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INTRODUCTION & MOTIVATION

e Overview of recent literature on the identification and estimation of the dis-
tribution of unobservables in dynamic discrete choice structural models.

e In this class of models, distribution of the unobservables has two main im-
plications.

e [1] As in any discrete choice model (static or dynamic), this distribution
determines how individual treatment effects are aggregated to obtain average
treatment effects for the population (or a subpopulation).

e [2] This distribution has important implications on the risk that agents face
and therefore on their behavior.



EXAMPLE

e Two-period binary choice model [firm market entry]. For ¢t = 1, 2, the binary
variable Y;; € {0, 1} represents entry decision of firm ¢ at period ¢.

e The optimal decision at the last period t = 2 is: {Y;p = 1} iff

Xp0+aY;+ep>0

e The optimal decision at period t = 1 is: {Y;1 = 1} iff

{Xi10+¢ei1+ B E[max{X;o 0 +a+¢e;, 0}] > B E[max{X;» 0 +¢;2, 0}]}

e The option values E [max{X;» 0 + a + ;o , 0}] and E[max{X;o 0 + ;o , 0}],
and the difference between them, depend on the shape of the distribution of

€72.



OUTLINE

1. Static binary choice models
(a) Identification

(b) Estimation methods

2. Dynamic binary choice models
(a) Identification

(b) Estimation methods



1. STATIC BINARY CHOICE MODELS

e Consider the binary choice model:

Y = 1{Z+n(X)—e>0}

o 1{.} is the indicator function

o Z and X are observable; € is unobservable.

° g is continuous with support R.

o m(.) is an unknown (nonparametric) function.

o F(.) is the distribution function of € that is nonparametric.

° Researcher observes random sample: {y;,z;,x; :i=1,2,..., N}



1.1.  IDENTIFICATION  [1]

e Define the Conditional Choice Probability (CCP) function:

P(z,z)=Pr(Y =1|Z =2, X =x)

e Under mild regularity conditions, function P(z, x) is NP identified for every

value (z,x) in the support set Z x X.

e All the information in the data about 7(.) and F(.) is contained in the CCP
function P(z,x). The model constraints are:

P(z,z) = Fs|(z,x)(z + m(z))

e We are interested in the identification of 7(.) and F'(.) from P(.,.).



IDENTIFICATION Matzkin (ECMA, 1992)

Theorem [Matzkin (ECMA, 1992)]. Suppose that:

(a) € and Z are independent;
(b) € has median zero and median independent of X;
(c) (.) is bounded on X: ©(X) € [r, 7] C R;

(d) for any X = =z, variable Z has continuous support on [z}, zf]
with 2z + 7y <0 and zg + 71, > 0.

Then, m(z) and F,,(g) are NP identified for every z € X and ¢ € [z +
m(xo), 2y + m(x0)].



Matzkin (ECMA, 1992) Proof

o Let (zg,e09) € X X R be arbitrary values of X and . Define z*(xzg) as the
value of z that solves the equation:

1
P(z,xq) = 5
Condition (a) implies that P (z,xq) is strictly increasing in z; and condition
(d) implies that the solution z*(xq) always exists. Therefore, function z*(xq)
is NP identified everywhere on X.

e Given that P(z,x) = F,;(# + m(xz)) and under condition (a), we have

that P(z,x) = % is equivalent to z + w(x) = 0. Therefore, by construction,
2*(xg) + 7(xg) = 0, such that function 7(zg) is NP identified everywhere on
X as

m(xzg) = —2"(x0)



Matzkin (ECMA, 1992) Proof [2]

e Now, given any pair (zg,eq) € X X[z, + 7(xg), 2z + 7(xg)] we can con-
struct the value z(xq, e9) = €9 — w(xg). By construction,

Fepo(€0) = Fppp, [2(z0, €0) + 7(20)]

= P[z(20,€0), 2o
such that F, | (¢) is NP identified on X'x[zf + 7(z), 2z + w(z)].

e Remark 1: If [z1, 2] = R, then F_| () is identified everywhere.

e Remark 2: Median independence between Z and & can be replaced by other
quantile independence.



