
IDENTIFICATION AND ESTIMATION

OF NONPARAMETRIC FINITE MIXTURES

(ECO 2403)

Victor Aguirregabiria

Winter 2016

1. Introduction and Examples of NPFM models

2. ML Estimation of FM models: EM Algorithm

3. Identi�cation of NPFM: Basic Concepts



4. Identi�cation under Conditional Independence

5. Estimation Methods

6. Identi�cation and Tests of the Number of Mixtures

7. Identi�cation of Markov NPFM

8. Identi�cation using Exclusion Restrictions

9. Applications to Games



REFERENCES

EM algorithm:

� Dempster, Laird, and Rubin (JRSS, 1977)

� Wu (AS, 1983)

� Arcidiacono and Jones (ECMA, 2003)

Identi�cation (Cross-section):

� Hall, and Zhou (AS, 2003)

� Allman, Matias, and Rhodes (AS, 2009)

� Bonhomme, Jochmans, and Robin (JRSS, 2016)

� Compiani and Kitamura (2015)



REFERENCES

Identi�cation: Number of Mixtures

� Kasahara and H., and K. Shimotsu (JRSS, 2014)

� Kasahara and Shimotsu (JASA, 2015)

Identi�cation: Markov Models

� Kasahara and Shimotsu (ECMA, 2009)



REFERENCES

Estimation

� Arcidiacono and Jones (ECMA, 2003)

� Arcidiacono and Miller (ECMA, 2011)

� Bonhomme, Jochmans, and Robin (JRSS, 2016)

Applications to Games

� Bajari, Hong, and Ridder (IER, 2011)

� Aguirregabiria and Mira (2015)



1. INTRODUCTION.

� Unobserved heterogeneity is pervasive in economic applications. Hetero-
geneity across individuals, households, �rms, markets, etc.

� Not accounting for unobserved heterogeneity may imply important biases in
the estimation of parameters of interest, and in our understanding of economic
phenomena.

� The key feature of Finite Mixture models is that the variables that repre-
sent unobserved heterogeneity have �nite support. There is a �nite number of
unobserved types.

� As we will see, this �nite support structure can be without loss of generality.



INTRODUCTION.

� FM models have been extensively applied in statistics (e.g., medical science,
biology) to identify and deal with unobserved heterogeneity in the description
of data.

� These models are currently receiving substantial attention in Structural
Econometrics in the estimation of dynamic structural models and empirical
games.

� Two-step estimation procedures in Structural Econometrics. The �rst
step in these methods involves nonparametric estimation of agents�choice prob-
abilities conditional not only on observable state variables but also on time-
invariant individual unobserved heterogeneity (dynamic models) or market-level
unobserved heterogeneity in games.



INTRODUCTION: Example. Dynamic structural model

� ynt 2 f0; 1g Firm n�s decision to invest in a certain asset (equipment) at
period t. Model:

ynt = 1
n
"nt � v

�
yn;t�1; !n

�o
where "nt is unobservable and i.i.d. with CDF F", and !n is unobservable,
time invariant, and heterogeneous across �rms.

� The conditional choice probability (CCP) for a �rm is:

Pr(ynt = 1 j yn;t�1; !n = !) � P! (ynt�1) = F" [v (ynt�1; !)]



Example. Dynamic structural model [2]

� Given panel data of N �rms over T periods of time, fynt : t = 1; 2; :::; T ;

n = 1; 2; :::; Ng, the Markov structure of the model, and a Finite Mixture
structure for !n, we have that:

Pr (yn1; yn2; :::; ynT ) =
LX
!=1

�!

24P �!(yn1) TY
t=2

P! (ynt�1)
ynt [1� P! (ynt�1)]1�ynt

35

� We present conditions under which the "type-speci�c" CCPs P! (ynt�1) are
NP identi�ed from these data.

� These estimates can be used to construct value functions, and this approach
can facilitate very substantially the estimation of structural parameters in a
second step.



Example. Static Game of Market Entry

� T �rms, indexed by t = 1; 2; :::; T , have to decide whether to be active or
not in a market m. ymt 2 f0; 1g is �rm t�s decision to be active in market m.

� Given observable market characteristics xm and unobserved market charac-
teristics !m, the probability of entry of �rm t in a market of "type" ! is:

Pr(ymt = 1 j xm; !n = !) � P!;t (xm)



Example. Static Game of Market Entry [2]

� In a game of incomplete information with independent private values, we have
that:

Pr (ym1; ym2; :::; ymT j xm) =
LX
!=1

�!

