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Introduction

Introduction

Key econometric issue Dynamic Panel Data (DPD) models is
distinguishing between "true dynamics" and "spurious dynamics"
due to persistent unobserved heterogeneity (UH).

These lectures deal with this problem in the context of Dynamic
Discrete Choice Structural models.

In these models, agents are forward-looking and maximize expected
and discounted intertemporal utilities.

UH enters not only in current utilities but also enters [in a
complicated and endogenous way] in continuation values, i.e., in the
expected value of future utilities.

This affects properties and implementation of some estimators.
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Introduction

Introduction [2]

Most common methods to deal with UH in DPD models are Fixed
Effects (FE) and Correlated Random Effects (CRE).

CRE models impose different types of restrictions: parametric, finite
support, restrictions on the initial conditions problem.

FE approach is very attractive because it does not impose any
restriction on the distribution of the UH conditional on observable
explanatory variables.
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Introduction

FE in structural DDC Models

[1] "Brute force" dummy variables method: inconsistent; bias
reduction methods can be computationally intensive.

[2] "Suffi cient statistics/CMLE method: Not all DPD models can
be estimated root-N consistently using FE estimators. Examples:

- Discrete choice models other than the logit.
- Models where UH and predetermined var. are not additively

separable.

Structural dynamic logit model: Common wisdom: FE cannot provide
a consistent estimator of structural parameters.

Even if UH enters additively in one-period utility function, the
solution of the model implies that UH appears non-additively in the
continuation values.
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Introduction

Outline of the four lectures

Backwards induction ;) ...

[Fourth lecture] In a recent research project, J. Gu. Y. Luo, and
myself show that it is possible to obtain suffi cient statistics for UH in
a class of models that includes many applications in this literature.

[Third & Second lectures] Literature on suffi cient statistics /
CMLE method in other related models.

[Today’s lecture] Current methods [CRE] to deal with UH in
structural DDC models.
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Outline

Outline

[1] Structural DDC models

[2] Finite mixture —Full solution —MLE

[3] Hotz-Miller: Finite Dependence representation

[4] Hotz-Miller + Nonparametric finite mixtures (Kasahara &
Shimotsu)

[5] Hotz-Miller + EM algorithm (Arcidiacono & Miller)
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Structural DDC models

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

1. Structural DDC models
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Structural DDC models

Model

Decision variable: yit ∈ Y = {0, 1, ..., J}. Every period t, agent i
chooses yit to maximize E

(
∑T
s=0 βj Uit

)
.

The one-period utility of choosing y is:

Uit (y) = u (y , xit ,ωi ) + εit (y)

{εit (0), ..., εit (J)} unobservables, i.i.d. over (i , t)
ωi unobservable: finite mixture: ωi ∈ Ω = {ω1,ω2, ...,ωL}.
xit = Observable state variables, with transition probabilities:
f (xit+1|yit , xit ,ωi )
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Structural DDC models

Model [2]

Integrated (over ε′s) Bellman equation. For every type ω:

Vω(xt ) =
∫
argmax

y∈Y
[vω (y , xt ) + εt (y)] dG (εt )

where vω (y , xt ) ≡ uω (y , xt ) + β ∑x′ Vω(x′) fω(x′|y , xt ).

For instance, for the MNL model (ε′s type 1 EV):

Vω(xt ) = ln

[
∑
y∈Y

exp {vω (y , xt )}
]

The Conditional Choice Probabilities (CCPs) are:

Pω(y | xt ) = Pr
(
y = argmax

j∈Y
[vω (j , xt ) + εt (j)]

)
For instance, for the MNL model:

Pω(y | xt ) =
exp {vω (y , xt )}

∑j∈Y exp {vω (j , xt )}
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Structural DDC models

Example: Occupational choice model

J occupations; y = 0 represents "not working".

Utility depends on earnings, disutility of working, and switching costs.

Two sources of dynamics: (a) experience in an occupation/job has
returns; and (b) switching occupation has switching costs.

Endogenous state variables in xt : (a) endogenous: yt−1 and duration
(experience) in current occupation.

Exogenous state variables: shocks in wages (occupation specific);
health status;

Unobserved ω: Skills, that can be occupation-specific; taste for
leisure; unobserved health; ...
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Structural DDC models

Example: Machine replacement model

A firm decides whether to replace (y = 1) or not (y = 0) a machine.