Example 1 (Binary choice demand model)

e Suppose that we have daily consumer-level supermarket scanner data with

information on consumer purchasing decisions of some product.

e Y,; is the indicator for "consumer ¢ purchases the product at period t".
Model:
Yie = 1{—P+m(X;) —ei >0}

where P is the price of the product at day t; w(X;¢) — €;+ represents the con-
sumer willingness to pay that depend on observable and unobservable consumer

characteristics.

e Key assumptions: independence between £;; and P%; and P; has continuous

variation.



Relaxing the linearity of the payoff function in Z

e This restriction can be quite strong in some empirical applications. In some
applications, it implies that agents are risk neutral (see below the example on

retirement).

e We can relax this restriction in the following semiparametric model:

Y = 1{Z+8, 2%+ ...+ B, 29+ n(X) — e > 0]

where 3’s are unknown parameters and Z + (35 Z2+ .+ Bq 41 is strictly
Increasing in Z.



Relaxing the linearity of the payoff function in Z [2]

Theorem. Consider the model Y =1 {Z + B8y Z%+ ...+ By Z9+m(X)—¢e > O},
and assume that:

(a) € is independent of Z and X and has median zero;
(b) X has at least two g 4+ 1 points in its support set;

(c) and (d) from previous Theorem.

Then, {m, F¢, B} are NP identified.



Relaxing the linearity of the payoff function in Z [3]

e Proof (Sketch): For any p € (0,1), define z;(zo) the unique solution in z
to P(z,zg9) = p. Then,

25(w0) + Ba zp(20)° + .. + By zp(20)? + m(z0) = Qe(p)
where Q¢(p) is the quantile function of €.

e Given p and p’, with p # p':

25(20) — 2 (w0)| =
Q:=(p) — Qe(p) + B2 [2(%0)% — 25(20)?| + - + By |2(20)7 — 255(0)]

And given q + 1 different values for xg, we have a system of ¢ + 1 equations
and ¢ + 1 unknowns that identifies (3's.

e The identification of m and (3 proceeds in the same way as in previous The-
orem.



Example 2 (Retirement from the labor force)

e We have panel data where we observe individual decision of retiring (collecting
pension benefits) or keeping working, and their earnings if working (salary) or

if retired (pension benefits).

e Y; is the indicator for "individual ¢ retires at period t". Model:

Yie. = 15

+7m( X)) — €4 >0

\

where W;; and B,;; represent earnings when working and retired, resp; and
w(X;) — €4+ represents the additional non-pecuniary utility from being retired,

that depends on observable and unobservable characteristics.

e Key assumption: independence between €;; and Bj;, W, and X ;.

[ [Bit — Wil + B> B} —W| + ...+ 8, |Bf - Wil |

/



PARTIAL IDENTIFICATION

e In some empirical applications Z and X are discrete. This implies that the
distribution of the unobservables cannot be point-identified. It is still possible
to obtain informative bounds on 7 and the distribution function.

e Consider the model: Y = 1{Z + n(X) — e > 0}, where both Z and X
have discrete and finite supports. We maintain the same assumptions as above.

e For arbitrary xq, define:

zT(xg) = inf [max{P(z,azo) }H

2€Z 2
27 (xg) = 522 [min {P(z,xo) %H

With discrete support, we have that, in general:  zT(xg) > 2~ (z0)



PARTIAL IDENTIFICATION [2]

e By construction, we have that:

2T (xg) + m(xg) > O

27 (zg) + m(zg) < O
such that:

m(wo) € |—2"(x0) , — 2™ (20)|

e This interval provides the sharp bounds for the identification of 7(x).

e We can denote these bounds (zq) (that is equal to —zT(zg)) and 7 ()
(that is equal to —z7(zq)).



