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 This paper provides a model of firm and industry dynamics that allows for entry, exit and
 firm-specific uncertainty generating variability in the fortunes of firms. It focuses on the impact
 of uncertainty arising from investment in research and exploration-type processes. It analyses the
 behaviour of individual firms exploring profit opportunities in an evolving market place and derives
 optimal policies, including exit, in this environment. Then it adds an entry process and aggregates
 the optimal behaviour of all firms, including potential entrants, into a rational expectations,
 Markov-perfect industry equilibrium, and proves ergodicity of the equilibrium process. Numerical
 examples are used to illustrate the more detailed characteristics of the stochastic process generating
 industry structures that result from this equilibrium.

 I. INTRODUCTION

 A salient feature of firm-level data is the great variability in the fate of similar firms over
 time. Manifestations of this variability include simultaneous entry and exit in an industry,
 simultaneous firm-level job creation and destruction, and variability in growth rates, found
 in the analysis of firm and establishment level panel data sets. These indications of differ-
 ences in outcome paths among firms persist even after one controls for the firm's entry date,
 location, and industry, and therefore for time, location, and industry specific differences in
 economic environments. Moreover they tend to be associated with a remarkable degree
 of heterogeneity among firms in the same industry in both levels and movements over
 time in the variables that we typically want to analyse (industry output shares, investment,
 productivity, etc.).' We provide a model of industry behaviour which, because it incorpor-
 ates idiosyncratic or firm-specific sources of uncertainty, can generate the variability in
 the fortunes of firms observed in these data.

 There is a policy, as well as a descriptive, need for such a model. In a world where

 firms differ, policy and environmental changes are likely to have different impacts, and
 lead to different responses, in different firms. Since these responses are frequently nonlinear

 1. Partly due to increased data availability, there has been a resurgence in the analysis of firm level panels
 over the last decade; see Evans (1987a, b), Dunne et al. (1988), Pakes-Ericson (1990), Davis-Haltwinger (1992),
 and the literature cited in those articles. These articles also contain references to the extensive empirical literature
 on the nature, extent, and implications of the variation in performance paths among firms.
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 54 REVIEW OF ECONOMIC STUDIES

 functions of the clhanging variable (entry and exit reflecting an extreme nonlinearity), any
 analysis of their effects, even if only an analysis of their aggregate impacts (say on industry

 supply or productivity), requires both the underlying distribution of firms by the source

 of response heterogeneity, and the (equilibrium) response of that distribution to the given
 policy or environmental change.2 Of course, policy issues are often more directly related

 to the heterogeneity in the distribution of responses per se, as in, for example, the analysis
 of the effects of a policy or an environmental change on job turnover, on market structure,
 or on default probabilities. In these situations the whole focus is on characteristics of the
 distribution of the response heterogeneity, and hence the need for a structural model that
 allows for idiosyncratic uncertainty becomes even stronger.

 Models of industry dynamics allowing for firm heterogeneity and/or idiosyncratic
 shocks have begun to appear in the literature, beginning with the models of intrinsic,
 initially unknown and unchanging "types" which are slowly revealed through economic

 activity, by Jovanovic (1982) and Lippmann-Rumelt (1982). Another class of models
 emphasizes the sunk cost nature of initial investments whose relative profitabilities change
 over time in response to outcomes of some exogenous process; see Dixit (1989) and
 Lambson (1992). Both classes of models deal with large, perfectly competitive industries.
 In addition there are game-theoretic duopoly models exploring possible characteristics of

 alternative dynamic equilibria; see Maskin-Tirole (1988), Rosenthal-Spady (1989), Budd
 et al. (1993), and Cabral-Riordan (1992), and in the technology "race" literature see
 Vickers (1986), Beath et al. (1987), and Dutta et al. (1993). Finally, there is a growing
 body of literature emphasizing the need for such models in empirical work (e.g. Thomas
 (1990); Olley-Pakes (1991)), and beginning to implement them in policy analysis (Berry-
 Pakes (1993), Hopenhayn-Rogerson (1993)).

 The purpose of this paper is to provide a model which allows for heterogeneity and
 idiosyncratic shocks, and which is general enough to serve as a framework for empirical
 work. In Section It the model of an industry and its equilibrium are presented. The industry
 model is based upon a stochastic model of the entry and growth of a firm through the
 active exploration of its economic environment. The firm invests to enhances its capability
 to earn profits in an environment characterized by substantial competitive pressure from
 both within and outside the industry. The stochastic outcome of a firm's investment, the
 success of other firms in the industry, and competitive pressure from outside the industry

 (both in the market and through entry) determine the "success" of the firm, i.e. its profit-
 ability and value. If success is limited, a deterioration in the profitability of the firm can
 lead to a situation in which it is optimal to abandon the whole undertaking. This endogen-
 izes exit behaviour, and provides a natural way of accounting for selection in the process
 of determining the evolution of the industry.

 We close the model by showing the existence of a Markov-perfect Nash equilibrium
 in the investment, entry, and exit decisions of each firm. Firms maximize their present
 discounted value given expectations about the evolution of their competition. At equilib-
 rium those expectations are fully consistent with the process generated by the optimal

 2. See Geweke (1985), and Pakes-McGuire (forthcoming) for related discussions and numerical examples.
 The importance of explicitly accounting for heterogeneity in response patterns when analysing the aggregate
 impacts of changes comes out clearly in the recent empirical work that uses disaggregate data, e.g. Thomas
 (1990) or Olley-Pakes (1991).

 3. These models were a natural dynamic extension of the static models of industry equilibrium with
 heterogeneity among agents; see Lucas (1978), Kihlstrom-Laffont (1978), and the summary in Brock-Evans
 (1985). Hopenhayn (1992) provides a hybrid model in which perfectly competitive firms are subject to exogenous
 productivity shocks, but do not engage in Bayesian learning as they know the distribution of those shocks. See
 further discussion in Section III below.
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 decisions of all firms within or entering the industry. Thus we show the existence of a
 rational expectations equilibrium with a finite number of heterogeneous agents subject to
 idiosyncratic shocks. These results are presented and discussed in Section 111, where we
 further characterize that equilibrium as an ergodic stochastic process, and note the implica-
 tions of that result for interpreting the observed dynamics of industry equilibria. Section
 III concludes by relating our results to those of a number of other dynamic industry
 models.

 Our model is general enough to encompass a wide variety of specific models of
 competition. The answers to many questions of interest, however, depend on details of
 the functional forms which determine the fine structure of any application. Hence we have,
 elsewhere, developed a computational algorithm which computes and characterizes the
 equilibria associated with the different functional forms that can be fed into our model
 (see Pakes-McGuire, (forthcoming)). Section IV uses this algorithm to compute and
 analyse a particular example: a Cournot-Nash, homogeneous product, version of our
 model in which firms are differentiated with respect to their efficiency of production. These
 efficiencies evolve with the outcomes both of a research and exploration process and of
 an aggregate process which shifts the costs of factors of production to the industry. We
 then provide a brief comparison of these results to the results from a differentiated product
 version of our model used as the example in Pakes-McGuire (forthcoming). Section V
 concludes with a summary and discussion of potential extensions, focusing primarily on
 steps that would allow us to make more intensive use of the model in interpreting data.
 Finally, proofs of the more important of our results are gathered in a technical appendix.

 II. AN INDUSTRY MODEL

 A. Overview

 The active force in our model is an entrepreneur/firm exploring a speculative idea, a
 perceived profit opportunity in some industry.4 To learn the value of the opportunity, a
 firm must invest to enter the industry and then in developing and, possibily, in exploiting
 it. Investment to enter is a sunk cost, perhaps partially recoverable if there is some scrap
 value realizable on exit. The quantity of investment, together with parameters describing
 the evolution of the market and the competition, determine the distribution of outcomes
 from the exploratory activities of an active firm in each period.

 Favourable outcomes from its own investment activity tend to move the firm towards
 "better" states; states in which its idea can be embodied in a good or service likely to be
 marketed more profitably. Favourable outcomes of direct competitors, or advances in
 alternatives to the industry's products, tend to move the firm toward less profitable states.
 Indeed, a firm whose investment activity generated a string of relatively unsuccessful
 outcomes may well find itself in a situation in which its idea is not perceived to be worth
 developing further, so that the enterprise is best liquidated and its salvageable resources
 committed to an alternate use. Hence the model generates exit as a natural outcome of
 an evolutionary process.

 The opportunity (technology) provided by this industry is open to all, so that the
 only distinction among firms is their achieved state of "success" (index of efficiency),
 c eZ, in exploiting it.5 The state, co, of each firm within the industry is measured relative
 to an alternative which reflects the strength of competition outside the industry. It changes

 4. We do not explore the nature of the firm, but take it to be a unitary maximizing agent.
 5. Z is the ordered set of all integers; 1Z is the set of non-negative integers.
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 56 REVIEW OF ECONOMIC STUDIES

 over time as a result of autonomous factors which shift the demand and/or cost parameters
 of all firms producing in the industry. Therefore higher co indicates that the firm is in a
 stronger (more profitable) position relative to both other firms in, and competition from

 outside, the industry. There is a set of states, 0ie cQ, at which new firms may enter the
 industry after making a sufficient investment. We denote the industry structure at any

 point of time by s= {s4,},, EeZ+ ; s provides the number of firms at each possible co state.
 The state couple, (co, s), determines the entire distribution of the firm's current and future
 profits, and hence the firm's viability as an enterprise.

 Precisely how the state (co, s) affects payoffs to the firm depends on the nature of
 competition and thus the associated type of within-period market equilibrium. That will

 determine the "strength" of the competition faced, and hence which states are "better"
 for the firm. For our theoretical results we do not need to be precise about the nature of
 the equilibrium in the spot market for current output. We will require that it generates a
 complete preorder, X, over s, which unambiguously defines the strength of the competi-
 tion. That is, we assume that, no matter what the firm's co, current profits are (weakly)
 decreasing in s in the sense of >. Also, conditional on any s, current profits are (weakly)
 increasing in (the natural order of) co. Hence many models of the interaction among firms
 (including price taking "competitive" models) abide by our assumptions.6

 The state (co, s) changes as a result of the outcomes of the firm's own investment and
 development efforts, the outcomes of the efforts of other firms operating in the same
 market, and with changes in the overall market environment, i.e. in demand, input costs,
 and science and technology, in which it is embedded. The firm's own level of investment,

 denoted by x,e iR+, is chosen to maximize the expected present discounted value of profits
 as a function of all information available at t. We assume this information to include the
 history of all past states and of the firm's own past investment decisions, i.e.

 { (C,o, St), xrt' <}t'<I; the current state, (a),, s,); and the probability laws governing the evolu-
 tion of that state over time, including the law governing the impact of the firm's own
 investment on that evolutionary pattern. Of course, those probabilities are determined, in
 part, by the investment decisions of all firms in or entering the industry. We assume that
 the firm does not directly observe the investments of its competitors, and hence cannot
 make decisions based on them.7

 The dynamics of the model are thus generated by the stochastic outcomes of the
 firm's investments and the outcome of an exogenous process reflecting improvements

 made by competition outside the industry. Outcomes of this exogenous stochastic process
 generate a correlated non-positive stochastic shift in all the firm's co's, reflecting, for

 example, increases in the quality of goods outside the industry that vie for the consumer's
 dollar (and/or increases in factor costs). It is, therefore, a source of continuous dynamic
 competitive pressure that forces all firms in the industry to struggle to maintain profits
 and survive. It can also induce a positive correlation in the profits of different firms in the
 same industry, a phenomenon we often observe in data.8 Also, it is assumed that the
 outcomes of the exogenous process generating increases in the knowledge stock outside
 the industry are embodied in the new generations of potential entrants to this industry;
 otherwise entry would eventually die out, and with it the industry. That is, the new

 6. Two illustrative examples involving Nash equilibrium in prices and quantities are developed and numeri-
 cally analysed in Pakes-McGuire (forthcoming) and Section IV.

