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Data

DATA

The researcher has panel data of N individuals (e.g., firms) over T
periods of time.

For each individual i and time t, the researcher observes action yit
and vector of state variables xit

Data = { yit , xit : i = 1, 2, ...,N ; t = 1, 2, ...,T }

In micro-econometric applications of single-agent models, we typically
have that N is large (e.g., hundreds or thousands) and T is small,
i.e., short panel.
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Data

EXAMPLE: MARKET ENTRY-EXIT

We have an industry, e.g., supermarket industry.

Firms operate in local markets, e.g., cities, neighborhoods. That is,
consumer demand, output prices, and input prices are determined at
the local market level.

In this context, an ”individual” i is a combination of a ”firm + local
market”: e.g., Walmart’s entry-exit decision in North-East Toronto.

The dataset consists of {yit , xit : i = 1, 2, ...,N; t = 1, 2, ...,T}:
- yit = indicator that firm-market i is active at period t.
- xit = vector of local market characteristics affecting the profit of an
active firm, e.g., consumer population, average income, input prices.
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Maximum Likelihood Estimation – NFXP ALgorithm

————————————————————————————

2. Maximum Likelihood Estimation:

NFXP ALgorithm
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Maximum Likelihood Estimation – NFXP ALgorithm

ESTIMATION: GENERAL IDEAS

Given a panel dataset {yit , xit}, we are interested in estimating the
unknown parameters in the primitives {π(.), fx (.), δ}.

Let θ be the vector of structural parameters. We distinguish three
components in this vector:

θ = { θπ, θf , , δ }

where:
θπ = parameters in utility function π
θf = parameters in transition probability of observable state var.
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Maximum Likelihood Estimation – NFXP ALgorithm

ESTIMATION OF θf

The parameters θf can be estimated separately from parameters θπ.

More specifically, the estimation of parameters θf is quite standard as
it does not require solving the DP problem.

Example. Market size follows an AR(1) process:

sit = θf ,0 + θf ,1 si ,t−1 + eit .

We can estimate θf ,0 and θf ,1 by OLS in this AR(1) regression eq.

More generally, given the parametric transition probability function
fx (xi ,t+1|yit , xit ; θf ), we can estimate θf by Maximum Likelihood:

θ̂f = argmaxθf ℓf (θf ) =
N

∑
i=1

T−1

∑
t=1

log fx (xi ,t+1|yit , xit ; θf )
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Maximum Likelihood Estimation – NFXP ALgorithm

MAXIMUM LIKELIHOOD ESTIMATION OF θπ

We can estimate θπ by maximizing the likelihood of (yi1, ..., yiT )
conditional on (xi1, ..., xiT )

This log-likelihood function is:

ℓ(θπ) =
N

∑
i=1

log Pr (yi1, . . . , yiT | xi1, . . . , xiT ; θπ)

=
N

∑
i=1

log Pr (α(xi1, ε i1; θπ) = yi1, . . . , α(xiT , ε iT ; θπ) = yiT )

=
N

∑
i=1

T

∑
t=1

logP(yit |xit ; θπ)

where P(yit |xit ; θπ) is the CCP function.

To evaluate ℓ(θπ) we need to solve the DP problem for this value θπ.
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Nested fixed point (NFXP) algorithm

NESTED FIXED POINT ALGORITHM (NFXP)

The NFXP algorithm is a gradient iterative search method to obtain
the MLE of the structural parameters.

This algorithm nests a BHHH method (outer algorithm), that
searches for a root of the likelihood equations, with a value function
iteration method (inner algorithm) that solves the DP problem for
each trial value of the structural parameters.

