Empirical Industrial Organization (ECO 310) Fall 2018. Victor Aguirregabiria

Problem Set #1 Due on Monday, October 15th, 2018

INSTRUCTIONS. Please, follow the following instructions for the submission of your completed problem set.

1. Write your answers electronically in a word processor.

2. For the answers that involve coding in Stata, include in the document the code in Stata that you have used to obtain your empirical results.

3. Convert the document to PDF format.

4. Submit your problem set (in PDF) online via Quercus.

5. You should submit your completed problem set before midnight of Monday, October 15th, 2018.

6. Problem sets should be written individually.

The total number of marks is 130.

QUESTION 1. [50 points]. Consider an industry for an homogeneous product. Firms use capital and labor to produce output according to a Cobb-Douglas technology with parameters α_L and α_K and Total Factor Productivity (TFP) A.

Q1.1. (5 points) Write the expression for this Cobb-Douglas production function (PF).

ANSWER. Let Y, L, and K be the physical amounts of output, labor, and capital, respectively. Then, the expression for the production function is: $Y = A L^{\alpha_L} K^{\alpha_K}$

Suppose that firms are price takers in the input markets for labor and capital. Let W_L and W_K be the price of labor and capital, respectively. Capital is a fixed input such that the fixed cost for a firm, say *i*, is $FC_i = W_K K_i$. The variable cost function, VC(Y), is defined as the minimum cost of labor to produce an amount of output Y. Q1.2. (5 points) Derive the expression for the variable cost function of a firm in this industry. Explain your derivation. [Hint: Given that capital is fixed and there is only one variable input, the minimization problem is trivial. The PF implies that there is only one possible amount of labor that give us a certain amount of output].

ANSWER. The variable cost function VC(Y) is defined as:

$$VC(Y) = \min_{L} W_{L} L$$

subject to : $Y = AL^{\alpha_{L}}K^{\alpha_{K}}$

However, this constrained minimization problem is trivial because the constrain (the production function) already give us the optimal amount of labor as a function of output, TFP, capital, and parameters. That is, taking capital (and TFP) fixed, there is only one amount of labor that can generate a given amount of output. Solving for L in the equation Y = A $L^{\alpha_L} K^{\alpha_K}$, we have that:

$$L = \left(\frac{Y}{AK^{\alpha_K}}\right)^{1/\alpha_L}$$

Plugging this expression in the variable cost $W_L L$, we get the cost function:

$$VC(Y) = W_L \left(\frac{Y}{AK^{\alpha_K}}\right)^{1/\alpha}$$

NOTES ON GRADING: Some of you may have considered the minimization of the Lagrangian:

$$\min_{L \to \lambda} W_L L - \lambda \left[Y - A L^{\alpha_L} K^{\alpha_K} \right]$$

with the first order conditions (f.o.c.) of optimality:

f.o.c. with respect to L: $W_L - \lambda \alpha_L Y/L = 0$

f.o.c. with respect to
$$\lambda$$
: $Y - AL^{\alpha_L}K^{\alpha_K} = 0$

This is perfectly correct, and you should obtain the same result as above. Note that the f.o.c. with respect to λ is the production function, and this equation give us the optimal amount of labor as a function of output, capital, TFP, and the parameters. In this case, with only one input, the other f.o.c. (with respect to labor) is only needed to obtain the Lagrange multiplier λ .

If you have obtained the variable cost function by minimizing the cost with respect to capital and labor, then your answer is incorrect because we are asking for the variable cost function when capital is fixed, not for the total cost function when both labor and capital are chosen optimally. Q1.3. (5 points) Using the expressions for the fixed cost and for the variable cost function in Q1.2:

(a) Explain how an increase in the amount of capital affects the fixed cost and the variable cost of a firm.

(b) Explain how an increase in TFP affects the fixed cost and the variable cost.

ANSWER. Fixed cost: $FC = W_K K$. Variable cost: $VC(Y) = W_L \left(\frac{Y}{AK^{\alpha_K}}\right)^{1/\alpha_L}$.

(a) An increase in K implies an increase in the fixed cost and a reduction in the variable cost. There is a trade-off in the choice of capital. This trade-off implies that there is an amount of capital that minimizes the total cost. But in this exercise we are assuming that, in the short run, capital is fixed and it can be different to the amount of capital that minimizes total cost.

(b) An increase in A does not have any effect on the fixed cost, but it reduces the variable cost.

Suppose that the output market in this industry is competitive: firms are price takers. The demand function is linear with the following form: P = 100 - Q, where P and Q are the industry price and total output, respectively. Suppose that $\alpha_L = \alpha_K = 1/2$, and the value of input prices are $W_L = 1/2$ and $W_K = 2$. Remember that firms' capital stocks are fixed (exogenous), and for simplicity suppose that all the firms have the same capital stock K = 1.

Q1.4. (5 points) Using these primitives, write the expression for the profit function of a firm (revenue, minus variable cost, minus fixed cost) as a function of the market price, P, the firm's output, Y_i , and its TFP, A_i .

ANSWER. Revenue is equal to $P Y_i$. The fixed cost is $FC = W_K K_i = 2$. The variable cost is: is: $VC_i(Y_i) = W_L \left(\frac{Y}{AK^{\alpha_K}}\right)^{1/\alpha_L} = \frac{1}{2} \left(\frac{Y_i}{A_i}\right)^2$. Therefore, the profit function is: $\Pi_i = P Y_i - \frac{1}{2} \left(\frac{Y_i}{A_i}\right)^2 - 2$ Q1.5. (5 points) Using the condition "price equal to marginal cost", obtain the optimal amount of output of a firm as a function of the market price, P, and the firm's TFP, A_i . Explain your derivation.

ANSWER. The marginal cost of a firm in this industry is $MC_i = \frac{Y_i}{A_i^2}$. Therefore, the marginal condition of profit maximization is $P = \frac{Y_i}{A_i^2}$. Solving for output, we get:

$$Y_i = P A_i^2$$

Q1.6. (5 points) A firm is active in the market (i.e., it finds optimal to produce a positive amount of output) only if its profit is greater or equal than zero. Using this condition show that a firm is active in this industry only if its TFP satisfies the condition $A_i \ge 2/P$. Explain your derivation.

ANSWER. Solving the condition $Y_i = P A_i^2$ into the profit function, we get:

$$\Pi_{i} = PPA_{i}^{2} - \frac{1}{2} \left(\frac{P A_{i}^{2}}{A_{i}}\right)^{2} - 2$$
$$= \frac{1}{2} \left(P A_{i}\right)^{2} - 2$$

Then, the condition $\Pi_i \ge 0$ is equivalent to $\frac{1}{2} (P A_i)^2 - 2 \ge 0$. Operating in this inequality, we obtain that this condition is equivalent to $P A_i \ge 2$, and to $A_i \ge 2/P$.