 7. Hence this is a game with imperfectly observable actions or in the terminology of Maskin-Tirole (1993)
 a "game of moral hazard with simple type spaces."

 8. Without the exogenous process, any outcome which leads to an increase in profits for one firm would
 necessarily reduce the profits of its rivals.
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 generation of entrants brings with it knowledge which was not available to previous
 generations.

 A new entrant incurs a sunk cost of entry, xe, and then takes a full period to set up
 the specific fixed capital with which it enters. The precise state of entry depends on the
 "quality" or "efficiency" of the entering firm, i.e. on how "good" its idea or innovation
 is relative to the achieved standards of the industry. This we assume to be unknowable
 ex-ante; an idea must be tried, and time, money and effort invested, before competitiveness
 can be precisely known. Hence there is only a common knowledge distribution, P(w0), over
 the potential entry states, Q9, indicating the uncertainty of both entrants and incumbents as
 to the competitiveness of potential entrants.9

 B. The assumptions

 The opportunity presented to each firm by the industry is defined by model primitives,
 which are common knowledge to all actual and potential participants:

 {A(co, s), p(c |@, * , q.Q'SIs), [m(s), P(aw ), {X,"},"= l], CO* c( ,P1(W,S)GnXS.

 We describe these objects, then present the assumptions required for our general model.
 The state space is Q x Sc7Z x Z'w, where S is a set of counting measures on 7. The

 structure of the industry, that is s, the list which counts the number of firms in each state
 Co, is just such a measure. The function A(w, s) gives the payoff or profits of a firm from
 its current production and sales activities. It is a reduced form, reflecting the equilibrium
 of the industry spot market, and its detailed characteristics can vary from example to

 example. p(co'l co, x) is a firm's transition function: it gives the probability of shifting into
 state c', conditional on being in state c) and investing amount xeR+. q01(s'/s) provides
 the firm's beliefs about the transition probabilities for the other firms in, or entering, the
 industry, given that it is in state c. Here s^-s-e ,, where e< is a vector with one in the
 co-th place and zero elsewhere; s is a measure providing the location of the firm's competi-
 tors. Thus next period's industry structure will be s' 5'+ eX,, where s' includes any new
 entrants and co' is the new state achieved by the firm in question.

 The triple [mn(s), P(co0), {x' }I' I] characterizes the conditions of entry into the indus-
 try. The number of entrants stimulated by any structure (state of competition), s, is given
 by the function m(s). The initial investment required to begin the process of entry is x,n,,
 which may depend on the number of firms simultaneously entering. Finally, the state, coo,
 at which a new firm enters the industry is determined by the probability distribution P(.)
 with support [supp (P)I2e.

 The parameter 0 gives the opportunity cost of being in the industry; it is the amount
 recoverable on exit. The function c(Z) gives the unit cost of activity level x, so that
 investment activity costs c(a)) x, and current net revenues or profits are given by:

 R(co, s; x) = A(co, s)-c(co) x. (1)

 Finally, 1B is the common discount factor of all the agents in the model.
 We use the following assumptions for our general results.

 A.O wEElc Z; 7 seSc7i Z' with >- a complete pre-order on S.

 A.1 PE(0, 1); OC0R.

 9. We assume Kr is bounded above, implicitly limiting the progress that can be made in the area/niche
 of this industry while remainiing outside the industry. We also show that there is a lower bound below which
 rational entry would never occur.
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 58 REVIEW OF ECONOMIC STUDIES

 A.2 Vo, c(co)e[c, x), c>O.
 A.3 VseS, rimn, O,,A(w,s)=A<oo and lim , ,A(o,s)<(1-f) . A(-) is non-

 decreasing in a) for all s, and is non-increasing in s, ordered by X, for each a).

 Finally, Vo, VseS.(o), A(o, s)<(1 -fl)+o(Q), where S*(o)) {SESIZw'20
 s,,, >n}.

 A.4 VWo e2, Vx > 0, p( co, x) is formed from the convolution of two distributions

 with finite connected support: r( I, x) with supp (ir) = {w'j ao'= c + r, r =
 0, ... * kl }; po= {p?}-?k2 with supp (po) C{co'l c' = C +q 4 =-k2 ... * 0,}.
 r( f 1, x) is stochastically increasing, continuous in x, a8r/lx (coI a, x) <0, air/
 Ax ('/, x) > O and concave at each c'e {o+1, . . c, + n}, and ,r(ao'l , 0)

 = 0 otherwise -

 A.5 m(s) firms enter in each period, m:S-+Z+. Each entrant pays x%,>f/1, non-
 decreasing in the number of entrants, m. The entry process is completed at the
 beginning of the succeeding period, when each entrant becomes an incumbent

 at some state coeocec Q with probability P(oo) = ?=k2p ,re(o 0 q). Ke is a
 compact connected set.

 A.6 There exists a regular Markov transition kernel, Q: Z`' x Zi -4O, 1], i.e.:

 VBc S, VS, , ZS' eB Q(s'l s) = Prob {s,+ I eBIs, =s},

 with range S(s)=-{s'IQ(s'js)>O} ?0, such that the functions q,,(s'`s)=-
 1 q(s"'Is, q)po(q) are the consistent marginal transition probabilities derived
 from it for s^= s - e.. The stochastic kernels Q and qe,, have the Feller property,
 i.e. each maps the space of continuous functions on S, C(S), into itself.

 A.7 (a) There exists a constant M< cx, such that, for all seS, m(s) ?M.
 (b) The set of potential feasible industry structures, Sc:+ Z', is compact.

 (A.3) gives the consequences of spot market competition. Whatever the structural
 model that lies behind A(ao, s), we require it to have the property that if we increase the
 number of competitors with c's at least as large as the firm's own a) then, eventually, the

 firm's profits will fall to less than (1 - l) 0, the annuity value of the recoverable assets
 obtained by the firm when it exists. Similarly we require that no matter the competition
 inside the industry, there is sufficient competition from outside that a firm whose a) drops

 low enough will eventually find its profits to be less than (1 - /)40.
 (A.4) implies that c' = c + r + q, where the realization of r is determined by the

 outcome of the firm's expenditures and has a distribution given by ir(. 1, x), while the

 realization of i7 is determined by the outcome of the process defining the outside alternative,
 and has a distribution given by po. Consequently p{w' = ZlI , x, q } -r(z- qIc, x) and
 p{C0' = zI a, x} u7r(z - i'I co, x)pq,'. Similarly the distribution of both entering states (in
 A.5) and of the likely locations of one's competitors (in A.6) are also obtained by first

 conditioning on q. Note that if x = 0 the firm's c cannot improve, and will, in fact,
 stochastically decay with negative realizations of i7. The assumptions on the derivatives
 of gr( ) are only used to insure the uniqueness of the firms choice of level of investment;
 only continuity and stochastical monotonicity are fundamental.

 (A.5) describes the entry process, incorporating the impact of the negative drift on
 firms engaged in the process of entry. It is essentially a free-entry assumption.'0 It also
 indicates that the real sunk cost of entry is Xe_- P, as any entrant could recover / next

 10. There are many possible entry assumptions that could be inserted here without affecting the general
 nature of the theoretical results. We did not delve further into this both because the free entry assumption
 seemed the natural place to start, and because so little is known about empirically relevant alternatives.
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 ERICSON & PAKES INDUSTRY DYNAMICS 59

 period by immediately exiting after becoming an incumbent. The last two assumptions
 are auxiliary in the sense that they are used to restrict agents' perceptions, and then are
 shown to be natural consequences of an equilibrium given those perceptions.

 C. The incumbent's decision

 An incumbent firm makes decisions to maximize the expected present value of net cash

 flows. At any time t and state (w,, s,), it must decide to continue or to exit the industry,
 and if it stays in operation, it must decide how much to invest. It thus solves"

 W,(wo,, s,)_max sup EJ[ Z' , R(co, S}; XV)Xr+ (%r-I Xr)0104s )L } (2)

 where X, is the continuation decision [,X 1 = I> continue; X, = => exit], and x,_ 0 is the
 amount to be invested, in period r. Clearly, X = 0 implies that, for all a> r, x a =Xa=0.
 For any given {X X, }, the distribution used to form the expectation in (2) can be derived
 from the firm's perception of the Markov transition kernel for its competitors, {q.(s`Js)},
 and the controlled Markov process governing the evolution of the firm's own state,

 {p(C'O , X)}.12
 In any state, the incumbent firm compares the expected present discounted value of

 remaining in the industry, assuming optimal future decisions, to the opportunity cost of
 remaining, 4. If the latter is larger, it exits, foregoing R(wo, s; 0) and all potential future
 earnings in the industry. If not, it invests x >0, receives R(wo, s; x), and retains the option
 of further activity in the industry starting in a new state (c', s') next period.

 This formulation has an inherently stationary Markovian structure. That is, the cur-

 rent state, (co,, s,), and the current decision, x, and X,, are sufficient to completely deter-
 mine its dynamics, i.e. the evolution to the next state, (co,+?, s?+ ). This implies that the
 optimal investment strategy, if it exists, can be chosen from the class of stationary Markov
 strategies, vastly simplifying its analysis.'3 Thus we are justified in writing x(w, s) and

 x(co, s); that is, both the investment and shutdown decisions are stationary functions of
 only the current state (c, s).

 This together with boundedness implies that if a solution exists to the entrepreneur's
 problem it must satisfy the Bellman equation

 V(co, s) = max [sup {R(co, s; x) + ,B Z Zs ZS V(a)', s')p(o'I c, x, 1')q4('Is 1')pq'} 4]

 (3)

 as can readily be seen by substitution. In any state the optimal policy thus involves first
 choosing a level of investment that maximizes the expression in braces on the r.h.s. of (3).
 This requires selecting an investment level equalizing current marginal costs with the
 marginal change in the expected present value of the states that might be realized next

 11. See Chapter 9 of Stokey, Lucas, and Prescott (1989) for more detail on setting up related intertemporal
 optimization problems.

 12. This distribution can be explicitly written using the Chapman-Kolmogorov equation. See Doob (1953,
 p. 88).

 13. This is a standard result of the literature on optimization in a Markovian environment. See, for
 example, Dynkin and Yushkevich (1975, p. 148), or Stokey, Lucas, Prescott (1989, Chapter 9.1). Of course it
 involves non-trivial behavioural assumptions about firms' responses to the industry's strategic situation; see
 Mashkin-Tirole (1993).
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 60 REVIEW OF ECONOMIC STUDIES

 period. When the expected future value generated by optimal investment is less than or

 equal to the opportunity cost of the entire enterprise, 0, then the optimal decision is to
 liquidate the enterprise.

