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CHAPTER 2

Demand Estimation

1. Introduction

The estimation of demand equations is a fundamental component in most empirical

applications in IO. It is also important in many other fields in empirical economics. There are

important reasons why economists in general, and IO economists in particular, are interested

in demand estimation. Knowledge of the demand function, and of the corresponding marginal

revenue function, is crucial for the determination of a firm’s optimal choice of prices or

quantities. Any measure of consumer welfare, in one way or the other, is based on the

estimation of demand. In many applications in empirical IO, demand estimation is also a

necessary first step to measure market power. In the absence of direct information about

firms’costs, the estimation of demand and marginal revenue is key for the identification of

marginal costs (using the marginal cost equals marginal revenue condition) and firms’market

power. The estimation of demand of differentiated products is very helpful in the prediction

of the demand of a new product. Similarly, the estimation of the degree of substitution

between the products of two competing firms is a fundamental factor in evaluating the

profitability of a merger between these firms. Economists are also interested in demand

estimation in order to improve our measures of consumer welfare, and more specifically,

Cost-of-Living indices (COLI). For instance, the Boskin commission (Boskin et al., 1997 and

1998) concluded that the US Consumer Price Index (CPI) overstated the change in the cost

of living by about 1.1 percentage points per year.1 As Hausman (2003) and Pakes (2003)

explain, the estimation of demand systems provides a solution to each of these sources of

bias in the CPI.

Most products that we find in today’s markets are differentiated products: automo-

biles; smartphones; laptop computers; or supermarket products such as ketchup, soft drinks,

1Consumer prices indexes (CPI) are typically constructed using weights which are obtained from a
consumer expenditure survey. For instance, the Laspeyres index for a basket of n goods is CPIL =∑n

i=1 w
0
i

(
P 1
i

P 0
i

)
, where P 0i and P 1i are the prices of good i at periods 0 and 1, respectively, and w0i is

the weight of good i in the total expenditure of a representative consumer at period 0. A source of bias
in this index is that it ignores that the weights w0i change over time as the result of changes in relative
prices of substitute products, or the introduction of new products between period 0 to period 1. The Boskin
Commission identifies the introduction of new goods, quality improvements in existing goods, and changes
in relative prices as the main sources of bias in the CPI as a cost of living index.
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32 2. DEMAND ESTIMATION

breakfast cereals, or laundry detergent. A differentiated product consists of a collection of

varieties such that each variety is characterized by some attributes that distinguishes it from

the rest. A variety is typically produced by a single manufacturer, but a manufacturer may

produce several varieties.

We distinguish two approaches to model demand systems of differentiated products:

demand systems in product space; and demand systems in characteristics space. In empirical

applications, the ’product space’model was the standard approach until the 1990s. However,

we will see in this chapter that the ’characteristics space’approach has several advantages

that made it the predominant model in empirical IO over the last two decades.

2. Demand systems in product space

2.1. Model. In this model, consumer preferences are defined over goods (or varieties)
themselves. Consider a product with J varieties that we index by j ∈ {1, 2, ..., J}. Let qj
the quantity that a consumer buys and consumes of variety j, and let (q1, q2, ..., qJ) be the

vector with the purchased quantities of all the varieties. The consumer has a utility function

U(q1, q2, ..., qJ) defined over the vector of quantities. The consumer problem consists in

choosing the vector (q1, q2, ..., qJ) to maximize his utility subject to his budget constraint.

max
{q1,q2,...,qJ}

U(C, q1, q2, ..., qJ)

subject to : C + p1 q1 + p2 q2 + ...+ pJ qJ ≤ y

(2.1)

where C represents consumption of the outside-good or numerarie, (p1, p2, ..., pJ) is the vector

of prices, and y is the consumer’s disposable income. The demand system is the solution to

this optimization problem. We can represent this solution in terms of J functions, one for

each variety, that give us the optimal quantity of each variety as a function of prices and

income. These are the Marshallian demand equations:

q1 = f1 (p1, p2, ..., pJ , y)
q2 = f2 (p1, p2, ..., pJ , y)
... ...
qJ = fJ (p1, p2, ..., pJ , y)

(2.2)

The form of the functions f1, f2, ..., fJ depends on the form of the utility function U(.). The

following are some examples.