Let $(P^*, Q^*, Y_1^*, Y_2^*, ..., Y_N^*)$ the equilibrium price, total output, and individual firms' outputs. Based on the previous results, the market equilibrium can be characterized by the following conditions: (i) the demand equation holds; (ii) total output is equal to the sum of firms' individual outputs; (iii) firm *i* is active $(Y_i^* > 0)$ if and only if its total profit is greater than zero; and (iv) for firms with $Y_i^* > 0$, the optimal amount of output is given by the condition price is equal to marginal cost.

Q1.7. (5 points) Write conditions (i) to (iv) for this particular industry.

ANSWER. The mathematical representation of conditions (i) to (iv) is:

(i) $P^* = 100 - Q^*$. (ii) $Q^* = Y_1^* + Y_2^* + \dots + Y_N^*$. (iii) $Y_i^* > 0$ if and only if $A_i \ge 2/P^*$. (iv) If $A_i \ge 2/P^*$, then $Y_i^* = P^* A_i^2$. Q1.8. (5 points) Combine conditions (i) to (iv) to show that the equilibrium price can be written as the solution to this equation:

$$P^* = 100 - P^* \left[\sum_{i=1}^N A_i^2 \ 1\{A_i \ge 2/P^*\} \right]$$

where $1\{x\}$ is the indicator function that is defined as $1\{x\} = 1$ if condition x is true, and $1\{x\} = 0$ if condition x is false. Explain your derivation.

ANSWER. Plugging condition (ii) into (i), we get: $P^* = 100 - (Y_1^* + Y_2^* + ... + Y_N^*)$. Combining conditions (iii) and (iv), we have that the equilibrium amount of output for firm *i* is: $Y_1^* = P^* A_i^2 \ 1\{A_i \ge 2/P^*\}$. Plugging this expression into the previous condition for P^* , we get:

$$P^* = 100 - P^* \left[\sum_{i=1}^{N} A_i^2 \ 1\{A_i \ge 2/P^*\} \right]$$

Suppose that the subindex *i* sorts firms by their TFP such that firm 1 is the most efficient, then firm 2, etc. That is, $A_1 > A_2 > A_3 > \dots$.

Q1.9. (5 points) Suppose that $A_1 = 7$, $A_2 = 5$, and $A_3 = 1$. Obtain the equilibrium price, total output, and output of each individual firm in this industry. [Hint: Start with the conjecture that only firms 1 and 2 produce in equilibrium. Then, confirm this conjecture. Note that we do not need to know the values of A_4 , A_5 , etc].

ANSWER. Suppose for the moment that only firms 1 and 2 produce in equilibrium. Then, the equilibrium price satisfies the condition $P^* = 100 - P^*[A_1^2 + A_2^2] = 100 - P^*[49 + 25]$. Solving for P^* , we get $P^* = 100/75 = 4/3$. For firms 1 and 2 to be the only firms active in the market we need that these conditions hold:

$$A_1 \ge 2/P^*, \quad A_2 \ge 2/P^*, \text{ and } A_3 < 2/P^*$$

Since $A_i < A_3$ for any i > 3, it is clear that third condition implies that $A_i < 2/P^*$ for any i > 3, so we do not need to check these other conditions. Now, given that $P^* = 4/3$ we have that the threshold value for the productivity of an active firm is $2/P^* = 3/2$. Therefore, the three conditions are:

$$A_1 \ge 3/2, \quad A_2 \ge 3/2, \quad \text{and} \quad A_3 < 3/2$$

Since $A_1 = 7$, $A_2 = 5$, and $A_3 = 1$, it is clear that the three conditions hold and the conjecture is confirmed.

The total industry output is $Q^* = 100 - P^* = 98.66$.

Firm 1's output is $Y_1^* = P^* A_1 = 49 * (4/3) = 65.33$. Firm 2's output is $Y_2^* = P^* A_2 = 25 * (4/3) = 33.33$. And $Y_i^* = 0$ for any firm $i \ge 3$.

Q1.10. (5 points) Explain why the most efficient firm, with the largest TFP, does not produce all the output of the industry.

ANSWER. Since the variable cost function is convex, we have that the profit function is strictly concave. This implies that the most efficient firm has a finite amount of output that is willing to produce: $Y_1 = P A_1 = P 7$. If this firm were a monopolist the equilibrium price would be the solution to P = 100 - P * 7, which implies P = 12.5. Given this price, the threshold value for TFP for the decision of market entry is 2/P = 2/12.5 = 0.16. Given this threshold value, we have that $A_2 = 5 > 0.16$, such that firm 2 is willing to be active in the market and produce a positive amount of output.

QUESTION 2. [80 points].

The Stata datafile blundell_bond_2000_production_function.dta contains annual information on sales, labor, and capital for 509 firms for the period 1982-1989 (8 years). Consider a Cobb-Douglas production function in terms of labor and capital. Use this dataset to implement the following estimators.

Q2.1. (10 points) OLS with time dummies. Test the null hypothesis $\alpha_L + \alpha_K =$ 1. Provide the code in Stata and the table of estimation results. Comment the results.

ANSWER. MODEL: The regression model is:

$$y_{it} = \alpha_0 + \alpha_L \ \ell_{it} + \alpha_K \ k_{it} + \gamma_t + \omega_{it}$$

where the variables are in logarithms. We account for the time effects γ_t by including time (year) dummies: one for each year, except one.

CODE

```
gen logy = ln(sales)
gen logn = ln(labor)
gen logk = ln(capital)
xtset id year
reg logy logn logk i.year
test logn + logk = 1
```

COMMENTS ON RESULTS

(a) According to the estimates, the technology is more intensive in labor than in capital.

(b) The test of Constant Returns to Scale (CRS) rejects the null hypothesis under the standard significance levels (p-value is smaller than 1%). There is evidence of decreasing returns to scale.

(c) However, we expect the OLS estimator to be biased because endogeneity, i.e., correlation between the regressors (observed inputs) and the error term (unobserved TFP).

