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1. INTRODUCTION.

e Unobserved heterogeneity is pervasive in economic applications. Hetero-
geneity across individuals, households, firms, markets, etc.

e Not accounting for unobserved heterogeneity may imply important biases in
the estimation of parameters of interest, and in our understanding of economic
phenomena.

e The key feature of Finite Mixture models is that the variables that repre-
sent unobserved heterogeneity have finite support. There is a finite number of
unobserved types.

e As we will see, this finite support structure can be without loss of generality.



INTRODUCTION.

e FM models have been extensively applied in statistics (e.g., medical science,
biology) to identify and deal with unobserved heterogeneity in the description
of data.

e These models are currently receiving substantial attention in Structural
Econometrics in the estimation of dynamic structural models and empirical

games.

e Two-step estimation procedures in Structural Econometrics. The first
step in these methods involves nonparametric estimation of agents’ choice prob-
abilities conditional not only on observable state variables but also on time-
invariant individual unobserved heterogeneity (dynamic models) or market-level
unobserved heterogeneity in games.



INTRODUCTION: Example. Dynamic structural model

e y,+ € {0,1} Firm n’'s decision to invest in a certain asset (equipment) at
period t. Model:

Ynt =1 {577,75 <v <yn,t—1awn)}

where £,,+ is unobservable and i.i.d. with CDF F:, and wy is unobservable,

time invariant, and heterogeneous across firms.

e The conditional choice probability (CCP) for a firm is:

Pr(ynt =1 | Yn,t—1,Wn = w) = Fw (ynt—l) = Fe [U (ynt—law)]



Example. Dynamic structural model [2]

e Given panel data of N firms over T' periods of time, {yn: : t = 1,2,...,T;
n = 1,2,..., N}, the Markov structure of the model, and a Finite Mixture

structure for wy, we have that:

T

L
Pr(yni, Yn2, --» YnT) = Z Tw P(j(ynl) H Fu (ynt—l)ynt [1— P, (ynt—l)]l_ynt
w=1 t=2

e We present conditions under which the "type-specific" CCPs P, (y,,+—1) are
NP identified from these data.

e These estimates can be used to construct value functions, and this approach
can facilitate very substantially the estimation of structural parameters in a
second step.



Example. Static Game of Market Entry

e T’ firms, indexed by t = 1,2,...,T, have to decide whether to be active or
not in a market m. ymt € {0, 1} is firm t's decision to be active in market m.

e Given observable market characteristics 2, and unobserved market charac-
teristics wm, the probability of entry of firm ¢ in a market of "type" w is:

Pr(ymt =1 | zm,wn = w) = B, ¢ (zm)



Example. Static Game of Market Entry [2]

e In a game of incomplete information with independent private values, we have
that:

L T

Pr(ym1, Ym2, - YmT | Tm) = Z Tw H Pt (zm)?m [1 — Pyt (zm)
w=1 t=1

} 1—ymt

e Given a random sample of M markets, we provide conditions under which it
is possible to use these data to identify NP firms'" CCPs F,, ; (xm) for every
firm ¢t and every market type w.

e These estimates can be used to construct firms' expected profits and best
response functions, and this approach can facilitate very substantially the esti-
mation of structural parameters of the game in a second step.



INTRODUCTION: Variables and Data

e Let Y be a vector of T" random variables: Y = (Y1,Y>2,...,Y7). We
index these random variables by ¢t € {1,2,....,T'}. We use small letters, y =
(y1, Y2, ..., y7) to represent a realization of Y.

e The researcher observes a random sample with N i.i.d. realizations of Y,
indexed by n, {yn:n=1,2,...,N}.

e EXAMPLES:

(1) Standard longitudinal data. Y is the history over T' periods of time of a
variable measured at the individual level (or firm., or market, level). N is the
number of individuals in the sample.



e EXAMPLES:

(2) Y is the vector of prices of T' firms in a market. N is the number of
markets in the sample.

(3) Y is the vector with the characteristics of T" members of a family. N is
the number of families in the sample.

(4) Y is the vector with the academic outcomes of T" students in a classroom.
N is the number of classrooms in the sample.

(5) Y is the vector of actions of T' players in a game. N is the number of
realizations of the game in the sample.



INTRODUCTION: Conditioning Exogenous Variables

e In most applications, the econometric model includes also a vector of observ-
able exogenous variables X, such that the data is a random sample, {yn, Xn, :
n=12 .., N}

e The researcher is interested in the estimation of a model for P(Y | X).

e For notational simplicity, we will omit X as an argument and use P(Y).

e Now, incorporating exogenous conditioning variables in NPFM models is not
always trivial. | will be explicit when omitting X is without loss of generality

and when it is not.



INTRODUCTION: Mixture Models

e Mixture models are econometric models where the observable variable is
the convolution or mixture of multiple probability distributions with different
parameters, and the parameters themselves follow a probability distribution.

P(Y)= [ () fu(Y) dw
- Y is the observable variable(s)
- P (Y) is the mixture distribution
- w is the unobserved (or mixing) variable (unobserved type)
- fw (Y) are the type-specific density

- 7 (w) is the mixing distribution



INTRODUCTION: Nonparametric Finite Mixture models

e Nonparametric Finite Mixture models are mixture models where:
[1] The mixing distribution 7 (w) has finite support;

weQ=1{1,2,..,L}

such that:

L
P(Y)= ) 7w fu(Y)
w=1

with YL, = 1.

[2] Both the type-specific distributions f (Y | w) and the mixing distributions
7 (w) are nonparametrically specified.



INTRODUCTION: Example. Finite Mixture of Normals (Parametric)

e Y = Y7 (single variable).

PO = 3 m Lo (M)

w=1 Ow

In this case, the identification is based on the shape of the distribution P (Y7).



