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INTRODUCTION & MOTIVATION

� Overview of recent literature on the identi�cation and estimation of the dis-
tribution of unobservables in dynamic discrete choice structural models.

� In this class of models, distribution of the unobservables has two main im-
plications.

� [1] As in any discrete choice model (static or dynamic), this distribution
determines how individual treatment e¤ects are aggregated to obtain average
treatment e¤ects for the population (or a subpopulation).

� [2] This distribution has important implications on the risk that agents face
and therefore on their behavior.



EXAMPLE

� Two-period binary choice model [�rm market entry]. For t = 1; 2, the binary
variable Yit 2 f0; 1g represents entry decision of �rm i at period t.

� The optimal decision at the last period t = 2 is: fYi2 = 1g i¤

Xi2 � + � Yi1 + "i2 � 0

� The optimal decision at period t = 1 is: fYi1 = 1g i¤

fXi1 � + "i1 + � E [max fXi2 � + �+ "i2 ; 0g] � � E [max fXi2 � + "i2 ; 0g]g

� The option values E [max fXi2 � + �+ "i2 ; 0g] and E [max fXi2 � + "i2 ; 0g],
and the di¤erence between them, depend on the shape of the distribution of
"i2.



OUTLINE

1. Static binary choice models

(a) Identi�cation

(b) Estimation methods

2. Dynamic binary choice models

(a) Identi�cation

(b) Estimation methods



1. STATIC BINARY CHOICE MODELS

� Consider the binary choice model:

Y = 1 fZ + �(X)� " � 0g

� 1 f:g is the indicator function

� Z and X are observable; " is unobservable.

� " is continuous with support R.

� �(:) is an unknown (nonparametric) function.

� F (:) is the distribution function of " that is nonparametric.

� Researcher observes random sample: fyi; zi; xi : i = 1; 2; :::; Ng



1.1. IDENTIFICATION [1]

� De�ne the Conditional Choice Probability (CCP) function:

P (z; x) = Pr(Y = 1 j Z = z; X = x)

� Under mild regularity conditions, function P (z; x) is NP identi�ed for every
value (z; x) in the support set Z � X .

� All the information in the data about �(:) and F (:) is contained in the CCP
function P (z; x). The model constraints are:

P (z; x) = F"j(z;x)(z + �(x))

� We are interested in the identi�cation of �(:) and F (:) from P (:; :).



IDENTIFICATION Matzkin (ECMA, 1992)

Theorem [Matzkin (ECMA, 1992)]. Suppose that:

(a) " and Z are independent;

(b) " has median zero and median independent of X;

(c) �(:) is bounded on X : �(X ) 2 [�L; �H] � R;

(d) for any X = x, variable Z has continuous support on [zL; zH]
with zL + �H < 0 and zH + �L > 0.

Then, �(x) and F"jx(") are NP identi�ed for every x 2 X and " 2 [zL +

�(x0); zH + �(x0)].



Matzkin (ECMA, 1992) Proof

� Let (x0; "0) 2 X � R be arbitrary values of X and ". De�ne z�(x0) as the
value of z that solves the equation:

P (z; x0) =
1

2

Condition (a) implies that P (z; x0) is strictly increasing in z; and condition
(d) implies that the solution z�(x0) always exists. Therefore, function z�(x0)
is NP identi�ed everywhere on X .

� Given that P (z; x) = F"jx(z + �(x)) and under condition (a), we have

that P (z; x) = 1
2 is equivalent to z + �(x) = 0. Therefore, by construction,

z�(x0) + �(x0) = 0, such that function �(x0) is NP identi�ed everywhere on
X as

�(x0) = �z�(x0)



Matzkin (ECMA, 1992) Proof [2]

� Now, given any pair (x0; "0) 2 X�[zL + �(x0); zH + �(x0)] we can con-
struct the value ez(x0; "0) � "0 � �(x0). By construction,

F"jx0("0) = F"jx0 [ez(x0; "0) + �(x0)]
= P [ez(x0; "0); x0]

such that F"jx(") is NP identi�ed on X�[zL + �(x); zH + �(x)].

� Remark 1: If [zL; zH] = R, then F"jx(") is identi�ed everywhere.

� Remark 2: Median independence between Z and " can be replaced by other
quantile independence.



Example 1 (Binary choice demand model)

� Suppose that we have daily consumer-level supermarket scanner data with
information on consumer purchasing decisions of some product.

