Unobserved Heterogeneity in Structural Dynamic Discrete Choice Models

Victor Aguirregabiria and Jiaying Gu

University of Toronto

ECO 2403. TOPICS IN ECONOMETRICS

Febraury 9, 2018

Aguirregabiria & Gu (University of Toronto E

Unobserved Heterogeneity

Introduction

- Key econometric issue Dynamic Panel Data (DPD) models is distinguishing between "true dynamics" and "spurious dynamics" due to persistent unobserved heterogeneity (UH).
- These lectures deal with this problem in the context of **Dynamic Discrete Choice Structural models**.
- In these models, agents are forward-looking and maximize expected and discounted intertemporal utilities.
- UH enters not only in current utilities but also enters [in a complicated and endogenous way] in continuation values, i.e., in the expected value of future utilities.
- This affects properties and implementation of some estimators.

ヘロト 不得下 不足下 不足下

[2]

Introduction

- Most common methods to deal with UH in DPD models are **Fixed Effects (FE)** and **Correlated Random Effects (CRE)**.
- CRE models impose different types of restrictions: parametric, finite support, restrictions on the initial conditions problem.
- FE approach is very attractive because it does not impose any restriction on the distribution of the UH conditional on observable explanatory variables.

イロト 不得下 イヨト イヨト

FE in structural DDC Models

- [1] "Brute force" dummy variables method: inconsistent; bias reduction methods can be computationally intensive.
- [2] "Sufficient statistics/CMLE method: Not all DPD models can be estimated root-N consistently using FE estimators. Examples:
 - Discrete choice models other than the logit.
- Models where UH and predetermined var. are not additively separable.
 - Structural dynamic logit model: Common wisdom: FE cannot provide a consistent estimator of structural parameters.
 - Even if UH enters additively in one-period utility function, the solution of the model implies that UH appears non-additively in the continuation values.

Outline of the four lectures

- Backwards induction ;) ...
- [Fourth lecture] In a recent research project, J. Gu. Y. Luo, and myself show that it is possible to obtain sufficient statistics for UH in a class of models that includes many applications in this literature.
- [Third & Second lectures] Literature on sufficient statistics / CMLE method in other related models.
- **[Today's lecture]** Current methods [CRE] to deal with UH in structural DDC models.

イロト 不得下 イヨト イヨト

Outline

- [1] Structural DDC models
- [2] Finite mixture Full solution MLE
- [3] Hotz-Miller: Finite Dependence representation

[4] Hotz-Miller + Nonparametric finite mixtures (Kasahara & Shimotsu)

[5] Hotz-Miller + EM algorithm (Arcidiacono & Miller)

3

(日) (周) (三) (三)

1. Structural DDC models

Aguirregabiria & Gu (University of Toronto E

Unobserved Heterogeneity

Febraury 9, 2018 7 / 32

3

-

• • • • • • • • • • • •

Model

- Decision variable: y_{it} ∈ 𝔅 = {0, 1, ..., J}. Every period t, agent i chooses y_{it} to maximize 𝔼 (Σ^T_{s=0} β^j U_{it}).
- The one-period utility of choosing y is:

$$U_{it}(y) = u(y, \mathbf{x}_{it}, \omega_i) + \varepsilon_{it}(y)$$

- $\{\varepsilon_{it}(0), ..., \varepsilon_{it}(J)\}$ unobservables, i.i.d. over (i, t)
- ω_i unobservable: finite mixture: $\omega_i \in \Omega = \{\omega^1, \omega^2, ..., \omega^L\}.$
- \mathbf{x}_{it} = Observable state variables, with transition probabilities: $f(\mathbf{x}_{it+1}|y_{it}, \mathbf{x}_{it}, \omega_i)$

Model [2]

• Integrated (over $\varepsilon's$) Bellman equation. For every type ω :

$$V_{\omega}(\mathbf{x}_{t}) = \int rg\max_{y \in \mathcal{Y}} \left[v_{\omega}\left(y, \mathbf{x}_{t}
ight) + \varepsilon_{t}(y)
ight] \ d\mathcal{G}(\varepsilon_{t})$$

where $v_{\omega}(y, \mathbf{x}_t) \equiv u_{\omega}(y, \mathbf{x}_t) + \beta \sum_{\mathbf{x}'} V_{\omega}(\mathbf{x}') f_{\omega}(\mathbf{x}'|y, \mathbf{x}_t).$