Percent

PROC FMM: Three Component Mixture Model

With Estimated Component Densities

°] _ Mixture
L] 1 Normal(3.34,0.67)
/ A 2: Normal(4.89,1.45)
5 7 \RI 3. Weibull(9.52,0.07)
AT\ |
N \
3 \
N —
Sl . " _f-
2 y I A1y
M Al
1 /'/ \
o i
| \"h..
ﬂ | | | | | [ |
07 13 198 25 31 37 43 49 55 61 67 V3 79 85 81 97 103109 11.5

Y



INTRODUCTION: Example. Panel data.

e Y = (Y1,Y5,...,Yp) is the history of log-earnings of an individual over T
periods of time.

e There are L types of individuals according to the stochastic process for the

history of earnings:

L
P(Y1,Ys,..Y) = > mw fu(Y1,Ys, ..., Y7)

w=1



INTRODUCTION: Example. Market entry

e There are T firms that are potential entrants in a market. Y = (Y7, Y, ..., Y7)
with Yz € {0, 1} is the vector with the entry decisions of the T firms.

e The researcher observes these T' firms making entry decisions at /N indepen-
dent markets.

e There are L types of markets according to unobservable market characteristics
affecting entry decisions.

L
P(Y1,Ys,..Yp) = > mw fu(Y1,Ys, ..., Y7)

w=1



2. ML ESTIMATION OF FM MODELS

e Consider a (semiparametric) FM model with P(Yy,) = 2521 Tw fu (Yn; By)-
The vector of parameters 0 = (7, 3) = (7w, B, : w = 1,2,..., L). And the
log-likelihood function is:

N
£(0) = > £n(yn,0)
n=1

where £, (yn, @) is the contribution of observation n to the log-likelihood.

L
En (ynae) — Z Tw IOg fw (ynaﬁw)
w=1

e Maximization of this function w.r.t. @ is a computationally complex task,

i.e., many local maxima.



MLE ESTIMATION: EM ALGORITHM

e The EM (Expectation-Maximization) algorithm is an iterative method for the
maximization of the MLE in finite mixture models. It is a very robust method
in the sense that, under very mild conditions, each iteration improves the LF.

e To describe the EM algorithm an its properties, it is convenient to obtain an
alternative description of the log-likelihood function.

e First, for arbitrary parameters 0, define the posterior probabilities 7Tp ost (0),
such that:

Tw fw (Yni Bw)

post 0 P me —
(6) = P (wlyn,0) ST s For (s Buy)




MLE ESTIMATION: EM ALGORITHM [2]

e Second, note that P (wn, yn|0) = P (wn|yn,0) P (yn|@). Therefore,

£ (yn, 8) = log P (yn) = log P (wn, yn|6) — log 7225 (6)

e Integrating the RHS over the posterior distribution {7, n, ost (0):w=1,2,.. L},

we get:

L
ln (yn, 0) = (Z i () |0gP(w,yn|9)>

w=1

. (i post(g) Iog post(e))

w=1



MLE ESTIMATION: EM ALGORITHM [3]

e And the log-likelihood function can be written as:

£(0) = (Z Z pOSt (0) [log 7w + log fu (yn,ew)])

n=1w=1

. (f:lL

=1

7Tpost (9) |O post (9))



MLE ESTIMATION: EM ALGORITHM [4]

e Then, we can write the log-likelihood function as:

£(6) = Q (6; = (9)) — R (w5 (6))

with
N L
Q (9; qrpost (0)) = Z Z 7Tp08t (9) [Iog Tw + |0g fw (yn, ew)]
n=1w=1
R (mPost (0)) = % i 7P0S(8) log whCs ()
n=1w=1

e Keeping the posterior probabilities {Wﬁ?ﬁt} constant at arbitrary values, we
have the Pseudo-Likelihood function:

Q( prSt) Z Z mPO [log mw + log fuo (Yn, B)]

n=1w=1



MLE ESTIMATION: EM ALGORITHM [5]

. o ~0 : : . :
e Given initial values @ ', and iteration of the EM algorithm makes two different
. ) ~1
steps in order to obtain new values 6 .

(1) Expectation Step: Computes the posterior probabilities

t,0 t (A0
w{'i,?i’ = W@Oﬁ (0 ) for every w and n.

(2) Maximization Step: Maximization of the pseudo log-likelihood @) (9; WPOSt’O)
with respect to 0, keeping wP°540 fixed.



EM ALGORITHM: Expectation Step

: C o ~0 : .. -
e Given initial values @ ', we construct the posterior mixing probabilities ﬂﬁ?ﬁt

for any w and any observation n in the sample:
~ ~0
T Jw | Yni By
~ ~0
SE_ 7Y fu (yn; m/)

post __
Ton —




EM ALGORITHM: Maximization Step w.r.t.

e Taking the posterior probabilities {7rw n } fixed, we maximize ( p08t>
SN L 5)0’;92,1; [log 7, + log fu (yn, B,,)] with respect to 7.

e It is straightforward to show that the vector 7! that maximizes Q (9; ﬂpOSt)

with respect to 7 is:

1 1 3 post 1 S
ERE PSP



EM ALGORITHM:  Maximization Step w.r.t. 3

e Taking the posterior probabilities {Wﬁ?ﬁt} fixed, we maximize Q) (0; 7Tp08t> —

Z —1 Zw 17 fjoff [log 7w + log fu (yn, B,,)] with respect to 3.

~1 o - :
e For every value w, the new value 3, solves the likelihood equations:

~1
N dlog f. (yn, Bw)
> a2t -
9 a/Bw

n=1

e In many applications, this type-specific log-likelihood is easy to maximize

(e.g., it is globally concave).



EM ALGORITHM: Example 1 (Mixture of Normals)

e Suppose that Y is a FM of L normal random variables with different means
and known unit variance. We want to estimate wand 3 = (u1, t4o, ..., f1,)-

N L
Q (6, wP5t) = 3= 3 wbos! [log mew + log ¢ (yn — )]
n=1w=1

e Expectation Step:
7 w @ (yn ﬁSJ)
ZL/ 1 / ¢ ( 8)’)

post __
Twn —




EM ALGORITHM:

e Maximization Step:

Example 1 [cont]

1 X ;
~ 0S
o=+ 3l
n=1
N post
/\1 . Zn—l w,n




EM ALGORITHM: Example 2 (T Bernoullis, Mixture of i.i.d. Bernoullis)

e Suppose that Y = (Y7, Y>s,...,Y ) is a vector of binary variables, Y; €
{0,1}. Conditional on w, these T variables are i.7, d. Bernoulli with probability

B
L 1 1
P(yn) = > w8 -8, 1n

w=1
with Tt = Sy

e \We want to estimate wand 3 = (81, B9, .-, 81,).