� Yit is the indicator for "consumer i purchases the product at period t".
Model:

Yit = 1 f�Pt + �(Xit)� "it � 0g

where Pt is the price of the product at day t; �(Xit)� "it represents the con-
sumer willingness to pay that depend on observable and unobservable consumer
characteristics.

� Key assumptions: independence between "it and Pt; and Pt has continuous
variation.



Relaxing the linearity of the payo¤ function in Z

� This restriction can be quite strong in some empirical applications. In some
applications, it implies that agents are risk neutral (see below the example on
retirement).

� We can relax this restriction in the following semiparametric model:

Y = 1
n
Z + �2 Z

2 + :::+ �q Z
q + �(X)� " � 0

o
where �0s are unknown parameters and Z + �2 Z

2 + ::: + �q Z
q is strictly

increasing in Z.



Relaxing the linearity of the payo¤ function in Z [2]

Theorem. Consider the model Y = 1
n
Z + �2 Z

2 + :::+ �q Z
q + �(X)� " � 0

o
,

and assume that:

(a) " is independent of Z and X and has median zero;

(b) X has at least two q + 1 points in its support set;

(c) and (d) from previous Theorem.

Then, f�; F"; �g are NP identi�ed.



Relaxing the linearity of the payo¤ function in Z [3]

� Proof (Sketch): For any p 2 (0; 1), de�ne z�p(x0) the unique solution in z
to P (z; x0) = p. Then,

z�p(x0) + �2 z
�
p(x0)

2 + :::+ �q z
�
p(x0)

q + �(x0) = Q"(p)

where Q"(p) is the quantile function of ".

� Given p and p0, with p 6= p0:h
z�p(x0)� z�p0(x0)

i
=

Q"(p)�Q"(p0) + �2
h
z�p0(x0)

2 � z�p(x0)2
i
+ :::+ �q

h
z�p0(x0)

q � z�p(x0)q
i

And given q + 1 di¤erent values for x0, we have a system of q + 1 equations
and q + 1 unknowns that identi�es ��s.

� The identi�cation of � and � proceeds in the same way as in previous The-
orem.



Example 2 (Retirement from the labor force)

�We have panel data where we observe individual decision of retiring (collecting
pension bene�ts) or keeping working, and their earnings if working (salary) or
if retired (pension bene�ts).

� Yit is the indicator for "individual i retires at period t". Model:

Yit = 1

8>><>>:
[Bit �Wit] + �2

h
B2it �W 2

it

i
+ :::+ �q

h
B
q
it �W

q
it

i
+�(Xit)� "it � 0

9>>=>>;
where Wit and Bit represent earnings when working and retired, resp; and
�(Xit)� "it represents the additional non-pecuniary utility from being retired,
that depends on observable and unobservable characteristics.

� Key assumption: independence between "it and Bit, Wit, and Xit.



PARTIAL IDENTIFICATION

� In some empirical applications Z and X are discrete. This implies that the
distribution of the unobservables cannot be point-identi�ed. It is still possible
to obtain informative bounds on � and the distribution function.

� Consider the model: Y = 1 fZ + �(X)� " � 0g, where both Z and X
have discrete and �nite supports. We maintain the same assumptions as above.

� For arbitrary x0, de�ne:

z+(x0) � inf
z2Z

�
max

�
P (z; x0) ;

1

2

��

z�(x0) � sup
z2Z

�
min

�
P (z; x0) ;

1

2

��
With discrete support, we have that, in general: z+(x0) � z�(x0)



PARTIAL IDENTIFICATION [2]

� By construction, we have that:

z+(x0) + �(x0) � 0

z�(x0) + �(x0) � 0

such that:

�(x0) 2
h
�z+(x0) ; � z�(x0)

i

� This interval provides the sharp bounds for the identi�cation of �(x0).

�We can denote these bounds �L(x0) (that is equal to �z+(x0)) and �H(x0)
(that is equal to �z�(x0)).



PARTIAL IDENTIFICATION [3]

� Given a pair (x0; "0), we can construct the values:

ezH(x0; "0) � "0 � �L(x0) = "0 + z
+(x0)

ezL(x0; "0) � "0 � �H(x0) = "0 + z
�(x0)

� By construction, we have that ezH(x0; "0) � ezL(x0; "0) and:
P
hezH(x0; "0); x0i = F"jx0

hezH(x0; "0) + �(x0)i
= F"jx0

h
"0 +

h
�(x0)� �L(x0)

ii
� F"jx0("0)

P
hezL(x0; "0); x0i = F"jx0

hezL(x0; "0) + �(x0)i
= F"jx0

h
"0 +

h
�(x0)� �H(x0)

ii
� F"jx0("0)



� Therefore,

F"jx0("0) 2
h
P
hezL(x0; "0); x0i ; P hezH(x0; "0); x0ii

This interval provides the sharp bounds for the identi�cation of F"jx0("0).