PARTIAL IDENTIFICATION [3]

e Given a pair (xq,&q), we can construct the values:

21 (zg,20) = €0 — (x0) = €0+ 2T (o)

2l (20, e0) = e0 — 7 (20) = €0+ 2 (o)

e By construction, we have that 2 (zq, q) > 2L (g, gg) and:

P [ZH(aﬁo,&‘o),xo] = Fs|x0 gH(ZBOﬂCJO) +7T(5UO)}
= Fz |c0+ [w(azo) — 7TL(330)H
> Fg,(20)

P [#"(z0,20),50] = Fujyy [F4(x0, 20) + m(w0)]
= F|p €0+ [w(wo) — WH(QUO)H
<

F€|330(€0)



e [ herefore,

Frizo(0) € [P |25(20,20), m0| , P |27 (20, 0), 70|

This interval provides the sharp bounds for the identification of F, (o).



1.2. ESTIMATION METHODS

e I'll discuss the following estimation methods:
(a) A simple Kernel method for the (just-identified) NP model
(b) Two-step method for semiparametric model
(c) Lewbel's method

(d) Klein-Spady method



(a) A Simple Kernel Estimator for the (just-identified) NP model
e The constructive proof of identification provides a simple estimator.

e [Step 1] We estimate P (z,x) using a Kernel estimator:

N L
y; 1{z; =z} K <ZZ Z)
1

. — b
P(z,2) ==

N z; — 2
7;:2:11{:132-::1:} K( ; )

Note: Imposing monotonicity in z is very important. If the kernel method does
not satisfy monotonicity at some values of z, then we need Isotonic-Kernel

methods

e [Step 2] Newton's method to obtain z*(g) as the unique solution in z to
P(Z,x()) — 1/2.



e [Step 3] Estimate distribution as:

1=1 b

Fy 4o(20) = P (20 + 2*(w0), 0) =

% {2 — o} K (zz — leo +?(f€o)]>

1=1 b

e For this just-identified NP model, this estimator exploits all the restrictions
of the model.



(b) Two-step methods for semiparametric model

e In many applications without very large sample sizes or/and relatively large
number of variables X, it can be impractical to estimate with enough precision
a model that is nonparametric in both F' and 7.

e The researcher may be willing to consider a parametric model for 7(X) and
to impose some restrictions about how the distribution of € depends on X.

e Common restrictions are:
(a) 7(X) = X'p

(b) e = o (X) €, where € is independent of X



(b) Two-step method for semiparametric model

e First step consists of an estimator of 5 that is robust to the specification of
F-.

e For instance, we can project the NP estimator of (X)) above on the linear
space X' to estimate 3 by OLS.

e Other estimators are Manski’'s Maximum Score estimator (MSE) and Horowitz's
Smooth MSE. These estimators require optimization with respect to 5.

e Lewbel's method does not require optimization.



(c) Lewbel’s method

e Lewbel shows that in this BC model:
1 ~
3= [p(x x) B (x )
Y —1{Z > 0}
fz1x(Z|1X)

where Y =

e This expression shows that we can estimate consistently 8 by an OLS regres-
sion of Y on X. Variable Y should be constructed and requires estimating the

e Since the density 7| x(Z|X) appears in the denominator, v/ N —consistency
of the estimator (and good finite sample properties) requires trimming obser-
vations where fZ|X(zi|xi) < hy.



(d) Klein-Spady method

e Klein & Spady (ECMA 1993) propose an asymptotically efficient method to
estimate jointly 8 and the CDF of €. However, an important restriction of their

model /method is that Var(e|Z, X) = 0%(Z + X'S3), i.e., the conditional
variance depends on Z and X but only through the index Z + X'3.

Z+X'p
o(Z + X'B)

e Under this restriction, P(Z, X) = F: ( > = G(Z + X'B).

e [hey propose a semiparametric maximum likelihood estimator of 5 and
the function GG(.). The log-likelihood function is:

(B,G)=>"" v nG (2}8) + (1 —w;) In[1—G (2}8)]

e And KS estimator is defined as:

(Brs:Gis) =are max 1(8,G)



o |Let BO be an initial consistent estimator of 3, e.g., Lewbel's estimator.