Q (9, WpOSt) — é\]: EL: 7'('5)077%75 [Iog Tw+ Thlog B, + (T — T%) log [1 — Bw]]

n=1w=1



EM ALGORITHM:

e Expectation Step:

post __
Twn —

e Maximization Step:

Example 2 [cont]

1 N .
~ 0S
Ty = oo D o
N —
n=1
1
N post Tn
Zn—l w,n
Bl B T
w ost
27]7\,[:177'52,71



EM ALGORITHM: Example 3 (T Multinom., Mixture of i.i.d. Multinom.)

e Suppose that Y = (Y7,Y5,...,Y ) is a vector of multinomial variables,
Y; € {0,1,...,J}. Conditional on w, these T variables are .7, d. multinomial

with vector of probabilities 8., = (8.1, 8w 2) -+ Buw. J)-

T/ T— Z T

P (yn) = Z T |Ba, }Tl NBua] " 1= T Bu]

with T = Zg;l Hymm =7}
e We want to estimate mand B = (8, ,:w=1,2,...,L; j =1,2,.... J).

J
Q (6, 7) = Z Z i |logme + - Tj log By, ;
=0

n=1w=1



EM ALGORITHM:

e Expectation Step:

7Tpost —

Example 3 [cont.]

TV T}
~0 |»0 n |0 n
Tw [Bw,O] [Bw,ll

w,n

e Maximization Step:

1 N ,
~ 0S
To = D Ton
N “—
n=1
J
N post In
i T
J
w

1

T9 T
~ ~0 n |0 n
25/:1 7T8)/ [Bw/’ol [Bw/’]_]




EXERCISE:

e Consider a FM for Y = (Y7, Y5,Y3), with Y; € {0,1,2}, and with w €
{1,2}. Conditional on w, the three variables (Y7, Y2, Y3) are ¢.i.d. multinomial
distributed with parameters 5, o, B, 1, By,2- The values of the parameters

are:

1 =0.2; B,=10=0.1 Bu=11=03; By=12=0.6;

Ty — 08, 6w:2,0 = 0.5; BwZI,l = 0.4; Bw:1,2 = 0.1;

e Write program code that generates N = 1000 observations yn, = (Y11, Y21, Y3n)
from this distribution.

e Write program code that implements the EM-algorithm for these (simulated)
and obtain estimates of the parameters of the model (, 8, ;).



EM ALGORITHM: Monotonicity and Convergence

o Let {H(k) : k > 0} be the sequence of parameters generated by the EM
algorithm given an arbitrary initial value 9(0).

e In the original paper that proposed the EM algorithm, Dempster, Laird, and
Rubin (JRSS, 1977) showed that [by construction] the likelihood function is
monotonically increasing in this sequence:

14 (9(k+1)) >/ (9(k)) forany £k >0

e In a compact parameter space ©, this property implies that the sequence
{0F) . k> 0} converges to some value % € ©.



EM ALGORITHM: Monotonicity and Convergence [2]

e Wu (AS, 1983) shows that if the likelihood is continuous in @, then the limit

value @™ is a local maximum.

e Convergence to the global maximum requires stronger conditions.



(2

log P(x; 6)

g:

Supplementary Figure 1 Convergence of the EM algorithm. Starting from initial parameters 6« .

the E-step of the EM algorithm constructs a function &: that lower-bounds the objective function

log P{(x; 60}, In the M-step, 6 s computed as the maximum of Z:. In the next E-step, a new

lower-bound Z:+1 is constructed; maximization of Z:+1 in the next M-step gives 9(“‘—"’, etc.



3. IDENTIFICATION OF NPFM MODELS: Basics [1]

e We have implicitly assumed that the vector of parameters 8 is point identified,
i.e., there is a unique value 8 € © that maximizes the likelihood function.

e This is not necessarily the case. There are many simple examples where the
model is not identified.

e \We concentrate on the identification of NPFM models where Y is discrete.

e More specifically: Y = (Y7, Y>, ..., Yp) with Yz € {1,2,..., J}, such that
Y € {1,2,...,J}" and can take JI values.

e For discrete Y, the NP specification of the type-specific probability functions
fw (Y) implies an unrestricted multinomial distribution: fu, (y) = B, y-



IDENTIFICATION:  Basics [2]

e Without further assumptions this model is not identified. To see this,
note that the model can be described in terms of the following restrictions: for
anyy € {1,2,...,J}

L
P(Y) — Z Tw fw (Y718CL))
w=1

e The number of restrictions is JZ — 1. while the number of free parameters
is L — 1 (from 7/,s) and L [JT — 1}. The order condition for identification
requires:

JT—12L—1+L[JT—1}

It is clear that this condition never holds for any L > 2.

e We need some to impose some restrictions on f, (y, 3,)-



IDENTIFICATION: Basics [3]

e \We will consider identification of NPFM models under four different types of
assumptions. Let Y = (Y7, Yo, ..., Y7)

[1] Conditional i.i.d.

fo (v, Bo) = H b . 8.) = 1 11 [0,

t=1j5=1

[2] Conditional independence

L T 1{y=3)
Jw (Y7IBCU) — H Pw.t (ytaﬁw,t> — H H [Bwvtaj}

t=1 t=1j=1



IDENTIFICATION:  Basics [4]

[3] Conditional homogeneous Markov

T
fw (YHBw) — pw(yl) H Pw (yt | yt—].?lB(,U)

t=2

B Lo 1{yi=j}
= po(y1) [T IT |Bu.j(wi-1)]

t=2 j=1

[4] Conditional non-homogeneous Markov

T

Pw1(1) |] puwt (yt | yt-bﬁw,t)
t=2

L2 1{y=4}
— pw,l(yl) H H [Bw,j,t(yt—l)}

t=2 j=1

fw (y7 ﬂw)



IDENTIFICATION: Basics [5]

e T he previous discussion implicitly assumes that the researcher knows the true

number of mixtures L. This is quite uncommon.

e We will study the identification L and present identification results and tests

for a lower bound on L.