 D. The entrant's decision

 An entrant faces a similar optimization problem, with the added uncertainty as to where
 he will be, once in the industry. Entry decisions are taken at the beginning of each period,
 and the process of entry takes a full period (A.5); firms deciding to enter in period t
 become incumbents at the beginning of period t + 1. Attempted entry is successful upon

 payment of the sunk cost, xe,,, which depends on the number of firms, m, entering at t.
 As an incumbent at some co, the new firm at t + 1 invests (or exits) to solve (3), i.e. to

 generate the maximal value, V(wo, s,+ ), where s,+ I includes all entrants from the preceding
 period. Any potential entrant must evaluate this expected value of optimal behaviour in
 the industry, labeled Ve(s, m), relative to the cost of entry, xz, both of which depend on
 the number of new firms entering in that period. Note that this is an expectation over all
 the states COOCeCe at which the firm might enter, and is the same ex-ante for all potential
 entrants.

 Assumptions (A.5) and (A.6) imply that

 Ve(S, Mn) *J E."7 Z , Z.0o V(0, s + eE A+ In,)) - _ II,)

 x 1rn- I e(9 -, ') * qo(s'js, q') *p, > 0, (4)
 where coi- n 7 e,o, and qo(* *) is the marginal of Q( I) for incumbents only.'4 The
 given firm enters at c with probability P(w0). The other m- I entrants come in each at
 their own w? according to the same probability distribution, adding the vector of entrants,

 Coin, to the old incumbent's new stucture s'.
 If Ve(s, m) < xe,, for all in> 1, then no entry can optimally take place: the expected

 value of being in the industry at some co' cannot justify the sunk cost of even one entrant.
 We assume that, in each period, ex ante identical firms decide to enter sequentially until
 the expected value of entry falls sufficiently to render further entry unprofitable. That
 occurs when Ve(s, in+1 ) -X ??0< Ve(s, m) - Mn is then the number of new firms
 that rationally enter. Formally, the number of entrants into any industry structure s is
 thus given by the function:

 rn(s)--{ if Ve(s, in) x,,e for all m> 1,

 min {meZ?I Ve(S, m)>x%, Ve(S, m+ 1) ?xe?1} otherwise.

 E. The equilibrium

 We study the dynamic equilibrium of the industry arising from the competitive interaction
 of firms both within and entering the industry. All firms know the structure of the industry,
 s, their place in it, co, and the likely impact of their own investment. Firms also have beliefs,

 q01(*), about how the structure of the industry, and hence the states of its competitors, will
 change. The industry is said to be in dynamic equilibrium when the process generating
 the change in industry structure is accurately reflected in the beliefs of each of the firms

 14. q0( ) is given by a multinomial distribution from the Isl independent transitions with probabilities
 p( I,), ignoring the entrants induced by the structure s. See the Remark in Section E below.
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 ERICSON & PAKES INDUSTRY DYNAMICS 61

 entering or active in the industry. Thus the equilibrium is one of "rational expectations",
 where optimal decisions are based on the true distribution of future states generated by
 the optimal behaviour of all incumbents and potential entrants.

 Formally, we define an equilibrium for this industry as the 6-tuple,

 [{ V(co, s), x(a), s), X(a), s), Q(s'js), m(S)}(v,S) e, s0], (6)

 with E-=Q x S and Q-(0,.. . , K), K< oo, such that

 6.a V(a), s) eZ, V(, s) satisfies (3):

 V(co, s) = max [R(co, s; x(co, s)) + Y {t, ,, Z s V(a', s' + ecv )

 x q.( Is, 75 )[ ,x(,s), q,]Pjj }, d)]

 6.b V(ao, s)eZ, x(a), s) and X(co, s) solve (3) and satisfy:

 where V(>'l>, s, ii')-E , V(co', ISco+ es,)q (s'Is, c,');

 6.c V(s', s) E S x S, Q(s'ls)- 7p,- Q,7(s'js), with

 Q(siS)EYwsl.) 1J_OMt(Yoj,* . , YKjlSj) *M?1(YOj, . . , YKjIM(S)),

 where Y- [yij e 74K?')2, yy is the number of firms shifting to s! from sj,
 'fiY(stl)-{Ye@f+l Y e=s', e Y=(m(s),s)}, m(yjlsj) is the multinomial
 probability of yj= (yoj,.. . , YKj) firms out of sj going to the states i=0,... , K,
 conditional on q, and m'(yjlm(s)) is the same for the m(s) new entrants;'5

 6.d VvseS, equation (5) determines the number of entrants, inI(s): Vt, m,>0 if and
 only if xl < Ve(s,, 1) [defined in (4)], where m,=m(s,) -min {mne4+x,' x,<
 V (s,,m), V (s,,m+l)<x.,,+,);

 6.e There is an exogenously given initial state, s0eS. 1

 Remark. The definition assumes that the number of states can be bounded above
 and below as proved in Proposition 1. The optimal policy, {x(co, s), x(co, s)}, and (A.4)
 together define Markov transition probabilities from each active state 1, to each feasible

 state j, conditional on each possible value of q as r(j- qill, x(l, s)) =-p(q, s). For every
 s, equilibrium defines a matrix of transition probabilities for incumbents as

 P(s) Zr, pu 'P(n', s) where P('i, s) [pjl(q, s)t'5o. These transition probabilities, together
 with the distribution of incumbents along the rows of this matrix and the entry rule,

 determine Q,7(s'ls) in (6.c). To actually compute Qj1(s'ls), note that the multinomial
 theorem implies that the s1 firms in state co =j allocate themselves among the K+ 1 possible

 states, relabeled {0, .. . , K}, with probabilities, conditional on progress (t7) outside the

 15. Y is a matrix summarizing one way that the vector s' might have been generated, and 9/(s'js) is the
 set of all feasible such matrices. A row i of Y shows the numbers of firms moving into state i, while a column

 of Y, yj, shows the allocation of firms in state j among new period's states, i= O, . . ., K. The first column shows
 the allocation of new entrants among the states within Qe c [, KI c Z+.
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 industry given by

 ?fl,(Y1I) {(YO.J)[! j (YIJ), (7)

 A similar expression gives the distribution of the m(s) entrants over the states in

 Qec {0, ... , K), with conditional probabilities pjo(ti) given by 7re(C)O _- i). Thus Q,,(s'ls),
 as defined in (6.c), is the probability that optimal investment strategies will generate a
 shift in the structure from s to s' conditional on the outside competition making a positive

 advance of q (all incumbents and entrants drift downward by as much as r1 if their
 investment efforts fail to yield a counteracting advance). It follows that Q(s'js) is the

 unconditional probability that s,+I = s' when s, = s. Finally, q0"(s&'s, 1i) is just the condi-
 tional marginal distribution over the competing firms:

 q. (s' Is, q1) = E,, Q,(Q' + e,' s). (8)

 In equilibrium, all firms optimize with respect to a given distribution of future states

 (industry structures), Q( Is), and their optimal decisions generate industry transitions
 with precisely the distribution used in their optimization (6.c). Q( Is) is derived by aggre-
 gating the incumbent firms' transition probabilities, p(w'l c, x(a, s)), where x(a, s) is the
 optimal investment strategy, with the distribution of the m new entrants, HLIl P(a59),
 where investment, entry and exit are all optimal given the individual state and industry
 structure, and that state and structure evolve according to the anticipated distribution.
 The dependence of current market returns, A(co, s), on structure s (A.3) insures that the
 spot market for current output clears.

 This equilibrium is also a Nash equilibrium in investment strategies defined for all
 (co, s)-nodes in the game tree. By assumption, firms take the distribution of outcomes of
 others' decisions as fixed, thereby choosing their exit and investment decisions indepen-
 dently of others in the industry. As the optimal strategies and transition probabilities are
 functions only of payoff-relevant states, (co, s) EZ, the equilibrium is a Markov-Perfect
 Nash Equilibrium in the sense of Maskin-Tirole (1988, 1993). Agents solve dynamic pro-
 gramming problems that are interdependent only through those variables, so their invest-
 ment strategies, x(co, s), remain optimal at every state, regardless of how that state was
 reached, against the optimal decisions of all other agents.'6

 At the heart of this dynamic equilibrium is a (time-homogeneous) Markov process,

 (S, Q(. I .), so), on the space of industry structures (counting measures of firms in the
 industry), S, defined Q, a transition kernel determing the distribution of s,+ 1 conditional
 on all alternative possible values of s,, and by so, the initial state (see Section III.C below).
 A realization of this process is a unique sequence {s,}, o where s0 = s? and s, is a realization
 from the distribution Q( * Is, I). Associated with each such realization of this process are
 the sequences: {m,}, the optimal entry process derived from (6.d); {aj,}, the highest exit
 states defined by o,=max {wjx(c, s,)=O}; and {f,}, the number of firms that exit in

 period t, f, _ s4,,,,. The notion of equilibrium guarantees that the distribution of these
 sequences is generated by the optimal investment strategies of both incumbents and poten-
 tial entrants and that the spot market for current output always equilibrates.

 All decisions within a period are understood to be taken simultaneously, based on
 common knowledge of the industry structure, s,, the number of entrants that this structure

 16. This is an immediate consequence of the dynamic programming formulation and the consistency of
 all firms' problems at equilibrium.
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 will call forth, in, = m(s,), the exit states that the structure generates, {Ij c I c t(s,)}, and
 the distribution of future states that will arise from that structure, Q( Is,). While m, new
 firms are entering, incumbents either rationally exit [,(c, s,) = 0] or invest x(c, s,) >0
 generating their transition probabilities which at equilibrium will collectively, when com-
 bined with the distribution of new entrants, precisely coincide with those given by the
 common knowledge distribution Q(s'js,). This yields the new industry structure at the
 beginning of the next period in which again entry, exit, and investment decisions will be
 made. To close the model we need to show that these decisions can be consistently taken,
 i.e. that such a stochastic dynamic equilibrium exists.

 III. RESULTS

 A. Characterizing optimal agent behaviour

 The primary agent in this model is an incumbent firm. The first result shows that an
 optimal solution exists to the decision problem (2), giving well-defined investment and
 exit decisions and a well-defined value to the firm (3), and then characterizes the optimal
 policies. Entrants are distinguished only in the initial period of their entry; thereafter they
 are incumbents. Here the only question that needs to be answered is how many find it
 profitable to sink xe' in order to enter the industry. Our second result shows that it is finite
 in any period, and indeed will be zero if competition within the industry is sufficiently
 strong. These results imply that the state space S is compact, as assumed (A.7.b) for
 some of the results characterizing incumbent behaviour. They also allow us to show the
 consistency of our assumptions about the industry structure transition probabilities (A.6),
 setting the stage for a proof of existence of equilibrium.

 Proposition 1. Consider the firm's decision problem (2). Under assumptions (A.O)
 through (A.7):

 (a) There exist (i) a unique V(w, s), V: Z x Z -+ Rl+, monotonic increasing in c,
 uniformly bounded, and satisfying (3); (ii) an x < oo and a unique optimal investment
 policy (function), x(c, s), x:Z x Z-R+. , with x(c, s)<x; and (iii) an optimal

 termination policy X(w, s), X : x Z' -.{O, 1}; solving (2) [or (3)] for
 V(w, s) e7Z x 7'.

 (b) There exist two finite boundaries in 7 x Z/f, @(s) and di(s), such that x(c, s) = 0

 if (, s) E C_ C u Cu, where C, {(, s) I < c(s)} and Cu {(, s) I > C(s)},
 and there exists a finite lower bound o (s) e Z such that X (c, s) = 0 if and only if
 (c, s)e {(c, s)jw ?c(s)} =L. Further, inf Co(s)> -oo, and sups C(s) <oo.