The algorithm is initialized with an arbitrary vector of structural
parameters, say θ0

π. At BHHH iteration n ≥ 0:

θ̂
n+1
π = θ̂

n
π +

(
∑
i ,t

▽ logPit

(
θ̂
n
π

)
▽ logPit

(
θ̂
n
π

)′)−1(
∑
i ,t

▽ logPit

(
θ̂
n
π

))

and ▽ logPit (θπ) is the gradient of log-CCP with respect to θπ.
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Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm (2/4)

To illustrate this algorithm in more detail, consider a logit model
where the utility function is linear in parameters:

π(yit , xit , θπ) = z(yit , xit)
′θπ

where z(yit , xit) is a vector of known functions.

For this model, the gradient of log-CCP is:

▽ logPit (θπ) = z(yit , xit)− ∑J

j=0
P(j |xit , θπ) z(j , xit)

The CCP function is:

P(y |x, θπ) =
exp {z(y , x)θπ + δ Fx (y , x)′Vσ(θπ)}

∑J
j=0 exp {z(j , x)θπ + δ Fx (j , x)′Vσ(θπ)}
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Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm (3/4)

The vector of values Vσ(θπ) can be obtained as the unique fixed
point of the following Integrated Bellman equation in vector form:

Vσ = log
(
∑J

j=0
exp {z(j)θπ + δ Fx (j)V

σ}
)

with z(j) and Fx (j) are the matrices {z(j , x) : x ∈ X} and
{Fx (j , x) : x ∈ X}, respectively.
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Nested fixed point (NFXP) algorithm

Nested fixed point (NFXP) algorithm (4/4)

• The NFXP algorithm works as follows.

(I) [Inner Algorithm] Given θ̂
n
π, we obtain the vector Vσ(θ̂

n
π) by

successive iterations in the Integrated Bellman equation.

(II) Given θ̂
n
π and Vσ(θ̂

n
π), we construct the CCPs P(yit |xit , θ̂

n
π)

and the gradients of these CCPs using the expression above.

(III) [Outer iteration] We apply a BHHH iteration to obtain a

new θ̂
n+1
π .

* We proceed in this way until the distance between θ̂
n+1
π and θ̂

n
π

is smaller than a pre-specified convergence constant.

Victor Aguirregabiria Estimation - Single-Agent June 21, 2022 13 / 23



Two-Step Hotz-Miller Methods
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3. Two-Step Hotz-Miller Methods

and Finite Dependence

————————————————————————————
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Two-Step Hotz-Miller Methods

MAIN IDEAS

The cost of solving some DP problems (the ”curse of
dimensionality”), limits the range of applications where the NFXP
can be applied.

Hotz and Miller (REStud, 1993) observed that, under standard
assumptions in this model, it is not necessary to solve the DP
problem, even once, to estimate the structural parameters.

Hotz-Miller approach is based on two main ideas:

1. CCPs can be estimated nonparametrically in a first-step, and
these estimates can be used to contruct agent’s present discounted
values without solving the DP problem.

2. A large class of models have a Finite Dependence property. This
property implies moment conditions that involve CCPs and utilities at
only a small number of time periods (sometimes as small as 2).
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Two-Step Hotz-Miller Methods

MAIN IDEAS (2/2)

Here I present the Finite Dependence version of Hotz-Miller approach,
based on Arcidiacono & Miller (2011).

I present this approach in the context of a dynamic multinomial logit
model.
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Two-Step Hotz-Miller Methods

MODEL

Integrated Bellman equation:

V σ(xt) = log

[
J

∑
y=0

exp {v (y , xt)}
]

where v (y , xt) are the Conditional Choice value functions:

v (y , xt) ≡ π (y , xt) + δ ∑
xt+1

V σ(xt+1) fx (xt+1|y , xt)

The Conditional Choice Probabilities (CCPs) are:

P(y | xt) =
exp {v (y , xt)}

∑J
j=0 exp {v (j , xt)}
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Two-Step Hotz-Miller Methods

FINITE DEPENDENCE PROPERTY

Main idea: Under some conditions, optimal behavior implies that
there is a known function that relates CCPs and utility function at
periods t and t + 1 [more generally, at t, t + 1, ..., t + s where s is
finite].