IDENTIFICATION: EM Algorithm when the model is not identified

e When a model is not identified, standard gradient search algorithms that
maximize the likelihood function ¢(0) (e.g., Newton methods, BHHH) do
never converge and eventually reach points where a matrix is singular, e.g.,
the Hessian matrix or the matrix of the outer-product of the scores.

e "Unfortunately", this is not the case when using the EM algorithm. The
EM algorithm will converge to a point even if the model is not identified. In
fact, it will converge very quickly.

e Of course, the convergence point depends on the initial value 9(0)  Different
initial values will return different convergence points for the EM algorithm.

e Therefore, one needs to be very careful when using the EM algorithm. The
research needs to verify first that identification conditions hold.



EM Algorithm when the model is not identified Example

e Y c {0,1} is a single Bernoulli random variable (17" = 1). There is only
one free probability in the distribution of Y, i.e., P(y = 1). The sample is
{yn :m =1,2,..., N}. Model:

L
Plyn=1) = > mo [Bu]?" [L— B, Y
w=1
The vector of model parameters is @ = (w,3) = (7w, B, : w=1,2,...,L).

e |t is clear that the model is not identified for any L > 2, i.e., 1 restriction
and 2L — 1 parameters.



EM Algorithm when the model is not identified Example

e However, given an arbitrary initial value 0°, the EM algorithm always con-
verges in one iteration to the following estimates of m,, and (,: [Exercise:

Prove this]
-~ _ M mo(1— B2) M 0,80
W =
N chu/’:l 7"'8)/(1 — Bg/) N 25/21 7"'8)/68)/
20 |
5 = i1 TorBoy
T
mo(1 = 52) | e |
Zc%’zl 778)/(1 — 68)/) 25/:1 778)/68)/

e Note that these estimates depend on the initial values. Note also that the
posterior probabilities {w?,i?;?f} remain at their initial values.



4. IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE

e We start with a model where the T variables (Y7, Y, ..., Y7) are i.i.d. con-
ditional on w. Later we relax the assumption of identical distribution.

e We follow Bonhomme, Jochmans, and Robin (JRRS, 2016) but concentrate
on a model with discrete variables Y;. They present results for both discrete
and continuous observable variables.

e Model:

L
P(y1,y2,-y1) = Y Tw fu(y1) fw(y2) - fw (yr)

w=1

where y+ € {1,2,..., J}. L is known [more on this below].

e We have a sample {y1,, Yon, .-, Y7 : = 1,2,..., N} with N — oo, and
we are interested in the estimation of {7y} and f, (y) for any w and y.



IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE [2]

e First, it is important to note that the joint distribution P (Y7, Y2, ..., Y )
is fully nonparametrically identified from the sample {y1,, Y25, -, Y7, : N =
1,2,...,N}, i.e., it can be consistently estimated without imposing any restric-
tion. We treat P(.) as known to the researcher.

e Define the J X L matrix.

- fi(1) f2(1) - fr(1)
F=iff. f]=| 13 20 - fL:(2)

A) f2U) - fL0)

ASSUMPTION 1: Matrix F is full column rank. [Note that this assumption
implies that L < J).



e We show below that Assumption 1:
(1) is easily testable from the data;

(2) is a necessary and (with T" > 3) sufficient condition for identification.



IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE [2]

e Suppose that T > 3. Let (t1, tp, t3) be the indexes of three of the T
variables (any 3 of the T variables). For arbitrary y € {1,2,..., J}, define the
J X J matrix:

A®) = [ai;W)] = [Pr(va =1, vy =3 | v = v)]

e The model implies that (with p(y) = Pr(y: = 1)):

L
aij(y) = D Pr(wlyms=1v) Pr(ym, =1, ymp =7 | w,ymz = y)
w 1
— Z Wwﬁ fw (@) fw(d) fw(y)
- 10)
= [£1G) + f10)] diaglra] diag|[£W] | 210
| fr(J)




IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE [3]

e And in matrix form, we have that:

A(y) = F /2 D(y) M/2 F’
(Jx.J) (JxL) (LxL) (LxL) (LxL) (LxJ)

where 11 =diag [7y], and D(y) = diag [J;;“’(gy))]

e The matrix in the LHS is identified. The matrices in the RHS depend of
parameters mw,, and f,, (y) that we want to identify.

e Define J x J matrix A = B[A(y)] = X:_op(y) Ay).

LEMMA: Matrix F has full column rank if and only if rank(A) = L.

e We will see how this result provides a direct test of identification.



IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE [4]
e Proof of Lemma:
e By definition, A = F IT* F/, where IT* is the diagonal matrix

IT* = I1Y2diag [E (fw (y)>] l/2
p(y)

e Since IT* is a diagonal matrix with elements different than zero, and A = F
IT* ¥/, we have that the rank(A) is equal to the number of linearly indepen-
dent columns of F', such that rank(A) < L. And in particular, rank(A) = L
if and only if rank(F) = L.



IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE [5]

THEOREM: Under Assumption 1 (that implies L < J) and T > 3, all the
parameters of the model {7} and {fwu(y)} are point identified.

e Proof of Theorem: The proof proceeds in three steps: (1) identification
of diagonal matrix D(y); (2) identification of f,,(y); and (3) identification of
Tw. Ihe proof is constructive, and as we will see later it provides a simple

sequential estimator.

e [1] Identification of diagonal matrix D(y).