Step 1: Given that G(gg) = E(Y | Z+ X'8 = gg), we estimate G(gq) using
a Kernel regression of y; on z; + 502801

noo z; + @By — €0
Zi:l i K ( bn )

G1(e0) =

Step 2: Obtain a new B as:

Bl = arg mﬁax [ (5, @1)

e The algorithm iterates in steps 1 &2 until convergence in HBK — BK—lH-



2. DYNAMIC BINARY CHOICE MODELS

e Y;; € {0,1} is the decision of agent i at period t. The one-period payoff is:*
Zit + (X)) — e if V=1
0 if Y;; =20

e The choice at period t has implications on future profits. State variables

(Z;+, X;¢) follow a controlled first order Markov process that depends on the
choice variable:

Pr(Zit+1, Xatt1 | Yies Zit, Xit) = fz.x6(Zivs1, Xivr1 | Yies Zit, Xit)

e The unobservable £;; can have a distribution that changes over time, but it
is independently distributed over time:*

;¢ is 1.1.d. over ¢ and indep. over t with CDF F}(.)



e Agent chooses Y;; to maximize expected & discounted intertemp. payoff:

T
E (Z 857 Yis [Zis + me(Xis) — €is] | Yies Zit, Xz't)

s=t

where 5 € [0,1) is the discount factor.

e The optimal choice of agent ¢ at period ¢ can be represented as:

B
I

1{Z; + me(Xit) — €56 + ve (1, Ziz, Xit) > v1 (0, Zye, Xie) }

— 1 {5it < Zj+ + Wt(Xit) + v (1, Zit, Xz’t) — Ut (07 Zit, th)}

o v (Y, Z;, X;¢) is the present value of future payoffs if current choice is Y.



e By Bellman's principle, this value function has a recursive structure:

Ut (Y7 Z’ita X’Lt) —

Zit+1 + T 1(Xier1) — €it1 + ver1 (1, Zigg, Xit)
B B¢ | max

;U1 (0, Zip 1, Xip 1)
e According to the model, the conditional choice probability (CCP) function at
period t is:
Py (Zit, Xit) = Fy[Zig + me(Xit) + ve (1, Zig, Xip) — vt (0, Zig, Xit)]
e The primitives or structural parameters of the mode are:

{fZ,X,taﬂ-ta Ftaﬁ t=1,2, 7T}



IDENTIFICATION OF DYNAMIC MODEL

e Suppose that we have panel data on choices and state variables:

{Y;:taziint 1= 1727 °'°7N; L= 1727 ~-7Tdata}

where Tj,:, may be different than the T" of the model.
e We are interested in using these data to identify {fz x 4, 7¢, or, Fz, B},

e Under mild regularity conditions, the CCP function P (Z;+, X;+) and the
transition probability functions f7 x 1(Zit4+1, Xit+1 | Yit, Zit, Xit) are non-
parametrically identified from the data. Therefore, the relevant problem is the
identification of payoff functions and distribution of the unobservables, {7, o,
Fx, B}, using CCPs and transitions.



IDENTIFICATION OF DYNAMIC MODEL [2]

e In the identification of these models, it is useful to distinguish two cases:

(a) Finite horizon models where the researcher observes agents’ deci-
sion at the last period: T, = T

(b) Applications where T,;, < T (either because infinite horizon
models or because Ty, < T < 00).



IDENTIFICATION WITH Ty, =T

e For simplicity, but really w.l.o.g. suppose that T;j,;, =1 = 2.

e The model can be described in two equations. Optimal decision at last period:
Yo = 1{ex < 7>+ m(X2)}
And the optimal decision at period 1,
Vi = 1{e1 < Z1 + m(X1) +v1 (1, Z1, X1) —v1(0, Z1, X1)}
where

v1 (Y1, 21, X1) = B E(max{Zy + m(Xp) —e2; 0} | Y1, 721, X7)



IDENTIFICATION WITH T, = T [2]

e Under similar conditions as those in Matzkin's Theorem, we can apply a
recursive argument to show the NP identification of the functions {mq1, 7o, F7,
F5} when the discount factor 3 is known to the researcher.

