Bellman equation:

$$V^{\sigma}(\mathbf{x}_t) = \log \left[\sum_{y=0}^{J} \exp \left\{ v(y, \mathbf{x}_t) \right\} \right]$$

• where $v(y, \mathbf{x}_t)$ are the **Conditional Choice value functions**:

$$v(y, \mathbf{x}_t) \equiv \pi(y, \mathbf{x}_t) + \delta \sum_{\mathbf{x}_{t+1}} V^{\sigma}(\mathbf{x}_{t+1}) f_{\mathbf{x}}(\mathbf{x}_{t+1}|y, \mathbf{x}_t)$$

• The Conditional Choice Probabilities (CCPs) are:

$$P(y \mid \mathbf{x}_t) = \frac{\exp\{v(y, \mathbf{x}_t)\}}{\sum_{j=0}^{J} \exp\{v(j, \mathbf{x}_t)\}}$$

FINITE DEPENDENCE PROPERTY

• Main idea: Under some conditions, optimal behavior implies that there is a known function that relates CCPs and utility function at periods t and t+1 [more generally, at t, t+1, ..., t+s where s is finite].

$$\mathbb{E}_t\left[G\left(\pi(y_t,\mathbf{x}_t;\boldsymbol{\theta}_\pi),\ P(y_t|\mathbf{x}_t),\ \pi(y_{t+1},\mathbf{x}_{t+1};\boldsymbol{\theta}_\pi),\ P(y_{t+1}|\mathbf{x}_{t+1})\right)\right]=0$$
 where $G(.)$ is known.

- This equation has the same flavor as an Euler equation.
- Suppose that we can estimate the CCPs $P(y_t|\mathbf{x}_t)$ directly from the data, as reduced-form probabilities, without solving the model.
- Then, we can estimate the structural parameters in ; θ_{π} by GMM without having to solve the model even once, and without having to compute any present value.

FINITE DEPENDENCE REPRESENTATION (1/4)

Given the structure of the Logit CCPs, we have that:

$$\log P(0 \mid \mathbf{x}_t) = -\log \left[1 + \sum_{j=1}^{J} \exp \left\{ v(j, \mathbf{x}_t) - v(0, \mathbf{x}_t) \right\} \right]$$

This implies the following expression for the integrated value function:

$$\begin{split} V^{\sigma}(\mathbf{x}_t) &= & \log \left[\sum_{j=0}^{J} \exp \left\{ v\left(j, \mathbf{x}_t\right) \right\} \right] \\ &= & v\left(0, \mathbf{x}_t\right) + \log \left[1 + \sum_{j=1}^{J} \exp \left\{ v\left(j, \mathbf{x}_t\right) - v\left(0, \mathbf{x}_t\right) \right\} \right] \\ &= & v\left(0, \mathbf{x}_t\right) - \ln P\left(0, \mathbf{x}_t\right) \end{split}$$

FINITE DEPENDENCE REPRESENTATION (2/4)

• Second, for any two choice alternatives, say j and k, we have that:

$$\log P(j \mid \mathbf{x}_t) - \log P(k \mid \mathbf{x}_t) = v(j, \mathbf{x}_t) - v(0, \mathbf{x}_t)$$

• Remember that: $v(j, \mathbf{x}) = \pi(y, \mathbf{x}) + \delta \sum_{\mathbf{x}_{t+1}} V^{\sigma}(\mathbf{x}_{t+1}) f_{\mathbf{x}}(\mathbf{x}_{t+1}|y, \mathbf{x})$. Therefore:

$$\begin{aligned} &\log P(j|\mathbf{x}_t) - \log P(k|\mathbf{x}_t) = \pi(j,\mathbf{x}_t) - \pi(k,\mathbf{x}_t) + \\ &+ \delta \sum_{\mathbf{x}_{t+1}} \left[v\left(0,\mathbf{x}_{t+1}\right) - \log P\left(0|\mathbf{x}_{t+1}\right) \right] \left[f_{\mathbf{x}}(\mathbf{x}_{t+1}|j,\mathbf{x}_t) - f_{\mathbf{x}}(\mathbf{x}_{t+1}|k,\mathbf{x}_t) \right] \end{aligned}$$

FINITE DEPENDENCE REPRESENTATION (3/4)