 (c) There exists a random variable, T: Z x Z' Z+, T(wo, so) = inf {t _ O (oo, s5o)
 (c0, so) and (w,, s,) e L}, associating each initial state, (co, so), with the first time,
 t, such that X=-,X(,, s,) = 0, where (w,, s,) is the state achieved in period t under
 the optimal policy {x(c, s), x(c, s)}. T(wo, so)< oo, a.s. and is stochastically
 increasing in co.

 Proof. See Appendix. 11

 An incumbent firm in state c facing an industry structure s has an expected present
 discounted value of V(w, s). When V(w, s) = 0, it will optimally exit the industry. This is
 the case at all (c, s) with c <? (s). Hence we will never observe a firm with an efficiency
 less than c =min { (s)IseS}. When V(w, s) > 0, the firm pursues an optimal investment
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 policy, x(c, s) e [0, 4], earning a current cash flow of R(w, s) = A(c, s) - c(w)x(w, s). Part
 (b) of the proposition proves the existence of boundaries c(s), and &(s), such that
 x(@(s) - T, s) = x(@o(s) + T, s) = 0, for all r ? 1. Since c cannot increase in value without
 some investment (A.4), and the distribution of increments to c has finite support, an
 immediate consequence of this optimal behaviour is that we will never find a firm at w-

 states higher than e =max {1(s) +kljseS}. Thus (A.4), (A.7), and the first Proposition
 imply that the relevant set of states is the compact, connected interval {, ... , C } cI 7;
 the compactness of Qi in our definition of equilibrium (6) is satisfied and, by relabelling,
 we can set Q = {0, 1,. . , K}. The space of admissible structures, then, is no greater than

 (K+ 1)-dimensional: Sc7+ l c7+ .
 The results in (a) to (c) provide a fairly detailed characterization of incumbent behav-

 iour. Part (a) guarantees that incumbent behaviour is well defined and shows that the
 valuation of optimal behaviour satisfies the natural monotonicity property in c; greater
 success gives a higher value. Part (b) gives two types of "coasting" states, Cu and C,, in
 which the firm neither invests in, nor exits from, the industry. Coasting in "successful"
 states, C", reflects the optimal response to a situation in which the expected marginal gain
 to further advance is outweighed by the marginal cost of further investment, c(@). Recall
 that the return to investing is an increase in the probability of transiting to higher c. The
 value of these increments is given by the "slope" of the value function. Since the value
 function is bounded that slope must eventually becomes less than the marginal cost of

 (even zero) investment. There are also states in which A(w, s) is low, x(w, s) goes to zero,
 and yet the firm does not leave the industry. Indeed the firm can choose to stay in the
 industry even in situations where it is optimal to shut down current production (possibly
 incurring a fixed cost for mothballing its plant). In these cases fixed costs are incurred,

 and exit values are foregone, because of the likelihood that an improved future condition

 (s,+1 -< s) will lead to a situation where it pays to produce and invest again.
 There is, however, a limit to such lower coasting. When (c, s) e C, E(AwI c, s) < 0 as

 x(c, s) =0, and hence o drifts lower with probability Z,<0p7 (A.4). This will reduce the
 value of the enterprise, V(w', s'), unless there is a countervailing shift in s so that s'-<s.
 Indeed, without a random "improvement" in s, parts (b) and (c) insure that the firm will

 enter a true "liquidation state", (c, s) eL, where V(w, s) = 0 indicates the optimality of
 exit from the industry. That this occurs in finite time with probability one, despite the
 possibility of exogenous improvements, is the principal content of part (c).

 Proposition 1 characterizes firm behaviour in an industry in which active exploration
 and learning through investment is required for survival. We know that eventually all
 firms will die, but the life cycle of the firm can include a variety of behaviours, including

 periods of active struggle and learning (x, >0), with its successes (c, + > ca,) and failures
 (w, + Ico,), periods of coasting on the successful outcomes of past efforts wherein no
 exploratory investment takes place but profits are derived from previous development,
 and, possibly, periods of coasting wherein a firm earns no profits and its current prospects
 warrant no further investment, but there is some probability that the market will
 "improve" (s,+?1-<s,), which deters the firm from exit. Due to outside competition (Po)
 and entry (W,n) the state is inexorably moving in a direction unfavourable to the firm.
 Only through active investment (x > 0) can the firm hope to counteract this pressure. Yet,
 despite its best efforts, the firm must eventually succumb and liquidate, even though
 phenomenal profits may have been earned between birth and death. This situation is
 schematically illustrated, along with several possible sample paths for a firm, in Figure 1.

 Despite the finite life of firms, it might be possible for entry rates to generate an
 unboundedly growing industry. It might be possible for either a countable set of firms to
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 decide to enter at some s[ V(, s) > x,%, Vrn 1], or for there to be a steady excess of
 entrants over exitors, thus violating (A.7).17 To bound the size of the industry, we provide
 a direct proof of the fact that V(Q, s) can be made arbitrarily close to 0 for all (co, s) by
 increasing the number of active firms in the industry. This will imply that m(s) is finite
 for all SZKI ' and that there exists an N< cc such that

 SE{s_ {e4 Is mZI-0 o s0 ,N}, (9)

 i.e. S is compact. Hence (A.7) is justified and w.l.o.g. we can normalize the full state space
 to E-{(a,s) Ex +'Io)eQ cE,seSC4KI}, where = {0, .. . , K}. This is a key
 step both in showing the existence of an equilibrium and in computing it.

 To prove this, we fix co and an arbitrary structure s and consider a sequence of

 industry structures that increases the number of firms at a), i.e. {sn(w))} I D where sj(o) =
 s + n- e,0. The following proposition shows that no matter which co and s we fix, as n
 increases, the value to being in the industry at that oa falls to the exit value. Consequently
 enough entry will, in fact, choke off further entry, and there can never be more than a
 finite number of firms at any c.

 Proposition 2. Let s(w) =_s + n * e0. Under Assumptions (A. 0) to (A.6), for all 0o dE2,

 and all se@+: limaO V(CO, sJ()) =0, i.e. Vse>0 3nE such that n?n6 implies
 V(a, sM(M))) <4, + e

 Corollary 2.1. There exists an M < oo such that, Vm _ M, Ve(s, m) _ x,", Vse S.

 Corollary 2.2. There exists an N< oo such that V'(1, s) <xl, i.e. m(s) = 0, for all
 seS"(l ) with n? N.

 B. Existence of equilibrium

 First note that assumptions (A.6) and (A.7) need no longer be imposed; they were made
 merely to facilitate analysis of a single firm in the industry. They are a consequence of the
 more basic assumptions, and our definitions of equilibrium transitions and entry decisions
 (6.c-d). (A.7) was shown to hold in the corollaries to Proposition 2, while (A.6) follows
 from the following proposition.

 Proposition 3. Under assumptions (A.0)-(A.5), assumption (A.6) holds with Q(- H)

 defined using (6.c) and (7), when q0,,(sljs) is defined by equation (8).

 We can now prove the existence of a rational expectations equilibrium for this model
 of active exploration and learning through investment. This closes the model by showing
 that the assumptions on the industry structure and its evolution used to determine optimal
 behaviour are in fact consistent with that behaviour. To do so, we show that given Q( * Is),
 as defined in (6.c), the optimal decisions of incumbents solving (3) and entrants satisfying
 (4) generate transition probabilities which aggregate to form Q(. Is). This requires a fixed
 point argument that is outlined in the Appendix. In essence, it involves showing that

 17. We note that if V(- ) were isotone to > on S [i.e. Vo., s]>s2=> V(Q, sI)-< V(cv, s2)J, then new entrants
 would increase s' driving V(., s'), and hence Ve(s, m), down, eventually choking off entry. Unfortunately, the
 subtleties generated by the interactions among agents (particularly in entry deterrence), imply that it is not in
 general true that V( ) is isotone in s, so that one cannot use this fact to stop entry (or induce exit) as the
 number of firms in the industry grows. See, for example, the discussion of Figure 2 in Section IV.
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 investment, entry and exit decisions depend continuously on the distribution of future
 states, which in turn depends continuously on those decisions. The continuous compound
 function maps a compact, convex space of probability distributions into itself, and hence
 has a fixed point: a rationally anticipated Markov transition function Q( Is).

 Theorem 1. Under Assumnptions (A.O)-(A.5) there exists an equilibrium (6), satisfying
 conditions (6.a-e).

 This theorem shows both existence of equilibrium and that the preceding results for
 a firm in the industry are valid at equilibrium. Due to the autonomous structure of the
 model the equilibrium is characterized by stationary valuation of states, stationary optimal
 investment strategies, and stationary Markov transition probabilities. Yet the sequence of
 states for any firm, and, indeed, the sequence of (almost surely finite) structures for the
 entire industry, are truly random realizations from an underlying stochastic structure. This
 structure is determined by the specific values of the parameters of the model, and by our
 equilibrium conditions. We now turn to its analysis.

 C Equilibrium dynamnics

 This dynamic equilibrium is characterized by a remarkable degree of flux. Active firms
 are truly heterogeneous, distinguished by their "state of success," c, and have truly
 idiosyncratic outcomes to even identical investment decisions. Multiple rank reversals
 (according to criteria such as sales, profitability, employment) are possible during the life
 of any collection of firms (cohort), as is simultaneous entry and exit (O(s) <o e e). All
 firms die in finite time (a.s.), yet new firms continually enter to try their fortune in the
 evolving industry. Thus the structure of the industry can change dramatically over time,
 although it must remain finite (Corollary 2.2). In view of this continual change, the
 question of characterization of the "average" structure of the industry and its relation to
 the industry's long-run evolution arises.

 Among the things that we would like to know are whether the industry structure
 settles down into some recurrent pattern and, if so, the characteristics of that pattern. For
 example, does the industry survive forever, or might it fade away as fewer and fewer firms
 enter while old firms exit one after another? If the industry does survive, is there a sense
 in which we can speak of a long-run average number of firms, or structure, for the industry?
 What determines these and other characteristics of the process defined by the industry
 equilibrium, and how do they change in response to perturbations of various environmental
 and policy parameters? This section proves a result which lies at the heart of our ability
 to answer these questions: the ergodicity of the stochastic process defined by the industry
 equilibrium.'8 Some direct implications of this ergodicity will be noted outright, but
 answers to many of the more interesting questions about the nature of the ergodic distribu-
 tion will depend on the detailed characteristics of functional forms in our model. We begin
 to explore some of these in an example in Section IV.

 Before turning to a formal analysis, we would like to emphasize two points on its
 relevance. First, one of the advantages of an explicit dynamic model such as ours is that
 it allows us to study the distribution of the entire sequence of structures that the industry
 passes through and not just some notion of a limit structure. Our focus here on long run

 18. Here we use ergodicity in the wide sense: a stochastic process is said to be ergodic if it converges to
 a stationary ergodic process. See Halmos (1956) or Friedman (1970).
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 averages stems from the fact that, at least in the absence of a specific empirical example
 with a particular value for so, if one wants to investigate the effect of a policy or environ-
 mental change on the (distribution of the possible) structures of the industry, a natural
 place to start is to investigate the effects of these changes on the time-average of the
 structures the industry will pass through. This leads us immediately to the question of
 whether there is a time-average, in particular one that is independent of initial conditions,
 to which all sequences converge. Second, for these limiting results to be appropriate,
 our behavioural assumptions might have to provide an adequate approximation to those
 prevalent in the industry over fairly long time periods.