TABLE OF RESULTS

. // -----

. // 3. Question 2.1: OLS estimator

. // -----

. reg logy logn logk i.year

Source	SS	df	MS	Number of obs	=	4,072
				F(9, 4062)	=	14254.66
Model	15946.3907	9	1771.82119	Prob > F	=	0.0000
Residual	504.897075	4,062	.124297655	R-squared	=	0.9693
				Adj R-squared	=	0.9692
Total	16451.2878	4,071	4.04109255	Root MSE	=	.35256

logy	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logn	.5578836	.0098286	56.76	0.000	.5386142	.577153
logk	.4322828	.0081396	53.11	0.000	.4163247	.4482409
year						
1983	0568626	.022107	-2.57	0.010	1002045	0135206
1984	050041	.0221342	-2.26	0.024	0934362	0066458
1985	0875714	.0221985	-3.94	0.000	1310926	0440503
1986	092866	.0222691	-4.17	0.000	1365256	0492063
1987	0580931	.0223043	-2.60	0.009	1018218	0143644
1988	0211632	.0223277	-0.95	0.343	0649378	.0226114
1989	0382923	.0224365	-1.71	0.088	0822802	.0056957
_cons	3.046843	.0315266	96.64	0.000	2.985033	3.108652

. test logn + logk = 1

(1) logn + logk = 1

F(1, 4062) = 9.29Prob > F = 0.0023 Q2.2. (10 points) Fixed Effects estimator with time dummies. Test the null hypothesis of no time-invariant unobserved heterogeneity: $\eta_i = 0$ for every firm *i*. Provide the code in Stata and the table of estimation results. Comment the results.

ANSWER. **MODEL**: The regression model is:

$$y_{it} = \alpha_0 + \alpha_L \ \ell_{it} + \alpha_K \ k_{it} + \gamma_t + \eta_i + u_{it}$$

where the variables are in logarithms. We eliminate the individual effect by transforming the model in deviations with respect to firm-means:

$$\widetilde{y}_{it} = \alpha_L \ \widetilde{\ell}_{it} + \alpha_K \ \widetilde{k}_{it} + \eta_i + \widetilde{u}_{it}$$

where $\tilde{y}_{it} = y_{it} - \bar{y}_i$, $\tilde{\ell}_{it} = \ell_{it} - \bar{\ell}_i$, $\tilde{k}_{it} = k_{it} - \bar{k}_i$, and $\tilde{u}_{it} = u_{it} - \bar{u}_i$, and the variables \bar{y}_i , $\bar{\ell}_i$, and \bar{k}_i are the sample means of log-output, log-labor, and log-capital for firm *i*, respectively. We apply OLS to this model. We account for the time effects γ_t by including time (year) dummies: one for each year, except one.

CODE. The command **xtreg**, **fe** implements this estimator. We don't need to transform the variables, the command makes this transformation for us.

xtreg logy logn logk i.year, fe
test logn + logk = 1

COMMENTS ON RESULTS

(a) According to the estimates, the technology is more intensive in labor than in capital. The test of Constant Returns to Scale (CRS) clearly rejects the null hypothesis under the standard significance levels (p-value is smaller than 1%). There is evidence of decreasing returns to scale.

(b) The test of the null hypothesis of no time-invariant unobserved heterogeneity ($\eta_i = 0$ for every firm *i*) is the F-test at the bottom of the table of estimates. The p-value of this test is practically zero. Therefore, we clearly reject the null hypothesis of no time-invariant unobserved heterogeneity.

(c) In fact, most of the variance of the error term $\eta_i + u_{it}$ is accounted by the timeinvariant component η_i . This is shown by the parameter "rho = 0.8948" that represents the estimate for $Var(\eta_i)/Var(\eta_i + u_{it})$.

(d) However, we expect the FE estimator to be biased. This estimator may control for the endogeneity due to the fixed effect η_i but not for the endogeneity problem due to the correlation between the regressors (observed inputs) and the transitory shock u_{it} .

TABLE OF RESULTS

. // -----

. // 4. Question 2.2: Fixed Effects estimation

. // -----

. xtreg logy logn logk i.year, fe

Fixed-effects (within) regression Group variable: id	Number of obs Number of groups		4,072 509
R-sq: within = 0.7379 between = 0.9706 overall = 0.9661	Obs per group: min avg ma:	g =	8 8.0 8
corr(u_i, Xb) = 0.5988	F(9,3554) Prob > F	=	1111.47 0.0000

logy	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logn logk	.6544609	.0144048	45.43 17.08	0.000	.6262184 .2061702	.6827034 .2596443
year	.2323072	.013037	17.00	0.000	.2001702	.2000440
1983	0376406	.0093042	-4.05	0.000	0558828	0193985
1984	0076445	.0096071	-0.80	0.426	0264805	.0111914
1985	0234513	.0100955	-2.32	0.020	0432449	0036578
1986	0136103	.0105543	-1.29	0.197	0343034	.0070829
1987	.0314121	.0108748	2.89	0.004	.0100907	.0527335
1988	.0753576	.0111072	6.78	0.000	.0535805	.0971347
1989	.0764164	.0118166	6.47	0.000	.0532485	.0995844
_cons	3.863804	.0529288	73.00	0.000	3.76003	3.967578
sigma_u sigma_e rho	.42922318 .14715329 .89482518	(fraction	of varia	nce due t	to u_i)	

F test that all $u_i=0$: F(508, 3554) = 38.90 Prob > F = 0.0000

. test logn + logk = 1

(1) logn + logk = 1

F(1, 3554) = 121.32Prob > F = 0.0000 Q2.3. (10 points) Fixed Effects - Cochrane Orcutt estimator with time dummies. Test the two over-identifying restrictions of the model. Provide the code in Stata and the table of estimation results. Comment the results.

ANSWER. **MODEL**: The Cochrane-Orcutt estimator is applied to eliminate the serial correlation in the transitory shock u_{it} . Suppose that u_{it} follows an AR(1) process such that $u_{it} = \rho \ u_{it-1} + a_{it}$, where a_{it} is not serially correlated. Then, we can obtain the a quasi-first difference transformation of the model (equation at period t minus ρ times equation at period t - 1). This implies the following equation:

$$y_{it} = \beta_1 \ y_{it-1} + \beta_2 \ \ell_{it} + \beta_3 \ \ell_{it-1} + \beta_4 \ k_{it} + \beta_5 \ k_{it-1} + \eta_i^* + \gamma_t^* + a_{it}$$

with $\beta_1 = \rho$, $\beta_2 = \alpha_L$, $\beta_3 = -\rho \alpha_L$, $\beta_4 = \alpha_K$, and $\beta_5 = -\rho \alpha_K$. The FE Cochrane-Orcutt estimator is the FE estimator in this equation.