• For instance, for the MNL model ($\varepsilon's$ type 1 EV):

$$V_{\omega}(\mathbf{x}_{t}) = \ln \left[\sum_{y \in \mathcal{Y}} \exp \left\{ v_{\omega}\left(y, \mathbf{x}_{t}\right)
ight\}
ight]$$

• The Conditional Choice Probabilities (CCPs) are:

$$\mathsf{P}_{\omega}(y \mid \mathbf{x}_{t}) = \mathsf{Pr}\left(y = rg\max_{j \in \mathcal{Y}} \left[\mathsf{v}_{\omega}\left(j, \mathbf{x}_{t}
ight) + \varepsilon_{t}(j)
ight]
ight)$$

• For instance, for the MNL model:

$$P_{\omega}(y \mid \mathbf{x}_{t}) = \frac{\exp\left\{v_{\omega}\left(y, \mathbf{x}_{t}\right)\right\}}{\sum_{j \in \mathcal{Y}} \exp\left\{v_{\omega}\left(j, \mathbf{x}_{t}\right)\right\}} \quad \text{if } x_{t} \in \mathcal{Y}$$

Aguirregabiria & Gu (University of Toronto E

Unobserved Heterogeneity

Example: Occupational choice model

- J occupations; y = 0 represents "not working".
- Utility depends on earnings, disutility of working, and switching costs.
- Two sources of dynamics: (a) experience in an occupation/job has returns; and (b) switching occupation has switching costs.
- Endogenous state variables in x_t: (a) endogenous: y_{t-1} and duration (experience) in current occupation.
- Exogenous state variables: shocks in wages (occupation specific); health status;
- Unobserved ω : Skills, that can be occupation-specific; taste for leisure; unobserved health; ...

Example: Machine replacement model

- A firm decides whether to replace (y = 1) or not (y = 0) a machine.
- Profit = Variable Profit Replacement Cost (if y = 1) Maintenance cost (if y = 0).
- Dynamics: Machine depreciates with age.
- Endogenous state var: Machine age: : $x_{t+1} = (1 y_t) (x_t + 1)$
- Exogenous state variables: shocks in profits; price of a new machine.
- Unobserved ω : in maintenance and replacement costs.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example: Market entry-exit

- A firm decides whether to be active (y = 1) or not (y = 0) in a market.
- Profit = Variable Profit Entry cost (if new entrant) Scrap value (if exiting)
- Two sources of dynamics: (a) experience in the market has returns; and (b) entry costs.
- Endogenous state variables in x_t: (a) endogenous: y_{t-1} and duration (experience) in the market.
- Exogenous state variables: shocks in profits (output and input prices).
- Unobserved ω : Firm or market heterogeneity in costs.

= 900

2. Full solution–MLE

Aguirregabiria & Gu (University of Toronto E

Unobserved Heterogeneity

Febraury 9, 2018 13 / 32

3

Full solution-MLE

Let θ be the vector of parameters of the model. Given the panel dataset {y_{it}, x_{it} : i = 1, ..., N; t = 1, ..., T}, the log-likelihood of the model is:

$$\ell(\theta) = \sum_{i=1}^{N} \ln \Pr(y_{i1}, \mathbf{x}_{i1}, ..., y_{iT}, \mathbf{x}_{iT} \mid \theta)$$

$$= \sum_{i=1}^{N} \ln \left(\sum_{\omega \in \Omega} \pi_{\omega} \operatorname{Pr}(y_{i1}, \mathbf{x}_{i1}, ..., y_{iT}, \mathbf{x}_{iT} \mid \omega, \theta) \right)$$

$$= \sum_{i=1}^{N} \ln \left(\sum_{\omega \in \Omega} \pi_{\omega} p\left(\mathbf{x}_{i1} | \omega\right) \prod_{t=1}^{T} P_{\omega}\left(y_{it} | \mathbf{x}_{it}, \theta\right) \prod_{t=1}^{T-1} f_{\omega}\left(\mathbf{x}_{it+1} | y_{it}, \theta\right) \right)$$

For the endogenous variables in x_{i1} (e.g., initial occupation and experience), p (x_{i1}|ω) captures the initial conditions problem.