 Formally, the evolution of the equilibrium structure of the industry, s,, is given by

 St= (I({o) > )(St,)} I I - St-) '+ C)(S, 1), (10)

 where I[{o > o(s, ,)}] is a diagonal matrix whose diagonal elements are either unity [if
 o > o(s,_,)] or zero, '0rn(S,-I) is the realization of the counting measure giving the location
 of firms paying their entry fee in t - 1, and 'prime' indicates a realization from the distribu-
 tion qo( I ).19 Here equilibrium transition probabilities, entry, and exit are defined in
 (6.b-d). By Proposition 2, the state space, S, for this stochastic process is compact, and
 hence finite. Let Q(s, s') be the stationary transition matrix of the equilibrium transition

 probability function Q(s'ls) defined in (6.c). Then s=-{s,},t% is a Markov process with
 stationary transitions given by the IS I x I SI-matrix Q and with distribution [sample path
 probabilities]

 Pp {s,=& tfor t=0, . ..,n}=esoHIO Q(, s,+I?n)

 for a specific path s= (&1, &2, . . . ) when the process begins in state s?. Similarly P, is the
 distribution of this Markov process when the initial state has probability v, of being in
 state (having structure) s. Therefore, the distribution of industry structures evolving from
 an initial s? after n periods can be written

 Pn(S0) [P1n(Ml = eo Qn [ v . Q'] eAs (I 1)

 where QN is the n-th iterate (power) of Q and As is the (I SI - 1)-dimensional simplex.
 That is, pn(v) is an S I-vector whose elements Pn,s give the probabiality that the structure
 of the industry, with initial distribution v, is in state s after n periods.

 This notation enables us to formulate our principal result on industry equilibrium
 dynamics: the evolution of the industry is ergodic in that the stochastic process defined
 by the industry equilibrium possesses a unique limiting distribution of structures.

 Theorem 2. Under Assumptions (A.0) through (A.5) at equilibrium (6):
 (a) The stochastic process s = {s,}-'%oe (S', ?9') with initial state s? is Markov with

 stationary transitions Q(s, s') and distributions Po, where Y' is the a-field of all
 subsets of S.

 (b) The state space, S, contains a unique, positive recurrent communicating class R c S.
 (c) There exists a unique, invariant probability measure, p *, on S sucht that

 p*=[mnQ(s, s)]-'forseR, and p*=OforseS\R, where mQ(s, s') is the P,-expecta-
 tion of the time offirst reaching state s'.

 (d) VSiS, di n(S) in-- n 1 a A

 19. q?( ) is defined in note 16 above. Also see the Remark in Section II.E.
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 Corollary. P,,* is the distribution of a stationary, ergodic Markov process with transi-
 tion Q,i.e.p*Q=p*

 Ergodicity of the equilibrium process generating industry structures has a number of
 empirical implications. First, it implies that the industry structure evolves in a non-
 degenerate, though increasingly regular, way over time, so that there never is a "limit"
 structure of the industry. Indeed, all viable industry structures, that is all structures in the
 recurrent class R c S, are realized infinitely often. Thus, just as there is continual flux in
 the relative position of firms in the industry, there is continual change in the industry
 structures that those firms comprise, showing that there is much less of a relationship
 between structure and behaviour, and indeed between structure and the welfare properties
 of the resulting equilibrium, than traditional models assume.20 A given industry structure
 generates investment, exit, and entry decisions as optimal responses to the valuation of
 the opportunity presented by the industry. The idiosyncratic outcomes of these investment
 decisions, together with the evolution of the state of competition from outside the industry,
 determine the structure of the industry at the beginning of the next period, a structure
 that is only probabilistically related to the structure which generated it. Though all firms
 eventually die, entrants replenish the population of active firms, and hence the industry
 of this model lives forever, eventually going through all the epochs determined by its
 recurrent states and its transition kernel.

 Another consequence of ergodicity is that, after some time, a certain stochastic regul-
 arity will appear in the evolution of the industry. If the initial structure is transient,
 s?eS\R, then a finite (a.s.) time will be spent shifting to some recurrent structure, seR.
 Thereafter, the portion of time spent in any state se R will approach the invariant probabil-

 ity of that state, p*: limT,O 1/TE Ih=p*. Thus the structure of the industry, s,, while
 shifting randomly in response to the idiosyncratic outcomes of optimal decisions by firms,
 will spend more time near "natural" states, with a "natural" number of incumbents,
 entrants and exits. What is "natural" will depend on the values of the underlying param-
 eters of the industry, 0= {A(.), c( ), C, ,B , ,r( ),po, P, x,", 2'}, and will be reflected
 in the mass of the invariant measure over the set of recurrent structures. Thus, over time,
 structures that are natural or normal for this industry will reveal themselves as more likely
 by their more frequent occurrence: time averages will approximate state averages, i.e. the
 ergodic distribution, p

 A final consequence of ergodicity is that the influence of any initial situation systemat-
 ically fades, becoming irrelevant for the future evolution of the industry. As Theorem 2.d
 indicates, the actual distribution over industry structures, PI, evolving from any initial
 structure, s?, (or distribution over structures, v), converges to the unique invariant distribu-
 tion, p*, hence losing any information that it contained about the initial condition of the
 industry. Indeed, a strong Markov property (Freedman (1983), ? 1.3) holds in this class
 of models; the future is independent of the past conditional on any measurable (Markov
 time) event. Thus two possible histories for the industry with different initial conditions
 (structures), once they intersect in any state, as they must with probability one, have
 identical distributions over future sample paths conditional on that intersection.

 These ergodic characteristics of the model differentiate it from other stochastic
 dynamic equilibrium models currently in the literature. Models of competitive industries
 have a continuum of infinitesimal firms leading to a deterministic limit structure. In

 20. This is clearly illustrated in the results of simulations discussed in Section IV below and in Pakes-
 McGuire (forthcoming).
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 +Jovanovic (1982) there is no entry or exit and a fixed distribution of active "good"
 firms in the limit; in Hopenhayn (1992) the fixed limiting distribution incorporates entry,
 exit and changing firm productivities due to continuing exogenous shocks. The Hopenhayn
 model is ergodic, while learning models lack ergodicity as there is a time-invariant param-
 eter generating observable sequences that differentiates among firms. A simple nonpara-
 metric test based on a +-mixing condition can be used to test for ergodic vs. nonergodic
 models (Pakes-Ericson (1990)). Lambson (1992) generates firm heterogeneity without
 idiosyncratic shocks through hysteresis of entry/investment decisions. There the competi-
 tive industry equilibrium process may be ergodic if the exogenous market environment
 process is first-order Markov.

 The game-theoretic models of dynamic industry evolution are more specialized, all
 assuming a duopoly structure. They generally focus on characterizing the optimal strategies
 in a Markov-perfect equilibrium, and make more detailed progress by assuming specific
 functional forms. Most of these models (Maskin-Tirole (1988); Rosenthal-Spady (1989);
 Beggs-Klemperer (1992); Cabral-Riordan (1992)) generate a deterministic evolution to
 some fixed structure, perhaps with different firms at different times. Rosenthal-Spady
 and Cabral-Riordan allow exit and entry to preserve duopoly despite the outcome of
 competition. Only Maskin-Tirole can generate a non-trivial ergodic process (an Edgeworth
 cycle) from the impact of randomized strategies. The most developed of these dynamic
 duopoly models is that of Budd et al. (1993) which explores the optimal Markovian control
 of a one-dimensional diffusion process of market state (share), building on an earlier
 model of Harris (1988). Since the model has arbitrary boundary behaviour on a compact
 interval, rather than endogenous entry and exit, the authors do not focus on the ergodic
 distribution over industry states. Rather, four determinants of Markov perfect equilibrium
 strategies are uncovered, and related to existing results in the dynamic duopoly literature.
 Despite the vast structural differences from our model (continuous time and state space,
 etc.), it seems that similar factors drive optimal investment behaviour in it.2' Finally, there
 are a number of repeated "technology race" models of industry evolution, focused on
 whether the industry exhibits growing dominance of one firm or alternating (technological)
 leadership (Vickers (1986); Beath et al. (1987); Dutta et al. (1993)). These models find
 Nash equilibria with respect to a finite sequence of fixed technological innovations, thus
 exhibiting simple dynamics. Only the Dutta et al. model is stochastic, but its dynamics
 end after a second innovation (a refinement).

 All of these models are distinguished from ours by the simplicity of their dynamics,
 particularly in the limit (steady state); none allows simultaneously for an endogenously
 determined industrial structure with finitely-lived, heterogeneous firms, endogenous entry
 and exit, and dynamics whose only regularity is imposed by ergodicity of the limiting
 distribution. Thus they do not provide as comprehensive or flexible a framework for
 applied work as, does the present model. Applications to date include an analysis of merger
 activity (Gowrisankaran (1994); Berry-Pakes (1993)), an analysis of the interaction
 between for- and non-profit institutions in the Hospital industry (Gowrisankaran-Town
 (1 994)), and an analysis of the evolution of productivity in the telecommunications equip-
 ment industry (Olley-Pakes (1991)).

 The general characterization in Theorem 2 still leaves many questions about the finer
 structure of the equilibrium stochastic process. For example, does the unique stationary

 21. Their "end point" effects (relief from effort) are immediate near and at coasting states, and the "self-
 reinforcing joinit cost" effects seem evident in our simulations (Section IV and Pakes-McGuire (forthcoming)).
 We have not looked for the "joilnt profit" or "pattern of profit" effects, but believe that they could be found.
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 ergodic distribution, to which the time-average of the industry structures eventually con-
 verges (see 2.d), possess a large number of small firms or a small number of large firms?
 Are the industry structures of the recurrent class "similar", so that one can think of the

 industry's structure "settling down" after some finite number of periods? Or does this
 recurrent class contain very diverse structures, so that no matter how long the time period
 elapsed since the "start up" of the industry we will still observe the industry structure
 undergoing distinct evolutionary patterns? To the extent that the recurrent class contains
 quite divergent industry structures, do the sample paths through these structures typically
 cycle, and if so, with what periodicity, or are there Poisson-type events that cause relatively
 quick and sharp discontinuities in the industry structure? Which structures of the recurrent
 class generate large amounts of simultaneous entry and exit, and which generate periods
 of high investment? Finally, and perhaps most importantly, how long will it generally take
 before the industry's structure enters the recurrent class, and through what type of sample
 paths does an industry typically pass before its recurrent pattern becomes evident? We
 have begun to explore such questions, and how their answers change in different policy
 or environmental settings, in some numerical examples. Some answers appear highly sensi-
 tive to precise functional forms or parameter values, while others seem more robust to
 these detailed assumptions. We turn to one such example now, and compare it to others
 that we have computed elsewhere.

 IV. AN EXAMPLE

 As an example, we consider a homogeneous product market having producers with differ-
 ent, but constant, marginal costs. Marginal costs, O,, are determined by a firm specific
 efficiency index and a common factor price index. Let - q be the logarithm of the factor
 price index and r that of the firm's efficiency index; then c) _r + q and O", = exp (-a)).
 Firms' R&D investments are directed at improving their efficiency of production (increas-
 ing their r). Factor prices (-q) are a non-decreasing stochastic process generating the
 correlated negative drift in the state of the firms in the industry.

 The spot market equilibrium in this market is assumed to be Nash in quantities.