Et [G (π(yt , xt ; θπ), P(yt |xt), π(yt+1, xt+1; θπ), P(yt+1|xt+1))] = 0

where G (.) is known.

This equation has the same flavor as an Euler equation.

Suppose that we can estimate the CCPs P(yt |xt) directly from the
data, as reduced-form probabilities, without solving the model.

Then, we can estimate the structural parameters in ; θπ by GMM
without having to solve the model even once, and without having to
compute any present value.
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Two-Step Hotz-Miller Methods

FINITE DEPENDENCE REPRESENTATION (1/4)

Given the structure of the Logit CCPs, we have that:

logP(0 | xt) = − log

[
1+

J

∑
j=1

exp {v(j , xt)− v(0, xt)}
]

This implies the following expression for the integrated value function:

V σ(xt) = log

[
J

∑
j=0

exp {v (j , xt)}
]

= v (0, xt) + log

[
1+

J

∑
j=1

exp {v (j , xt)− v (0, xt)}
]

= v (0, xt)− lnP (0, xt)
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Two-Step Hotz-Miller Methods

FINITE DEPENDENCE REPRESENTATION (2/4)

Second, for any two choice alternatives, say j and k , we have that:

logP(j | xt)− logP(k | xt) = v(j , xt)− v(0, xt)

Remember that: v (j , x) = π (y , x) + δ ∑xt+1
V σ(xt+1)fx (xt+1|y , x).

Therefore:

logP(j |xt)− logP(k |xt) = π(j , xt)− π(k , xt)+

+δ ∑
xt+1

[v (0, xt+1)− logP (0|xt+1)] [fx (xt+1|j , xt)− fx (xt+1|k , xt)]
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Two-Step Hotz-Miller Methods

FINITE DEPENDENCE REPRESENTATION (3/4)

Since v (0, xt+1) = π (0, xt+1) + δ ∑xt+2
V σ(xt+2)fx (xt+2|0, xt+1),

we have that:

logP(j |xt)− logP(k |xt) = π(j , xt)− π(k , xt)+

+δ ∑
xt+1

[π (0, xt+1)− logP (0|xt+1)] [fx (xt+1|j , xt)− fx (xt+1|k , xt)]

+δ2 ∑
xt+1

∑
xt+2

V σ(xt+2) fx (xt+2|0, xt+1) [fx (xt+1|j , xt)− fx (xt+1|k , xt)]

There is a general class of dynamic models [one-period finite
dependence] where this term is zero.

e.g., occupational choice; market entry-exit; machine
replacement; dynamic demand of differentiated products; etc.
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Two-Step Hotz-Miller Methods

FINITE DEPENDENCE REPRESENTATION (4/4)

Under one-period finite dependence, the following condition holds at
every-period t, any xt , and any pair (j , k):

logP (j |xt)− logP (k |xt) = π (j , xt ; θπ)− π (k , xt ; θπ)

−δ ∑
xt+1

logP (0|xt+1) [fx (xt+1|j , xt)− fx (xt+1|k , xt)]

+δ ∑
xt+1

π (0, xt+1; θπ) [fx (xt+1|j , xt)− f (xt+1|k , xt)]

This equation provides moment conditions that can be used to
estimate consistently the vector of parameters θπ.

Given a Nonparametric estimator of the reduced-form CCPs P (j |xt),
we can estimate structural parameters using a simple two-step GMM
estimator.
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Two-Step Hotz-Miller Methods

EXAMPLE: MARKET ENTRY & EXIT

xt = (yt−1, st); π(0, xt) = 0; π(1, xt) = θ1 + θ2st + θ3(1− yt−1).

This model has the one-period dependence property.

We have:

logP (1|xt)− logP (0|xt) = θ1 + θ2 st + θ3(1− yt−1)

−δ ∑
st+1

[logP (0|1, st+1)− logP (0|0, st+1)] fs(st+1|st)
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