1.2. ESTIMATION METHODS

� I�ll discuss the following estimation methods:

(a) A simple Kernel method for the (just-identi�ed) NP model

(b) Two-step method for semiparametric model

(c) Lewbel�s method

(d) Klein-Spady method



(a) A Simple Kernel Estimator for the (just-identi�ed) NP model

� The constructive proof of identi�cation provides a simple estimator.

� [Step 1] We estimate P (z; x) using a Kernel estimator:

bP (z; x) =
NX
i=1

yi 1 fxi = xg K
�
zi � z
b

�
NX
i=1

1 fxi = xg K
�
zi � z
b

�
Note: Imposing monotonicity in z is very important. If the kernel method does
not satisfy monotonicity at some values of z, then we need Isotonic-Kernel
methods

� [Step 2] Newton�s method to obtain cz�(x0) as the unique solution in z tobP (z; x0) = 1=2.



� [Step 3] Estimate distribution as:

bF"jx0("0) = bP �"0 + cz�(x0); x0� =
NX
i=1

yi 1 fxi = x0g K

0@zi �
h
"0 + cz�(x0)i
b

1A
NX
i=1

1 fxi = x0g K

0@zi �
h
"0 + cz�(x0)i
b

1A

� For this just-identi�ed NP model, this estimator exploits all the restrictions
of the model.



(b) Two-step methods for semiparametric model

� In many applications without very large sample sizes or/and relatively large
number of variables X, it can be impractical to estimate with enough precision
a model that is nonparametric in both F and �.

� The researcher may be willing to consider a parametric model for �(X) and
to impose some restrictions about how the distribution of " depends on X.

� Common restrictions are:

(a) �(X) = X 0�

(b) " = � (X) e", where e" is independent of X



(b) Two-step method for semiparametric model

� First step consists of an estimator of � that is robust to the speci�cation of
F".

� For instance, we can project the NP estimator of �(X) above on the linear
space X 0� to estimate � by OLS.

� Other estimators are Manski�s Maximum Score estimator (MSE) and Horowitz�s
Smooth MSE. These estimators require optimization with respect to �.

� Lewbel�s method does not require optimization.



(c) Lewbel�s method

� Lewbel shows that in this BC model:

� =
h
E
�
X X 0

�i�1
E
�
X eY �

where eY =
Y � 1fZ > 0g
fZjX(ZjX)

.

� This expression shows that we can estimate consistently � by an OLS regres-
sion of eY on X. Variable eY should be constructed and requires estimating the
density fZjX(ZjX).

� Since the density fZjX(ZjX) appears in the denominator,
p
N�consistency

of the estimator (and good �nite sample properties) requires trimming obser-
vations where bfZjX(zijxi) < hN .



(d) Klein-Spady method

� Klein & Spady (ECMA 1993) propose an asymptotically e¢ cient method to
estimate jointly � and the CDF of ". However, an important restriction of their
model/method is that V ar("jZ;X) = �2(Z + X 0�), i.e., the conditional
variance depends on Z and X but only through the index Z +X 0�.

� Under this restriction, P (Z;X) = F"
 
Z +X 0�
�(Z +X 0�)

!
= G(Z +X 0�).

� They propose a semiparametric maximum likelihood estimator of � and
the function G(:). The log-likelihood function is:

l (�;G) =
Xn

i=1
yi lnG

�
x0i�

�
+ (1� yi) ln

h
1�G

�
x0i�

�i
� And KS estimator is de�ned as:�b�KS; bGKS� = arg maxf�;Gg

l (�;G)



� Let b�0 be an initial consistent estimator of �, e.g., Lewbel�s estimator.
Step 1: Given that G("0) = E(Y j Z+X 0� = "0), we estimate G("0) using
a Kernel regression of yi on zi + x0i

b�0:
bG1("0) =

Xn

i=1
yi K

 
zi + x

0
i
b�0 � "0
bn

!
Xn

i=1
K

 
zi + x

0
i
b�0 � "0
bn

!