 $\log P(j|\mathbf{x}_t) - \log P(k|\mathbf{x}_t) = \pi(j,\mathbf{x}_t) - \pi(k,\mathbf{x}_t) +$

• Since $v\left(0, \mathbf{x}_{t+1}\right) = \pi\left(0, \mathbf{x}_{t+1}\right) + \delta\sum_{\mathbf{x}_{t+2}} V^{\sigma}(\mathbf{x}_{t+2}) f_{x}(\mathbf{x}_{t+2}|0, \mathbf{x}_{t+1})$, we have that:

$$+\delta \sum_{\mathbf{x}_{t+1}} \left[\pi \left(0, \mathbf{x}_{t+1} \right) - \log P \left(0 | \mathbf{x}_{t+1} \right) \right] \left[f_{x}(\mathbf{x}_{t+1} | j, \mathbf{x}_{t}) - f_{x}(\mathbf{x}_{t+1} | k, \mathbf{x}_{t}) \right]$$

$$+\delta^{2} \sum_{\mathbf{x}_{t+1}} \sum_{\mathbf{x}_{t+2}} V^{\sigma}(\mathbf{x}_{t+2}) \ f_{x}(\mathbf{x}_{t+2} | 0, \mathbf{x}_{t+1}) \ \left[f_{x}(\mathbf{x}_{t+1} | j, \mathbf{x}_{t}) - f_{x}(\mathbf{x}_{t+1} | k, \mathbf{x}_{t}) \right]$$

- There is a general class of dynamic models [one-period finite dependence] where this term is zero.
 - e.g., occupational choice; market entry-exit; machine replacement; dynamic demand of differentiated products; etc.

◆ロト ◆個ト ◆重ト ◆重ト 重 める(*)

FINITE DEPENDENCE REPRESENTATION (4/4)

• Under one-period finite dependence, the following condition holds at every-period t, any \mathbf{x}_t , and any pair (j, k):

$$\begin{aligned} &\log P\left(j|\mathbf{x}_{t}\right) - \log P\left(k|\mathbf{x}_{t}\right) = \pi\left(j, \mathbf{x}_{t}; \boldsymbol{\theta}_{\pi}\right) - \pi\left(k, \mathbf{x}_{t}; \boldsymbol{\theta}_{\pi}\right) \\ &-\delta \sum_{\mathbf{x}_{t+1}} \log P\left(0|\mathbf{x}_{t+1}\right) \left[f_{\mathbf{x}}(\mathbf{x}_{t+1}|j, \mathbf{x}_{t}) - f_{\mathbf{x}}(\mathbf{x}_{t+1}|k, \mathbf{x}_{t})\right] \\ &+\delta \sum_{\mathbf{x}_{t+1}} \pi\left(0, \mathbf{x}_{t+1}; \boldsymbol{\theta}_{\pi}\right) \left[f_{\mathbf{x}}(\mathbf{x}_{t+1}|j, \mathbf{x}_{t}) - f(\mathbf{x}_{t+1}|k, \mathbf{x}_{t})\right] \end{aligned}$$

- This equation provides moment conditions that can be used to estimate consistently the vector of parameters θ_{π} .
- Given a Nonparametric estimator of the reduced-form CCPs $P(j|\mathbf{x}_t)$, we can estimate structural parameters using a simple two-step GMM estimator.

June 21, 2022

EXAMPLE: MARKET ENTRY & EXIT

- $\mathbf{x}_t = (y_{t-1}, s_t); \ \pi(0, \mathbf{x}_t) = 0; \ \pi(1, \mathbf{x}_t) = \theta_1 + \theta_2 s_t + \theta_3 (1 y_{t-1}).$
- This model has the one-period dependence property.
- We have:

$$\begin{split} &\log P\left(1|\mathbf{x}_{t}\right) - \log P\left(0|\mathbf{x}_{t}\right) = \theta_{1} + \theta_{2} \ s_{t} + \theta_{3}(1 - y_{t-1}) \\ &-\delta \sum_{s_{t+1}} \left[\log P\left(0|1, s_{t+1}\right) - \log P\left(0|0, s_{t+1}\right)\right] \ f_{s}(s_{t+1}|s_{t}) \end{split}$$