Example 1 (Linear Expenditure System). Consider the Stone-Geary utility function:

U = C (q1 − γ1)α1 (q2 − γ2)α2 ... (qJ − γJ)αJ (2.3)

where {αj, γj : j = 1, 2, ..., J} are parameters. This utility function was first proposed by
Geary (1950), and Richard Stone (1954) was the first to estimate the Linear Expenditure

System. Solving the budget constraint into the utility function, we have that U = [y − p1
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q1− ... −pJ qJ ] (q1 − γ1)α1 ... (qJ − γJ)αJ . The marginal conditions of optimality of the

consumer problem are dU/dqj = 0 for every variety j, and this implies:

αj
U

qj − γj
− pj

U

C
= 0 (2.4)

Solving for qj, we get qj = γj +αj
C
pj
. Plugging this expression into the budget constraint we

have that:

C =
y −

∑J
j=1 pj γj

1 +
∑J

j=1 αj
(2.5)

And plugging this expression into equation qj = γj + αj
C
pj
, we obtain the equations of the

Linear Expenditure System:

qj = γj +
α∗j
pj

(
y −

∑J

i=1
pi γi

)
(2.6)

where α∗j = αj/[1 +
∑J

i=1 αi]. This system is convenient for its simplicity. However, it is also

very restrictive. For instance, it imposes the restriction that all the goods are complements

in consumption. This is not realistic in most applications, particularly when the goods under

study are varieties of a differentiated product.

Example 2 ("Almost Ideal Demand System"). The most popular specification of

demand system when preferences are defined on the product space is the "Almost Ideal

Demand System" proposed by Deaton and Muellbauer (1980a, 1980b). The utility function

has the following form:

U =
[∏J

j=1
q
αj
j

]
+
∑J

j=1

∑J

k=1
δjk qj qk (2.7)

For this model the system of Marshallian demand equations is:

wj = αj + γj [ln(y)− ln(P )] +
∑J

k=1
βjk ln(pk) (2.8)

where wj ≡ pjqj/y is the expenditure share of product j, {αj, βjk, γj} are parameters which
are known functions of the utility parameters {αj, δjk}, and P is a price index that is defined
as ln(P ) ≡

∑J
j=1 αj ln(pj)+

1
2

∑J
j=1

∑J
k=1 βjk ln(pj) ln(pk). The model implies the symmetry

conditions βjk = βkj. Therefore, the number of free parameters is: 2J+ J(J+1)
2
, that increases

quadratically with the number of products.

2.2. Estimation. In empirical work, the most commonly used demand systems are
the Rotterdam Model (Theil, 1975), the Translog Model (Christensen, Jorgensen and Lau,

1975), and the Almost Ideal Demand System (AIDS) (Deaton and Muellbauer, 1980a). Since

Deaton and Muellbauer proposed their Almost Ideal Demand System in 1980, this model has

been estimated in hundreds of empirical applications. In most of the applications, a "good"

is an aggregate product category (e.g., beef meat, or chicken meat). However, there are also
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some applications for varieties of a differentiated product, such as the one in Hausman (1996)

that we examine later in this chapter. In this section we describe the typical application of

this class of model.

The typical dataset consists of aggregate market level data for a single market, over

T time periods, with information on consumption and prices for a few product categories.

For instance, Verbeke and Ward (2001) use monthly data from January 1995 to December

1998 (T = 48 data points) from a consumer expenditure survey in Belgium. They esti-

mate a demand system for fresh meat products that distinguishes three product categories:

Beef/veal, Pork, and Poultry. We index time by t. For each period t we observe aggregate

income yt, and prices and quantities of the J product categories: {yt, qjt, pjt : t = 1, 2, ..., T ;

j = 1, 2, ..., J}. We want to estimate the demand system:

wjt = α0
j + Xt α

1
j + γj ln(yt/Pt) +

∑J
k=1 βjk ln(pkt) + εjt (2.9)

where Xt is a vector of exogenous characteristics that may affect demand, e.g., demographic

variables. We want to estimate the vector of structural parameters θ = {αj, βjk, γj : ∀j, k}.
Typically, this system is estimated by OLS or by Nonlinear Least Squares (NLLS) to incorpo-

rate the restriction that ln(Pt) is equal to
∑J

j=1

[
α0
j + Xt α

1
j

]
ln(pjt)+

1
2

∑J
j=1

∑J
k=1 βjk ln(pjt)

ln(pkt), and the symmetry restrictions on β
′s. These estimation methods assume that prices

are not correlated with the error terms ε′s. We discuss this and other assumptions in the

section.