- Since A is a square (J X J), symmetric, and real matrix, it admits an

eigenvalue decomposition: A =V A V'



[1] Identification of diagonal matrix D(y). [cont.]

e Since rank(A) = L < J, only L of the eigenvalues in the diagonal matrix
A are different to zero. Therefore, A =V Ap V', where Ay is the L x L
diagonal matrix with non-zero eigenvalues, and V7 is the J X L matrix of
eigenvectors such that V;, V =1j.

e Define the L X J matrix W = A 1/2Vi. So far, all the matrix decompo-

sitions are based on matrix A. So it is clear that matrix W is identified.

e Matrix W has a useful property. For any value of y € {0,1,..., J}, we have
that:

W A(y) W = [A 1/2VL] [F /2 D(y) TI/2 F’] [V A 1/2]

— UD(y) U

1/2

with U= A, /“V/} F IIY/2.



[1] Identification of diagonal matrix D(y). [cont.]

e It is straightforward to verify that matrix U is such that, UU’ = I;. There-
fore, the expression W A(y) W/ = U D(y) U’ means that U D(y) U’ is
the eigenvalue-eigenvector decomposition of matrix W A(y) W',

- Since matrix W A(y) W' is identified, this implies that diagonal matrix is
also identified.

- Note that the identification of the elements of U and D(y) is up-to-relabelling
of the w’s because any permutation of the columns of U and D(y) is a valid
eigenvalue-eigenvector decomposition of matrix W A (y) W',



[2] Identification of f,, (y).

e Remember that: D(y) = diag July) | Therefore, if dy(y) is the w — th
p(y)

element in the main diagonal of matrix D(y), we have that:

fw () = Eldw(y) 1{y: = y}]

and fu, (y) is identified. In other words, given d,,(y) we can obtain a consistent

estimator of f, (y) as:

~ ;] N T
fu(y) = N7 Z > dw(ynt) Hynt = y}
: :1



¢ [3] Identification of .

e The model implies that,

L
p(y) = Z Tw fuw (Y)
w=1

e And in vector form:

p=Fn«

where p is the J x 1 vector of unconditional probabilities (p(y) : y = 1,2, ..., J)/,
and 7 is the L. X 1 vector of probability mixtures.

e Since F is full column rank, we have that (F'F) is non-singular and 7 can
be uniquely identified as:

r= () (¢



5. ESTIMATION METHODS

e The previous proof of identification is constructive and it suggests the follow-
ing sequential estimation procedure:

Step 1: Method of moments (frequency) estimation of the matrices A and

A(y);

Step 2: Estimation (construction) of matrix W using an eigenvalue-eigenvector
decomposition of matrix A;

Step 3: Estimation (construction) of matrices U and D(y) using an eigenvalue-
eigenvector decomposition of matrix W A(y) W/;

Step 4: Method of moments estimation of f,, (y) from the elements of diagonal
matrix D(y);

Step 5: Least squares estimation of 7t as (F’F)_1 (F'p).



ESTIMATION 2]

e This estimator is consistent and asymptotically normal (root-N when variables
are discrete). It is also straightforward from a computational point of view
(e.g., no problems of multiple local maxima or no convergence). But it is not
asymptotically efficient. Also, the construction of valid asymptotic standard
errors for this 5-step estimator using delta method is cumbersome. Bootstrap
methods can be applied.

e Asymptotic efficiency can be achieved by applying 1-iteration of the BHHH
method in maximization of the (nonparametric) likelihood function and using
the consistent but inefficient estimator as the initial value. This one-step-
efficient approach provides also correct asymptotic standard errors.



6. IDENTIFICATION AND TESTS OF THE NUMBER OF MIX-
TURES

° Kasahara and H., and K. Shimotsu (JRSS, 2014)

o Kasahara and Shimotsu (JASA, 2015)



7. IDENTIFICATION UNDER MARKOV STRUCTURE

o Kasahara and Shimotsu (ECMA, 2009)



8. IDENTIFICATION USING EXCLUSION RESTRICTIONS

e The previous identification results are based on the assumption of indepen-
dence between the T variables (Y7, Y, ..., YT) once we condition on the un-
observed type w and possibly on observable exogenous variables X.

e All the NP identification results using this conditional independence approach
require 1" > 3, regardless the number of points in the support of Y.

e This is a very negative result because there are many interesting applications
with 7" = 2 (two endogenous variables) where we can easily reject the null
hypothesis of no unobserved heterogeneity, but we cannot identify a NPFM
model using only the conditional independence assumption.



IDENTIFICATION USING EXCLUSION RESTRICTIONS [2]

e Henry, Kitamura, and Salanie (QE, 2014) propose an alternative approach
to identify NPFM. Their approach is based on an exclusion restriction.

e Let Y be a scalar endogenous variable (7' = 1) and let X and Z be observable
exogenous variables. Consider the NPFM model:

L
P(Y|X,Z) = > Pr(w]|X,Z) Pr(Y |w, X, Z)
w=1
L
— ZW@(X,Z) fw(Y|X7Z)
w=1

For notational simplicity, | will omit variable X (it does not play an important
role) such that all the results can be interpreted as conditional on a particular
value of X (i.e., X is discrete).



IDENTIFICATION USING EXCLUSION RESTRICTIONS [3]

L
e Model: P((Y |2)= ) 7nw(2) fu(Y | Z)
w=1
ASSUMPTION [Exclusion Restriction]: fo(Y | Z) = fu(Y)

ASSUMPTION [Relevance]: There are values zg and 21 in the support of
Z such that my, (21) # 7w (20)

e Variable Z enters in the mixing distribution 7, but not in the component
distributions f,,. Similarly as with IV models, the identification strength of
these assumptions depends on the strength of the dependence of 7w, (Z) on Z.



EXCLUSION RESTRICTION. Example 1. Misclassification Model

e The researcher is interested in the relationship between variables Y and w
where w € {1,2,..., L} is a categorical variable: Pr(Y |w).

e However, w is not observable, or is observable with error. The researcher
observes the categorical variable Z € {1,2,...,|Z|} that is a noisy measure of
w, i.e., there are misclasifications when using Z instead of w.

e In this model, Pr(Y | w,Z) = Pr(Y | w), i.e., given the correct category
w, the noisy category Z becomes redundant. [Exclusion Restriction].

e Pr(w | Z) depends on Z, i.e., Z is not complete noise and it contains some
information about w. [Relevance].