Full-Solution MLE. Issue 1: Initial conditions problem

• How to specify $p(\mathbf{x}_{i1}|\omega)$ [or $\pi_{\omega} p(\mathbf{x}_{i1}|\omega) = p(\mathbf{x}_{i1}, \omega)$] in a way that is:

(a) identified; (b) consistent with rest of the model.

- In general, the probability p (x_{i1}, ω) in NOT nonparametrically identified in this max. likelihood problem. This is the initial conditions problem.
- We need to impose restrictions on $p(\mathbf{x}_{i1}, \omega)$. These restrictions could be wrong, and even incompatible with the rest of the model [but we do not know this without knowing the solution of the model].
- Note that in a FE approach [if feasible !!!], we do not need to make any assumption on $p(\mathbf{x}_{i1}, \omega)$.

- 31

イロト イポト イヨト イヨト

Full-Sol. MLE. Issue 2: Computational complexity

- Nested Fixed point algorithm.
- For each trial value of the parameters θ, the algorithm solves the Dynamic Programming (DP) problem. This introduces a substantial computational burden, especially for models with large state spaces [curse of dimensionality].
- This problem is more severe for model with UH ω because:

 (a) The DP should be solved for each type ω;
 (b) In these models, the likelihood has many local maxima; optimization is quite complex.
 - *** **Important**: EM algorithm, by itself, is not a solution; many EM iterations implies solving DP problem many times.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Aguirregabiria & Gu (University of Toronto E

Unobserved Heterogeneity

Febraury 9, 2018 17 / 32

3

Main idea: Under some conditions, the model implies that there is a known function that related CCPs and utility function at periods t and t + 1 [more generally, at t, t + 1, ..., t + s where s is finite].

 $\mathbb{E}_t \left[F\left(u_{\omega}(y_t, \mathbf{x}_t), P_{\omega}(y_t | \mathbf{x}_t), u_{\omega}(y_{t+1}, \mathbf{x}_{t+1}), P_{\omega}(y_{t+1} | \mathbf{x}_{t+1}) \right) \right] = 0$

where F(.) is known. This is the same flavor [and in fact it can be derived] as an Euler equation.

- Suppose that we can estimate the CCPs P_ω(y|x) directly from the data, as reduced-form probabilities, without solving the model.
- Then, we can estimate the structural parameters in $u_{\omega}(y_t, \mathbf{x}_t)$ by GMM without having to solve the model even once, and without having to compute any present value.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Hotz-Miller & Finite Dependence: Some Details

- There is one-to-one relationship between conditional choice value differences (CCVD), ν_ω(y, x) ≡ v_ω(y, x) v_ω(0, x), conditional choice probabilities (CCP), P_ω(y|x).
- This mapping depends only on distribution of ε and it has a simple closed-form expression for some distributions. Logit model:

$$P_{\omega}(y \mid \mathbf{x}_t) = \frac{\exp\left\{\widetilde{v}_{\omega}(y, \mathbf{x})\right\}}{\sum_{j \in \mathcal{Y}} \exp\left\{\widetilde{v}_{\omega}(j, \mathbf{x})\right\}}$$

• And the inverse mapping is:

$$\widetilde{v}_{\omega}(y, \mathbf{x}) = \ln P_{\omega}(y \mid \mathbf{x}_t) - \ln P_{\omega}(0 \mid \mathbf{x}_t)$$

Hotz-Miller

Hotz-Miller & Finite Dependence

 This implies that the value function V_ω(y, x) can be written in terms of CCPs and a "baseline" CCV, v_ω(0, x). For instance, for the logit model:

[2]

$$\begin{aligned} \mathcal{V}_{\omega}(\mathbf{x}) &= & \ln\left[\sum_{y \in \mathcal{Y}} \exp\left\{v_{\omega}\left(y, \mathbf{x}\right)\right\}\right] \\ &= & v_{\omega}\left(0, \mathbf{x}\right) + \ln\left[1 + \sum_{y=1}^{J} \exp\left\{\widetilde{v}_{\omega}\left(y, \mathbf{x}\right)\right\}\right] \\ &= & v_{\omega}\left(0, \mathbf{x}\right) - \ln P_{\omega}\left(0, \mathbf{x}\right) \end{aligned}$$