2.3. Some limitations and extensions of this approach. (1) Representative
consumer assumption. The representative consumer assumption is a very strong one and
it does not hold in practice. The demand of certain goods depends not only on aggregate

income but also on the distribution of income and on the distribution of other variables

affecting consumers’ preferences, e.g., age, education, etc. The propensity to substitute

between different products can be also very heterogeneous across consumers. Therefore,

ignoring consumer heterogeneity is a very important limitation of the actual applications

in this literature. However, there is nothing that avoids the estimation of this model using

household level data. Suppose that we have this type of data, and let use the subindex h for

households. The demand system becomes:

wjht = α0
j + Zht α

1
j + [γ0

j + γ1
jZht] ln(yht/Pt) +

∑J
k=1[β0

jk + β1
jkZht] ln(pkt) + εjht (2.10)

where Zht represents a vector of exogenous household characteristics, other than income.

This model incorporates household observed heterogeneity in a flexible way: in the level of

demand, in price elasticities, and in income elasticities.

Note that (typically) prices do not vary across households. Therefore, price elasiticities

are identified only from the time-series variation in prices, and not from the cross-sectional
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variation across households. In this context, household level data is useful to allow for

consumer heterogeneity in price responses, but it does not provide additional sample variation

to improve the precision in the estimation of price elasticities.

Household level data introduces also a new issue in this class of models: some households

do not consume all the product categories, even when these categories are quite aggregate,

e.g., beef meat. However, this class of model predicts that the household consumes a positive

amount of every product category.

(2) Too many parameters problem. In the standard model, the number of parameters
is 2J + J(J+1)

2
, i.e., J intercept parameters (α); J income elasticities (γ); and J(J+1)

2
free

price elasticities (β). The number of parameters increases quadratically with the number of

goods. Note also that, in most applications, the sample variation in prices comes only from

time series, and the sample size T is relatively small. This feature of the model implies that

the number of products, J , should be quite small. For instance, even if J is as small as 5,

the number of parameters to estimate is 25. Therefore, with this model and data, it is not

possible to estimate demand systems for differentiated products with many varieties. For

instance, suppose that we are interested in the estimation of a demand system for different

car models, and the number of car models is J = 100. Then, the number of parameters

in the AIDS model is 5, 250, and we need many thousands of observations (markets or/and

time periods) to estimate this model. This type of data is typically not available.

(3) Finding instruments for prices. Most empirical applications of this class of models
have ignored the potential endogeneity of prices. 2 However, it is well known and simultaneity

and endogeneity are potentially important issues in any demand estimation. If part of the

unobservable εjt are known to firms when the chose prices, we expect that prices will be

correlated with this error terms and the OLS method will provide inconsistent estimates of

demand parameters. The typical solution to this problem is using instrumental variables. In

the context of this model, the researcher needs at least as many instruments as prices, that

is J . The ideal case is when we have information on production costs for each individual

good. However, that information is very rarely available.

(4) Problems to predict demand of new goods. In the literature of demand of differ-
entiated products, a class of problem that has received substantial attention is the evaluation

or prediction of the demand of a new product. Trajtenberg (1989), Hausman (1996), and

Petrin (2002) are some of the prominent applications that deal with this empirical ques-

tion. In a demand system in product space, estimating the demand of a new good, say

2An exception is, for instance, Eales and Unnevehr (1993) who find strong evidence on the endogeneity
of prices in a system of meat demand in US. They use livestock production costs and technical change
indicators as instruments.
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J + 1, requires estimates of the parameters associated with that good: αJ+1, γJ+1 and

{βJ+1,j : j = 1, 2, ..., J + 1}. Of course, this makes it impossible to make counterfactual pre-
dictions, i.e., predict the demand of a product that has not been introduced in any market

yet. But it also limits the applicability of this model in cases where the new product has

been introduced very recently or in very few markets, because we may not have enough data

to estimate these parameters.

