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Organization of the Course

ORGANIZATION OF THE COURSE

This course is an Introduction to dynamic discrete choice models
in Empirical Industrial Organization.

It is organized in 5 Lectures (from 9:00am to 10:20am) and 5
Tutorials (from 11:00am to 12:20pm).

Lectures: Models, methods, and some applications.

Tutorials: Code for solution & estimation using real data.

In the Tutorials, I will use GAUSS programming language, but you are
encourage to use your favorite programming language, e.g.,
Matlab, R, Julia, Python, etc.
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Organization of the Course

A BRIEF DESCRIPTION OF THE COURSE (1/2)

This courses deals with dynamic games of firms’ competition in
Empirical IO.

These models/applications deal with firms’ decisions that:

- Involve substantial uncertainty
- Have effects on own firm’s future profit (dynamics)
- Have effects on competitors’ profits (game)

Some examples of applications are:
- Market entry / exit
- Investment in R&D, innovation
- Investment in capacity, physical capital
- Product design / quality
- Pricing
- Mergers
- Networks (airlines, retail), ...
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Organization of the Course

A BRIEF DESCRIPTION OF THE COURSE (2/2)

A. Before we study Dynamic Games, we will start with Single-Agent
Dynamic Discrete Choice models:

- Model and solution (Lecture 1)
- Estimation methods (Lecture 2)

B. Then, we will extend this framework to allow for multiple players and
strategic interactions, that is, Dynamic Games:

- Model and solution (Lecture 3)
- Estimation methods (Lecture 4)

C. We will conclude with some applications:

- Applications to firms’ investment decisions (Lecture 5)
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Lecture 1

LECTURE 1: Single-Agent Dynamic Discrete Choice models

1. Introduction to Dynamic Structural Models

2. A Model of Market Entry / Exit

3. Optimal Decision Rules & Dynamic Programming

4. Conditional Choice Probabilities (CCPs)

5. Solution Methods
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Introduction

————————————————————————————

1. Introduction to

Dynamic Discrete Choice

Structural Models

————————————————————————————
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Introduction

SOME GENERAL FEATURES: DECISION & STATES

t represents time, and it is discrete: t ∈ {1, 2, ...}.

They are econometric models with a dependent variable yt ,
explanatory variables xt , and unobservables to the researcher εt .

yt = agent’s decision at time t. It is discrete: yt ∈ {0, 1, ..., J}

The agent takes this action to maximize her expected and
discounted flow of utility (payoffs):

Et

(
T−t

∑
s=0

δs πt+s

)

δ ∈ [0, 1) is the discount factor, and πt is the utility at period t.
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Introduction

SOME GENERAL FEATURES: UTILITY

Utility depends on action yt , and state variables xt and εt :

πt = π (yt , xt , εt , θπ)

and θπ is the vector of structural parameters in the utility function.

State variables in xt are observable to us as researchers.

State variables in εt are unobservable to us as researchers.

Both xt and εt are known to the agent at time t.

Because the model is dynamic, xt should depend somehow on
previous decisions, yt−1 or/and yt−2, ...
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Introduction

SOME GENERAL FEATURES: TRANSITIONS

The model is completed with the specification of the transition rules
or transition probabilities followed by the state variables xt and εt .

For εt , the most standard assumption is that it is i.i.d.

For xt , the standard assumption is that it follows a First Order
Markov Process that may depend on yt with transition probability
function:

Pr
(
xt+1 = x′ | yt = y , xt = x

)
= fx

(
x′ | y , x; θf

)
where θf is a vector of structural parameters.
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Introduction

SOME GENERAL FEATURES: DYNAMIC PROGRAMMING

The agent’s decision problem is a Dynamic Programming (DP)
problem.

Let Vt(xt , εt) be the value function at period t. The Bellman
Equation of this DP problem is:

Vt(xt , εt) =

max
yt

{
π(yt , xt , εt) + δ

∫
Vt+1(xt+1, εt+1)fx (dxt+1|yt , xt)fε(dεt+1)

}

The Optimal Decision Rule at period t, αt(xt , εt), is the argmax in
yt of the expression within brackets {}.
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Introduction

SOME GENERAL FEATURES: MAIN PURPOSE

Empirical applications of these models have two main purposes.

