INCAE PhD SUMMER ACADEMY DYNAMIC GAMES IN EMPIRICAL IO

Lecture 1:

Single-agent dynamic discrete choice: Model and solution

Victor Aguirregabiria (University of Toronto)

June 20, 2022

ORGANIZATION OF THE COURSE

- This course is an Introduction to dynamic discrete choice models in Empirical Industrial Organization.
- It is organized in 5 Lectures (from 9:00am to 10:20am) and 5
 Tutorials (from 11:00am to 12:20pm).
- Lectures: Models, methods, and some applications.
- Tutorials: Code for solution & estimation using real data.
- In the Tutorials, I will use GAUSS programming language, but you are encourage to use your favorite programming language, e.g., Matlab, R, Julia, Python, etc.

A BRIEF DESCRIPTION OF THE COURSE (1/2)

- This courses deals with dynamic games of firms' competition in Empirical IO.
- These models/applications deal with firms' decisions that:
 - Involve substantial uncertainty
 - Have effects on own firm's future profit (dynamics)
 - Have effects on competitors' profits (game)
- Some examples of applications are:
 - Market entry / exit
 - Investment in R&D, innovation
 - Investment in capacity, physical capital
 - Product design / quality
 - Pricing
 - Mergers
 - Networks (airlines, retail), ...

A BRIEF DESCRIPTION OF THE COURSE (2/2)

- A. Before we study Dynamic Games, we will start with **Single-Agent Dynamic Discrete Choice models**:
 - Model and solution (Lecture 1)
 - Estimation methods (Lecture 2)
- B. Then, we will extend this framework to allow for multiple players and strategic interactions, that is, **Dynamic Games**:
 - Model and solution (Lecture 3)
 - Estimation methods (Lecture 4)
- C. We will conclude with **some applications**:
 - Applications to firms' investment decisions (Lecture 5)

LECTURE 1: Single-Agent Dynamic Discrete Choice models

- 1. Introduction to Dynamic Structural Models
- 2. A Model of Market Entry / Exit
- 3. Optimal Decision Rules & Dynamic Programming
- 4. Conditional Choice Probabilities (CCPs)
- Solution Methods

1. Introduction to Dynamic Discrete Choice Structural Models

SOME GENERAL FEATURES: DECISION & STATES

- t represents time, and it is discrete: $t \in \{1, 2, ...\}$.
- They are econometric models with a dependent variable y_t , explanatory variables \mathbf{x}_t , and unobservables to the researcher ε_t .
- $y_t =$ agent's decision at time t. It is discrete: $y_t \in \{0, 1, ..., J\}$
- The agent takes this action to maximize her expected and discounted flow of utility (payoffs):

$$\mathbb{E}_t \left(\sum_{s=0}^{T-t} \delta^s \ \pi_{t+s} \right)$$

 $\delta \in [0,1)$ is the discount factor, and π_t is the utility at period t.

SOME GENERAL FEATURES: UTILITY

• **Utility** depends on action y_t , and state variables \mathbf{x}_t and ε_t :

$$\pi_t = \pi(y_t, \mathbf{x}_t, \varepsilon_t, \boldsymbol{\theta}_{\pi})$$

and $heta_{\pi}$ is the vector of **structural parameters** in the utility function.

- State variables in x_t are observable to us as researchers.
- State variables in ε_t are unobservable to us as researchers.
- Both \mathbf{x}_t and ε_t are known to the agent at time t.
- Because the model is **dynamic**, \mathbf{x}_t should depend somehow **on previous decisions**, y_{t-1} or/and y_{t-2} , ...

SOME GENERAL FEATURES: TRANSITIONS

- The model is completed with the specification of the **transition rules** or **transition probabilities** followed by the state variables \mathbf{x}_t and ε_t .
- For ε_t , the most standard assumption is that it is i.i.d.
- For x_t, the standard assumption is that it follows a First Order
 Markov Process that may depend on y_t with transition probability function:

$$Pr\left(\mathbf{x}_{t+1} = \mathbf{x}' \mid y_t = y, \ \mathbf{x}_t = \mathbf{x}\right) = f_{\mathsf{x}}\left(\mathbf{x}' \mid y, \ \mathbf{x}; \theta_f\right)$$

where θ_f is a vector of structural parameters.