EXCLUSION RESTRICTION. Example 2. Demand Model

e Consider the following demand model using individual level data in a single
market:

Y =d(X,w,e¢)
Y = Quantity purchased of the product by a consumer;

X = Vector of exogenous consumer characteristics affecting demand: e.g.,
income, wealth, education, age, gender, etc.

w = Unobserved consumer characteristics that can be correlated with X (en-
dogenous unobservable)

e = Unobserved consumer characteristics independent of (X, w)

e The researcher is interested in the estimation of Pr (Y| X, w).



EXCLUSION RESTRICTION. Example 2. Demand Model

e Suppose that the researcher can classify consumers in different groups, e.g.,
according to their geographic location / region. Let Z be the observable
variable that represents the geographic location of the consumer.

e [Exclusion Restriction]. Pr(Y | X, Z,w) = Pr(Y | X,w), i.e., given (X, w)
a consumer's location is redundant to explain her demand. A single common
market without transportation costs.

e [Relevance]. Pr(w | X, Z) depends on Z. After controlling for X, the
unobservable w a different probability distribution across locations.



EXCLUSION RESTRICTION. Example 3. Local Market Competition

e Game of oligopoly competition in a local market, e.g., game of market entry.
Sample of M local markets. Model:

Y =g(X,w,e)
Y = Number of active firms in the local market;

X = Vector of exogenous market characteristics: e.g., population, income,
Input prices, etc.

w = Unobserved market characteristics that can be correlated with X (endoge-
nous unobservable)

e = Unobserved consumer characteristics independent of (X, w)

e The researcher is interested in the estimation of Pr (Y| X, w).



EXCLUSION RESTRICTION. Example 3. Local Market Competition

e Let Z;, be the average value of X in local markets nearby market m.

e [Exclusion Restriction]. Pr(Y | X, Z,w) = Pr(Y | X,w), i.e., competi-
tion is independent across markets; given market characteristics (X, w) the
characteristics of other nearby markets Z are irrelevant.

e [Relevance]. Pr(w | X,Z) depends on Z. |If w is spatially correlated
(cov(wm,w,,) # 0) and and w is correlated with X (cov(w,, s, Z,,,1) # 0),
then Z = X,/ may contain information about wm (cov(wm, X,,s) # 0).



Henry, Kitamura, and Salanie (HKS)

L
e Consider the model: P (Y | Z) = ) ww(Z) fw(Y)

w=1

e They show that the parameters of the model, {7, (Z), fu (Y | Z)} are
identified up to L(L — 1) constants. These unknown constants belong to
a compact space, and this implies that {7y, (Z), fu (Y | Z)} are partially
identified. HKS derive the sharp bounds of the identified set.

e Under some additional conditions, the model can be point-identified.

e Here | illustrate these results for the case with L = 2 types or components.



Henry, Kitamura, and Salanie (HKS) [2]

e Consider the NPFM model with L = 2:

PY [Z)=[1-n(Z2)] fo(Y)+7(Z) f1(Y)

where Y and Z are scalar variables, and for simplicity suppose that they have
discrete support.

e The model parameters are {7 (2) : z € Z} and {fo(v), f1(y) : y € V}.
# Parameters = | Z| 4+ 2(|)Y| — 1).

e Restrictions: # free probsin P(Y | Z) = (|Y| — 1) | Z]|.

e Order condition for point identification: |Y| > 3and |Z| > 2(|Y|—1)/(|Y|—
2).



Henry, Kitamura, and Salanie (HKS) [3]

e Consider y € ) (we show identification pointwise in y). Let zg, 21 € Z be
such that 7 (2g9) # 7 (21). For convenience, let zg and z1 be zg = argmin, ¢z
P(y | z)and zy = argmax,cz P(y | z),suchthat P(y | 21)—P (y | z09) >
0 and it takes its maximum value.

e The model (and exclusion restriction) implies that:

P(y|z1)— Pyl 2)=I[r(z1) — 7 (20)] [f1(¥) — fo(y)]

e And for any z € Z,

r(z) = P(ylz)—P(y]|z) _ m(2)—7(2)
P(y|z1)—P(y|z) 7(z1)—7(20)

Note that for any z € Z, r(z) € [0, 1] with 7 (2g) =0 and r(21) = 1.



Henry, Kitamura, and Salanie (HKS) [4]
e Test of Exclusion Restriction + # Components (L) assumptions.

e Suppose that |V|> 3 such that there are two values y,73’ € ). Let r (y, 2)
and 7 (', z) be the probability ratios associated with y and %/, respectively.

e The model implies that:

N _PWID-Plx) PWI1)-PW %) _
027 (v2) = B oy = Pyl 20) PO o)~ PO 20)

Since is NP identified, we can construct a [Chi-square] test of this restriction.



Henry, Kitamura, and Salanie (HKS) [5]

e Define the unknown constants: @ = 7 (2g) and 8 = 7 (21) — 7 (2g). Since
r(z) = [r(2) — 7 (20)] /7 (21) — 7 (20), we have that:

m(z) =a+fr(z)

e And it is straightforward to show that:
«
foly) = Py zo)—E[P(y | 2) = P (y | 20)]

1 — «

fiy) = P(y]20)+ 5 [P(y|z)— Py 20)]

So all the model parameters, {7 (2) : z € Z} and {fo(v), f1(y) : y € YV},
are identified from the data up to two constants, o and S.




Henry, Kitamura, and Salanie (HKS) [6]

e To obtain sharp bounds on the model parameters, we need to take into
account that the model imposes also restrictions on the parameters « and 3.

e Without loss of generality, we can make 3 > 0 (choosing the sign of S is like
labelling the unobserved types; i.e., w = 1 is the type with a probability that
increases when z goes from zg to z1).

e HKS show that the model implies the following sharp bounds on («,5):

1 < %<
— fr‘-
1 — 5sup =5 = inf
| e 1
T'sup < <

B 1— 5inf



where

Tinf = inszZ—{zo,zl} T(z)

T'sup = SupZEZ—{Zo,zl} ’I“(Z)

P(y|#1)
<Y P(ylzo)

5inf = Inf

P(yl|z1)

5sup p— Supyey —P(y|z0) .

e Using these sharp bounds on («,3) and the expression that relate the model
paramaters with the data and («,(), we can obtain sharp bounds on the model

parameters, {7 (z) : z € Z} and {fo (v), f1(y) : y € V}.



