Unobserved Heterogeneity
in Structural Dynamic Discrete Choice Models

Victor Aguirregabiria and Jiaying Gu

University of Toronto
ECO 2403. TOPICS IN ECONOMETRICS

Febraury 9, 2018

Aguirregabiria & Gu (University of Toronto Unobserved Heterogeneity Febraury 9, 2018 1/32



Introduction

e Key econometric issue Dynamic Panel Data (DPD) models is
distinguishing between "true dynamics" and "spurious dynamics"
due to persistent unobserved heterogeneity (UH).

@ These lectures deal with this problem in the context of Dynamic
Discrete Choice Structural models.

@ In these models, agents are forward-looking and maximize expected
and discounted intertemporal utilities.

@ UH enters not only in current utilities but also enters [in a
complicated and endogenous way]| in continuation values, i.e., in the
expected value of future utilities.

@ This affects properties and implementation of some estimators.
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Introduction [2]

@ Most common methods to deal with UH in DPD models are Fixed
Effects (FE) and Correlated Random Effects (CRE).

@ CRE models impose different types of restrictions: parametric, finite
support, restrictions on the initial conditions problem.

o FE approach is very attractive because it does not impose any

restriction on the distribution of the UH conditional on observable
explanatory variables.
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FE in structural DDC Models

o [1] "Brute force" dummy variables method: inconsistent; bias
reduction methods can be computationally intensive.

e [2] "Sufficient statistics/CMLE method: Not all DPD models can
be estimated root-N consistently using FE estimators. Examples:

- Discrete choice models other than the logit.
- Models where UH and predetermined var. are not additively
separable.

@ Structural dynamic logit model: Common wisdom: FE cannot provide
a consistent estimator of structural parameters.

@ Even if UH enters additively in one-period utility function, the
solution of the model implies that UH appears non-additively in the
continuation values.
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Outline of the four lectures

Backwards induction ;) ...

[Fourth lecture] In a recent research project, J. Gu. Y. Luo, and
myself show that it is possible to obtain sufficient statistics for UH in
a class of models that includes many applications in this literature.

[Third & Second lectures] Literature on sufficient statistics /
CMLE method in other related models.

[Today’s lecture] Current methods [CRE] to deal with UH in
structural DDC models.
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Outline

[1] Structural DDC models

[2] Finite mixture — Full solution — MLE

[3] Hotz-Miller: Finite Dependence representation

[4] Hotz-Miller + Nonparametric finite mixtures (Kasahara &
Shimotsu)

[5] Hotz-Miller + EM algorithm (Arcidiacono & Miller)
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Structural DDC models

1. Structural DDC models
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Model

@ Decision variable: y;; € Y ={0,1, ..., J}. Every period t, agent i
chooses y;; to maximize E (ZST:O ,BJ U,-t>

@ The one-period utility of choosing y is:
Ui(y) = u(y, xit, wi) + eie(y)
o {€¢(0),...,€¢(J)} unobservables, i.i.d. over (/,t)
@ w; unobservable: finite mixture: w; € Q = {w!, w?, ..., w'}.
@ x;; = Observable state variables, with transition probab|I|t|es:

f(x,'t+1 |_yitv Xit, C(),')
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Model 2]

o Integrated (over ¢'s) Bellman equation. For every type w:
Volxe) = [ argmaxvi (v, ) + ex(y)] dG(e)
where v, (y,X¢) = up (v, %t) + By Vo (X') (X |y, xt).
@ For instance, for the MNL model (¢'s type 1 EV):

Vio(x¢) = In [E exp { v (y.xt)}]

yey
@ The Conditional Choice Probabilities (CCPs) are:
Puly | x0) = Pr v = g max v, () + ) )
@ For instance, for the MNL model:

o exp{ve (v, x:)}
Pw(y | Xf) - Zjey exp{vw (_Iv Xt)}
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Example: Occupational choice model

@ J occupations; y = 0 represents "not working".
o Utility depends on earnings, disutility of working, and switching costs.