The model implies two restrictions on the parameter estimates β :

$$-\beta_3/\beta_2 = \beta_1$$
 and $-\beta_5/\beta_4 = \beta_1$

We can test these nonlinear restrictions separately or jointly using the command "testnl" in Stata.

CODE. To implement this estimator, we can use the command **xtreg**, **fe** but now we need to include also as regressors the first lags of log-output, log-labor, and log-capital.

xtreg logy 1.logy logn 1.logn logk 1.logk i.year, fe

The code for the test the restrictions. The following is the code for a test of CRS, and for testing the over-identifying restrictions (OIR) between the parameters. We have implemented both single tests of each OIR and a joint test.

```
test logn + logk = 1
testnl (_b[1.logy] = -_b[1.logn]/_b[logn])
testnl (_b[1.logy] = -_b[1.logk]/_b[logk])
testnl (_b[1.logy] = -_b[1.logn]/_b[logn]) (_b[1.logy] = -_b[1.logk]/_b[logk])
```

TABLE OF RESULTS

. // -----

. // 5. Question 2.3: Fixed Effects - Cochrane-Orcutt estimation
. // -----

. xtreg logy l.logy logn l.logn logk l.logk i.year, fe

		3,563 509
Obs per group:		
mir	n =	7
avo	g =	7.0
maz	< =	7
F(11,3043)	=	995.10
Prob > F	=	0.0000
	Number of groups Obs per group: mir avg max F(11,3043)	min = avg = max = F(11,3043) =

logy	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logy L1.	.4039344	.015273	26.45	0.000	.3739879	.4338808
logn						
	.4880013	.0166747	29.27	0.000	.4553065	.5206961
L1.	0231194	.0192464	-1.20	0.230	0608566	.0146179
logk						
	.1765454	.0178288	9.90	0.000	.1415877	.2115032
L1.	1305487	.0164086	-7.96	0.000	1627218	0983757
vear						
1984	.0564054	.0077479	7.28	0.000	.0412138	.071597
1985	.0271379	.0081264	3.34	0.001	.0112041	.0430717
1986	.0494812	.0086725	5.71	0.000	.0324767	.0664858
1987	.1033078	.0091382	11.31	0.000	.0853902	.1212255
1988	.1310847	.0094591	13.86	0.000	.1125379	.1496315
1989	.1174383	.0100291	11.71	0.000	.0977739	.1371027
_cons	2.625541	.0799623	32.83	0.000	2.468756	2.782327
sigma_u sigma_e rho	.31731619 .12076713 .87347826	(fraction d	of varia	nce due t		

F test that all u i=0: F(508, 3043) = 3.76 Prob > F = 0.0000

. test logn + logk = 1 $(1) \log n + \log k = 1$ F(1, 3043) = 447.06Prob > F = 0.0000. testnl (b[1.logy] = -b[1.logn]/b[logn]) (1) b[1.logy] = -b[1.logn]/b[logn]chi2(1) = 111.37Prob > chi2 = 0.0000 . testnl (b[1.logy] = - b[1.logk] / b[logk]) (1) b[1.logy] = -b[1.logk]/b[logk]chi2(1) = 21.13Prob > chi2 = 0.0000 . testnl (_b[1.logy] = -_b[1.logn]/_b[logn]) (_b[1.logy] = -_b[1.logk]/_b[logk] >) (1) b[1.logy] = -b[1.logn]/b[logn](2) b[1.logy] = -b[1.logk]/b[logk]chi2(2) = 112.43Prob > chi2 = 0.0000

COMMENTS ON RESULTS

(a) According to the estimates, the technology is more intensive in labor than in capital. The magnitude for the estimate of α_K is to small, and as a result the value of $\alpha_L + \alpha_K$ is too far away from CRS.

(b) The estimate of ρ (or β_1) is significantly different to zero and it is not small. Therefore, there is evidence of serial correlation in the transitory shock.

(c) The test of the null hypothesis of no time-invariant unobserved heterogeneity ($\eta_i = 0$ for every firm *i*) is the F-test at the bottom of the table of estimates. The p-value of this test is practically zero. Therefore, we clearly reject the null hypothesis of no time-invariant unobserved heterogeneity.

(d) Tests of OIRs. The three tests (for each restriction separately, and for the two restrictions together) are clearly rejected with a p-value practically equal to zero. Therefore, there is clear evidence against the restrictions of this model.

(e) Despite there is evidence of serial correlation in the transitory shock and of timeinvariant unobserved heterogeneity, the restrictions of this model/estimator are rejected. A possible explanation is that this estimator is biased/inconsistent because it does not control for the endogeneity due to the correlation between the regressors (observed inputs) and the innovation in the transitory shock, a_{it} . That is, this method controls for endogeneity due to the fixed effect η_i and to the component $\rho \ u_{it-1}$ in the error term (we are controlling for this by including the lagged values y_{it-1} , ℓ_{it-1} , and k_{it-1} as regressors). But it does NOT controls for the endogeneity problem due to component a_{it} of the error term. Q2.4. (10 points) Arellano-Bond estimator with time dummies and nonserially correlated transitory shock. Provide the code in Stata and the table of estimation results. Comment the results.

ANSWER. MODEL: We estimate the model in first differences:

$$\Delta y_{it} = \alpha_L \ \Delta \ell_{it} + \alpha_K \ \Delta k_{it} + \Delta \gamma_t + \Delta u_{it}$$

using as instruments ℓ_{it-2} and k_{it-2} and also lags before t-2. These instruments are valid only in u_{it} is not serially correlated, or what is equivalent, if Δu_{it} is serially correlated of first-order but not of second order or higher.

CODE. To implement this estimator, we can use the command xtabond.

- Though the model is estimated in first differences, the syntax of the model is such that the dependent and explanatory variables are input in levels, i.e., logy logn logk i.year

- The part gmm(., lag()) of the command determines the set instruments. We use lags t-2 of log-output, log-labor, and log-capital: gmm(logy logn logk, lag(2 .))

- The part iv() of the command determines the regressors which are exogenous, in our case only the time dummies: iv(i.year)

- We use the option **noleveleq** to choose the Arellano-Bond estimator (the default of this command is the System GMM estimator).

- We use the option **robust** to obtain standard errors that are robust of serial correlation and heteroscedasticity.

xtabond2 logy logn logk i.year, gmm(logy logn logk, lag(2 .)) iv(i.year) robust noleveleq

test logn + logk = 1

COMMENTS ON RESULTS

(a) According to the estimates, the coefficient of capital is very small and not significantly different to zero. This is completely implausible.