Point Identification: Example. "ldentification to infinity"

e Since m(z) = a4+ B r(z), we can test the monotonicity of function 7 (2)
by testing the monotonicity of the identified function r (z).

e Suppose that 7 (z) is a monotonic function.

ASSUMPTION: There are values 27 and zj; in Z such that 7 (z) = 0 for
any z < 27 and w(z) = 1 for any z > z7;. [For instance, 27 = zp and

Z?{ — Zl].

Under this assumption, all the parameters of the model are point identified.



9. APPLICATION TO GAMES

e Aguirregabiria and Mira (2015): “ldentification of Games of Incomplete
Information with Multiple Equilibria and Unobserved Heterogeneity” .

e This paper deals with the identification, estimation and counterfactuals in
empirical games of incomplete/asymmetric information when there are three
sources of unobservables for the researcher:

1. Payoff-Relevant variables, common knowledge to players (PR);
2. Payoff-Relevant variables, players’ private information (Pl);
3. Non-Payoff-Relevant or "Sunspot" variables, common knowl-

edge to players (SS);

e Previous studies have considered: only [PIl]; or [Pl] and [PR]; or [PI] and
[SS]; but not the three together.



EXAMPLE (Based on Todd & Wolpin’s "Estimating a Coordination
Game within the Classroom")

e In a class, students and teacher choose their respective levels of effort. Each
student has preferences on her own end-of-the-year knowledge. The teacher
cares about the aggregate end-of-the-year knowledge of all the students.

e A production function determines end-of-the-year knowledge of a student:
it depends on student’s own effort, effort of her peers, teacher’'s effort, and
exogenous characteristics.

e PR unobs: Class, school, teacher, and student characteristics that are known
by the players but not to the researcher.

e Pl unobs: Some student’s and teacher’s skills may be private info.

e SS unobs: Coordination game with multiple equilibria. Classes with the
same PR (human capital) characteristics may select different equilibria.



WHY IS IT IMPORTANT TO ALLOW FOR PR and SS UNOBS. ?

[1] Ignoring one type of heterogeneity typically implies that we over-estimate
the contribution of the other.

e Example: In Todd and Wolpin, similar schools (in terms of observable
inputs) have different outcomes mainly because they have different PR unob-
servables (e.g., cost of effort); or mainly because they have selected a different

equilibrium.

[2] Counterfactuals: The two types of unobservables (PR and SS) enter differ-
ently in the model. They can generate very counterfactual policy experiments.



CONTRIBUTIONS OF THE PAPER

e \We study identification when the three sources of unobservables may be
present and in a fully nonparametric model for payoffs, equilibrium selection
mechanism, and distribution of PR and SS unobservables.

e Specific contributions. IDENTIFICATION:

1. Under standard exclusion conditions for the estimation of games,
we show that the payoff function, and the distributions of PR and SS
unobserved heterogeneity are NP identified.

2. Test of the hypothesis of "No PR unobservables" (it does not

require "all" the exclusion restrictions);



DISCRETE GAMES OF INCOMPLETE INFORMATION

e NN players indexed by 7. Each player has to choose an action, a;, from a
discrete set A = {0, 1, ..., J}. to maximize his expected payoff.

e The payoff function of player ¢ is:

N; = mi(a;, a_;, x,w) + €(a;)

° a_; € AN=1 is a vector with choices of players other than i:

° x € X and w € 2 are exogenous characteristics, common
knowledge for all players. x is observable to the researcher, and w is
the Payoff-Relevant (PR) unobservable;

o e; = {¢;(a;) : a; € A} are private information variables for
player 7, and are unobservable to the researcher.



BAYESIAN NASH EQUILIBRIUM

e A Bayesian Nash equilibrium (BNE) is a set of strategy functions {o;(x, w, €;) :
i = 1,2,..., N} such that any player maximizes his expected payoff given the
strategies of the others:

oi(x,w, &) = arg max Be_; (mi(a;, o-i(x,w,e-), x, w)) +ei(as)

a;

e It will be convenient to represent players’ strategies and BNE using Condi-
tional Choice Probability (CCPs) functions:

Py | x,w) = [ H{oix,w,e) = ai} dGiley)

e In this class of models, existence of at least a BNE is guaranteed. There may
be multiple equilibria.



MULTIPLE EQUILIBRIA

e For some values of (x,w) the model has multiple equilibria. Let I'(x,w) be
the set of equilibria associated with (x,w).

e We assume that I'(x,w) is a discrete and finite set (see Doraszelski and
Escobar, 2010) for regularity conditions that imply this property.

e Each equilibria belongs to a particular "type" such that a marginal pertur-
bation in the payoff function implies also a small variation in the equilibrium
probabilities within the same type.

e We index equilibrium types by 7 € {1,2,...}.



DATA, DGP, AND IDENTIFICATION

e T he researcher observes T realizations of the game; e.g., T' markets.

Data =A{ a1, agt,...,any, Xe:t=1,2,...,T }
e DGP.

(A) (x¢, w¢) ~ t.9.d. draws from CDF Fy .. Support of wy is
discrete (finite mixture);

(B) The equilibrium type selected in observation t, 7¢, is a random
draw from a probability distribution A(7|x¢, we);

(C) ar = (a1, ast, ..., apny) is a random draw from a multinomial
distribution such that:

N
Prat | x¢,wt, 7¢) = ,Hl Pi(a;t | x¢, we, Tt)
1=



IDENTIFICATION PROBLEM

o Let Q(alx) be the probability distribution of observed players' actions con-
ditional on observed exogenous variables: Q(a|x) = Pr(a; = a | x; = x).

e Under mild regularity conditions, Q(.|.) is identified from our data.
e According to the model and DGP:

N
Qlalx)= > > Ful(wx) A7|x,w) | IT Pi(ait | X¢, we, 745 7)
we 7eT(x,w) 1=1
(1)

e The model is (point) identified if given QQ there is a unique value {m, F,
A} that solves the system of equations ().