@ Two sources of dynamics: (a) experience in an occupation/job has
returns; and (b) switching occupation has switching costs.

e Endogenous state variables in x;: (a) endogenous: y;_1 and duration
(experience) in current occupation.

e Exogenous state variables: shocks in wages (occupation specific);
health status;

@ Unobserved w: Skills, that can be occupation-specific; taste for
leisure; unobserved health; ...
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Example: Machine replacement model

A firm decides whether to replace (y = 1) or not (y = 0) a machine.

@ Profit = Variable Profit - Replacement Cost (if y = 1) - Maintenance

cost (if y = 0).
@ Dynamics: Machine depreciates with age.
e Endogenous state var: Machine age: : x¢11 = (1 —y¢) (xe +1)
@ Exogenous state variables: shocks in profits; price of a new machine.

@ Unobserved w: in maintenance and replacement costs.
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Example: Market entry-exit

@ A firm decides whether to be active (y = 1) or not (y =0) in a
market.

@ Profit = Variable Profit - Entry cost (if new entrant) - Scrap value (if
exiting)

e Two sources of dynamics: (a) experience in the market has returns;
and (b) entry costs.

e Endogenous state variables in x;: (a) endogenous: y;_1 and duration
(experience) in the market.

e Exogenous state variables: shocks in profits (output and input prices).

@ Unobserved w: Firm or market heterogeneity in costs.
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Full solution-MLE

2. Full solution—MLE
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Full solution—MLE

@ Let O be the vector of parameters of the model. Given the panel

dataset {yit, Xt : i =1,...,N; t =1,..., T}, the log-likelihood of the
model is:

N
6(9) = ZInPr(y,-l,x,-l,...,y,-T,x,-T|9)
i=1

N
= Zln (Z T Pr(y,-l,x,-l,...,y,-r,x,-r | w,9)>

i=1 we)

Il
™=

T T-1
In (Z Tw p (xi1|w) TT Puw (yie|xit, 0) I—[l fuo (Xit+1|yi,

i=1 weD t=1 t=

@ For the endogenous variables in x;; (e.g., initial occupation and
experience), p (xj1|w) captures the initial conditions problem.
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Full-Solution MLE. Issue 1: Initial conditions problem

e How to specify p (xj1|w) [or 7y p (xi1]w) = p (xi1,w)] in a way that
is:
(a) identified; (b) consistent with rest of the model.

@ In general, the probability p (x;j1,w) in NOT nonparametrically
identified in this max. likelihood problem. This is the initial
conditions problem.

@ We need to impose restrictions on p (X1, w). These restrictions could
be wrong, and even incompatible with the rest of the model [but we
do not know this without knowing the solution of the model].

o Note that in a FE approach [if feasible !!!], we do not need to make
any assumption on p (X1, w).
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Full-Sol. MLE. Issue 2: Computational complexity

@ Nested Fixed point algorithm.

@ For each trial value of the parameters 6, the algorithm solves the
Dynamic Programming (DP) problem. This introduces a substantial
computational burden, especially for models with large state spaces
[curse of dimensionality].

@ This problem is more severe for model with UH w because:
(a) The DP should be solved for each type w;
(b) In these models, the likelihood has many local maxima;
optimization is quite complex.
*** Important: EM algorithm, by itself, is not a solution; many EM
iterations implies solving DP problem many times.
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Hotz-Miller

3. Hotz-Miller
Finite Dependence
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Hotz-Miller & Finite Dependence

@ Main idea: Under some conditions, the model implies that there is a
known function that related CCPs and utility function at periods t
and t + 1 [more generally, at ¢, t +1, ..., t + s where s is finite].

E; [F(Uw(}/tvxt), Pw(}/t‘xt)v Uw(Yt+1,Xt+1): Pw(Yt+1’Xt+l))] =0

where F(.) is known. This is the same flavor [and in fact it can be
derived] as an Euler equation.

@ Suppose that we can estimate the CCPs P, (y|x) directly from the
data, as reduced-form probabilities, without solving the model.