(b) The test of serial correlation "Arellano-Bond test for AR(2) in first differences" tests for the null hypothesis $E(\Delta u_{it} \ \Delta u_{it-2}) = 0$. The p-value of this test is 0.002. The null hypothesis is clearly rejected. This implies that u_{it} is serially correlated, and therefore that the instruments ℓ_{it-2} and k_{it-2} are not valid.

In summary, the estimates do nor have economic sense and the restrictions of the model are rejected.

TABLE OF RESULTS

. // 6. Question 2.4: Arellano-Bond: No AR(1)

· // -----

. xtabond2 logy logn logk i.year, gmm(logy logn logk, lag(2 .)) iv(i.year) robu > st noleveleq

Favoring space over speed. To switch, type or click on mata: mata set matafavor

> speed, perm. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate robust weighting matrix for Hansen t est.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, one-step difference GMM

Group variable Time variable Number of inst Wald chi2(10)		of group group: 1	= s = min = avg =	3563 509 7.00			
Prob > chi2	= 0.000				1	max =	7
		Robust					
logy	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
logn	.6944881	.1021823	6.80	0.000	.4942	144	.8947618
logk	.0529433	.0802371	0.66	0.509	1043	186	.2102051
year							
1982	0	(empty)					
1983	0182737	.0102597	-1.78	0.075	0383	824	.0018349
1984	.0352441	.0170495	2.07	0.039	.0018	278	.0686604
1985	.0391971	.0242658	1.62	0.106	008	363	.0867572
1986	.0623552	.0318072	1.96	0.050	.0000	143	.1246961
1987	.117962	.03499	3.37	0.001	.0493	828	.1865412
1988	.16933	.037151	4.56	0.000	.0965	153	.2421447
1989	.1872415	.0432925	4.33	0.000	.1023	897	.2720933

Instruments for first differences equation Standard

D.(1982b.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 1989.year)

GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/7).(logy logn logk)

Arellano-Bond test for AR(1) in first differences: z = -5.17 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -3.03 Pr > z = 0.002

Sargan test of overid. restrictions: chi2(60) = 331.50 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(60) = 92.16 Prob > chi2 = 0.005 (Robust, but weakened by many instruments.) = 92.16 Prob > chi2 = 0.005

Difference-in-Hansen tests of exogeneity of instrument subsets: iv(1982b.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 198 > 9.year)

Hansen test excluding group: chi2(53) = 74.33 Prob > chi2 = 0.028Difference (null H = exogenous): chi2(7) = 17.84 Prob > chi2 = 0.013

. test loan + loak = 1

 $(1) \log n + \log k = 1$

chi2(1) = Prob > chi2 = 15.11 0.0001

Q2.5. (10 points) Arellano-Bond estimator with time dummies and AR(1) transitory shock. Provide the code in Stata and the table of estimation results. Comment the results.

ANSWER. **MODEL**: Suppose that u_{it} follows an AR(1) process such that $u_{it} = \rho u_{it-1} + a_{it}$, where a_{it} is not serially correlated. Since the transitory shock is serially correlated, the Arellano-Bond instruments are not valid in the equation in first differences. However, we can transform the model taking a quiasi-first difference (as we did for the Cochrane-Orcutt) estimator, such that we can obtain a model where the "new" transitory shock is a_{it} , which is not serially correlated. The model after the quasi-first difference is:

$$y_{it} = \beta_1 \ y_{it-1} + \beta_2 \ \ell_{it} + \beta_3 \ \ell_{it-1} + \beta_4 \ k_{it} + \beta_5 \ k_{it-1} + \eta_i^* + \gamma_t^* + a_{it}$$

Then, in this model we can apply first differences. The equation that we estimate is:

$$\Delta y_{it} = \beta_1 \ \Delta y_{it-1} + \beta_2 \ \Delta \ell_{it} + \beta_3 \ \Delta \ell_{it-1} + \beta_4 \ \Delta k_{it} + \beta_5 \ \Delta k_{it-1} + \Delta \gamma_t^* + \Delta a_{it}$$

with $\beta_1 = \rho$, $\beta_2 = \alpha_L$, $\beta_3 = -\rho\alpha_L$, $\beta_4 = \alpha_K$, and $\beta_5 = -\rho\alpha_K$. We estimate this model using a instrumental variables (GMM) estimator using as instruments ℓ_{it-2} and k_{it-2} and also lags before t-2. Note that these instruments are valid in this transformed model.

CODE. To implement this estimator, we can use the command **xtabond**. The only difference with respect to the code in Question Q2.5 is in the set of regressors. Now, we need to include the first lags of log-output, log-labor, and log-capital as regressors. The set of instruments is the same, and the other options of the command are also the same. Remember that in the syntax of this command the variables are input in levels though the estimation is in first differences (the command makes the transformation for us). We also test the restrictions on the parameters implied by the AR(1) model.

xtabond2 logy l.logy logn l.logn logk l.logk i.year, gmm(logy logn logk, lag(2
.)) iv(i.year) robust noleveleq

```
test logn + logk = 1
testnl (_b[1.logy] = -_b[1.logn]/_b[logn])
testnl (_b[1.logy] = -_b[1.logk]/_b[logk])
testnl (_b[1.logy] = -_b[1.logn]/_b[logn]) (_b[1.logy] = -_b[1.logk]/_b[logk])
```

COMMENTS ON RESULTS

(a) According to the estimates, the technology is more intensive in labor than in capital. Though the coefficient of capital is now significantly greater than zero, it still seems too small. As a result the value of $\alpha_L + \alpha_K$ is too far away from CRS. (b) The estimate of ρ (or β_1) is significantly different to zero and it is not small. Therefore, there is evidence of serial correlation in the transitory shock.

(c) The test of serial correlation "Arellano-Bond test for AR(2) in first differences" tests for the null hypothesis $E(\Delta a_{it} \ \Delta a_{it-2}) = 0$. The p-value of this test is 0.173. The null hypothesis cannot be rejected using the standard significance levels (i.e., p-value is greater than 10%). This implies that we cannot reject that a_{it} is not serially correlated, and therefore that the instruments ℓ_{it-2} and k_{it-2} are valid. That is, it seems that by including the lagged values y_{it-1} , ℓ_{it-1} , and k_{it-1} as regressors we have been able to control for serial correlation in the transitory shock.