Profit = Variable Profit - Replacement Cost (if y = 1) - Maintenance
cost (if y = 0).

Dynamics: Machine depreciates with age.

Endogenous state var: Machine age: : xt+1 = (1− yt ) (xt + 1)

Exogenous state variables: shocks in profits; price of a new machine.

Unobserved ω: in maintenance and replacement costs.
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Structural DDC models

Example: Market entry-exit

A firm decides whether to be active (y = 1) or not (y = 0) in a
market.

Profit = Variable Profit - Entry cost (if new entrant) - Scrap value (if
exiting)

Two sources of dynamics: (a) experience in the market has returns;
and (b) entry costs.

Endogenous state variables in xt : (a) endogenous: yt−1 and duration
(experience) in the market.

Exogenous state variables: shocks in profits (output and input prices).

Unobserved ω: Firm or market heterogeneity in costs.
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Full solution—MLE

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

2. Full solution—MLE
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Full solution—MLE

Full solution—MLE

Let θ be the vector of parameters of the model. Given the panel
dataset {yit , xit : i = 1, ...,N; t = 1, ...,T}, the log-likelihood of the
model is:

`(θ) =
N

∑
i=1
ln Pr(yi1, xi1, ..., yiT , xiT | θ)

=
N

∑
i=1
ln

(
∑

ω∈Ω
πω Pr(yi1, xi1, ..., yiT , xiT | ω, θ)

)

=
N

∑
i=1
ln

(
∑

ω∈Ω
πω p (xi1|ω)

T
∏
t=1
Pω (yit |xit , θ)

T−1
∏
t=1

fω (xit+1|yit , xit , θ)
)

For the endogenous variables in xi1 (e.g., initial occupation and
experience), p (xi1|ω) captures the initial conditions problem.
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Full solution—MLE

Full-Solution MLE. Issue 1: Initial conditions problem

How to specify p (xi1|ω) [or πω p (xi1|ω) = p (xi1,ω)] in a way that
is:

(a) identified; (b) consistent with rest of the model.

In general, the probability p (xi1,ω) in NOT nonparametrically
identified in this max. likelihood problem. This is the initial
conditions problem.

We need to impose restrictions on p (xi1,ω). These restrictions could
be wrong, and even incompatible with the rest of the model [but we
do not know this without knowing the solution of the model].

Note that in a FE approach [if feasible !!!], we do not need to make
any assumption on p (xi1,ω).
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Full solution—MLE

Full-Sol. MLE. Issue 2: Computational complexity

Nested Fixed point algorithm.

For each trial value of the parameters θ, the algorithm solves the
Dynamic Programming (DP) problem. This introduces a substantial
computational burden, especially for models with large state spaces
[curse of dimensionality].

This problem is more severe for model with UH ω because:
(a) The DP should be solved for each type ω;
(b) In these models, the likelihood has many local maxima;

optimization is quite complex.
*** Important: EM algorithm, by itself, is not a solution; many EM
iterations implies solving DP problem many times.
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Hotz-Miller

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

3. Hotz-Miller
Finite Dependence

– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Hotz-Miller

Hotz-Miller & Finite Dependence

Main idea: Under some conditions, the model implies that there is a
known function that related CCPs and utility function at periods t
and t + 1 [more generally, at t, t + 1, ..., t + s where s is finite].

Et [F (uω(yt , xt ), Pω(yt |xt ), uω(yt+1, xt+1), Pω(yt+1|xt+1))] = 0

where F (.) is known. This is the same flavor [and in fact it can be
derived] as an Euler equation.

Suppose that we can estimate the CCPs Pω(y |x) directly from the
data, as reduced-form probabilities, without solving the model.

Then, we can estimate the structural parameters in uω(yt , xt ) by
GMM without having to solve the model even once, and without
having to compute any present value.
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Hotz-Miller

Hotz-Miller & Finite Dependence: Some Details

There is one-to-one relationship between conditional choice value
differences (CCVD), ṽω(y , x) ≡ vω(y , x)− vω(0, x), conditional
choice probabilities (CCP), Pω(y |x).

