Empirical Industrial Organization (ECO 310) University of Toronto. Department of Economics Fall 2018. Instructor: Victor Aguirregabiria

Solution to Midterm Exam October 29th, 2018

MIDTERM EXAM. Monday, October 29th, 2018. From 12pm to 1pm (1 hour)

INSTRUCTIONS:

- This is a closed-book exam.

- No study aids, including calculators, are allowed.

- Please, answer all the questions.

TOTAL POINTS = 100

QUESTION 1 [50 points]. Consider a firm panel dataset with the following variables: id (firm id number); year (year); logy (logarithm of firm's output); logn (logarithm of firm's labor); logk (logarithm of firm's capital). Using this dataset and Stata software package, a researcher runs the following commands:

xtset id year
xtreg logy logn logk i.year, fe
test logn + logk = 1
And obtains the results that you can see in the next page.
Based on these results, answer the following questions.

Q1.1. [10 points] Write the regression equation that the command "xtreg logy logn logk i.year, fe" estimates.

ANSWER: The original model is:

$$y_{it} = \alpha_L \ \ell_{it} + \alpha_K \ k_{it} + \gamma_t + \eta_i + u_{it}$$

where y_{it} , ℓ_{it} , and k_{it} are the logarithm of output, the logarithm of labor, and the logarithm of capital, respectively. This command implements a Fixed Effects estimator of this model, where the fixed effects are the time-invariant unobserved firm effects η_i . The model also includes year dummies to capture the time effects γ_t .

Q1.2. [10 points] Explain the estimator that this command implements.

ANSWER: The Fixed Effects estimator first transforms the model in deviations with respect to the firm-specific means of the variables. The transformed model is:

$$y_{it} - \overline{y}_i = \alpha_L \ (\ell_{it} - \overline{\ell}_i) + \alpha_K \ (k_{it} - \overline{k}_i) + \gamma_t^* + (u_{it} - \overline{u}_i)$$

where \overline{y}_i , $\overline{\ell}_i$, and \overline{k}_i are the sample means of log-output, log-labor, and log-capital, respectively, for firm *i*. Then, the Fixed Effects estimator is the OLS estimator applied to this transformed model. That is, an OLS estimator where the regression model where the dependent variable is $(y_{it} - \overline{y}_i)$ and the regressors are $(\ell_{it} - \overline{\ell}_i)$, $(k_{it} - \overline{k}_i)$, and time dummies.

Q1.3. [10 points] Under what assumptions (on the error term and the regressors) does this estimator provide unbiased (consistent) estimates of the true parameters in the production function?

ANSWER: This estimator is consistent (asymptotically unbiased) if and only if the regressors in the transformed equation, $(\ell_{it} - \overline{\ell}_i)$ and $(k_{it} - \overline{k}_i)$, are not correlated with the error term in the transformed equation, $(u_{it} - \overline{u}_i)$. This is the case if the transitory shock u at any period t is not correlated with labor and capital inputs at any period t', for any value of t and t'.

Q1.4. [10 points] Explain the F-test at the bottom of the output table from the xtreg command. Interpret its result.

ANSWER: This is a F-test for the null hypothesis that all the fixed effects are the same (and they are zero, because there is a common intercept) such that there is not time-invariant unobserved heterogeneity: H_0 : $\eta_1 = \eta_2 = ... = \eta_N = 0$. For these data, the p-value of the test is practically equal to zero. It is smaller than the significance levels of 1%, 5%, or 10% that we typically use to reject or not a null hypothesis. Therefore, we reject the null hypothesis and conclude that there is time-invariant unobserved firm heterogeneity in the production function.

Q1.5. [10 points] Explain the F-test from the command test logn $+ \log k = 1$. Interpret its result.

ANSWER: This is a F-test for the null hypothesis that the sum of the regression coefficients for log-labor and log-capital are equal to one: $H_0: \alpha_L + \alpha_K = 1$. This is the null hypothesis of Constant Returns to Scale (CRS) in the production function. For these data, the p-value of the test is practically equal to zero. It is smaller than the significance levels of 1%, 5%, or 10% that we typically use to reject or not a null hypothesis. Therefore, we reject the null hypothesis and conclude that there is not CRS. There is evidence of decreasing returns to scale because $\hat{\alpha}_L + \hat{\alpha}_K < 1$.