(d) The model implies two restrictions on the parameter estimates β :

$$-\beta_3/\beta_2 = \beta_1$$
 and $-\beta_5/\beta_4 = \beta_1$

We can test these nonlinear restrictions separately or jointly using the command "testnl" in Stata. We have implemented both the single and the joint tests. The test of $H_0: -\beta_3/\beta_2 = \beta_1$ has a p-value of 0.0143, such that we cannot reject the null at 1% but we reject it at 5% significance level. The test of $H_0: -\beta_5/\beta_4 = \beta_1$ has a p-value of 0.178, such that we cannot reject the null at the standard significance levels. The joint test has a p-value of 0.0227, which again implies that we cannot reject the null at 1% but we reject it at 5% significance level.

In summary, accounting for AR(1) transitory shocks has improved significantly the estimates and the specification tests. However, the restrictions of the model are only marginally "accepted" and, most importantly, the estimate for the coefficient of capital seems implausibly small.

Dynamic panel-data estimation, one-step difference GMM

Group variable Time variable Number of inst Wald chi2(13) Prob > chi2	: year truments = 69				of obs = of groups = group: min = avg = max =	3054 509 6.00 6
logy	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
logy L1.	.3264209	.0521606	6.26	0.000	.2241881	.4286538
logn						
 L1.	.5128697 .0726061	.0892432 .0927269	5.75 0.78	0.000	.3379563 1091353	.6877831 .2543475
logk 	.1318291	.1179029	1.12	0.264	0992562	.3629145
Ll.	2066298	.0949589	-2.18	0.030	3927458	0205137
year 1982 1983 1984	0 091299 0236894	(empty) .0200443 .0151667	-4.55 -1.56	0.000 0.118	1305851 0534155	0520129 .0060367
1985 1986	0347948 0	.0098768 (omitted)	-3.52	0.000	0541531	0154366
1987 1988 1989	.0639394 .1015617 .0986976	.00849 .0105429 .0134461	7.53 9.63 7.34	0.000 0.000 0.000	.0472994 .080898 .0723437	.0805794 .1222254 .1250514
1989.year) GMM-type (mi L(2/7).(lc	ssing=0, sepa	arate instru	iments for	r each pe	ar 1987.year riod unless c	ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2	l) in first 2) in first	differend	ces: z = ces: z =	-6.21 Pr > -1.36 Pr >	z = 0.000 z = 0.173
Sargan test of (Not robust, Hansen test of (Robust, but	overid. rest but not weak overid. rest weakened by	cened by mar crictions: c	y instrum hi2(56)	= 213.5 ments.) = 98.3	6 Prob > chi 9 Prob > chi	
> 9.year) Hansen tes	Hansen tests ar 1983.year 1 st excluding o e (null H = ex	1984.year 19 group: c	985.year 1 hi2(50)	strument 1986.year = 78.5 = 19.8	1987.year 19 8 Prob > chi	2 = 0.006
. test logn +						
chi		2.94				
Prob . testnl (b[]).0003 [l.logn]/ b[logn])			
	pdÅ] = - p[].]					
Pro	chi2(1) = >> chi2 =	6.00 0.0143	5			
. testnl (_b[]	.logy] =b	[l.logk]/_b[logk])			
(1) _b[l.lc	pgy] =b[l.]	logk]/_b[log	1 K]			
Pro	chi2(1) = bb > chi2 =	1.81 0.1780)			
. testnl (_b[] >)	.logy] =b	[l.logn]/_b[logn]) (_	b[l.logy] = - b[l.log	k]/_b[logk]
(1) _b[l.lc (2) _b[l.lc	pgy] =b[l.] pgy] =b[l.]	logn]/_b[log logk]/_b[log	in] [k]			

Q2.6. (10 points) Blundell-Bond system estimator with time dummies and non-serially correlated transitory shock. Provide the code in Stata and the table of estimation results. Comment the results.

ANSWER. **MODEL**: Now, we estimate the parameters of the model by combining two sets of moment restrictions: (i) the ones from the Arellano-Bond IV (GMM) estimator; and (ii) the ones from the Blundell-Bond IV (GMM) estimation of the equation in levels:

$$y_{it} = \alpha_L \ \ell_{it} + \alpha_K \ k_{it} + \gamma_t + (\eta_i + u_{it})$$

using as instruments $\Delta \ell_{it-1}$ and Δk_{it-1} . Remember that this system estimator uses both the Arellano-Bond instruments in the equation in first differences, and the Blundell-Bond instruments in the equation in levels. For the validity of these instruments (either AB or BB) we need the transitory shock u_{it} not being serially correlated.

CODE. To implement this estimator, we can use the command **xtabond**. The only difference with respect to the code in Question Q2.4 is that we should not include the option **noleveleq**. Note that the syntax of this command is such that, though we input the list of instruments in levels, the command understands that this instruments should be in levels for the equation in first-differences, and the instruments should be in first differences for the equation in levels.

xtabond2 logy logn logk i.year, gmm(logy logn logk, lag(2 .)) iv(i.year) robust test logn + logk = 1

COMMENTS ON RESULTS

(a) According to the estimates, the technology is more intensive in labor than in capital. But now both α_L and α_K are larger and the value of $\alpha_L + \alpha_K$ is very close CRS. In fact, the test of CRS has a p-value of 0.7794.

(b) The test of serial correlation "Arellano-Bond test for AR(2) in first differences" tests for the null hypothesis $E(\Delta u_{it} \Delta u_{it-2}) = 0$. Similarly as for the Arellano-Bond estimator without AR(1), the p-value of this test is practically zero. The null hypothesis is clearly rejected. This implies that u_{it} is serially correlated, and therefore neither AB nor BB instruments are valid. . // -----

· · ·

. xtabond2 logy logn logk i.year, gmm(logy logn logk, lag(2 .)) iv(i.year) robu > st

Favoring space over speed. To switch, type or click on mata: mata set matafavor > speed, perm.
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate robust weighting matrix for Hansen t

> est.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, one-step system GMM

4072 509	f obs = f groups =	Number Number				Group variable Time variable
8	group: min =					Number of inst
8.00	avg =	1			= 2754.89	Wald chi2(10)
8	max =				= 0.000	Prob > chi2
				Robust		
Interval]	[95% Conf.	P> ∠	Z	Std. Err.	Coef.	logy
.9046902	.5673045	0.000	8.55	.0860694	.7359973	logn
.410154	.1347289	0.000	3.88	.0702628	.2724414	logk
						vear
				(empty)	0	1982
0271846	0643322	0.000	-4.83	.0094766	0457584	1983
.0029842	0548195	0.079	-1.76	.0147461	0259176	1984
0042683	0884417	0.031	-2.16	.0214732	046355	1985
.0164665	0940235	0.169	-1.38	.0281867	0387785	1986
.0600537	0573233	0.964	0.05	.0299436	.0013652	1987
.1040126	0208291	0.192	1.31	.031848	.0415917	1988
.1113095	0350814	0.307	1.02	.0373453	.038114	1989
4.042337	3.131591	0.000	15.44	.2323373	3.586964	_cons