2.4. Dealing with some of the limitations: Hausman on cereals. Hausman
(1996) studies the demand for ready-to eat (RTE) cereals in US. This industry has been

characterized by the dominant position of six multiproduct firms and by the proliferation

of many varieties. During the period 1980-92, the RTE cereal industry has been among the

most prominent introducers of new brands within U.S. industries, with approximately 190

new brands that were added to the pool of existing 160 brands. Hausman shows that using

panel data from multiple geographic markets, together with assumptions on the spatial struc-

ture of unobserved demand shocks and costs, it is possible to deal with some of the problems

mentioned above within the framework of demand systems in product space. He applies the

estimated system to evaluate the welfare gains from the introduction of Apple-Cinnamon

Cheerios by General Mills in 1989.

(1) Data. The dataset comes from supermarket scanner data collected by Nielsen company.
It covers 137 weeks (T = 137) and seven geographic markets (M = 7) or standard metropol-

itan statistical areas (SMSAs), including Boston, Chicago, Detroit, Los Angeles, New York

City, Philadelphia, and San Francisco. Though the data includes information from hundred

of brands, the model and the estimation concentrates in 20 brands classified in three seg-

ments: adult (7 brands), child (4 brands), and family (9 brands). Apple-Cinnamon Cheerios

are included in the family segment. We index markets bym, time by t, and brands by j, such

that data can be described as {pjmt, qjmt : j = 1, 2, ..., 20; m = 1, 2, ..., 7; t = 1, 2, ..., 137}.
Quantities are measured is physical units. There are not observable cost shifters.

(2) Model. Hausman estimates an Almost-Ideal-Demand-System combined with a nested

three-level structure. The top level is the overall demand for cereal using a price index for

cereal relative to other goods. The middle level of the demand system estimates demand

among the three market segments, adult, child, and family, using price indexes for each

segment. The bottom level is the choice of brand within a segment. For instance, within

the family segment the choice is between the brands Cheerios, Honey-Nut Cheerios, Apple-

Cinnamon Cheerios, Corn Flakes, Raisin Bran (Kellogg), Wheat Rice Krispies, Frosted Mini-

Wheats, Frosted Wheat Squares, and Raisin Bran (Post). Overall price elasticities are then

derived from the estimates in all three segments. The estimation is implemented in reverse
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order, beginning at the lowest level (within segment), and then using those estimates to

construct price indexes at the next level, and implementing the estimation at the next level.

At the lowest level, within a segment, the demand system is:

sjmt = α1
jm + α2

t + γj ln(ySmt) +
∑J

k=1 βjk ln(pkmt) + εjmt (2.11)

where ySmt is overall segment expenditure. The terms α1
jm and α

2
t represent product, market

and time effects, respectively, which are captured using dummies.

(2) Instruments. Suppose that the supply (pricing equation) is:

ln(pjmt) = δj cjt + τ jm + uj(εmt) (2.12)

where cjt represents a common cost shifter (unobservable to the researcher) which is consis-

tent with the national level production in this industry, τ jm is city-brand fixed effect that

captures differences in transportation costs, and uj(εmt) captures the response of prices to

local demand shocks, with εmt ≡ {ε1mt, ε2mt, ..., εJmt). The identification assumption is that

these demand shocks are not (spatially) correlated across markets: for any pair of markets

m 6= m it is assumed that:

E(uj(εmt) uk(εm′t)) = 0 for any j, k (2.13)

The assumption implies that after controlling for brand-city fixed effects, all the correlation

between prices at different locations comes from correlation in costs, and not from spatial

correlation in demand shocks. Under these assumptions we can use average prices in other

local markets, P j(−m)t, as instruments, where:

P j(−m)t =
1

M − 1

∑
m′ 6=m

pjm′t (2.14)

(3) Approach to evaluate the effects of new goods. Suppose that product J is a "new"
product, though it is a product in our sample and we have data on prices and quantities of

this product such that we can estimate all the parameters of the model including α0
J , {βJk}

and γJ . The expenditure function e(p, u) for Deaton & Muellbauer demand system is:

e(p, u) =
∑J

j=1 α
0
j ln(pj) +

1

2

∑J
j=1

∑J
k=1 βjk ln(pj) ln(pk) + u

∏J
j=1 p

γj
j

And let V (p, y) be the indirect utility associated with the demand system, that we can easily

obtain by solving the demand equations into the utility function. The functions e(p, u) and

V (p, y) corresponding to the situation where the new product J is already in the market.