Step 2: Obtain a new b� as:
b�1 = argmax

�
l
�
�; bG1�

� The algorithm iterates in steps 1 &2 until convergence in
b�K � b�K�1.



2. DYNAMIC BINARY CHOICE MODELS

� Yit 2 f0; 1g is the decision of agent i at period t. The one-period payo¤ is:�8><>:
Zit + �t(Xit)� "it if Yit = 1

0 if Yit = 0

� The choice at period t has implications on future pro�ts. State variables
(Zit; Xit) follow a controlled �rst order Markov process that depends on the
choice variable:

Pr (Zit+1; Xit+1 j Yit; Zit; Xit) � fZ;X;t(Zit+1; Xit+1 j Yit; Zit; Xit)

� The unobservable "it can have a distribution that changes over time, but it
is independently distributed over time:�

"it is i:i:d: over i and indep. over t with CDF Ft(:)



� Agent chooses Yit to maximize expected & discounted intertemp. payo¤:

E

0@ TX
s=t

�s�t Yis [Zis + �t(Xis)� "is] j Yit; Zit; Xit

1A
where � 2 [0; 1) is the discount factor.

� The optimal choice of agent i at period t can be represented as:

Yit = 1 fZit + �t(Xit)� "it + vt (1; Zit; Xit) � vt (0; Zit; Xit)g

= 1 f"it � Zit + �t(Xit) + vt (1; Zit; Xit)� vt (0; Zit; Xit)g

� vt (Y; Zit; Xit) is the present value of future payo¤s if current choice is Y .



� By Bellman�s principle, this value function has a recursive structure:

vt (Y; Zit; Xit) =

� Et

0B@max
8><>:
Zit+1 + �t+1(Xit+1)� "it+1 + vt+1 (1; Zit; Xit)

; vt+1 (0; Zit+1; Xit+1)

9>=>;
1CA

� According to the model, the conditional choice probability (CCP) function at
period t is:

Pt (Zit; Xit) = Ft [Zit + �t(Xit) + vt (1; Zit; Xit)� vt (0; Zit; Xit)]

� The primitives or structural parameters of the mode are:

ffZ;X;t; �t; Ft; � : t = 1; 2; :::; Tg



IDENTIFICATION OF DYNAMIC MODEL

� Suppose that we have panel data on choices and state variables:

fYit; Zit; Xit : i = 1; 2; :::; N ; t = 1; 2; :::; Tdatag

where Tdata may be di¤erent than the T of the model.

� We are interested in using these data to identify ffZ;X;t; �t, �t, Fe", �g.
� Under mild regularity conditions, the CCP function Pt (Zit; Xit) and the
transition probability functions fZ;X;t(Zit+1; Xit+1 j Yit; Zit; Xit) are non-
parametrically identi�ed from the data. Therefore, the relevant problem is the
identi�cation of payo¤ functions and distribution of the unobservables, f�t, �t,
Fe", �g, using CCPs and transitions.



IDENTIFICATION OF DYNAMIC MODEL [2]

� In the identi�cation of these models, it is useful to distinguish two cases:

(a) Finite horizon models where the researcher observes agents�deci-
sion at the last period: Tdata = T .

(b) Applications where Tdata < T (either because in�nite horizon
models or because Tdata < T <1).



IDENTIFICATION WITH Tdata = T

� For simplicity, but really w.l.o.g. suppose that Tdata = T = 2.

� The model can be described in two equations. Optimal decision at last period:

Y2 = 1 f"2 � Z2 + �2(X2)g

And the optimal decision at period 1,

Y1 = 1 f"1 � Z1 + �1(X1) + v1 (1; Z1; X1)� v1 (0; Z1; X1)g

where

v1 (Y1; Z1; X1) = � E (max fZ2 + �2(X2)� "2 ; 0g j Y1; Z1; X1)



IDENTIFICATION WITH Tdata = T [2]

� Under similar conditions as those in Matzkin�s Theorem, we can apply a
recursive argument to show the NP identi�cation of the functions f�1, �2, F1,
F2g when the discount factor � is known to the researcher.