 Letting qi be firm i's output, Q = E qi, and f be the fixed cost of production, the profits of
 our classic Cournot oligopolists are given by Ai=p(Q)qi- Oiqi-f where p(Q) =D- Q. It
 is straightforward to show that the unique Nash equilibrium for this problem gives quanti-

 ties and price as q*= max {0, p* - Oi} and p* = [D + En* Oi(n* + 1), where n* is the
 number of firms with q*>O. Current profits can therefore be written as A(a),s)=
 [p*(S) _ O]2 *(S) = [D+ ** Oc]/(ln*+ 1), and (a*=min {w1Iq,> }o.22 5where p() >D+

 To complete the specification we assume:

 o,v = ye-@, with 7r(c)'I co, x) = 7r()' - clax) r(r + iiix),

 I ) ax/(l+ax)thatr=l {I-Sthati7=0 =
 1/(1 +ax) that r=0 a Po that q=-I

 e{e )OOl co), = x e and xe,-=oo for n > 1, and oe'= o +1.
 Transitions in c) are determined by the difference between the increment in efficiency of

 22. This current profit function is, in many senses, an extreme alternative to the profit function used in
 the example of our model analysed in Pakes-McGuire (forthcoming). It considers a differentiated product
 industry in which all firms have the same (constant) marginal costs but are differentiated by the quality of the
 product they produce; a quality which increases with successful research activity. In that example the spot
 market equilibrium was assumed to be Nash in prices.
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 production generated by the outcomes of the firm's own research activity (r), and the
 ilncrement in the factor price index (- i). r can either increase by 1 or stay the same. The
 probability of r increasing is an increasing function of investment, and the cost of a unit
 of investment is independent of co. 1 either decreases by one or stays the same, but here
 the probabilities are given by an exogenous process. In each period there is at most one
 entrant who pays a setup cost of ve and enters in the following year at state coo if the cost

 of production has not increased in the interim, and at co - I if it did ( q = - 1).23
 It is easy to see that this specification (together with an appropriate choice for 1l and

 4 satisfies all of (A.0) through (A.5), although (A.3) perhaps requires checking. Note
 that

 A(0,s)= ax {j~+ZLI.* Sk r&e k ]2 4s* Yk0sk A (co, + =@* max I -ye-' -f, where S*j = ,,* Sk

 Clearly A = (D+ y)2, and A(co, s) is increasing in co and decreasing in s with the natural
 vector pre-order. In particular, A(a), s)I -f as sk increases at any k_ co, or as co falls for
 any s. Note that if A(co, s) = -f then marginal cost is greater than price and the firm is
 not active in the spot market. The same firm can, however, still be a participant in the
 industry. That is, plants will be mothballed without being dismantled if there is sufficient
 hope that the environment will improve to the extent that it will pay to bring the plant
 back on line in the future.

 As this example satisfies our assumptions, all of the results of Section III hold and
 we have a well-defined dynamic equilibrium that generates an ergodic Markov process in
 industry structures. To obtain the more detailed results, we substitute the specification
 given above into the computational algorithm developed specifically for this model in
 Pakes-McGuire (forthcoming), initialize the various parameters, and let that algorithm
 calculate the policy functions for all (potential and active) firms. This allows the generation
 of statistics that describe the industry structures, and the welfare implications, of the
 Markov-Perfect Nash (MPN) equilibrium. We also calculate the optimal policies for both
 a social planner and a multi-plant monopolist (or perfectly colluding cartel) faced with the
 same cost and demand primitives as those generating the MPN equilibria, and then gener-
 ate the descriptive statistics and welfare measurements that emanate from the equilibria
 obtained from these institutional environments. The colluder makes all decisions (invest-
 ment, quantities marketed, entry, and exit) to maximize the expected discounted value of
 the total profits earned in the market. Similarly the planner maximizes consumer surplus.24

 Some of the results from these computations are listed in Table 1. All descriptive
 statistics are obtained from simulation runs starting with one firm at the entry state [i.e.
 so = e,o], and then using the computed policies to simulate from that point. Panel A and
 B provide descriptive statistics from a 10,000 period simulation run. Panel C provides the
 distribution of expected discounted values from 100 independent simulation runs of 100
 periods each.

 Panel A indicates that this is an industry which is most often a duopoly, though in
 a significant fraction (about a quarter) of the periods only one firm is active. Note that
 "'monopoly" positions here are built up solely from successful past research; a firm which

 23. Note that by assuming that the period of time at which we actually observe new data points is larger
 than the decision period of the model, this specification could allow for both many entrants and for richer
 conditional distributions for the changes in a) per data period, while still maintaining the computational advan-
 tages available when there are single step transitions.

 24. There is a question of whether there is a feasible set of institutional arrangements which could lead
 to an industry which follows either a colluder's or a planner's dictates.
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 TABLE I

 Simnulated quantities fiom a homogeneous product model*

 A. % of Simulated Periods with MPN Colluder Planner

 I firm active 27-9 92-4 98-3
 2 firms active 70-8 7-6 1-7
 3 firms active 1-2 0 0
 4 firms active 0.1 0 0
 Entry and Exit 16-5 5 4 1-2
 Entry or Exit 20-4 10-0 2- 1

 B. Average (standard deviation of)

 Price 1-79 (0-35) 2-22 (0-36) **
 Total investment 1[05 (0-41) 0-68 (0-29) 0-84 (0-41)
 Entry 0-19 0-08 0-02
 Number active 1-74 (0-48) 1-08 (0 27) 1-02 (0-13)

 C. Welfare Runs (average and, in parenthesis, standard deviation of)

 1. Discounted Consumer Benefits 27-4 6-6 **
 (6 4) (5 5)

 2. Discounted Net Cash Flow 11-6 225

 (5-4) (8-5)
 3. Discounted Entry-Exit Fees 2 5 1.0

 (1-0) (1-0)
 4. Discounted Welfare 36&5 28-1 58 8

 (11-9) (14-1)

 * All runs are based on the specification described in the text with the following
 parameter values D=4,f=0-2, xe=04, w?=4, ==0-2, c=1, S=0 7, a=3, Pf=
 0 925. Panels A and B are obtained from a run which starts with one firm entering
 the industry, goes 10,000 periods, and then calculates the appropriate descriptive
 statistics. Panel C is obtained by doing 100 runs, each starting with one entrant and
 each lasting 100 periods. The appropriate discounted values are taken from each
 run, and then their averages and standard deviations across runs are computed.
 ** The welfare result for the planner can be read off the value function which is
 computed exactly. The planner sets price equal to the marginal cost of the minimum
 cost producer. This minimum marginal cost averaged 0 15 with a standard deviation
 of 0 39.

 is efficient enough will deter entry (a "persistence-of-dominance" effect). Of course, as

 noted in our theoretical results, even the most efficient of firms will eventually decay and
 be taken over by more successful competitors. Consequently it is not the same two or
 three firms that are active in all of the periods. Indeed this industry exhibits substantial
 entry and exit; there is entry in about 19% of the periods. Moreover entry and exit are
 positively correlated, a fact which is consistent with the time series evidence in many
 (though not all) industries (see Dunne et al. (1988)), and which very clearly brings out
 the need for allowing for idiosyncratic sources of uncertainty.

 Figure 2 provides a section of the optimal investment policy surface. The vertical axis
 gives the investment of a firm as a function of its own co (coa) and the co of a competitor
 ('02) when no other firms are active. From the figure it is clear that the firm starts investing
 at coa 3 or 4 depending on the value of its competitor's co. Thereafter investment is an
 initially increasing and then decreasing function of the firm's own Co.

 In another paper (Ericson-Pressman (1989)) we note that the investment function
 must be an initially increasing and then decreasing function of co for a monopolist with
 functional forms for the primitives similar to the ones used here. The intuition behind this
 result follows from the form of the value function. As investment increases the probability
 of increments to co, it will increase when those increments result in larger increments to
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 Optimal Investment: Firm I
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 the value function. Thus an initially convex and then concave value function will generate
 an initially increasing and then decreasing policy function. Indeed, the value function for
 all of our models has this property as it is bounded from both below and above. In the

 case of a monopolist with a simple enough profit function we can show, in addition, that
 the value function has only one point of inflection. Once we allow for free entry and
 consider sections of the value function that hold competitors CO's fixed, then there need
 not be only one inflection point, but the initial convexity and eventual concavity of the
 value function are maintained.

 This implies that new entrants begin with a relatively low level of investment. As a
 result most entrants will never actually overcome the negative drift imposed by advances
 of their competitors both inside and outside the industry, and die at early ages. This
 generates high mortality rates in an initial "learning" period, and a large fraction of
 entrants whose realized discounted value of returns from participating in the industry are
 negative. On the other hand the few new entrants who do get a good sequence of initial
 draws begin to increase their profits and invest more, thereby increasing the probability
 that they develop even further. Of course the successful firms will eventually pass over an
 inflection point of the value function, and decrease their investment, at whichi point their
 expected increment in co will fall. However once their co falls back to near the inflection
 point their investment will pick up again, so that an initially successful firm will tend to
 be productive for a long period of time. This, in turn, implies that both the lifetime and
 the realized value distributions from our model tend to be very skewed (see also Pakes-
 McGuire (forthcoming); similar, in fact, to the life spans and value distributions reported
 in the empirical literature.25

 Figure 2 also shows how the subtleties generated by the interactions among agents
 can destroy any simple generalizations on the form of the value function. Consider

 25. The literature on lifespan distribution is extensive; see Dunne et al. (1988), Pakes-Ericson (1990), and
 the literature cited in those articles. There is less on value distributions, but a more substantial literature on
 both the distribution of sales and profits, and persistence in the process generating the sales and profits of
 different firms. Also see Evans (1987a, b), Hall (1987), and Mueller (1986), and the literature referred to therein.
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 any one of the sections in which C02 iS low (a)2?5) and follow the investment pattern
 of the first firm as its co increases. As before it is initially increasing until about co =
 5, and then it decreases, but at co = 8 we see a surge of investment, which heads back
 down after co = 9. The reason for the increase in investment at a) = 8 is to deter entry.
 It works out that a potential entrant finds it profitable to enter if there is one firm
 in the industry at co = 7, but not if there is one firm in the industry at co = 9. This
 surge in investment destroys the simple characterization of the investment function
 that we get if there are no potential competitors as in Ericson-Pressman (1989).

 Coming back to the first panel of Table 1, it is clear that both the planner, and the
 colluder, tend to generate equilibria with fewer firms than does the Markov Perfect Nash
 solution. Indeed, given that the optimal policy for both the planner and the colluder is to
 have only one firm actually produce output in any period, the firm with the lowest 0O,, it
 is somewhat surprising that either of these two institutional structures ever find it optimal
 to have more than one firm active. They do because it is sometimes optimal for them to run
 parallel R&D efforts (see Nelson (1960)), and then only use the most efficient production
 technique developed. Still the logic behind the fact that both the colluder and the planner
 have less entry and generate less investment (panel B) than does the MPN solution is clear
 enough; entry and investment decisions in the MPN solution depend on the expected
 incremental cash flow going to the entrant and to the investor, and some of this cash flow
 is taken away from (other) incumbents. Both the colluder and the planner internalize the
 losses to incumbents and hence invest less (Mankiw-Whinston (1986)). This result is
 similar to that of the differential products example, although there the planner had dis-
 tinctly more entry and investment than the colluder due to the impact of product variety
 on consumer surplus.

 There are several other interesting aspects of the numerical results that are similar
 to those obtained from the differentiated products case. First, note that though the
 colluder generates an industry structure that looks much more like the planner than
 does the industry structure from the MPN solution, the welfare generated by the MPN
 solution is much higher and hence closer to that generated by the planner. The big
 difference between the welfare results in the homogeneous and differentiated product
 cases is that in the differentiated product example the welfare from the MPN solution
 was generally within 2-3% of the welfare that a planner could generate, even when
 equilibrium typically involved only two firms active, leaving little room for improvement
 over the "free market". In the homogeneous product case, at least with parameters typ-
 ically generating only one or two active firms, the difference between the welfare generated
 by the planner and that generated by the MPN solution seems to be much more substantial
 (on the order of 40%).