Suppose that we have estimated the demand parameters after the introduction of the good

and let θ̂ be the vector of parameter estimates. We use ê(p, u) and V̂ (p, y) to represent
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the functions e(p, u) and V (p, y) when we use the parameter estimates θ̂. Similarly, we use

D̂j(p, y) to represent the estimated Marshallian demand of product j.

The concept of virtual price plays a key role in Hausman’s approach to obtain the value

of a new good. Hausman defines the virtual price of the new good J (represented as p∗J) as

the price of this product that makes its demand just equal to zero. Of course, this virtual

price depends on the prices of the other goods and on the level of income. We can define a

virtual price of product J for each market and quarter in the data. That is, p∗Jmt is implicitly

defined as the price of product J that solves the equation:

D̂j(p1mt, p2mt, ..., p
∗
Jmt) = 0

Hausman compares the factual situation with the new product with the counterfactual situ-

ation where everything is equal except that the price of product J is p∗Jmt such that nobody

buys this product. Let umt be the utility of the representative consumer in market m at

period t with the new product: i.e., umt = V̂ (pmt, ymt). By construction, it should be the

case that ê(pmt, umt) = ymt. To reach the same level of utility umt without the new product,

the representative consumer’s expenditure should be ê(p1mt, p2mt, ..., p
∗
Jmt, umt). Therefore,

the Equivalent Variation (in market m at period t) associated to the introduction of the new

product is:

EVmt = ê(p1mt, p2mt, ..., p
∗
Jmt, umt)− ymt

Hausman consider this measure of consumer welfare.

(4) Limitations of this approach. A key issue in Hausman’s approach is the consider-
ation of a market with prices and income (p1mt, p2mt, ..., p

∗
Jmt, ymt) as the relevant coun-

terfactual to measure the value of good J in a market with actual prices and income

(p1mt, p2mt, ..., pJmt, ymt). This choice of counterfactual has some important limitations. In

particular, it does not take into account that the introduction of the new good can change

the prices of other goods. In many cases we are interested in estimating the reaction of

different firms to the introduction of a new good. To obtain these effects we should cal-

culate equilibrium prices before and after the introduction of the new good. Therefore, we

should estimate both demand and firms’costs under an assumption about competition (e.g.,

competitive market, Cournot, Bertrand).

3. Demand systems in characteristics space

3.1. Model. The model is based on three basic assumptions. First, a product, say a
laptop computer, can be described as a bundle of physical characteristics: e.g., CPU speed,

memory, screen size, etc. These characteristics determine a variety of the product. Second,

consumers have preferences on bundles of characteristics of products, and not on the products
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per se. And third, a product has J different varieties and each consumer buys at most one

variety of the product per period, i.e., all the varieties are substitutes in consumption.

We index varieties by j ∈ {1, 2, ..., J}. From an empirical point of view, we can distinguish
two sets of product characteristics. Some characteristics are observable and measurable to

the researcher. We represent with them using a vector of K attributes Xj ≡ (X1j, X2j, ...,

XKj), where Xkj represents that "amount" of attribute k in brand j. For instance, in the

case of laptops we could have that X1j represents CPU speed; X2j is RAM memory; X3j

is hard disk memory; X4j is weight; X5j is screen size; X6j is a dummy (binary) variable

that indicates whether the manufacturer of the CPU processor s Intel or not; etc. Other

characteristics are not observable, or at least measurable, to the researcher but they are

known and valuable to consumers. There may be many of these unobservable attributes,

and we describe these attributes using a vector ξj, that contains the "amounts" that variety

j has of the different unobservable attributes. The researcher does not even know even the

number of unobservable attributes, i.e., he does not known the dimension and the space of

ξj.

We index households by h ∈ {1, 2, ...., H} where H represents the number of households

in the market. A household has preferences defined over bundles of attributes. Consider

a product with arbitrary attributes (X, ξ). The utility of consumer h if he consumes that

product is Vh(X, ξ). Importantly, note that the utility function Vh is defined over any possible

bundle of attributes (X, ξ) that may or may not exist in the market. For a product j that

exists in the market and has attributes (Xj, ξj), this utility is Vhj = Vh(Xj, ξj). The total

utility of a consumer is additively separable in the utility from this product, and the utility

from other goods: Uh = uh(C) + Vh(X, ξ), where C represents the amount of a composite

good, and uh(C) is the utility from the composite good.