IDENTIFICATION QUESTIONS

e We focus on three main identification questions:

1. Sufficient conditions for point identification of {7, Fi,, A};
2. Test of the null hypothesis of No PR unobservables;

3. Test of the null hypothesis of No SS unobservables;

e With a nonparametric specification of the model, is it possible to reject the
hypothesis of "No SS unobservables" and conclude that we need "multiple
equilibria" to explain the data?



THREE-STEPS IDENTIFICATION APPROACH

e Most of our identification results are based on a three-step approach.

o Let £ = g(w, 7) be a scalar discrete random variable that represents all the
unobserved heterogeneity, both PR and SS. & does not distinguish the source
of this heterogeneity.

o Let H(E|x) be the PDF of €, i.e., H(£]x) = Flo(w|x) A(7|x, w)



STEP 1. NP identification of H(&|x) and CCPs P;(a;|x, &) that satisfy
restrictions:

e We use results from the literature of identification of NPFM based on
conditional independence restrictions.



STEP 2. Given the CCPs {P;(a;|x,&)} and the distribution of ¢;, it is
possible to obtain the differential-expected-payoff function 7?71:3 (a;,x,&).

° %f(ai, X, &) is the expected value for player i of choosing alternative a; minus
the expected value of choosing alternative 0. By definition:

%fip(a’iaxaf) = Z (gpj(aﬂxa g)) [ﬂ-i(a’i) CL_Z',X,UJ) — 7Ti(07 CL_Z',X,CU)]
JF1

a—;

e Given this equation and the identified 7; and {P;}, we study the identifica-
tion of the payoff ;.

e \We use exclusion restrictions that are standard for the identification of games.



STEP 3. Given the identified payoffs 7; and the distribution H(£|x), we
study the identification of the distributions Fi,(w|x) and A(7|x,w).

e Testing the null hypothesis of "No PR heterogeneity" does not require steps
2 and 3, but only step 1.

e This three-step approach does not come without loss of generality. Sufficient
conditions of identification in step 1 can be 'too demanding’. We have examples
of NP identified models that do not satisfy identification in step 1.



IDENTIFICATION IN STEP 1

e Point-wise identification (for every value x) of the NP finite mixture model:

Q(ay,az,...ay | x) =Y H(£[x) [ﬁl Pi(a; | %, f)]
§ =

e Identification is based on the independence between players’ actions once we
condition on (x,&).

e We exploit results by Hall and Zhou (2003), Hall, Neeman, Pakyari, and
Elmore (2005), and Kasahara and Shimotsu (2010).



IDENTIFICATION IN STEP 1 (11)

® Let L¢ is the number of "branches" that we can identify in this NP finite

mixture.

PROPOSITION 1. Suppose that: (a) N > 3; (b) Le < (J + 1)nt(N=1)/2];
(c) Pyj.(ﬁ = 1), Pyj.(ﬁ =2), ..., Pyj(g = Ly¢) are linearly independent. Then,
the distribution H and players’ CCPs P;’s are uniquely identified, up to label
swapping. |

e We cannot identify games with two players.

e With N > 3 we can identify up to (J 4+ 1)t(N=1)/2] market types.



IDENTIFICATION IN STEP 2 (two players)

e In a binary choice game with two players, ¢ and 7, the equation in the second
step Is:

7 (%, ) = ai(x,w) + Bi(x,w) P;(x,€)

where:

Oé’i(X?("J) 7T7:(1,O,X,Cd)

Bi(x,w) = mi(L,1,x,w) —m(1,0,x,w)

e We know 7~T,LP(X, §) and Pj(x,§) for every (x,§), and we want to identify
a;(.,.) and B,(.,.). This is "as if" we were regressing %{)(X, §) on P(x,§).



IDENTIFICATION IN STEP 2 [2]

e From the first step, we do not know if £ is PR or SS unobserved heterogeneity.
The worst case scenario for identification in the second step is that all the

unobservables are PR:

7P(x,€) = ai(x,€) + Bi(x,€) Pi(x,€)

e Then, the "parameters" «;(x,£&) and B,(x,£) have the same dimension
(sources of variation) as the known function 7! (x, ) and P;(x,£) and iden-
tification is not possible without additional restriction.

e This identification problem appears even without unobserved heterogeneity:

70 (x) = ai(x) + Bi(x) Pj(x)



IDENTIFICATION IN STEP 2 [3]

ASSUMPTION [Exclusion Restriction]. x = {x€, z;, z;} where z;,z; € Z
and the set Z is discrete with at least J + 1 points, and

mi(a;, a_i, x,w) = mi(a;, a_;, X, 2z, w)

[Relevance] And there are 2 # 2} such that P;(x¢, zj, 29, £) # P;(x%, 24, 27, €).

PROPOSITION 3. Under the Exclusion Restriction + Relevance assumptions,
the payoff functions m; are identified. |



IDENTIFICATION IN STEP 3

o Let IT;(x) be the matrix with dimension J(J+1)¥ 1 x L¢ that contains all
the payoffs {m;(a;, a_;,x, &)} for a given value of x. Each column corresponds
to a value of £ and it contains the payoffs 7;(a;, a_;,x, &) for every value of
(a;, a_;) with a; > 0.

e If two values of £ represent the same value of w, then the corresponding
columns in the matrix I1;(x) should be equal.

e Therefore, the number of distinct columns in the payoff matrix II;(x) should
be equal to L. That is, we can identify the number of mixtures L, as:

L,(x) = Number of distinct columns in IL;(x)

PROPOSITION 5. Under the conditions of Propositions 1 and 3, the one-to-one
mapping & = g(w, 1) and the probability distributions of the unobservables,
Fu(w|x) and \(7|x,w), are nonparametrically identified. H



TEST OF HYPOTHESIS "NO PR UNOBSERVABLES"



TEST OF HYPOTHESIS "NO SS UNOBSERVABLES"