SOME GENERAL FEATURES:

DYNAMIC PROGRAMMING

- The agent's decision problem is a Dynamic Programming (DP) problem.
- Let $V_t(\mathbf{x}_t, \varepsilon_t)$ be the value function at period t. The **Bellman** Equation of this DP problem is:

$$V_t(\mathbf{x}_t, \varepsilon_t) =$$

$$\max_{y_t} \left\{ \pi(y_t, \mathbf{x}_t, \varepsilon_t) + \delta \int V_{t+1}(\mathbf{x}_{t+1}, \varepsilon_{t+1}) f_{\mathbf{x}}(d\mathbf{x}_{t+1} | y_t, \mathbf{x}_t) f_{\varepsilon}(d\varepsilon_{t+1}) \right\}$$

• The Optimal Decision Rule at period t, $\alpha_t(\mathbf{x}_t, \varepsilon_t)$, is the argmax in y_t of the expression within brackets $\{\}$.

SOME GENERAL FEATURES: MAIN PURPOSE

Empirical applications of these models have two main purposes.

1. Estimation of parameters in the utility function.

- Some of these parameters cannot be estimated from other sources and require a **Revealed Preference approach**

2. Counterfactual experiments.

- We can use the estimated model to predict **agents' behavior in a counterfactual scenario** such as a new policy, or a change in some structural parameters.

2. Example:

Model of Market Entry & Exit

EXAMPLE: MARKET ENTRY & EXIT (1/2)

- Every period t, a firm decides whether to be active $(y_t = 1)$ or inactive $(y_t = 0)$ in a market.
- The profit (utility) function is:

$$\pi_t = \begin{cases} 0 & \text{if} \quad y_t = 0 \\ \theta_1 + \theta_2 \ s_t + \theta_3 \ (1 - y_{t-1}) - \varepsilon_t & \text{if} \quad y_t = 1 \end{cases}$$

 $s_t = \text{market size}$, e.g., population, or average income in the market.

Economic interpretation:

 $\theta_2 \ s_t = \text{Variable profit.}$

- $-\theta_1$ = Fixed cost.
- $-\theta_3$ = Entry cost, i.e., extra if firm was inactive at previous period.

 ε_t = mean zero shock in fixed costs.

4□▶ 4₫▶ 4½▶ 4½▶ ½ 99(

EXAMPLE: MARKET ENTRY & EXIT (2/2)

- The vector of **observable state variable** $\mathbf{x}_t = (s_t, y_{t-1})$.
- s_t follows an AR(1) process and we represent its transition probability as $f_s(s_{t+1}|s_t)$.
- The unobservable variable ε_t is i.i.d. Logistic.
- The **Time horizon** T is infinite. $\delta \in [0,1)$ is the discount factor.

 For the rest of this lecture, we use this simple model to present different concepts on dynamic discrete choice structural models.

3. Optimal Decision Rules

& Dynamic Programming

BELLMAN EQUATION: STATIONARY MODEL

- When $T = \infty$, and functions π and f_x do not vary over time, the DP model is **stationary**, and value function V(.) and optimal decision rule $\alpha(.)$ do not vary over time (**Blackwell Theorem**).
- Bellman equation can be written as:

$$V(\mathbf{x}_t, \varepsilon_t) = \max_{y_t \in \{0,1\}} \left\{ y_t \ \bar{\pi}(\mathbf{x}_t) - y_t \ \varepsilon_t + \delta \ EV(y_t, s_t) \right\}$$

- $\bar{\pi}(\mathbf{x}_t)$ is the part of profit that does not depend on ε_t : i.e., $\bar{\pi}(\mathbf{x}_t) = \theta_1 + \theta_2 \ s_t + \theta_3 \ (1 y_{t-1})$.
- $EV(y_t, s_t)$ is the **Continuation Value**:

$$EV(y_t, s_t) = \int V(y_t, s_{t+1}, \varepsilon_{t+1}) f_s(ds_{t+1}|s_t) f_{\varepsilon}(d\varepsilon_{t+1})$$

OPTIMAL DECISION RULE

By definition of optimal decision rule, we have:

$$\alpha(\mathbf{x}_t, \varepsilon_t) \ = \ \mathbf{1} \left\{ \bar{\pi}(\mathbf{x}_t) - \varepsilon_t + \delta \ EV(\mathbf{1}, \mathbf{s}_t) \ > \ \delta \ EV(\mathbf{0}, \mathbf{s}_t) \right\}$$

where $1\{.\}$ is the indicator function.