. //				
<pre>// 4. Question 2.2: Fixed Effects estimation //</pre>				
• // • xtreg logy logn logk i.year, fe				
Fixed-effects (within) regression	Number of obs	=	4,072	
Group variable: id	Number of groups	=	509	
R-sq:	Obs per group:			
within = 0.7379	mir	1 =	8	
between = 0.9706	avo	1 —	8.0	
overall = 0.9661	ma>	< =	8	
	F(9 , 3554)	=	1111.47	
corr(u_i, Xb) = 0.5988	Prob > F	=	0.0000	

logy	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
logn	.6544609	.0144048	45.43	0.000	.6262184	.6827034	
logk	.2329072	.013637	17.08	0.000	.2061702	.2596443	
year							
1983	0376406	.0093042	-4.05	0.000	0558828	0193985	
1984	0076445	.0096071	-0.80	0.426	0264805	.0111914	
1985	0234513	.0100955	-2.32	0.020	0432449	0036578	
1986	0136103	.0105543	-1.29	0.197	0343034	.0070829	
1987	.0314121	.0108748	2.89	0.004	.0100907	.0527335	
1988	.0753576	.0111072	6.78	0.000	.0535805	.0971347	
1989	.0764164	.0118166	6.47	0.000	.0532485	.0995844	
_cons	3.863804	.0529288	73.00	0.000	3.76003	3.967578	
sigma u	.42922318						
sigma e	.14715329						
rho	.89482518	(fraction of variance due to u_i)					

F test that all $u_i=0$: F(508, 3554) = 38.90 Prob > F = 0.0000

. test logn + logk = 1

(1) logn + logk = 1

F(1, 3554) = 121.32Prob > F = 0.0000

QUESTION 2 [50 points]. Consider the consumer utility function:

$$U = c (q_1 - \gamma_1)^{\alpha_1} (q_2 - \gamma_2)^{\alpha_2} \dots (q_J - \gamma_J)^{\alpha_J}$$

where α 's and γ 's are positive parameters, and c is the composite or outside good. In this model, the marginal utility of product j has the form $U_j = \alpha_j \frac{U}{q_j - \gamma_j}$, and similarly, the marginal utility of the composite good is $U_c = \frac{U}{c}$. The consumer budget constraint is:

$$c + p_1 q_1 + p_2 q_2 + \dots + p_J q_J \le y$$

Q2.1. [5 points] Write the consumer's decision problem. Represent it as a Lagrange optimization problem.

ANSWER: The consumer decision problem is:

$$\begin{array}{ll} \max_{c,q_1,\ldots,q_J} & c \; (q_1 - \gamma_1)^{\alpha_1} \ldots \; (q_J - \gamma_J)^{\alpha_J} \\ \text{subject to:} & c + p_1 q_1 + \ldots + p_J q_J \leq y \end{array}$$

We can represent this decision problem using the Lagrange representation:

$$\max_{c,q_1,...,q_J,\lambda} \ c \ (q_1 - \gamma_1)^{\alpha_1} \ ... \ (q_J - \gamma_J)^{\alpha_J} + \lambda \left[y - c - p_1 q_1 - ... - p_J q_J \right]$$

where λ is the Lagrange multiplier of the budget constraint.

y

Q2.2. [5 points] In this optimization problem, obtain the marginal conditions of optimality: with respect to product j; with respect to the composite good c; and with respect to the Lagrange multiplier λ .

ANSWER: Taking into account that the marginal utilities are $U_j = \alpha_j \frac{U}{q_j - \gamma_j}$ and $U_c = \frac{U}{c}$, we have that the marginal conditions of optimality are:

$$\alpha_j \frac{U}{q_j - \gamma_j} - \lambda p_j = 0$$
$$\frac{U}{c} - \lambda = 0$$
$$-c - p_1 q_1 - \dots - p_J q_J = 0$$

Q2.3. [10 points] Combine the marginal conditions with respect to q_j and with respect to c to obtain a linear equation that relates q_j with c/p_j .