1. Estimation of parameters in the utility function.

- Some of these parameters cannot be estimated from other sources
and require a Revealed Preference approach

2. Counterfactual experiments.

- We can use the estimated model to predict agents’ behavior in a
counterfactual scenario such as a new policy, or a change in some
structural parameters.
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Example: Market Entry & Exit

————————————————————————————

2. Example:

Model of Market Entry & Exit

————————————————————————————
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Example: Market Entry & Exit

EXAMPLE: MARKET ENTRY & EXIT (1/2)

Every period t, a firm decides whether to be active (yt = 1) or
inactive (yt = 0) in a market.

The profit (utility) function is:

πt =


0 if yt = 0

θ1 + θ2 st + θ3 (1− yt−1)− εt if yt = 1

st = market size, e.g., population, or average income in the market.

Economic interpretation:
θ2 st = Variable profit.
−θ1 = Fixed cost.
−θ3 = Entry cost, i.e., extra if firm was inactive at previous period.
εt = mean zero shock in fixed costs.
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Example: Market Entry & Exit

EXAMPLE: MARKET ENTRY & EXIT (2/2)

The vector of observable state variable xt = (st , yt−1).

st follows an AR(1) process and we represent its transition probability
as fs(st+1|st).

The unobservable variable εt is i.i.d. Logistic.

The Time horizon T is infinite. δ ∈ [0, 1) is the discount factor.

For the rest of this lecture, we use this simple model to present
different concepts on dynamic discrete choice structural models.
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Optimal Decision Rules

————————————————————————————

3. Optimal Decision Rules

& Dynamic Programming

————————————————————————————
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Optimal Decision Rules

BELLMAN EQUATION: STATIONARY MODEL

When T = ∞, and functions π and fx do not vary over time, the DP
model is stationary, and value function V (.) and optimal decision
rule α(.) do not vary over time (Blackwell Theorem).

Bellman equation can be written as:

V (xt , εt) = max
yt∈{0,1}

{yt π̄(xt)− yt εt + δ EV (yt , st)}

π̄(xt) is the part of profit that does not depend on εt : i.e.,
π̄(xt) = θ1 + θ2 st + θ3 (1− yt−1).

EV (yt , st) is the Continuation Value:

EV (yt , st) =
∫

V (yt , st+1, εt+1) fs(dst+1|st) fε(dεt+1)
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Optimal Decision Rules

OPTIMAL DECISION RULE

By definition of optimal decision rule, we have:

α(xt , εt) = 1 {π̄(xt)− εt + δ EV (1, st) > δ EV (0, st)}

where 1{.} is the indicator function.

Or equivalently:

α(xt , εt) = 1 {εt < π̄(xt) + δ [EV (1, st)− EV (0, st)]}

The optimal decision rule does not have a closed-form analytical
expression because function EV (.) does not.

i.e., need to solve numerically for the value function using Bellman eq.
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Optimal Decision Rules

INTEGRATED BELLMAN EQUATION (1/3)

In this class of models, where εt is:
(i) not serially correlated;
(ii) additive in the utility function
(iii) Logistic

it is possible and computationally convenient to solve for the optimal
decision rule using the Integrated Bellman Equation.

We describe here the derivation of the Integrated Bellman Equation.

First, define the Integrated Value Function:

V σ(xt) ≡
∫

V (xt , εt) fε(dεt)
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Optimal Decision Rules

INTEGRATED BELLMAN EQUATION (2/3)

By definition, there is the following relationship between EV and V σ:

EV (yt , st) =
∫

V σ(yt , st+1) fs(dst+1|st)

Therefore, obtaining V σ is sufficient to get EV (.) and α(.).

Integrating both sides of Bellman equation over the distribution of εt :

V σ(xt) =
∫

max
yt∈{0,1}

{yt π̄(xt)− yt εt + δ EV (yt , st)} fε(dεt)

This equation, together with the equation that relates EV and V σ

defines a fixed point mapping for V σ. This mapping in the
Integrated Bellman Equation
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Optimal Decision Rules

INTEGRATED BELLMAN EQUATION (3/3)

When εt is Logistic (i.e., Type 1 Extreme Value), Emax operator has
a closed form expression: i.e., the logarithm of the sum of
exponentials.