This mapping depends only on distribution of ε and it has a simple
closed-form expression for some distributions. Logit model:

Pω(y | xt ) =
exp {ṽω(y , x)}

∑j∈Y exp {ṽω(j , x)}

And the inverse mapping is:

ṽω(y , x) = lnPω(y | xt )− lnPω(0 | xt )
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Hotz-Miller

Hotz-Miller & Finite Dependence [2]

This implies that the value function Vω(y , x) can be written in terms
of CCPs and a "baseline" CCV, vω(0, x). For instance, for the logit
model:

Vω(x) = ln

[
∑
y∈Y

exp {vω (y , x)}
]

= vω (0, x) + ln

[
1+

J
∑
y=1

exp {ṽω (y , x)}
]

= vω (0, x)− lnPω (0, x)

Remember that vω (y , x) = uω (y , x) + β ∑x′ Vω(x′) fω(x′|y , x).
Therefore:

vω (y , x) = uω (y , x) + β ∑
x′

[
vω

(
0, x′

)
− lnPω

(
0, x′

)]
fω(x′|y , x)
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Hotz-Miller

Hotz-Miller & Finite Dependence [3]

If we take any pair of actions j and k, we have that
vω (j , x)− vω (k, x) = lnPω (j |x)− lnPω (k |x), and:

vω (j , x)− vω (k, x) = uω (j , x)− uω (k, x)

−β ∑
x′
lnPω (0, x′) [fω(x′|j , x)− fω(x′|k , x)]

+β ∑
x′
uω (0, x′) [fω(x′|j , x)− fω(x′|k, x)]

+β2 ∑
x′

[
∑
x′′
Vω(x′′)fω(x′′|0, x′)

]
[fω(x′|j , x)− fω(x′|k , x)]

Aguirregabiria & Gu (University of Toronto ECO 2403. TOPICS IN ECONOMETRICS)Unobserved Heterogeneity Febraury 9, 2018 21 / 32



Hotz-Miller

Hotz-Miller & Finite Dependence [4]

The term

∑
xt+1

[
∑
xt+2

Vω(xt+2) fω(xt+2|0, xt+1)
]
[fω(xt+1|j , x)− fω(xt+1|k, x)]

represents the difference between the continuation values after
t + 1, of two choice paths:

- choice path: {yt = j and yt+1 = 0}
- choice path: {yt = k and yt+1 = 0}

There is a general class of dynamic models [one-period finite
dependence] where this term is zero.

e.g., occupational choice; market entry-exit; machine
replacement; inventory; demand of storable products; etc.
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Hotz-Miller

Hotz-Miller & Finite Dependence [5]

Under one-period finite dependence:

lnPω (j |xt )− lnPω (k |xt ) = uω (j , xt )− uω (k, xt )

−β ∑
xt+1

lnPω (0, xt+1) [fω(xt+1|j , xt )− fω(xt+1|k, xt )]

+β ∑
xt+1

uω (0, xt+1) [fω(xt+1|j , xt )− fω(xt+1|k, xt )]

If a NP estimator of the reduced-form CCPs Pω (j |x) exists, then we
can estimate structural parameters using a simple two-step GMM
estimator.
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Hotz-Miller

Hotz-Miller & Finite Dependence [6]

It is convenient to write the FD representation as a "best response"
probability function.

Let’s use the more compact notation Cω(j , k, xt ,Pω;θ) to represent
the RHS FD representation. Then, it is simple to show that we can
re-write this equation as:

Pω (j |xt ) =
exp {Cω(j , 0, xt ,Pω; θ)}

∑J
k=0 exp {Cω(j , 0, xt ,Pω; θ)}

The RHS can be interpreted as a best response probability function:
given then CCPs at t + 1, what are the optimal CCPs at t.

We can define a log-likelihood function `(Pω; θ) in terms of the
choice probabilities exp{Cω(j ,0,xt ,Pω;θ)}

∑J
k=0 exp{Cω(j ,0,xt ,Pω;θ)}

. Two-step Pseudo-MLE.
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Hotz-Miller + NPFM (Kasahara & Shimotsu)

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

4. Hotz-Miller +

NP Finite Mixtures
(Kasahara & Shimotsu)

– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Hotz-Miller + NPFM (Kasahara & Shimotsu)

Hotz-Miller & NP Finite Mixtures

For many years since publication of Hotz-Miller (1993) paper, the
common wisdom was that this method was feasible only for models
with i .i .d . unobservables because CCPs Pω (j |x) with permanent UH
were not NO identified.

In this context, the recent developments in the literature of NP Finite
Mixtures have been very important: Hall & Zhou (AS, 2003); Allman
et al. (AS, 2009); Bonhomme et al. (AS, 2016).

... and especially Kasahara and Shimotsu (ECTA, 2009) because it
deals with NPFM in Markov Discrete Choice models.