• Remember that $v_{\omega}(y, \mathbf{x}) = u_{\omega}(y, \mathbf{x}) + \beta \sum_{\mathbf{x}'} V_{\omega}(\mathbf{x}') f_{\omega}(\mathbf{x}'|y, \mathbf{x})$. Therefore:

$$v_{\omega}(y, \mathbf{x}) = u_{\omega}(y, \mathbf{x}) + \beta \sum_{\mathbf{x}'} \left[v_{\omega}(0, \mathbf{x}') - \ln P_{\omega}(0, \mathbf{x}') \right] f_{\omega}(\mathbf{x}'|y, \mathbf{x})$$

Hotz-Miller

[3]

Hotz-Miller & Finite Dependence

 If we take any pair of actions j and k, we have that $v_{\omega}(j, \mathbf{x}) - v_{\omega}(k, \mathbf{x}) = \ln P_{\omega}(j|\mathbf{x}) - \ln P_{\omega}(k|\mathbf{x}), \text{ and:}$ $\mathbf{v}_{\omega}(j,\mathbf{x}) - \mathbf{v}_{\omega}(k,\mathbf{x}) = \mathbf{u}_{\omega}(j,\mathbf{x}) - \mathbf{u}_{\omega}(k,\mathbf{x})$ $-\beta \sum \ln P_{\omega}(\mathbf{0}, \mathbf{x}') \quad [f_{\omega}(\mathbf{x}'|j, \mathbf{x}) - f_{\omega}(\mathbf{x}'|k, \mathbf{x})]$ $+\beta \sum_{\mathbf{x}'} u_{\omega} (\mathbf{0}, \mathbf{x}') \left[f_{\omega}(\mathbf{x}'|j, \mathbf{x}) - f_{\omega}(\mathbf{x}'|k, \mathbf{x}) \right]$ $+\beta^{2}\sum_{\nu}\left|\sum_{\nu}V_{\omega}(\mathbf{x}^{\prime\prime})f_{\omega}(\mathbf{x}^{\prime\prime}|\mathbf{0},\mathbf{x}^{\prime})\right|\left[f_{\omega}(\mathbf{x}^{\prime}|j,\mathbf{x})-f_{\omega}(\mathbf{x}^{\prime}|k,\mathbf{x})\right]$

Aguirregabiria & Gu (University of Toronto E

Febraury 9, 2018 21 / 32

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

• The term

$$\sum_{\mathbf{x}_{t+1}} \left[\sum_{\mathbf{x}_{t+2}} V_{\omega}(\mathbf{x}_{t+2}) f_{\omega}(\mathbf{x}_{t+2}|\mathbf{0}, \mathbf{x}_{t+1}) \right] \left[f_{\omega}(\mathbf{x}_{t+1}|j, \mathbf{x}) - f_{\omega}(\mathbf{x}_{t+1}|k, \mathbf{x}) \right]$$

[4]

represents the difference between the continuation values after t + 1, of two choice paths:

- choice path:
$$\{y_t = j \text{ and } y_{t+1} = 0\}$$

- choice path: $\{y_t = k \text{ and } y_{t+1} = 0\}$
- There is a general class of dynamic models **[one-period finite dependence]** where this term is zero.

e.g., occupational choice; market entry-exit; machine replacement; inventory; demand of storable products; etc.

イロト 不得下 イヨト イヨト

• Under one-period finite dependence:

$$\begin{aligned} &\ln P_{\omega}\left(j|\mathbf{x}_{t}\right) - \ln P_{\omega}\left(k|\mathbf{x}_{t}\right) = u_{\omega}\left(j,\mathbf{x}_{t}\right) - u_{\omega}\left(k,\mathbf{x}_{t}\right) \\ &-\beta \sum_{\mathbf{x}_{t+1}} \ln P_{\omega}\left(0,\mathbf{x}_{t+1}\right) \left[f_{\omega}(\mathbf{x}_{t+1}|j,\mathbf{x}_{t}) - f_{\omega}(\mathbf{x}_{t+1}|k,\mathbf{x}_{t})\right] \\ &+\beta \sum_{\mathbf{x}_{t+1}} u_{\omega}\left(0,\mathbf{x}_{t+1}\right) \left[f_{\omega}(\mathbf{x}_{t+1}|j,\mathbf{x}_{t}) - f_{\omega}(\mathbf{x}_{t+1}|k,\mathbf{x}_{t})\right] \end{aligned}$$

[5]

• If a NP estimator of the reduced-form CCPs $P_{\omega}(j|\mathbf{x})$ exists, then we can estimate structural parameters using a simple two-step GMM estimator.