This implies the following form of the Integrated Bellman eq.:

V σ(yt−1, st) = log (exp {δ EV (0, st)}+ exp {π̄(xt) + δ EV (1, st)})

with

EV (yt , st) =
∫

V σ(yt , st+1) fs(dst+1|st)
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Conditional Choice Probabilities

————————————————————————————

4. Conditional Choice Probabilities

————————————————————————————
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Conditional Choice Probabilities

CONDITIONAL CHOICE PROBABILITIES

A key prediction of this model is the probability distribution of yt
conditional on xt .

We denote this distribution as the Conditional Choice Probability
(CCP) function.

More precisely, for any value of (y , x), the CCP function P(y |x) is
defined as:

P(y |x) ≡ Pr (α(xt , εt) = y | xt = x)

These are the model predictions that we use to estimate the
parameters of the model.
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Conditional Choice Probabilities

CONDITIONAL CHOICE PROBABILITIES (2/2)

Remember that:

α(xt , εt) = 1 {εt < π̄(xt) + δ [EV (1, st)− EV (0, st)]}

Therefore, if εt is Logistic, we have that:

P(1|xt) =
exp {π̄(xt) + δ [EV (1, st)− EV (0, st)]}

1+ exp {π̄(xt) + δ [EV (1, st)− EV (0, st)]}

These are the probabilities we use in the estimation of the model by
Maximum Likelihood or other methods.

Victor Aguirregabiria Introduction to the course June 20, 2022 23 / 27



Solution Methods

————————————————————————————

5. Solution Methods

————————————————————————————
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Solution Methods

FIXED-POINT ITERATIONS INTEGRATED BELLMAN EQ.

I describe a Fixed-Point algorithm in the Integrated Bellman equation
to obtain the V σ and the solution of the model.

I describe it in Vector Form for easy implementation in Vector
Programming Languages such as Gauss, Matlab, R, Julia, Python.

Suppose that st is discrete: st ∈ {s1, s2, ..., s |S |}.

The primitives of the model are:

1. Vectors of payoffs: Π(0) and Π(1) with dimension |S | × 1,
with π̄(0, s) and π̄(1, s) for every value of s.

2. Matrix of transition probabilities: Fs with dimension
|S | × |S |, with probabilities fs(st+1|st).

3. Discount factor: δ.
Victor Aguirregabiria Introduction to the course June 20, 2022 25 / 27



Solution Methods

FIXED-POINT ITERATIONS IN INT. BELLMAN EQ. (2/3)

We can represent the value function V σ(yt−1, st) in terms of two
vectors, V σ(0) and V σ(1), each with dimension |S | × 1.

Given V σ(0) and V σ(1) and transition matrix Fs , we can represent
the continuation value function EV (yt , st) using two vectors:

Fs V σ(0) and Fs V σ(1)

Then, we can represent the Integrated Bellman equation in terms of
two vector-valued equations:

V σ(0) = log (exp {δ Fs V σ(0)}+ exp {Π(0) + δ Fs V σ(1)})

V σ(1) = log (exp {δ Fs V σ(0)}+ exp {Π(1) + δ Fs V σ(1)})
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Solution Methods

FIXED-POINT ITERATIONS (3/3)

We start with (arbitrary) initial vectors V σ
0(0) and V σ

0(1).

At each iteration n ≥ 1 we update these vectors and obtain V σ
n(0)

and V σ
n(1) using:

V σ
n(0) = log (exp {δ Fs V σ

n−1(0)}+ exp {Π(0) + δ Fs V σ
n−1(1)})

V σ
n(1) = log (exp {δ Fs V σ

n−1(0)}+ exp {Π(1) + δ Fs V σ
n−1(1)})

We reach convergence at iteration n if ||V σ
n(0)−V σ

n−1(0)|| and
||V σ

n(1)−V σ
n−1(1)|| are both smaller that a pre-specified small

constant close to zero (e.g., 1e-6).

The integrated Bellman equation is a contraction mapping. This
implies that Fixed Point iterations converge to the unique solution.
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