They show that Pω (j |x) are NP identified under relatively standard
conditions.
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Hotz-Miller + EM algorithm (Arcidiacono & Miller)

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

5. Hotz-Miller + EM algorithm

(Arcidiacono & Miller)
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Hotz-Miller + EM algorithm (Arcidiacono & Miller)

Arcidiacono & Miller (ECTA, 2011)

They adapt the EM algorithm to incorporate UH into CCP
estimators with Finite Dependence.

Remember the FD representation in term of the "best response
probabilities", and define:

Ψω(j | xt ,Pω; θ) ≡
exp {Cω(j , xt ,Pω; θ)}

∑J
k=0 exp {Cω(j , xt ,Pω; θ)}

Define the log-likelihood function:

`(Pω,π, θ) =
N

∑
i=1
ln

(
∑

ω∈Ω
πω

T
∏
t=1

Ψω(yit | xit ,Pω; θ)

)

AM method consists in the application of the EM algorithm to this
max likelihood problem.
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Hotz-Miller + EM algorithm (Arcidiacono & Miller)

Preliminary notes on EM-algorithm

Consider a general finite mixture model where p(y |π, θ) = ∑ω∈Ω πω

p(y | ω, θ), and the log-likelihood is:

`(π, θ) =
N

∑
i=1
ln p(yi | π, θ) =

N

∑
i=1
ln

[
∑

ω∈Ω
πω p(yi | ω, θ)

]
Define the posterior probabilities: qi (ω | π, θ) ≡ Pr (ω | yi ,π, θ). By
Bayes’rule:

qi (ω|π, θ) =
πω p(yi | ω, θ)

∑ω′∈Ω πω′ p(yi | ω′, θ)

The EM algorithm does not maximizes the original log-likelihood but
the extended expected likelihood function:

Q(q(π, θ), θ) =
N

∑
i=1

∑
ω∈Ω

qi (ω|π, θ) ln p(yi | ω, θ)
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Hotz-Miller + EM algorithm (Arcidiacono & Miller)

EM-algorithm: Steps

We start the algorithm with initial values {π0, θ0}. At every iteration
n ≥ 1 we update these parameters by applying two steps.
Expectation (E) Step. We update the posterior probabilities qi and
the π′s as follows:

qni (ω) =
πn−1ω p(yi | ω, θn−1)

∑ω′∈Ω πn−1ω′ p(yi | ω′, θn−1)

πnω =
1
N

N

∑
i=1
qni (ω)

Maximization (M) Step. We update θ by maximizing the expected
log-likelihood Q(qn, θ)

θn = argmax
θ

N

∑
i=1

∑
ω∈Ω

qni (ω) ln p(yi | ω, θ)
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Hotz-Miller + EM algorithm (Arcidiacono & Miller)

CCP + EM-algorithm

Now we have the log-likelihood function:

`(Pω,π, θ) =
N

∑
i=1
ln

(
∑

ω∈Ω
πω

T
∏
t=1

Ψω(yit | xit ,Pω; θ)

)
If the vector of CCPs, Pω, were known, then the application of the
EM algorithm to this problem would be very straightforward.

Simply, we apply the same equations for qi (ω|π, θ) and for
Q(q(π, θ), θ) with the only difference that now we have that:

p(yi | ω, θ) =
T
∏
t=1

Ψω(yit | xit ,Pω; θ)

Since we do not know the CCPs Pω, we need to nest the EM
algorithm (inner algorithm) within an "outer’algorithm that updates
the CCPs Pω.
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Hotz-Miller + EM algorithm (Arcidiacono & Miller)

CCP + EM-algorithm [2]

We start the algorithm with {π0, θ0,Pω}. At every iteration n ≥ 1
we update these parameters as follows.

Inner algorithm: EM. Taking Pn−1ω as given, we apply the EM
algorithm to estimate {π, θ}. This give us {πn, θn}.

Outer algorithm: Updating of CCPs. Given {πn, θn}, we update
the CCPs as follows:

Pnω(j | x, θ) = Ψω(j | x,Pn−1ω ; θn) ≡
exp

{
Cω(j , x,Pn−1ω ; θn)

}
∑J
k=0 exp

{
Cω(j , x,Pn−1ω ; θn)

}

Alternatively, we could use Kasahara-Shimotsu estimates of Pω and
not iterate. Trade-offs.
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