Theorem [Aguirregabiria (JBES, 2010)]. Suppose that, for t =1, 2,

(a) e¢ is independent of Z;; and €1 and €5 are independent;
(b) & has zero median and is median independent of X4;
(c) Function 74(.) is bounded on A%, i..e., m(X;) € [nf, 7] C R;

(d) Conditional on any value of X, variable Z; has support over the
whole real line R;



(e) The differential value function v1 (21, X1) = v1 (1, 21, X1) —
v1 (0, Z1, X1) is non-decreasing in Z7 [it can weaken to 0vy (41, X1) /021 >
—1:

(f) The discount factor 3 is known to the researcher.

Then, {m¢(x¢) : t = 1,2} and {F} 4, (e¢) : t = 1,2} are NP identified for
every x+ € Xy and ¢ € R.



IDENTIFICATION WITH Ty, =T [3]

e The model at t = 2 is a static model, and therefore identification of 75(.)
and Fez\Xz(') follows form Matzkin's Theorem. Now, define the function:

e2(Z2,X3) = Ee, (max{Zs + m2(X2) — e2; 0})

Zo+mo(X5)
— / 2res [Z2 + 7T2(X2) o U] dF&Q‘XQ(u)

— OO
e Since mo(.) and F_, x,(.) are identified, it is clear that function ez (Z2, X2)
is NP identified everywhere in the support of (25, X>5).

e By definition, we have that

v1 (Y1,721,X1) = B E(e2(22,X2) | Y1,721, X1)

Since e (Z2, X>7) is identified everywhere, it is clear that conditional expecta-
tion function E (e> (45, Xo) | Y1, Z1, X1) is NP identified everywhere in the
support of (Y7, Z1, X1). Then, for 8 known, the value function v1 (Y7, Z1, X1)
is identified everywhere.



IDENTIFICATION WITH T4,t, =T [4]

e [ hen, we have:

P (Z1, X1) = Fy x, [Z1 + m1(X1) + 01 (21, X1)]

Conditions (a) and (e) imply that P (21, X1) is strictly increasing in Z7.
Therefore, for any value X7 = x1 we have that there exist a unique value 27
that solves Py (Z1,x1) = 1/2. Let 27(x1) be the solution of that equation.

e By the zero median of €1, we have that:

mi(z1) = —21(w1) — 01 (21(21), 21)
such that 71(.) is identified everywhere in X7.

e For any pair (x1,£1) € X1 XR, consider the following equation in Z7:

Z1+ m1(z1) +v1 (21, 21) = €1

For any (1, €1) this equation has a always a solution and the solution is unique.



IDENTIFICATION WITH Ty, =T [5]

o Let Z1(x1, €1) be that solution such that z1(x1,e1)+71(x1)+v1 (Z1(x1,€1), 1) =
£1. By construction,

oz (€1) = Fopjg, [71(21,€1) + ma(z1) + 01 (2121, 1), 21)]

= Py[z1(21,e1), 7]

Therefore, F._ .. (€1) is NP identified on A7 xR. H

e1lx1

e Remark 1: This argument can be applied recursively to prove the NP iden-
tification of m¢(.) and F_, ;. (.) at every period t in the sample.



IDENTIFICATION WITH Ty, =T [6]

e Remark 2: Note that we need a stronger condition on the support of Zy:
this variable should have support over the whole real line.

e [he main reason is the identification of the function:

Zy+ma(X2)
e2(Z2, X2) = /_OO [Z2 + m2(X2) — u] dF,, x,(u)
e To obtain this function, we need to know the whole left-tail of the distribution
of F,, x,(u). This can be problematic because identification of distribution

tails can be very imprecise.

e A possible "solution" is imposing the restriction that €5 has bounded support.



IDENTIFICATION WITH T4,;; < T [Based on Aguirregabiria & Tang,
2017]

e To study identification in this case, it is convenient to present an Euler
equation representation of the optimal decision in this model.

e The intuition behind the Euler equation is quite simple: at the optimal solu-
tion, it is not possible to perturb marginally the CCPs P; and P, 1 to improve
expected intertemporal values.

e The particular form of the Euler equations depends on which are the endoge-
nous state variables of the problem and on their transition probabilities. For
the sake of concreteness, | consider here | simple model where the endogenous
state variables is the lagged decision, Y;_1, e.g., market entry-exit model.