Consumers are differences in their levels of income, yh, and in their preferences. Consumer

heterogeneity in preferences can be represented in terms of a vector of consumer attributes

υh that may be completely unobservable to the researcher. Therefore, we can write the

utility of consumer h as:

Uh = u(C;υh) + V (X, ξ;υh) (3.1)

We also assume that there is continuum of consumers with measure H, such that υh has a

well-defined density function fυ in the market.

Each consumer buys at most one variety of the product (per period). Given his income,

yh, and the vector of product prices p = (p1, p2, ..., pJ), a consumer decides which variety to

buy, if any. Let dhj ∈ {0, 1} be the indicator of the event "consumer h buys product j". A
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consumer decision problem is:

max
{dh1,dh2,...,dhJ}

u(C;υh) +
J∑
j=1

dhj V (Xj, ξj;υh)

subject to : C +
∑J

j=1
djh pj ≤ yh

dhj ∈ {0, 1} and
∑J

j=1
djh ∈ {0, 1}

(3.2)

A consumer should choose between J+1 possible choice alternatives, each of the J products,

and alternative j = 0 that represents not to buy any product. The solution to this consumer

decision problem provides the consumer-level demand equations d∗j(X,p, yh;υh) ∈ {0, 1}
such that:

{d∗j(X,p, yh;υh) = 1} ⇔{
u(yh − pj;υh) + V (Xj, ξj;υh) > u(yh − pk;υh) + V (Xk, ξk;υh) for any k 6= j

} (3.3)

where k = 0 the alternative of not buying any variety (i.e., outside alternative), that has

indirect utility u(yh;υh). Given consumers demands d∗j(X,p, yh;υh) and the joint density

function f(υh, yh), we can obtain the aggregate demand functions:

qj(X,p, f) =

∫
d∗j(p, yh;υh) , β) f(υh, yh) dυh dyh) (3.4)

and the market shares sj(X,p, f) ≡ qj(X,p, f)

H
.

Example. Logit model of product differentiation.
Suppose that:

V (Xj, ξ̃j;υh) = Xjβ + ξj + εhj

where ε‘s are i.i.d. Extreme Value Type 1. And

u(C;υh) = α C

Then,

Uhj = −α pj + Xj β + ξj + εhj

And

sj =
qj
H

=
exp

{
−α pj + Xj β + ξj

}
1 +

∑J
k=1 exp {−α pk + Xk β + ξk}

where δj ≡ −α pj + Xj β + ξj represents the mean utility of buying product j.

Example. Random Coeffi cients Logit and BLP
Consider the random coeffi cients Logit model where:

Uhj = −α pj + Xj β + ξj + ṽhj + εhj
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• where
ṽhj = −vαh pj + v

β1
h X1j + ...+ v

βK
h XKj

that has an heteroscedastic normal distribution. Then,

sj =
qj
H

=

∫
exp

{
−α pj + Xj β + ξj + ṽhj

}
1 +

∑J
k=1 exp {−α pk + Xk β + ξk + ṽhk}

f(ṽh|Σ) dṽh

where δj ≡ −α pj + Xj β + ξj represents the mean utility of buying product j.

In general, for any distribution of consumer heterogeneity υh, the model implies a map-

ping between the J × 1 vector of mean utilities δ = {δj : j = 1, 2, ..., J} and the J × 1 vector

of market shares s = {sj : j = 1, 2, ..., J}.

sj = σj(δ,Σ) for j = 1, 2, ..., J

or in vector form s = σ(δ,Σ).

3.2. Berry’s Inversion Property. Under some regularity conditions (more later) the
system s = σ(δ,Σ) is invertible in δ such that there is an inverse function σ−1(.) and:

δ = σ−1 (s; Σ)

or for a product j, δj = σ−1
j (s; Σ). The form of the inverse mapping σ−1 depends on the

PDF fṽ.