 More generally, in simulations we have consistently been surprised by the extent
 to which institutional structures which generate "similar market structures" (similar
 numbers of firms active, similar shares for the largest firms, similar entry and exit,
 etc.) can have very different welfare implications, and institutional arrangements which
 lead to very different market structures can generate very similar welfare results. Also
 we have found surprisingly high standard deviations for the welfare results from any
 given institutional structure. In this example, the average difference in total welfare
 between the MPN and the Colluder's solution is less than the standard deviation of
 the welfare results from either of them. This should make us wary about generalizing
 from case study attempts to compare different institutional arrangements, even when
 the case studies have a "laboratory perfect" comparison to make in the sense that the
 other primitives of the model are the same in the two institutional arrangements being
 compared.
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 V. CONCLUDING REMARKS

 We noted in the Introduction that models of firm and industry behaviour that allowed
 for idiosyncratic, or firm-specific, uncertainties and entry and exit were required in order
 to account for many of the phenomena exhibited in firm-level data sets. These phenomena
 include: simultaneous entry and exit; strikingly different outcome paths from similar initial
 conditions, investment strategies, and exogenous events; and industry structures that never
 seem to remain stable. We also noted that the need for models which can account for
 such phenomena is not merely descriptive, but indeed lies at the heart of our ability to
 analyse many of the impacts of policy and environmental changes.

 This paper has provided one possible model of firm and industry dynamics that can

 account for these empirical phenomena. The focus has been on the basic logic and implica-
 tions of the model in a framework that is general enough to accommodate primitives that
 could be thought appropriate for a broad number of industries in which research and
 exploration processes are important. Even at this level of generality, however, the model
 is rich enough to both generate empirically testable implications (Pakes-Ericson (1990)),
 and to suggest nonparametric procedures for correcting for selection (induced by entry
 and exit) and simultaneity (induced by endogenous input demands) problems when analys-
 ing firm's responses to policy and environmental changes (Olley-Pakes (1991)).

 However, many of the more detailed issues that one might want to analyse with the
 model depend on the finer properties of the primitives of our model, 0, and are currently

 buried in the relationship between those primitives and the nature of the equilibrium
 process generating industry dynamics. For both policy and descriptive purposes we will

 ultimately be interested in the relationship between each primitive and the recurrent class
 of industry structures, the ergodic distribution on that class, and the nature of the transition
 process into that class. This would enable us to analyse how a change in either a policy
 variable (such as an R&D tax credit, or a tariff) or in the external environment (such as
 a technical change that increased the effectiveness of external competition, or a shift in
 the structure of demand), affect the nature of the equilibrium process generating industry
 supply, productivity, shut downs, default probabilities, job creation and destruction at the
 firm level, etc.

 There are at least three (related) ways of proceeding to the more detailed analysis
 required to unravel these relationships. In order of (what we believe to be) increasing

 difficulty, they are: simulation based on assumed functional forms and particular param-
 eter values for all of the primitives (see Section IV), comparative dynamics within para-
 metric classes, and simulation based on estimated functional forms. We are pursuing all
 three of these in related research.

 APPENDIX26

 Proof of Proposition 1. (a) The only assertion not immediate from standard results is the monotonicity
 of V(ao, s) in co. Existence, uniqueness and boundedness follow from the properties of the linear operator T,

 T: 1p(Z x q(s) i'p(1o', (Z x xq)),

 T(f-max {mx (A,a- c,x +, ae 6p( I ),+,(1

 where P(a] a, x)--q. QI,(s, t1') * p(a)'l co, x, il') * p, ,.

 26. Space limitations preclude full proofs. They can be found in Ericson-Pakes (1992).
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 Let aO I>02. By the contraction property of the linear operator T, V(o, s) =lim"_ , V'(0), s) where
 V"(a), s) _ TV' '(a), s) _ T'A(c), s). The proof follows by induction from (A3). Let monotonicity hold at step
 n.

 VY +(CI S()_ s)Vn+ I0062,ss) =TV"(?) I ,s)- TV'(CO2,S )

 >A (co,, s) -A 002, s) + ',B * {E.,, [E, V`(co' V S+ +e; + ek,

 X s'I s, n')P(COA C02 , xI , rl) - E 2V`(co', S-+ e,; + e,i)qZ,,,

 X WI S, WW')p(692,2 xIl, 0')* P(MIl C I, XI, n') P.7'

 = Q' i 02Es' v"(2, St+ em + e..,j - V'(co, s '+ e; + eZ2)]

 Xq.,012W(S Is t17) * P(e)4COI I X1, t1')* P(CQC2,a2 XI, ?j') *p,'20, (A2)

 where x1_x"(c)1, s); s'i, aco are similarly defined; &_s-e0, -e02; q002 is the marginal derived from either
 qc,: q00.2(Ws's, q') Ej, q.,(ff + ejjs, ql'), iOj; and prime indicates next period's (random) realization of the
 variable. The first inequality in (A2) is due to the use of x(c),, s) at (0)2, s) and substitution of the appropriate
 marginal probabilities. The second follows from the monotonicity of A(a), s), c(a)), V"(a), s) in 0), since s' and
 the associated probabilities must be identical at both 0), as they arise from the same s and their firms invest
 identically. The first step of the induction follows from an identical argument with A(c), s) in place of V"(a), s).

 (b) From the first-order conditions given in equation (6.b), we know that x(0), s) >0 iff G(), s)-
 ,B * Ew L V(oYl co, s, O') *p ()'I0 ), x(a), s), ')* p, > c(a)), where V(0)'l c), s, q7') =jE V(a)', s+ e,)qj(s Is, '1').
 Part (a) shows that V( * )e[0, VJ and that, by monotonicity in o, Vs, lim4"_ -V, V(a), s) = 0 and lim0_ V(a), s) =
 V. Therefore Vs lim0,_O:,G(o,s)=0, as the support of Z.Px( ) pq is finite (kl+k2+1 elements) and

 E, q,p.(0'I * ) * p, =0. Letting p= max., {,,p.x(c'I * )p,,}, G(o, s) <p [V(o +k I ) - V(o -k21 )] =P e401?
 as co- oo. Define c(s):=min {oIG(o, s)>c(o)} and Co (s):=max {o>IG(o, s)>c(o)}. Clearly p(s) and 6(s)
 are finite, for otherwise V cannot remain bounded. Further, x(o,s)=O for (o, s)eC_C, uC,,, where
 C,={(o,s)Io<c(s)} and C,,-{(o,s)Io>C(s)}.

 For a finite termination policy we need to show that, for each s, there exists an o (s) > -oo such that
 V(o, s) for all o < (s). When x(o, s) =0,

 V(c, s) =A (c, s) +f p(I -k pE-' (s )(C V(+ ) E'P (A3)

 where Qoq(s,) is the s-th row of the finite-dimensional stochastic matrix representing q,(S'js, ti) and V(o,*)
 is the column vector of firm values at o for each s. Let &(s)=min{ojA(o,s)`(l -fi)0} and o*=
 max, [{co<c(s)lVs, x(o, s)=O}]>-oo, as there are only finitely many seS (A.7.b). Then for all o o<*equa-
 tion (A3) holds, so we can write in matrix notation

 Vw = Aw + f3Q.0* VQ, - ,BE,q p, * Qq A7 VoQ (A4)

 where Q.,, is the stochastic transition matrix for each exogenous shock qI, V., is the vector of values at o, and
 A,V.- V. - V.,-1. Solving (A4) we get

 [I- IQo] * V. = A. - , * p,7 Q,, A, V.

 o ? V. = [I- Q.0f] -'A. -[I- Qo0] E,, p* Q.,, A, V.

 <[ [,- PfQ0oI (I - '1P),- P[I,Q- Q-oo J , p, * Q.,,* A,, V. o4 (AS)

 where $ is a column vector with 0 for each structure s. Hence VseS,-oo < c o *, V(o, s) = +. For each s, let
 o(s) =max {c)I V(o, s) = +}, and let L= {(o, s)I V(o, s) = +}. Then X(o, s) =0 on L and X(c), s) = 1 elsewhere.

 (c) The proof follows from demonstrating that all states (0), s) L are transient and hence will never be
 reached after some finite (random) time, while all (o, s)eL are recurrent, indeed absorbing, i.e.
 Prob {3r > t (o,, s,)eL, (o,, s,) L} =0. Since the probability of reaching L in finite time is strictly positive,
 Doob (1953), Chapter V.3, implies the existence of the a.s. finite stopping time T(oo, so).

 The stochastic monotonicity of T( * ) is shown by a coupling argument. Consider 02 > 01 and initial states

 (02, So) and (coI, so). Denote (for this argument only) the underlying measure space by { U, X, P} with elements
 u. Let cof(u) be the sample path arising from initial c, at ue U. For each ue U define the stopping time r(u) =
 min {t0l )'(u) = )02(u)}, and the new sequence

This content downloaded from 128.100.177.168 on Thu, 07 Apr 2016 16:21:58 UTC
All use subject to http://about.jstor.org/terms



 78 REVIEW OF ECONOMIC STUDIES

 o{ 2(U) if C02(u) - Co(u) >0 for all t> r(u),
 cot, =o(u) otherwise.

 Note that: (a) the random sequence {*,*s,} s {(o', s,} with probability one; (b) as the random sequence
 {)o',, s,} is a Markov process and a stopping time is Markov, the distribution of {o)*, s,} is the same as that of

 {co), st}. Property (a), the monotonicity of V(), and the stopping rule imply that T(a'*, s,) _T(4', s,) a.s.
 Property (b) and the continuous mapping theorem (Billingsley (1968)) imply that the distribution of T(O2, s,)
 is the same as that of T(co*, s,). Since the latter stochastically dominates T(co,, s,), the proof is complete. I1

 Proof of Proposition 2. Writing s,, for s"(coo), letting P(O.Ss)((), s)l {x*, X*} ) be the probability of reaching
 (ao, s) in t steps from (am, sn) under optimal investment and shutdown policies {x*, X*}, and IL() be the
 indicator function of the shutdown states,

 < V(co0, s,,) =,_0 P' Z}=o (R(o, s; X((o, s))[l -IL(o, s)J + O4IL(c), s))Ps.,,)((o)s {x*, X*})

 <Eo o p, y K= (A(, s)[l - ILD(, S)J + OIL( O, s))PV(.00,(Qo, S)l {X*, X} )
 = a Z= >2 [A(a), s) v (1 P)- 0 )JP(.0.S,)((oi) s)l {I , x*})

 where the first inequality is due to ignoring the cost of the optimal investment generating the transition probabilit-

 ies, and the second from using (I - P)q0 in place of A(o, s) whenever it is larger. Let p0 (s,,, t, e,) be the probability
 that a firm starting at (wo, s") will have ao, > a, conditional on a particular t-period sequence, e,, of realizations

 of the exogenous process and the decision structure {x*, X*}- By (A3),

 A(o, s) <A,,,(n)- sup A(o), s) = (l -P)q+ 0(n)

 for seSj(o), where 0(n) is monotone-decreasing to zero in its argument. Hence, for any of the n firms starting
 at oo0, we can write

 0 V< (o0, s,,)

 <x,0a0i [E.eX^pl(s.,st,et)f'_oAkI )[Pp.( )jk[ _P.(. )1]-k-P(,,

 fit F [Ee 10 0@ E- (k + I ) ( 1 k [(')k1p(*)t-kP(e )] (A6)

 where (k) is the number of k-combinations of n objects, and P(e,) is the probability of the realization, e,, of the
 exogenous process. Let f(n, t) be the function in the large square brackets in (A6). Clearly f(n, t) <A and

 E l ' *A= (1 - f'JA < oo. Hence, by the Lebesgue Dominated Convergence Theorem for sums, it suffices to
 show that Vt, lim_, .f(n, t) =0, for which it further suffices that VW,

 p.a( ) Ek'-o' 0(k + I) ( I )[P.(_)]k[j_p.,( )]tk- = (A7)

 for a.e. e,. Now note that (k+ 1)/(n- l)=argmaxp {Pk+I(l p),-k-'}. Thus, VN<n- -

 k4 _O (k+ I(k )[P( )]k+ '[_-p(. )J]--k- I

 O(n)..(-k) (k+l)k+i (k-k-2Y' k-) +IN+i I

 -<f E-= ! - + O(N+ 1).