 It is convenient to write the FD representation as a "best response" probability function.

[6]

• Let's use the more compact notation $C_{\omega}(j, k, \mathbf{x}_t, P_{\omega}; \theta)$ to represent the RHS FD representation. Then, it is simple to show that we can re-write this equation as:

$$P_{\omega}(j|\mathbf{x}_{t}) = \frac{\exp\left\{C_{\omega}(j, 0, \mathbf{x}_{t}, P_{\omega}; \theta)\right\}}{\sum_{k=0}^{J} \exp\left\{C_{\omega}(j, 0, \mathbf{x}_{t}, P_{\omega}; \theta)\right\}}$$

The RHS can be interpreted as a best response probability function: given then CCPs at t + 1, what are the optimal CCPs at t.

• We can define a log-likelihood function $\ell(P_{\omega}; \theta)$ in terms of the choice probabilities $\frac{\exp\{C_{\omega}(j, 0, \mathbf{x}_t, P_{\omega}; \theta)\}}{\sum_{k=0}^{J} \exp\{C_{\omega}(j, 0, \mathbf{x}_t, P_{\omega}; \theta)\}}$. Two-step Pseudo-MLE.

Aguirregabiria & Gu (University of Toronto E

4. Hotz-Miller + NP Finite Mixtures (Kasahara & Shimotsu)

Aguirregabiria & Gu (University of Toronto E

< 🗇 🕨 < 🖃 🕨

3

Hotz-Miller & NP Finite Mixtures

- For many years since publication of Hotz-Miller (1993) paper, the common wisdom was that this method was feasible only for models with *i.i.d.* unobservables because CCPs $P_{\omega}(j|\mathbf{x})$ with permanent UH were not NO identified.
- In this context, the recent developments in the literature of NP Finite Mixtures have been very important: Hall & Zhou (AS, 2003); Allman et al. (AS, 2009); Bonhomme et al. (AS, 2016).
- ... and especially Kasahara and Shimotsu (ECTA, 2009) because it deals with NPFM in Markov Discrete Choice models.
- They show that $P_{\omega}(j|\mathbf{x})$ are NP identified under relatively standard conditions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

5. Hotz-Miller + EM algorithm (Arcidiacono & Miller)

Aguirregabiria & Gu (University of Toronto E

Unobserved Heterogeneity

Febraury 9, 2018 27 / 32

▲ @ ▶ < ∃ ▶</p>

Arcidiacono & Miller (ECTA, 2011)

- They adapt the **EM algorithm** to incorporate UH into CCP estimators with Finite Dependence.
- Remember the FD representation in term of the "best response probabilities", and define:

$$\Psi_{\omega}(j \mid \mathbf{x}_{t}, P_{\omega}; \theta) \equiv \frac{\exp\left\{C_{\omega}(j, \mathbf{x}_{t}, P_{\omega}; \theta)\right\}}{\sum_{k=0}^{J} \exp\left\{C_{\omega}(j, \mathbf{x}_{t}, P_{\omega}; \theta)\right\}}$$

• Define the log-likelihood function:

$$\ell(P_{\omega}, \pi, \theta) = \sum_{i=1}^{N} \ln \left(\sum_{\omega \in \Omega} \pi_{\omega} \prod_{t=1}^{T} \Psi_{\omega}(y_{it} \mid \mathbf{x}_{it}, P_{\omega}; \theta) \right)$$

• AM method consists in the application of the EM algorithm to this max likelihood problem.