@ Then, we can estimate the structural parameters in u,(yt, X¢) by
GMM without having to solve the model even once, and without
having to compute any present value.
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Hotz-Miller & Finite Dependence: Some Details

@ There is one-to-one relationship between conditional choice value
differences (CCVD), V,(y,Xx) = v (y,x) — v (0, x), conditional
choice probabilities (CCP), P, (y|x).

@ This mapping depends only on distribution of € and it has a simple
closed-form expression for some distributions. Logit model:

. exp {Vw ()/v X)}
Poly | x¢) = Zjey exp {Vw(jv X)}

@ And the inverse mapping is:

Vo (y,x) = In Po(y [ xt) —InPyu(0 | xt)
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Hotz-Miller & Finite Dependence [2]

@ This implies that the value function V,,(y,x) can be written in terms
of CCPs and a "baseline" CCV, v, (0,x). For instance, for the logit
model:

Vu(x) = ln[mxp{vw(y,x)}]

yey

y=1

= Vv (0,x) —InPy (0, x)

= v (0,x)+1In [1+ £ exp {7 (va)}]

e Remember that vy, (y,x) = uw (v, X) + By Vw(X') fu(X'|y, x).
Therefore:

Vw (¥, X) = Uy (v, x +ﬁ2 Vo (0,X) —In Py, (0,x)] fio(X'|y, x)
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Hotz-Miller & Finite Dependence [3]

o If we take any pair of actions j and k, we have that
Vw (J, X) — viw (k,x) = In Py, (j|x) — In Py, (k|x), and:

Vi (J, X) — Vi (k, X) = te (J, X) — g (k, x)

—,B));In Py, (0,x") [fu(X'|j,x) — fu,(X'|k, x)]

—|—,B§uw (0,x") [f(X'j,x) — fu (X' |k, X)]

B L |1 Vo (X oo (X710, %) | [£oo (X', %) — fio (X' &, )]

!
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Hotz-Miller & Finite Dependence [4]

@ The term

Y| Vw(xt+2) fw<xt+2’0vxt+l) [fw(XtHUv X) - fw(xt+1‘kvx)]

Xt+1 LXt+2

represents the difference between the continuation values after

t + 1, of two choice paths:
- choice path: {y; =/ and y;1; = 0}
- choice path: {y; = k and y;+1 = 0}

@ There is a general class of dynamic models [one-period finite
dependence] where this term is zero.
e.g., occupational choice; market entry-exit; machine
replacement; inventory; demand of storable products; etc.
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Hotz-Miller & Finite Dependence [5]

@ Under one-period finite dependence:
In Py, (j|xt) — In Py (k|xt) = tw (J, Xt) — te (k, X¢)

—B Y InPy (0, Xt+1) [fw<xt+1’jv Xt) - fw(xt+1|k,xt)]

Xt+1

+B L uw (vat—H) [faJ(xt+1‘jvxt) - fw(xt+1|k,xt)]

Xt+1

o If a NP estimator of the reduced-form CCPs P, (j|x) exists, then we
can estimate structural parameters using a simple two-step GMM
estimator.
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Hotz-Miller & Finite Dependence [6]

@ It is convenient to write the FD representation as a "best response”
probability function.

@ Let’s use the more compact notation Cw(j, k,xt, Py;0) to represent
the RHS FD representation. Then, it is simple to show that we can
re-write this equation as:

exp{Cw(j,0,x¢, Pu; 0)}
Zi:o exp {Cu(/, 0, %, Pew; 0) }

The RHS can be interpreted as a best response probability function:
given then CCPs at t + 1, what are the optimal CCPs at t.

Puw (lxe) =

@ We can define a log-likelihood function £(P,; 6) in terms of the

choice probabilities JeXp{C‘“(j'o’x“P‘“;e)} . Two-step Pseudo-MLE.
Zk:o exp{ Cw (J,0,xt,Pwif) }
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Hotz-Miller + NPFM (Kasahara & Shimotsu)

4. Hotz-Miller +
NP Finite Mixtures
(Kasahara & Shimotsu)
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Hotz-Miller + NPFM (Kasahara & Shimotsu)

Hotz-Miller & NP Finite Mixtures

e For many years since publication of Hotz-Miller (1993) paper, the
common wisdom was that this method was feasible only for models
with 7.i.d. unobservables because CCPs P, (j|x) with permanent UH
were not NO identified.