Instruments for first differences equation

Standard

D.(1982b.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 1989.year)

GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/7).(logy logn logk) Instruments for levels equation

Standard

1982b.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 1989.year cons

GMM-type (missing=0, separate instruments for each period unless collapsed) DL. (logy logn logk)

Arellano-Bond test for AR(1) in first differences: $z = -6.52$ Pr > $z = 0.0$ Arellano-Bond test for AR(2) in first differences: $z = -3.52$ Pr > $z = 0.0$	
Sargan test of overid. restrictions: chi2(78) =2480.33 Prob > chi2 = 0.0 (Not robust, but not weakened by many instruments.))00
Hansen test of overid. restrictions: chi2(78) = 190.38 Prob > chi2 = 0.0 (Robust, but weakened by many instruments.))00
Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels	
Hansen test excluding group: chi2(60) = 89.01 Prob > chi2 = 0.0 Difference (null H = exogenous): chi2(18) = 101.36 Prob > chi2 = 0.0	
iv(1982b.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year > 9.year)	198
Hansen test excluding group: $chi^2(71) = 135.63$ Prob > $chi^2 = 0.0$)00

Hansen test excluding group: chi2(71) = 135.63 Prob > chi2 = 0.000Difference (null H = exogenous): chi2(7) = 54.75 Prob > chi2 = 0.000

. test logn + logk = 1

(1) logn + logk = 1

chi2(1) =Prob > chi2 =0.08 0.7794 Q2.7. (10 points) Blundell-Bond system estimator with time dummies and AR(1) transitory shock. Provide the code in Stata and the table of estimation results. Comment the results.

ANSWER. **MODEL**: Suppose that u_{it} follows an AR(1) process such that $u_{it} = \rho u_{it-1} + a_{it}$, where a_{it} is not serially correlated. Since the transitory shock is serially correlated, the Arellano-Bond and the Blundell-Bond instruments are not valid in the equation in first differences. However, we can transform the model taking a quiasi-first difference (as we did for the Cochrane-Orcutt) estimator, such that we can obtain a model where the "new" transitory shock is a_{it} , which is not serially correlated. The model after the quasi-first difference is:

$$y_{it} = \beta_1 \ y_{it-1} + \beta_2 \ \ell_{it} + \beta_3 \ \ell_{it-1} + \beta_4 \ k_{it} + \beta_5 \ k_{it-1} + \eta_i^* + \gamma_t^* + a_{it}$$

and in first differences,

$$\Delta y_{it} = \beta_1 \ \Delta y_{it-1} + \beta_2 \ \Delta \ell_{it} + \beta_3 \ \Delta \ell_{it-1} + \beta_4 \ \Delta k_{it} + \beta_5 \ \Delta k_{it-1} + \Delta \gamma_t^* + \Delta a_{it}$$

with $\beta_1 = \rho$, $\beta_2 = \alpha_L$, $\beta_3 = -\rho\alpha_L$, $\beta_4 = \alpha_K$, and $\beta_5 = -\rho\alpha_K$. The system GMM estimator of this model consists of using Arellano-Bond instruments in the equation in first differences, and the Blundell-Bond instruments in the equation in levels. For the validity of these instruments (either AB or BB) we need the shock a_{it} not being serially correlated.

CODE. To implement this estimator, we can use the command **xtabond**. The only difference with respect to the code in Question Q2.5 is that we should not include the option **noleveleq**. Note that the syntax of this command is such that, though we input the list of instruments in levels, the command understands that this instruments should be in levels for the equation in first-differences, and the instruments should be in first differences for the equation in levels. We also include a test of CRS, and tests of the restrictions implied by the AR(1) process.

```
xtabond2 logy l.logy logn l.logn logk l.logk i.year, gmm(logy logn logk, lag(2
.)) iv(i.year) robust
```

```
test logn + logk = 1
testnl (_b[1.logy] = -_b[1.logn]/_b[logn])
testnl (_b[1.logy] = -_b[1.logk]/_b[logk])
testnl (_b[1.logy] = -_b[1.logn]/_b[logn]) (_b[1.logy] = -_b[1.logk]/_b[logk])
```

COMMENTS ON RESULTS

(a) Now, according to the estimates, the technology is more intensive in capital than labor. Both parameters are large. The value of $\alpha_L + \alpha_K$ is very close to 1 and the null hypothesis of CRS has a p-value of 0.8456. (b) The estimate of ρ (or β_1) is quite large (0.7035) significantly different to zero. There is evidence of strong serial correlation in the transitory shock.

(c) The test of serial correlation "Arellano-Bond test for AR(2) in first differences" tests for the null hypothesis $E(\Delta a_{it} \Delta a_{it-2}) = 0$. The p-value of this test is 0.461. The null hypothesis cannot be rejected using the standard significance levels (i.e., p-value is way greater than 10%). This implies that we cannot reject that a_{it} is not serially correlated, and therefore that AB and BB instruments are valid. That is, it seems that by including the lagged values y_{it-1} , ℓ_{it-1} , and k_{it-1} as regressors we have been able to control for serial correlation in the transitory shock.

(d) The model implies two restrictions on the parameter estimates β :

$$-\beta_3/\beta_2 = \beta_1$$
 and $-\beta_5/\beta_4 = \beta_2$

We can test these nonlinear restrictions separately or jointly using the command "testnl" in Stata. We have implemented both the single and the joint tests. The test of H_0 : $-\beta_3/\beta_2 = \beta_1$ has a p-value of 0.1051, such that we cannot reject the null at 10%. The test of H_0 : $-\beta_5/\beta_4 = \beta_1$ has a p-value of 0.0047, such that we marginally reject it at 1% significance level. The joint test has a p-value of 0.0169, which implies that we cannot reject the null at 1% but we reject it at 5% significance level.