Aguirregabiria & Gu (University of Toronto E

Febraury 9, 2018 28 / 32

Preliminary notes on EM-algorithm

• Consider a general finite mixture model where $p(y|\pi, \theta) = \sum_{\omega \in \Omega} \pi_{\omega}$ $p(y \mid \omega, \theta)$, and the log-likelihood is:

$$\ell(\pi, \theta) = \sum_{i=1}^{N} \ln p(y_i \mid \pi, \theta) = \sum_{i=1}^{N} \ln \left[\sum_{\omega \in \Omega} \pi_{\omega} p(y_i \mid \omega, \theta) \right]$$

• Define the posterior probabilities: $q_i(\omega \mid \pi, \theta) \equiv \Pr(\omega \mid y_i, \pi, \theta)$. By Bayes' rule:

$$q_i(\omega|\pi, \theta) = \frac{\pi_{\omega} \ p(y_i \mid \omega, \theta)}{\sum_{\omega' \in \Omega} \pi_{\omega'} \ p(y_i \mid \omega', \theta)}$$

• The EM algorithm does not maximizes the original log-likelihood but the **extended expected likelihood function**:

$$Q(q(\pi,\theta),\theta) = \sum_{i=1}^{N} \sum_{\omega \in \Omega} q_i(\omega | \pi, \theta) \ln p(y_i | \omega, \theta)$$

EM-algorithm: Steps

- We start the algorithm with initial values $\{\pi^0, \theta^0\}$. At every iteration $n \ge 1$ we update these parameters by applying two steps.
- Expectation (E) Step. We update the posterior probabilities q_i and the π's as follows:

$$q_i^n(\omega) = \frac{\pi_{\omega}^{n-1} p(y_i \mid \omega, \theta^{n-1})}{\sum_{\omega' \in \Omega} \pi_{\omega'}^{n-1} p(y_i \mid \omega', \theta^{n-1})}$$
$$\pi_{\omega}^n = \frac{1}{N} \sum_{i=1}^N q_i^n(\omega)$$

Maximization (M) Step. We update θ by maximizing the expected log-likelihood Q(qⁿ, θ)

$$\theta^n = \arg \max_{\theta} \sum_{i=1}^N \sum_{\omega \in \Omega} q_i^n(\omega) \ln p(y_i \mid \omega, \theta)$$

CCP + EM-algorithm

• Now we have the log-likelihood function:

$$\ell(P_{\omega}, \pi, \theta) = \sum_{i=1}^{N} \ln \left(\sum_{\omega \in \Omega} \pi_{\omega} \prod_{t=1}^{T} \Psi_{\omega}(y_{it} \mid \mathbf{x}_{it}, P_{\omega}; \theta) \right)$$

- If the vector of CCPs, P_ω, were known, then the application of the EM algorithm to this problem would be very straightforward.
- Simply, we apply the same equations for $q_i(\omega|\pi, \theta)$ and for $Q(q(\pi, \theta), \theta)$ with the only difference that now we have that:

$$p(y_i \mid \omega, \theta) = \prod_{t=1}^{T} \Psi_{\omega}(y_{it} \mid \mathbf{x}_{it}, P_{\omega}; \theta)$$

• Since we do not know the CCPs P_{ω} , we need to nest the EM algorithm (inner algorithm) within an "outer' algorithm that updates the CCPs P_{ω} .

CCP + EM-algorithm

• We start the algorithm with $\{\pi^0, \theta^0, P_\omega\}$. At every iteration $n \ge 1$ we update these parameters as follows.

[2]

- Inner algorithm: EM. Taking P_{ω}^{n-1} as given, we apply the EM algorithm to estimate $\{\pi, \theta\}$. This give us $\{\pi^n, \theta^n\}$.
- Outer algorithm: Updating of CCPs. Given {πⁿ, θⁿ}, we update the CCPs as follows:

$$P_{\omega}^{n}(j \mid \mathbf{x}, \theta) = \Psi_{\omega}(j \mid \mathbf{x}, P_{\omega}^{n-1}; \theta^{n}) \equiv \frac{\exp\left\{C_{\omega}(j, \mathbf{x}, P_{\omega}^{n-1}; \theta^{n})\right\}}{\sum_{k=0}^{J} \exp\left\{C_{\omega}(j, \mathbf{x}, P_{\omega}^{n-1}; \theta^{n})\right\}}$$

 Alternatively, we could use Kasahara-Shimotsu estimates of P_w and not iterate. Trade-offs.

Aguirregabiria & Gu (University of Toronto E