Or equivalently:

$$\alpha(\mathbf{x}_t, \varepsilon_t) = 1\{\varepsilon_t < \bar{\pi}(\mathbf{x}_t) + \delta [EV(1, s_t) - EV(0, s_t)]\}$$

- The optimal decision rule does not have a closed-form analytical expression because function EV(.) does not.
- i.e., need to solve numerically for the value function using Bellman eq.

4 D > 4 B > 4 E > 4 E > 9 Q P June 20, 2022

INTEGRATED BELLMAN EQUATION (1/3)

- In this class of models, where ε_t is:
 - (i) not serially correlated;
 - (ii) additive in the utility function
 - (iii) Logistic

it is possible and computationally convenient to solve for the optimal decision rule using the **Integrated Bellman Equation**.

- We describe here the derivation of the Integrated Bellman Equation.
- First, define the Integrated Value Function:

$$V^{\sigma}(\mathbf{x}_t) \equiv \int V(\mathbf{x}_t, \varepsilon_t) f_{\varepsilon}(d\varepsilon_t)$$

INTEGRATED BELLMAN EQUATION (2/3)

• By definition, there is the following relationship between EV and V^{σ} :

$$EV(y_t, s_t) = \int V^{\sigma}(y_t, s_{t+1}) f_s(ds_{t+1}|s_t)$$

- Therefore, obtaining V^{σ} is sufficient to get EV(.) and $\alpha(.)$.
- ullet Integrating both sides of Bellman equation over the distribution of $arepsilon_t$:

$$V^{\sigma}(\mathbf{x}_t) = \int \max_{y_t \in \{0,1\}} \left\{ y_t \ \bar{\pi}(\mathbf{x}_t) - y_t \ \varepsilon_t + \delta \ EV(y_t, s_t) \right\} \ f_{\varepsilon}(d\varepsilon_t)$$

• This equation, together with the equation that relates EV and V^{σ} defines a **fixed point mapping** for V^{σ} . This mapping in the **Integrated Bellman Equation**

INTEGRATED BELLMAN EQUATION (3/3)

- When ε_t is Logistic (i.e., Type 1 Extreme Value), *Emax* operator has a closed form expression: i.e., the logarithm of the sum of exponentials.
- This implies the following form of the Integrated Bellman eq.:

$$V^{\sigma}(y_{t-1}, s_t) = \log\left(\exp\left\{\delta \ EV(0, s_t)\right\} + \exp\left\{\bar{\pi}(\mathbf{x}_t) + \delta \ EV(1, s_t)\right\}\right)$$

with

$$EV(y_t, s_t) = \int V^{\sigma}(y_t, s_{t+1}) f_s(ds_{t+1}|s_t)$$

4. Conditional Choice Probabilities

CONDITIONAL CHOICE PROBABILITIES

- A key prediction of this model is the probability distribution of y_t conditional on \mathbf{x}_t .
- We denote this distribution as the Conditional Choice Probability (CCP) function.
- More precisely, for any value of (y, \mathbf{x}) , the CCP function $P(y|\mathbf{x})$ is defined as:

$$P(y|\mathbf{x}) \equiv \Pr(\alpha(\mathbf{x}_t, \varepsilon_t) = y \mid \mathbf{x}_t = \mathbf{x})$$

• These are the model predictions that we use to estimate the parameters of the model.

CONDITIONAL CHOICE PROBABILITIES (2/2)

Remember that:

$$\alpha(\mathbf{x}_t, \varepsilon_t) = 1\{\varepsilon_t < \bar{\pi}(\mathbf{x}_t) + \delta [EV(1, s_t) - EV(0, s_t)]\}$$

• Therefore, if ε_t is Logistic, we have that:

$$P(1|\mathbf{x}_t) = \frac{\exp\left\{\bar{\pi}(\mathbf{x}_t) + \delta \left[EV(1, s_t) - EV(0, s_t)\right]\right\}}{1 + \exp\left\{\bar{\pi}(\mathbf{x}_t) + \delta \left[EV(1, s_t) - EV(0, s_t)\right]\right\}}$$

 These are the probabilities we use in the estimation of the model by Maximum Likelihood or other methods.