Example: Logit model. In the logit model:

sj =
exp {δj}

1 +
∑J

k=1 exp {δk}

Let s0 be the market share of the "outside good" such that, s0 = 1−
∑J

k=1 sk. Then,

δj = ln

(
sj
s0

)
That is, σ−1

j (s; Σ) = ln
(
sj
s0

)
and we have a closed form expression for the inverse mapping

σ−1
j .

We also have a closed-form expression for σ−1
j in the case of the Nested Logit model

(without the IIA). However, in general, for the RC or BLP model we do not have a closed

form expression for σ−1
j . Berry and BLP propose a fixed point algorithm to compute the δ’s

They propose the following fixed point mapping: δ = F (δ; s, Σ) or δj = Fj (δ; s, Σ) where:

Fj (δ; sj, Σ) ≡ δj + ln(sj)− ln (σj (δ; Σ))

This mapping is a contraction as long as the values of δ are not too small. Under this

condition, the mapping has a unique fixed point and we can find it by using fixed point

iteration algorithm.
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Iterative procedure: Start with initial δ0. At iteration R + 1:

δR+1 = F
(
δR; s, Σ

)
= δRj + ln(sj)− ln

(
σj
(
δR; Σ

))
Iterate until convergence.

3.3. Estimation. Suppose that the researcher has a dataset from a single market at
only one period but for a product with many varieties: M = T = 1 but large J (e.g., 100

varieties). The researcher observes:

Data = {qj, Xj, pj : j = 1, 2, ..., J}

Given these data, the researcher is interested in the estimation of the parameters of the

demand system: θ = {α, β, Σ}. For the moment, we assume that market size H is known

to the researcher. But it can be also estimated as a parameter. For the asymptotic properties

of the estimators, we consider that J →∞.
The model is:

sj =
qj
H

= σj (X, p, ξ; θ)

Unobserved characteristics ξ are correlated with p (endogeneity). Dealing with endogeneity

in nonlinear models is complicated. Without further restrictions, we need full MLE: an

specification of the model of p and a parametric specification of the distribution of ξ. BLP
contribution was to show that there is a general class of models (BLP models) with an

invertibility property. This property implies that we can represent the model using a
equation where the unobservables ξ enter additively and linearly, and then we can estimate

these equations using GMM.

Consider the system represented using the inverse mapping:

σ−1
j (s; Σ) = −α pj + Xj β + ξj

We want to estimate θ = {α, β, Σ} in this model. For instance, in the logit model:

ln

(
sj
s0

)
= −α pj + Xj β + ξj

Assumption: E
(
ξj | X1, ..., XJ

)
= 0

BLP Instruments. Under the previous assumption, we can use the characteristics of

other products (Xk : k 6= j) as instruments for pj. For instance, we can use as vector of

instruments:

Zj =
1

J − 1

∑
k 6=j

Xk
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It is clear that E
(
Zj ξj

)
= 0, and we can estimate θ using GMM based on the sample

moment conditions:

m(θ) =
1

J

J∑
j=1

[
Xj

Zj

] (
σ−1
j (s; fṽ) + α pj −Xj β

)
= 0

GMM estimator:

θ̂ = arg min
θ

[m(θ)′ W m(θ)]

When J is large, a possible concern with the instruments Zj = 1
J−1

∑
k 6=j Xk is that they may

have very little sample variability across j. Then, instead we can define a set of "neighbors"

for each product j:

Nj = {k 6= j : ‖Xk −Xj‖ ≤ τ}

And construct the instruments:

Zj =
1

|Nj|
∑
k∈Nj

Xk

This Zj has more sample variability but it is also more correlated with Xj. Trade-off.

Optimal instruments: two step method in Newey (1990).

3.3.1. Estimation of the Logit model. Some of the first applications of the Logit model

to demand systems with aggregate data were Manski (Transportation Research, 1983) and

Berkovec and Rust (Transportation Research, 1985). Consider the logit model:

log

(
sj
s0

)
= xjβ − α pj + ξj

This model solves three of the problems associated to the estimation of demand
systems in product space.
First, the number of parameters to estimate does not increase with the number

of products J . It increases only with the number of observed characteristics. Therefore,
we can estimate with precision demand systems where J is large.