 Now fix ?>0 and let n, be the minimum nsuch that 9(n + 1)? <s/2 and n2 be the smallest n?n1 - 1 such that

 :k=o k n k! n2-12

 Hence (A7) holds, so that for n 2 un2, V(nO, su) t ? as required. 11
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 Proof of Corollary 1. We use Proposition 2 to show that for any s, 3M<oo such that Vm>M,
 VC(s, in) <? -Xm. We do so here only for QK = { -k2,...,}: all entry occurs at a single &o + q; the
 general case with distributed entry is an immediate consequence. Then Ve(s, m) =

 P El1 {Es, V(W + 7, in * e,o *-,1 + s')q0(s'l s, q)} p,, and, for each of a finite number of ii's and each s', V( ) ? 0 + E
 for m > M by Proposition 2, giving the desired result. 11

 Proof of Cor ollary 2. For the industry to remain finite we must show that all entry ceases with a sufficiently
 large number of firms. In Lemma I we show that there can never be more than a finite number of firms at any

 0) e { 1, K} without their all desiring to exit the industry immediately. Letting No} be that number for each 0),

 N= EK= N, is so large that for VseS,c(S), Vn>N, Ve(s, m)<.l , Vmr>1.

 Lemma 1. For each ow, 3No0 such that Vn > No0, V(0), s + n * eO,) = 0.

 Proof. Proposition 2 gives an n0, such that for all n > n0, V(co, s + n * e) < q + E. We now show that by
 increasing n sufficiently we can drive the continuation value, VC() [the expression within braces in equation
 (3)], below q. At each a) there are two cases to consider: (a) x(a) * )=O and (b) x(m), * ) > O.

 Case (a): x(a), ) = 0 implies V(w), s+ n e0) <A(0), s+ n e0) + /3 V(w, s+ n * e0). But Assumption (A.3)

 says that 3n* such that A(0),s+n* * e0,)<(l -fi)4i-. Hence, for n?>min {n0,,n*},
 V'(),s e+ n * e,+) < (I -)- + )+ /3E<.

 Case (b): x(m), * ) > 0 implies that there is a positive probability of advancing to any

 w)'e{o)-k2,. ..,+k,}. Hence there exists an n* such that with probability 1 -El there are at least
 n0, 4 k1 firms at ) + k, . Therefore, letting V= sup, V(a), s),

 VC(0), s+n*e0t) ?A(0), s+n*e0,) +f3(1 - s)(v)+ E) + f3sl V

 -( I-/3))-E s+/3(1 -E s)(v)+ E) +/3 El V

 <v)-E-/3Is)+/3Is V+/3(1 -s1)s=v+(V-) )/3EI -(I-/3(1 -l)6

 where E comes from (A3) as in case (a) [n* > n*]. Hence we need only choose n > n* so large that

 ( Z-))/E < (I - 3(1l 6))C- ||

 Proof of Proposition 3. See Ericson-Pakes (1992). 11

 Pr oof of Thleor em 1. For existence we need to show the mutual consistency of four fundamental mappings:

 (i) V: Q x S-4[, V] c R; (ii) x: Q x Sx[0, .c] c R+; (iii) : S-.As; and (iv) ve: M x S[?O, VP c R; where
 M--{0, 1, . . ., M} is the set of numbers of potential entrants, As is the set of probability measures with support

 in the finite set S, i.e. a simplex of dimension ISI - 1, and Y is the conditional probability distribution generated
 by the Markov transition kernel, Q. Given Q characterizing the behaviour of the industry structure, s (6.c),
 individual firm optimization generates an x (6.b) which solves equation (6.a) yielding both an optimal valuation
 of w-states and industry structures, V, and optimal exit from that structure. V together with Q then generate
 the value of entering the industry, Ve (4), that determines the number of new entrants, m(s) (6.d). The optimal
 investment, exit, and entry decisions of firms in turn define (see (A4), (A5)) a transition probability function,
 2, for the industry structure through equations (6.c) and (7). An equilibrium will exist iff the resulting Y is
 the same as that which determined the optimal valuation and investment functions of firms in the industry. We
 use a fixed-point argument to show that there exists such a Y, and hence appropriate Q, V, x, and Ve functions
 also exist, all satisfying the required properties (6.a-d).

 Each of these mappings, V, x, 9, Ve, can be represented by a point in a compact subset of real Euclidean

 space: Ve[q, jl'Xs xe[0,. tfxs ye(As)s and Vee[q, JlmXS. Define a mapping 4: (As)s-[0,.tI0xsx
 [4l Pjilx S X [ IP)C MX s, which takes a market structure transition function into an optimal investment policy and
 optimal valuation function for any firm in the industry, and an optimal valuation for any firm considering entry.
 It is generated by the solution to the Bellman equation (3) for a given transition probability function for industry

 structures and by equation (4). Define yr. [0, rJ]fX s x [4, VPIlX s x [41, Pfc/x s-(As)s a mapping which takes an
 optimal investment policy and state and entry valuations into a market-structure transition function. It is

 determined by equations (6.c) and (7). Finally, define the mapping 'K: (As)s-+(AS)s by the composition Yl'=
 I/ O ;

 Lemma 2. 4 is a continuous function.
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 Proof As argued in Ericson-Pakes (1992), 4 is continuous as the composition and product of continuous

 functions. 11

 Lemma 3. yr is a continuous function.

 Proof See Ericson-Pakes (1992) for the proof that yV is a continuous function, as the composition of
 continuous functions. 11

 Lemma 4. Thiere exists Y* e(As)s such that .*= f(y*).

 Proof The function V is continuous as the composition of two continuous functions, and (As)s is clearly
 convex and is compact, so the result follows from Brouwer's Fixed Point Theorem. 11

 Thus there exists a Y such that the V and x functions satisfying equations (6.a) and (6.b) generate the
 transition kernel Q satisfying equations (6.c) and (7). The remaining condition (6.d) is an immediate consequence

 of preceding Propositions, while (6.e) is an arbitrary initial condition. 11

 Proof Thteorem 2. (a) This is an immediate consequence of Proposition 3 when we define the elements
 of the matrix Q to be given by the equilibrium transition kernel: Q(s, s') _ Q(s'ls), incorporating optimal exit
 and entry, as well as investment, decisions. The Kolmogorov consistency theorem insures that the measure P5
 is uniquely given by:

 P5{{,=s, for t=O, 1, . . .}, r =e e* ni -, Q(s,, s,+ i). (A8)
 (b) The existence of a unique positive recurrent communicating class will be shown through a series of lemmata.

 Lemma 5. There exists a positive recurrent communicating class, R c= S.

 Proof This is immediate as S is compact (finite). 11

 Lemma 6. There exists an s such that, Vse S, s -+, i.e. 3n, >1 such1 that PS{4,J = } >0.

 Proof Let =(O, .. ., , N, ...,O) where N>O is a finite number of firms at 0)0 =min a". We will show
 in two stages that there exists a finite trajectory, {so, si, . . ., sT}, with positive P3-probability such that so =s
 and ST=-.

 (i) For all s let s' be defined as follows: s'=O, s.,=s.+1 for all a)#a&, a)W>o(s), and
 st'o = s0,o+ + m(s). Thus competition of all firms outside the industry inexorably advances, while the
 investments of all active firms fail to yield any success. Then (see Assumptions (A.4) and (A.5))

 Q(s, s')-=P-l X2,s [;r(m I , x(a), s))11'011 * P((0) )l (1 >I zo

 as must be any finite product of these transition and entry probabilities. Repeat until all active firms
 have dropped (at some rT) to 0)0 or lower:

 Sri=(no, n, . . .n, no,, * * 0*}.

 This occurs in finite time as the initial industry structure is finite (Corollary 2).

 (ii) For all se{sIs0=0 Va)>wa)} let s' be defined as follows: s' =0, a) >(a; s' o=s.o+m(s); s' ol=O;
 sW =so + , a) < )0 - 1. Again outside competition advances, while all active inside firms, except those
 at )0, fail to generate any success with their investment. Firms at 0)0 succeed in holding their own.
 Again such a transition has strictly positive probability:

 Q(s, s') =p_ [Ir(0)0 + 1100, x((0)0, s))JIS,OI

 HOE w [;r(w I w, x(a, s))JiSt- p(0)P)itfn(s)I > 0

 where W={0)e(La)(s)< )<wO}. Repeat until all firms below 0)0 have exited the industry. Again
 finiteness of the industry insures that this will occur in finite time r2. This yields, at T= rT + r2, SrST=
 (0 . 0. . O, N, 0 . 0. . O), where N= argminn {m(O, . . .0, O n, 0. .0.). = 0} = n+o+XI+ m(s,). 11

 Lemma 7. EeR.

 Proof. This is immediate as R is positive recurrent.
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 Lemma 8. Let SeS be any recurrent state. Then S-eR, R is the only recurrent class, and s R implies that
 s is transient.

 Proof. That seR must hold follows from Theorem 1.55, Freedman (1983). Hence R is unique and any

 s#R must be transient. 11

 (c) This is an immediate consequence of the existence of a single positive recurrent class: see Freeman
 (1983), Theorems 1.81, 1.88.

 (d) pn = vQ' (13) and hence converges iff the matrix Qf does so. By Freedman (1983, Theorem 1.68),
 lim",0, Qf(s, s') =0 if s' is transient (s'#R), and by Theorem 1.69(c), if s' is recurrent (s'eR) then

 lim Qfl(S, s') = 'pQ(s, s')
 n-oo mmQ(s,s ')

 where qpQ(s, s') -P5{ 4=s' for some n20}, P, is defined in (A8), and mQ(s', s') is defined above. Notice that,
 for all n, vQ" is a probability measure. Hence p,, converges to some probability measure, lim u,,= r (say). Now
 notice that nQ= (lim vQ")Q= v lim Qf * Q= v lim Qf = lim vQ" = X so that X is an invariant probability measure
 for Q. Howevert, by part (c) above, p* is the only (unique!) invariant probability measure, and therefore

 lr=p*. 11

 Proof of Corollary 3. That p*Q=p* was shown in Theorem 2. That P,. (A8) is stationary is an immediate
 consequence of the fact. Let u, be the t-th period distribution starting from p*:

 fPt=p,t-]Q= =P*QI=P*Qt-1= .=P*Q=P*. 1
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