In summary, accounting for AR(1) transitory shocks has improved significantly the estimates and the specification tests. The restrictions of the model are marginally "accepted" at 1% significance level. Most importantly, in contrast to the AB -with-AR(1), the estimate for the coefficient of capital is now plausibly, and the null hypothesis of CRS cannot be rejected. // _____ _____

// 9. Question 2.7: System GMM: AR(1) . // ------

. xtabond2 logy l.logy logn l.logn logk l.logk i.year, gmm(logy logn logk, lag(Favoring space over speed. To switch, type or click on mata: mata set matafavor

> <u>speed</u>, perm. Warning: Two-step estimated covariance matrix of moments is singular. Warning:

Using a generalized inverse to calculate robust weighting matrix for Hansen t est.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, one-step system GMM

Group variable Time variable	: year				of groups =	3563 509
Number of inst Wald chi2(13) Prob > chi2				Obs per	r group: min = avg = max =	7 7.00 7
logy	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
logy L1.	.703552	.0409546	17.18	0.000	.6232825	.7838215
logn L1.	.4484997 238936	.0929987 .0932566	4.82 -2.56	0.000 0.010	.2662257 4217155	.6307738 0561565
logk L1.	.5333291 4439966	.1094111 .0953875	4.87 -4.65	0.000	.3188874 6309527	.7477709 2570404
year 1982 1983 1984 1985 1986 1987 1988 1989	0 .9693206 1.017554 .9759269 1.003888 1.050145 1.065216 1.016383	(empty) .1561941 .1556511 .1577675 .1582892 .1577235 .1602027 .1622965	6.21 6.54 6.19 6.34 6.66 6.65 6.26	0.000 0.000 0.000 0.000 0.000 0.000 0.000	.6631857 .7124836 .6667082 .6936465 .7410126 .7512248 .6982878	1.275455 1.322625 1.285146 1.314129 1.359277 1.379208 1.334478
_cons	0	(omitted)				

Instruments for first differences equation Standard

D.(1982b.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 1989.year)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/7).(logy logn logk)
Instruments for levels equation

Standard

1982b.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 1989.year cons

GMM-type (missing=0, separate instruments for each period unless collapsed) DL.(logy logn logk)

	AR(1) in first differences: $z = -9.69$ Pr > $z = AR(2)$ in first differences: $z = -0.74$ Pr > $z =$	
2	restrictions: chi2(74) = 302.67 Prob > chi2 = weakened by many instruments.)	0.000

Hansen test of overid. restrictions: chi2(74) = 135.97 Prob > chi2 = 0.000 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(56) = 92.25 Prob > chi2 = 0.002 Difference (null H = exogenous): chi2(18) = 43.71 Prob > chi2 = 0.001 iv(1982b.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 198 > 9.vearHansen test excluding group: chi2(68) Difference (null H = exogenous): chi2(6) = 124.89 Prob > chi2 = 0.000 = 11.08 Prob > chi2 = 0.086

. test logn + logk = 1 $(1) \quad \log n + \log k = 1$ chi2(1) = 0.04 Prob > chi2 = 0.8456 . testnl (b[1.logy] = - b[1.logn] / b[logn]) (1) b[1.logy] = -b[1.logn]/b[logn]chi2(1) = 2.63 Prob > chi2 = 0.1051 . testnl (b[1.logy] = - b[1.logk] / b[logk]) (1) b[1.logy] = -b[1.logk]/b[logk]chi2(1) = 7.98 Prob > chi2 = 0.0047 . testnl (b[1.logy] = - b[1.logn]/ b[logn]) (b[1.logy] = - b[1.logk]/ b[logk] >) (1) b[1.logy] = - b[1.logn] / b[logn](2) b[1.logy] = -b[1.logk]/b[logk]chi2(2) = 8.17Prob > chi2 = 0.0169

Q2.8. (10 points) Based on the previous results, select your preferred estimates of the production function. Explain your choice.

ANSWER. Taking into account the following criteria: (i) plausible estimates of the parameters (not too small, and not too far from CRS); (ii) validity of the instruments, i.e., accepting (not rejecting) the null hypothesis that the shock in the regression is not serially correlated; and (iii) accepting (not rejecting) the restrictions on the parameters β imposed by the model; the best estimator, as argued above, is the System-GMM with AR(1) transitory shock.

DO FILE

clear // ------// eco310_problem_set_1_question_2_2018.do // Victor Aguirregabiria // October 1st, 2018 // ------// -----// 1. Reading dataset // ----use c:\PROBLEM_SETS\blundell_bond_2000_production_function.dta // -----// 2. Construction of variables // -----gen logy = ln(sales) gen logn = ln(labor) gen logk = ln(capital) xtset id year // ------// 3. Question 2.1: OLS estimator // -----reg logy logn logk i.year test logn + logk = 1// -----// 4. Question 2.2: Fixed Effects estimation // ----xtreg logy logn logk i.year, fe test logn + logk = 1 // ------// 5. Question 2.3: Fixed Effects - Cochrane-Orcutt estimation // ----xtreg logy 1.logy logn 1.logn logk 1.logk i.year, fe test logn + logk = 1testnl $(_b[1.logy] = -_b[1.logn]/_b[logn])$ testnl $(_b[1.logy] = -_b[1.logk]/_b[logk])$

```
testnl (_b[1.logy] = -_b[1.logn]/_b[logn]) (_b[1.logy] = -_b[1.logk]/_b[logk])
  // -----
  // 6. Question 2.4: Arellano-Bond: No AR(1)
  // -----
  xtabond2 logy logn logk i.year, gmm(logy logn logk, lag(2 .)) iv(i.year) robust
noleveleq
  test logn + logk = 1
  // -----
  // 7. Question 2.5: Arellano-Bond: AR(1)
  // -----
  xtabond2 logy l.logy logn l.logn logk l.logk i.year, gmm(logy logn logk, lag(2
.)) iv(i.year) robust noleveleq
  test logn + logk = 1
  testnl (_b[1.logy] = -_b[1.logn]/_b[logn])
  testnl (b[1.logy] = -b[1.logk]/b[logk])
  testnl (_b[1.logy] = -_b[1.logn]/_b[logn]) (_b[1.logy] = -_b[1.logk]/_b[logk])
  // -----
  // 8. Question 2.6: System GMM: No AR(1)
  // -----
  xtabond2 logy logn logk i.year, gmm(logy logn logk, lag(2 .)) iv(i.year) robust
  test logn + logk = 1
  // -----
  // 9. Question 2.7: System GMM: AR(1)
  // -----
  xtabond2 logy l.logy logn l.logn logk l.logk i.year, gmm(logy logn logk, lag(2
.)) iv(i.year) robust
  test logn + logk = 1
  testnl (_b[1.logy] = -_b[1.logn]/_b[logn])
  testnl (_b[1.logy] = -_b[1.logk]/_b[logk])
  testnl (_b[1.logy] = -_b[1.logn]/_b[logn]) (_b[1.logy] = -_b[1.logk]/_b[logk])
```