ANSWER: The marginal condition with respect to j implies that:

$$\alpha_j \frac{U}{\lambda} = p_j (q_j - \gamma_j)$$

And the marginal condition with respect to c implies that:

$$\frac{U}{\lambda} = c$$

Plugging the last equation into the former, we have:

$$\alpha_j \ c = p_j \ (q_j - \gamma_j)$$

Solving for q_j , we get the following linear relationship between q_j and c/p_j .

$$q_j = \gamma_j + \alpha_j \frac{c}{p_j}$$

Q2.4. [10 points] Combine the J linear equations in Q2.3 and the budget constraint to obtain the optimal amount of the composite good, c, as a function of prices, income, and utility parameters. [Hint: use the following steps (i) multiply by the price p_j the linear equation for product j in Q2.3; (ii) sum this equation over all the J products; (iii) taking into account that the budget constraint implies that $\sum_{j=1}^{J} p_j q_j = y - c$, combine this budget constraint with the equation in (ii) to obtain an equation where the only endogenous variable is c; and (iv) using this equation, solve for c to get an expression for this variable in terms on prices, income, and utility parameters].

ANSWER: We follow the four steps in the Hint. First, we multiply by price p_j the linear equation for product j in Q2.3:

$$p_j q_j = p_j \gamma_j + \alpha_j c$$

Second, we sum this equation over all the J products:

$$\sum_{j=1}^{J} p_j q_j = \sum_{j=1}^{J} p_j \gamma_j + \sum_{j=1}^{J} \alpha_j c$$

Third, taking into account this equation and the budget constraint $\sum_{j=1}^{J} p_j q_j = y - c$, we can obtain the following equation where the only endogenous variable is c:

$$y - c = \sum_{j=1}^{J} p_j \gamma_j + \sum_{j=1}^{J} \alpha_j c$$

Finally, solving for c in this equation, we get:

$$c = \frac{y - \sum_{j=1}^{J} p_j \gamma_j}{1 + \sum_{j=1}^{J} \alpha_j}$$

Q2.5. [10 points] Combine the equations in Q2.3 and Q2.4 to obtain an expression for the demand of q_j in terms of prices, income, and utility parameters. Using this demand equation, obtain the derivative $\partial q_j / \partial p_i$ for $i \neq j$. Are products i and j complements or substitutes? Why?

ANSWER: Combining the equations in Q2.3 and Q2.4 we get:

$$q_j = \gamma_j + \alpha_j \frac{1}{p_j} \left[\frac{y - \sum_{i=1}^J p_i \gamma_i}{1 + \sum_{i=1}^J \alpha_i} \right]$$

Therefore, the derivative $\partial q_j / \partial p_i$ for $i \neq j$ is:

$$\frac{\partial q_j}{\partial p_i} = -\frac{\alpha_j \gamma_i}{p_j \left[1 + \sum_{i=1}^J \alpha_i\right]} < 0$$

Products *i* and *j* (and for that matter, any pair of products in this model) are complements because an increase in the price of one of the products implies a reduction in the quantity of the other product, i.e., $\partial q_j / \partial p_i < 0$ for $i \neq j$.

Q2.6. [10 points] Suppose that we have data of individual purchases and prices over T periods of time, t = 1, 2, ..., T: { $c_t, q_{1t}, q_{2t}, ..., q_{Jt}$ } and { $p_{1t}, p_{2t}, ..., p_{Jt}$ }. Use the linear equation in Q2.3 to obtain a linear regression model. Explain how to estimate the utility parameters of the model using this regression model.

ANSWER: Given the equation in Q2.3, we have the regression model:

$$q_{jt} = \gamma_j + \alpha_j \ x_{jt} + \xi_{jt}$$

where $x_{jt} = c_t/p_{jt}$. The error term ξ_{jt} can be the result of measurement error in the dependent variable q_{jt} , or measurement error in the regressor x_{jt} , or variation over time in the parameters γ_j or/and α_j .

Suppose that the error term ξ_{jt} comes only from measurement error in the dependent variable q_{jt} and that this measurement error is not correlated with the regressor. Then, $cov(p_{jt}, \xi_{jt}) = 0$ and we can estimate consistently the parameters of the model using an OLS estimator. Note that each product j has its own regression equation with its own parameters. Therefore, we need to estimate J regression equations, one for each product.