@ In this context, the recent developments in the literature of NP Finite
Mixtures have been very important: Hall & Zhou (AS, 2003); Allman
et al. (AS, 2009); Bonhomme et al. (AS, 2016).

@ ... and especially Kasahara and Shimotsu (ECTA, 2009) because it
deals with NPFM in Markov Discrete Choice models.

@ They show that P, (j|x) are NP identified under relatively standard
conditions.
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Hotz-Miller + EM algorithm (Arcidiacono & Miller)

5. Hotz-Miller + EM algorithm
(Arcidiacono & Miller)
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Arcidiacono & Miller (ECTA, 2011)

@ They adapt the EM algorithm to incorporate UH into CCP
estimators with Finite Dependence.

@ Remember the FD representation in term of the "best response
probabilities", and define:

exp {Co(j, xt, Pwi 0)}
Yi—oexp{Coli xe, Puif)}
@ Define the log-likelihood function:

N
Py, m,0) = Z'n ( Z TTw II[ Yo (yie | Xit, Pw;9)>
i=1 1

we) t=

Yolj | x¢, Pw; 0) =

@ AM method consists in the application of the EM algorithm to this
max likelihood problem.
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Hotz-Miller + EM algorithm (Arcidiacono & Miller)

Preliminary notes on EM-algorithm

o Consider a general finite mixture model where p(y|7,0) = ¥ ,cq Tw
p(y | w,0), and the log-likelihood is:

N N
((r,8) = Y Inp(y | m,0)=) In [Z 7w p(yi | wﬁ)]
i=1 i=1 we)

@ Define the posterior probabilities: g;(w | 7r,0) = Pr(w | y;, 7, 0). By
Bayes' rule:

o plyi | w,0)
gi(w|m, 0) =
(wlm.6) YweaTw plyi | @', 0)
@ The EM algorithm does not maximizes the original log-likelihood but
the extended expected likelihood function:

N
Qq(r,0),6) = Y. Y qi(w|m6) Inp(yi | w,6)

i=lwe)
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EM-algorithm: Steps

o We start the algorithm with initial values {7r% 6°}. At every iteration
n > 1 we update these parameters by applying two steps.

e Expectation (E) Step. We update the posterior probabilities g; and
the 7’s as follows:

7t p(yi | w, 0"

qf(w) = - -
Yweam™h b p(yi | ', 0"
n 1 N n
T = N 2 q; (w
=1

e Maximization (M) Step. We update 6 by maximizing the expected
log-likelihood Q(g", 0)

0" = argmaxZZq, ) Inp(y; | w,0)
i=1weQ)
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CCP + EM-algorithm

@ Now we have the log-likelihood function:

we)

N
U(Py,,0) = Zln (Z TTw ﬁ Yo lyie | Xit, Pw;9)>
i=1 t=1

o If the vector of CCPs, P, were known, then the application of the
EM algorithm to this problem would be very straightforward.

@ Simply, we apply the same equations for g;(w|7t, ) and for
Q(q(7,6),0) with the only difference that now we have that:

.
plyi | w,0) = HI‘I’w(yft | Xit, Puw; 0)
t=

@ Since we do not know the CCPs P,,, we need to nest the EM
algorithm (inner algorithm) within an "outer’ algorithm that updates
the CCPs P,,.
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CCP + EM-algorithm [2]

o We start the algorithm with {7%,6°, P, }. At every iteration n > 1
we update these parameters as follows.

o Inner algorithm: EM. Taking P! as given, we apply the EM
algorithm to estimate {7t,0}. This give us {7t",0"}.

e Outer algorithm: Updating of CCPs. Given {7t",0"}, we update
the CCPs as follows:

exp {Cw(j, x, P71, 9")}

P (j | x,8) =¥u( | x, P10 _ -
« “ @ Yl _oexp {Culix, PL 1 6M)}

o Alternatively, we could use Kasahara-Shimotsu estimates of P, and
not iterate. Trade-offs.
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