Theorem [Aguirregabiria (JBES, 2010)]. Suppose that, for t = 1; 2,

(a) "t is independent of Zt; and "1 and "2 are independent;

(b) "t has zero median and is median independent of Xt;

(c) Function �t(:) is bounded on Xt, i..e., �t(Xt) 2 [�Lt ; �Ht ] � R;

(d) Conditional on any value of Xt, variable Zt has support over the
whole real line R;



(e) The di¤erential value function ev1 (Z1; X1) � v1 (1; Z1; X1) �
v1 (0; Z1; X1) is non-decreasing in Z1 [it can weaken to @ev1 (Z1; X1) =@Z1 >
�1;

(f) The discount factor � is known to the researcher.

Then, f�t(xt) : t = 1; 2g and fFt;xt("t) : t = 1; 2g are NP identi�ed for
every xt 2 Xt and "t 2 R.



IDENTIFICATION WITH Tdata = T [3]

� The model at t = 2 is a static model, and therefore identi�cation of �2(:)
and F"2jX2(:) follows form Matzkin�s Theorem. Now, de�ne the function:

e2 (Z2; X2) � E"2 (max fZ2 + �2(X2)� "2 ; 0g)

=
Z Z2+�2(X2)
�1

[Z2 + �2(X2)� u] dF"2jX2(u)

� Since �2(:) and F"2jX2(:) are identi�ed, it is clear that function e2 (Z2; X2)
is NP identi�ed everywhere in the support of (Z2; X2).

� By de�nition, we have that

v1 (Y1; Z1; X1) = � E (e2 (Z2; X2) j Y1; Z1; X1)
Since e2 (Z2; X2) is identi�ed everywhere, it is clear that conditional expecta-
tion function E (e2 (Z2; X2) j Y1; Z1; X1) is NP identi�ed everywhere in the
support of (Y1; Z1; X1). Then, for � known, the value function v1 (Y1; Z1; X1)
is identi�ed everywhere.



IDENTIFICATION WITH Tdata = T [4]

� Then, we have:

P1 (Z1; X1) = F"1jX1 [Z1 + �1(X1) + ev1 (Z1; X1)]
Conditions (a) and (e) imply that P1 (Z1; X1) is strictly increasing in Z1.
Therefore, for any value X1 = x1 we have that there exist a unique value Z1
that solves P1 (Z1; x1) = 1=2. Let z�1(x1) be the solution of that equation.

� By the zero median of "1, we have that:

�1(x1) = �z�1(x1)� ev1 (z�1(x1); x1)
such that �1(:) is identi�ed everywhere in X1.

� For any pair (x1; "1) 2 X1�R, consider the following equation in Z1:

Z1 + �1(x1) + ev1 (Z1; x1) = "1
For any (x1; "1) this equation has a always a solution and the solution is unique.



IDENTIFICATION WITH Tdata = T [5]

� Let ez1(x1; "1) be that solution such that ez1(x1; "1)+�1(x1)+ev1 (ez1(x1; "1); x1) =
"1. By construction,

F"1jx1("1) = F"1jx1 [ez1(x1; "1) + �1(x1) + ev1 (ez1(x1; "1); x1)]
= P1 [ez1(x1; "1); x1]

Therefore, F"1jx1("1) is NP identi�ed on X1�R. �

� Remark 1: This argument can be applied recursively to prove the NP iden-
ti�cation of �t(:) and F"tjxt(:) at every period t in the sample.



IDENTIFICATION WITH Tdata = T [6]

� Remark 2: Note that we need a stronger condition on the support of Zt:
this variable should have support over the whole real line.

� The main reason is the identi�cation of the function:

e2 (Z2; X2) =
Z Z2+�2(X2)
�1

[Z2 + �2(X2)� u] dF"2jX2(u)

� To obtain this function, we need to know the whole left-tail of the distribution
of F"2jX2(u). This can be problematic because identi�cation of distribution
tails can be very imprecise.

� A possible "solution" is imposing the restriction that "2 has bounded support.



IDENTIFICATION WITH Tdata < T [Based on Aguirregabiria & Tang,
2017]

� To study identi�cation in this case, it is convenient to present an Euler
equation representation of the optimal decision in this model.

� The intuition behind the Euler equation is quite simple: at the optimal solu-
tion, it is not possible to perturb marginally the CCPs Pt and Pt+1 to improve
expected intertemporal values.

� The particular form of the Euler equations depends on which are the endoge-
nous state variables of the problem and on their transition probabilities. For
the sake of concreteness, I consider here I simple model where the endogenous
state variables is the lagged decision, Yt�1, e.g., market entry-exit model.