IDENTIFICATION WITH Ty, < T [2]

e The payoff function at period ¢ is:
Zy+m( Xy, Yi1) —e¢ if V=1

0 if ;=0
where now | make explicit the endogenous state variable Y;_1 in the payoff
function. Note that now (Z, X¢) are exogenous state variables.

e The Euler equation for this entry-exit model is (see Aguirregabiria and Mage-
san, 2013, 2016):

Zt + mi(Xe, Ye1) + ee(Pr | Xe, Y1) +
BBt [Zey1 + mer1(Xeg1,1) + epp1(Prg1 [ Xet1,1)] =

B B [Zi+1 + mpr1(Xe41,0) + egp1(Pry1 [ Xi41,0)]



IDENTIFICATION WITH Ty, < T [3]

e The function ex(p | X¢, Y;_1) is defined as follows: for any probability p:

er(p| X, Yio1) = Bey| et ] et < Quyxyy, 4 ()]

and Q¢ |x, v;_,(p) is the quantile associated to the distribution F_ x, y, ,(&t),
I.e., the inverse function of F5t|XtaYt—1'

e It is straightforward to show that this function is the Integrated Quantile
Function (IQF) of the distribution F_, x, y, ,(&t).

e In general, if a function e(p) on [0, 1] is defined as E[ € | ¢ < Q(p)] where
Q(p) is the quantile function of the distribution of &, then:

d e(p)
dp

= Q(p)



IDENTIFICATION WITH T4,:, < T [4]

e To identify this model, we need to impose a time-homogeneity assumption
on the distribution of €¢. The distribution of £; may depend on (X¢, Y;_1),
but conditional on these variables the distribution is time invariant.

e Here | present an identification result for a simplified version of the model
where all the primitive functions are time-homogeneous and the distribution of
g+ does not depend on (X, Y;_1) such that it is i.i.d.

e This simplified version of the model has the following Euler equation:
Zy+nm(Xe, Y1) +e(PlZ, Xt, Yi—1]) +
B Et [W(Xt—l—la 1) + 6(P[Zt—|—17 Xt—|—17 1])] —

B Byt [m(X¢41,0) + e(P[Zi+1, Xi41,0])]



IDENTIFICATION WITH Ty, < T [5]

e Here | show identification for a particular specification for the stochastic
process of {Z;, X+}. The result can be easily extended, though the expressions

are more complicated.

e Suppose that the stochastic process of {Z;, X} is such that:

(a) [Conditional independence]

fz x(Zi11, Xev1lZe, Xi) = f2(Zep1lZe) Fx(XeqalXt) s

(b) [Autoregressive Zi] Zyi1 = p(Zt) + Ugrq, with Uy iid. and
independent of Z;. Function p(Z;) is continuously differentiable and
0'(Z¢) = dp(Z¢)/dZy is such that |p/(Z)] < 1.



IDENTIFICATION WITH Ty, < T [6]

e Under these conditions, we have that:

Bt [e(P[Zi41, Xi41,Y])] =

/ e(Plp(Zt) + Ugg1, Xe41, Y]) f(Urg1) fx (X1 Xe)dUpp1d Xy qq
Xt-|—17ut—|—1

e This function is continuous differentiable in Z¢ and it is simple to show that:

O By [e(P[Zy41, Xi41,Y])] 0P 11
0 4 0241

0 e(Py) 0P,

— Q. (P) =t
YA Qe Y7

= p(Z;) By | Qe (Pry1)

Note also



IDENTIFICATION WITH Ty, < T [7]

Theorem [Aguirregabiria and Tang (2017)]. Under conditions (a) and (b),
differencing the Euler equation with respect to Z; implies a contraction mapping
in the space of the quantile function Q<(P). This contraction mapping uniquely
identifies the distribution of €.

Proof: Differentiating the Euler equation with respect to Z;, we can get the
following expression:

1
Q- (P) = [—g—g] {1+5P(Zt) E, [Qs(PtH(l)) 8{;;;(1”
OP;11(0)

— Qe (Pr41(0))




e All the elements in this expression, except the quantile function Q¢ (.) are
known to the researcher.

e This mapping is a contraction in QQs. Therefore, Qc(.) is uniquely identified.
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