Second, the parameters are not product-specific but characteristic-specific. Therefore,

given β and α we can predict the demand of a new hypothetical product which
have never been introduced in the market. Suppose that the new product has observed
characteristics {xJ+1, pJ+1} and ξJ+1 = 0. For the moment, assume also that: (1) incumbent

firms do not change their prices after the entry of the new product; and (2) incumbent firms

do not exit or introduce new products after the entry of the new product. Then, the demand

of the new product is:

qJ+1 = S
exp {xJ+1β − αpJ+1}

1 +
∑J+1

k=1 exp {xkβ − αpk + ξk}
Note that to obtain this prediction we need also to use the residuals {ξk}
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Third, but not less important, the model provides valid instruments for prices
which do not require one to observe cost shifters. In the equation for product j, the
characteristics of other products, {xk : k 6= j}, are valid instruments for the price of product
j. To see this note that the variables {xk : k 6= j}: (1) do not enter in the equation for
log (sj/s0); (2) are not correlated with the error term ξj; and (3) they are correlated with

the price pj. Condition (3) is not obvious, and in fact it depends on an assumption about

price decisions. Suppose that product prices are the result of price competition between the

firms that produce these products. For simplicity, suppose that there is on firm per product.

The profit function of firm j is:

πj = pj qj − Cj(qj)− Fj

where Cj(qj) and Fj are the variable and the fixed costs of producing j, respectively. The

first order conditions for firm j’s best response price is:

qj +
[
pj − C ′j(qj)

] ∂qj
∂pj

= 0

For the Logit model, ∂qj/∂pj = −αqj(1− sj). Then,

pj = C ′j(qj) +
1

α(1− sj)

Though this is just an implicit equation, it makes it clear that pj depends (through sj)

on the characteristics of all the products. If xkβ (for k 6= j) increases, then sj will go

down, and according to the previous expression the price pj will also decrease. Therefore,

we can estimate the demand parameters β and α by IV using as instruments of prices the

characteristics of the other products.

(a) Estimation of pricing equation
- Estimation of price-cost margins

- Counterfactuals with margins.

- Contribution of product characteristics to price-cost margins.

- Estimation of variable costs and of returns to scale.

3.3.2. The IIA Property of the Logit Model. In general, the more flexible is the structure

of the unobserved consumer heterogeneity, the more flexible and realistic can be the elastici-

ties of substitution between products that the model can generate. The logit model imposes

very strong, and typically unrealistic, restrictions on demand elasticities. The random coef-

ficients model generate much more flexible elasticities.

In discrete choice models, the IIA can be considered as an axiom of consumer choice that

establishes that the relatively likelihood that a consumer chooses two alternative, say j and



4. RECOMMENDED EXERCISES 45

k, should not be affected by the availability or the attributes of other alternatives:

Pr(dhj = 1)

Pr(dhk = 1)
depends only on attributes of j and k

While IIA may be a reasonable assumption when we study demand of single individ-
ual, it is very restrictive when we look at the demand of multiple individuals because these
individuals are heterogeneous in their preferences. The logit model implies IIA. But the RC

model does not impose this property.

In the logit model:

Pr(dhj = 1)

Pr(dhk = 1)
=
sj
sk

=
exp

{
−α pj + Xj β + ξj

}
exp {−α pk + Xk β + ξk}

⇒ IIA

This implies that cross demand elasticities:
∂ ln qj
∂ ln pk

= −α pk sk

that is the same for any product j.

A 1% increase in the price of product k implies the same % increase in the demand of

any product other than j.

This is very unrealistic: Example demand of automobiles.

Let H0
k be the group of consumers who were buying product k but decide to substitute

product k by other products when pk increases in a certain amount.

How is the pattern of substitution? It depends on consumers heterogeneity in preferences.

Consumers in H0
k have a relatively high value of εhk. But the logit implies that for

consumers in H0
k the probability distribution of {εhj : j 6= k} is the same that for the whole

population of consumers in the market.

Therefore, the pattern of substitution is proportional to the market shares:
∂sj
∂pk

= −α sj sk such that
∂ ln sj
∂ ln pk

= −α pk sk

This restriction does not appear in a model where the unobserved heterogeneity does not

have an iid extreme value distribution. In particular, in the RC model, consumers in group

H0
k have a relatively high values of the vhk that correspond to high attributes of product

k. Therefore, the consumers in this group will be more likely to choose other products that

have similar attributes as product k.

4. Recommended Exercises

4.1. Exercise 1.
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