5. Solution Methods

FIXED-POINT ITERATIONS INTEGRATED BELLMAN EQ.

- I describe a Fixed-Point algorithm in the Integrated Bellman equation to obtain the V^{σ} and the solution of the model.
- I describe it in Vector Form for easy implementation in Vector
 Programming Languages such as Gauss, Matlab, R, Julia, Python.
- Suppose that s_t is discrete: $s_t \in \{s^1, s^2, ..., s^{|S|}\}.$
- The primitives of the model are:
- 1. Vectors of payoffs: $\Pi(0)$ and $\Pi(1)$ with dimension $|S| \times 1$, with $\bar{\pi}(0,s)$ and $\bar{\pi}(1,s)$ for every value of s.
- 2. Matrix of transition probabilities: $|S| \times |S|$, with probabilities $f_s(s_{t+1}|s_t)$.
- 3. **Discount factor**:

FIXED-POINT ITERATIONS IN INT. BELLMAN EQ. (2/3)

- We can represent the value function $V^{\sigma}(y_{t-1}, s_t)$ in terms of two vectors, $\mathbf{V}^{\sigma}(0)$ and $\mathbf{V}^{\sigma}(1)$, each with dimension $|S| \times 1$.
- Given $V^{\sigma}(0)$ and $V^{\sigma}(1)$ and transition matrix F_s , we can represent the continuation value function $EV(y_t, s_t)$ using two vectors:

$$\mathbf{F}_s \ \mathbf{V}^{\sigma}(0)$$
 and $\mathbf{F}_s \ \mathbf{V}^{\sigma}(1)$

 Then, we can represent the Integrated Bellman equation in terms of two vector-valued equations:

$$\begin{cases} \mathbf{V}^{\sigma}(0) &= \log \left(\exp \left\{ \delta \; \mathbf{F_s} \; \mathbf{V}^{\sigma}(0) \right\} + \exp \left\{ \Pi(0) + \delta \; \mathbf{F_s} \; \mathbf{V}^{\sigma}(1) \right\} \right) \\ \mathbf{V}^{\sigma}(1) &= \log \left(\exp \left\{ \delta \; \mathbf{F_s} \; \mathbf{V}^{\sigma}(0) \right\} + \exp \left\{ \Pi(1) + \delta \; \mathbf{F_s} \; \mathbf{V}^{\sigma}(1) \right\} \right) \end{cases}$$

FIXED-POINT ITERATIONS (3/3)

- We start with (arbitrary) initial vectors $\mathbf{V}_0^{\sigma}(0)$ and $\mathbf{V}_0^{\sigma}(1)$.
- At each iteration $n \ge 1$ we update these vectors and obtain $\boldsymbol{V}_n^{\sigma}(0)$ and $\boldsymbol{V}_{n}^{\sigma}(1)$ using:

$$\left\{ \begin{array}{ll} \boldsymbol{V}_{n}^{\sigma}(0) & = & \log\left(\exp\left\{\delta\;\mathbf{F_{s}}\;\boldsymbol{V}_{n-1}^{\sigma}(0)\right\} + \exp\left\{\Pi(0) + \delta\;\mathbf{F_{s}}\;\boldsymbol{V}_{n-1}^{\sigma}(1)\right\} \\ \boldsymbol{V}_{n}^{\sigma}(1) & = & \log\left(\exp\left\{\delta\;\mathbf{F_{s}}\;\boldsymbol{V}_{n-1}^{\sigma}(0)\right\} + \exp\left\{\Pi(1) + \delta\;\mathbf{F_{s}}\;\boldsymbol{V}_{n-1}^{\sigma}(1)\right\} \end{array} \right.$$

- We reach convergence at iteration n if $|| \boldsymbol{V}_{n}^{\sigma}(0) \boldsymbol{V}_{n-1}^{\sigma}(0) ||$ and $||\boldsymbol{V}_{n}^{\sigma}(1) - \boldsymbol{V}_{n-1}^{\sigma}(1)||$ are both smaller that a pre-specified small constant close to zero (e.g., 1e-6).
- The integrated Bellman equation is a contraction mapping. This implies that Fixed Point iterations converge to the unique solution.

June 20, 2022