IDENTIFICATION WITH Tdata < T [2]

� The payo¤ function at period t is:8><>:
Zt + �t(Xt; Yt�1)� "t if Yt = 1

0 if Yt = 0

where now I make explicit the endogenous state variable Yt�1 in the payo¤
function. Note that now (Zt; Xt) are exogenous state variables.

� The Euler equation for this entry-exit model is (see Aguirregabiria and Mage-
san, 2013, 2016):

Zt + �t(Xt; Yt�1) + et(Pt jXt; Yt�1) +

� Et [Zt+1 + �t+1(Xt+1; 1) + et+1(Pt+1 jXt+1; 1)] =

� Et [Zt+1 + �t+1(Xt+1; 0) + et+1(Pt+1 jXt+1; 0)]



IDENTIFICATION WITH Tdata < T [3]

� The function et(p jXt; Yt�1) is de�ned as follows: for any probability p:

et(pjXt; Yt�1) � E"t
h
"t j "t � Q"tjXt;Yt�1(p)

i
andQ"tjXt;Yt�1(p) is the quantile associated to the distribution F"tjXt;Yt�1("t),
i.e., the inverse function of F"tjXt;Yt�1.

� It is straightforward to show that this function is the Integrated Quantile
Function (IQF) of the distribution F"tjXt;Yt�1("t).

� In general, if a function e(p) on [0; 1] is de�ned as E [ " j " � Q(p)] where
Q(p) is the quantile function of the distribution of ", then:

d e(p)

dp
= Q(p)



IDENTIFICATION WITH Tdata < T [4]

� To identify this model, we need to impose a time-homogeneity assumption
on the distribution of "t. The distribution of "t may depend on (Xt; Yt�1),
but conditional on these variables the distribution is time invariant.

� Here I present an identi�cation result for a simpli�ed version of the model
where all the primitive functions are time-homogeneous and the distribution of
"t does not depend on (Xt; Yt�1) such that it is i:i:d.

� This simpli�ed version of the model has the following Euler equation:

Zt + �(Xt; Yt�1) + e(P [Zt; Xt; Yt�1]) +

� Et [�(Xt+1; 1) + e(P [Zt+1; Xt+1; 1])] =

� Et [�(Xt+1; 0) + e(P [Zt+1; Xt+1; 0])]



IDENTIFICATION WITH Tdata < T [5]

� Here I show identi�cation for a particular speci�cation for the stochastic
process of fZt; Xtg. The result can be easily extended, though the expressions
are more complicated.

� Suppose that the stochastic process of fZt; Xtg is such that:

(a) [Conditional independence]

fZ;X(Zt+1; Xt+1jZt; Xt) = fZ(Zt+1jZt) fX(Xt+1jXt) ;

(b) [Autoregressive Zt] Zt+1 = �(Zt) + Ut+1, with Ut+1 i.i.d. and
independent of Zt. Function �(Zt) is continuously di¤erentiable and
�0(Zt) � d�(Zt)=dZt is such that j�0(Zt)j < 1.



IDENTIFICATION WITH Tdata < T [6]

� Under these conditions, we have that:

Et [e(P [Zt+1; Xt+1; Y ])] =Z
Xt+1;ut+1

e(P [�(Zt) + Ut+1; Xt+1; Y ]) f(Ut+1) fX(Xt+1jXt)dUt+1dXt+1

� This function is continuous di¤erentiable in Zt and it is simple to show that:

@ Et [e(P [Zt+1; Xt+1; Y ])]
@ Zt

= �(Zt) Et
"
Q" (Pt+1)

@Pt+1
@Zt+1

#

Note also
@ e(Pt)

@Zt
= Q" (Pt)

@Pt

@Zt
.



IDENTIFICATION WITH Tdata < T [7]

Theorem [Aguirregabiria and Tang (2017)]. Under conditions (a) and (b),
di¤erencing the Euler equation with respect to Zt implies a contraction mapping
in the space of the quantile functionQ"(P ). This contraction mapping uniquely
identi�es the distribution of ".

Proof: Di¤erentiating the Euler equation with respect to Zt, we can get the
following expression:

Q" (Pt) =

"
�@Pt
@Zt

#�1(
1 + � �(Zt) Et

"
Q" (Pt+1(1))

@Pt+1(1)

@Zt+1

�Q" (Pt+1(0))
@Pt+1(0)

@Zt+1

#)



� All the elements in this expression, except the quantile function Q" (:) are
known to the researcher.

� This mapping is a contraction in Q". Therefore, Q"(:) is uniquely identi�ed.
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