24 TY
t=1

P!;t (xm)
ymt

h
1� P!;t (xm)

i1�ymt35

� Given a random sample of M markets, we provide conditions under which it
is possible to use these data to identify NP �rms�CCPs P!;t (xm) for every
�rm t and every market type !.

� These estimates can be used to construct �rms�expected pro�ts and best
response functions, and this approach can facilitate very substantially the esti-
mation of structural parameters of the game in a second step.



INTRODUCTION: Variables and Data

� Let Y be a vector of T random variables: Y = (Y1; Y2; :::; YT ). We
index these random variables by t 2 f1; 2; :::; Tg. We use small letters, y =
(y1; y2; :::; yT ) to represent a realization of Y.

� The researcher observes a random sample with N i.i.d. realizations of Y,
indexed by n, fyn : n = 1; 2; :::; Ng.

� EXAMPLES:

(1) Standard longitudinal data. Y is the history over T periods of time of a
variable measured at the individual level (or �rm., or market, level). N is the
number of individuals in the sample.



� EXAMPLES:

(2) Y is the vector of prices of T �rms in a market. N is the number of
markets in the sample.

(3) Y is the vector with the characteristics of T members of a family. N is
the number of families in the sample.

(4)Y is the vector with the academic outcomes of T students in a classroom.
N is the number of classrooms in the sample.

(5) Y is the vector of actions of T players in a game. N is the number of
realizations of the game in the sample.



INTRODUCTION: Conditioning Exogenous Variables

� In most applications, the econometric model includes also a vector of observ-
able exogenous variables X, such that the data is a random sample, fyn;xn :
n = 1; 2; :::; Ng.

� The researcher is interested in the estimation of a model for P (Y j X).

� For notational simplicity, we will omit X as an argument and use P (Y).

� Now, incorporating exogenous conditioning variables in NPFM models is not
always trivial. I will be explicit when omitting X is without loss of generality
and when it is not.



INTRODUCTION: Mixture Models

� Mixture models are econometric models where the observable variable is
the convolution or mixture of multiple probability distributions with di¤erent
parameters, and the parameters themselves follow a probability distribution.

P (Y) =
Z
� (!) f! (Y) d!

- Y is the observable variable(s)

- P (Y) is the mixture distribution

- ! is the unobserved (or mixing) variable (unobserved type)

- f! (Y) are the type-speci�c density

- � (!) is the mixing distribution



INTRODUCTION: Nonparametric Finite Mixture models

� Nonparametric Finite Mixture models are mixture models where:

[1] The mixing distribution � (!) has �nite support;

! 2 
 = f1; 2; :::; Lg

such that:

P (Y) =
LX
!=1

�! f! (Y)

with
PL
!=1 �! = 1.

[2] Both the type-speci�c distributions f (Y j !) and the mixing distributions
� (!) are nonparametrically speci�ed.



INTRODUCTION: Example. Finite Mixture of Normals (Parametric)

� Y = Y1 (single variable).

P (Y1) =
LX
!=1

�!
1

�!
�

�
Y1 � �!
�!

�

In this case, the identi�cation is based on the shape of the distribution P (Y1).
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INTRODUCTION: Example. Panel data.

� Y = (Y1; Y2; :::; YT ) is the history of log-earnings of an individual over T
periods of time.

� There are L types of individuals according to the stochastic process for the
history of earnings:

P (Y1; Y2; :::; YT ) =
LX
!=1

�! f! (Y1; Y2; :::; YT )



INTRODUCTION: Example. Market entry

� There are T �rms that are potential entrants in a market. Y = (Y1; Y2; :::; YT )

with Yt 2 f0; 1g is the vector with the entry decisions of the T �rms.

� The researcher observes these T �rms making entry decisions at N indepen-
dent markets.

� There are L types of markets according to unobservable market characteristics
a¤ecting entry decisions.

P (Y1; Y2; :::; YT ) =
LX
!=1

�! f! (Y1; Y2; :::; YT )



2. ML ESTIMATION OF FM MODELS

� Consider a (semiparametric) FM model with P (Yn) =
PL
!=1 �! f! (Yn;�!).

The vector of parameters � � (�;�) = (�!; �! : ! = 1; 2; :::; L). And the
log-likelihood function is:

` (�) =
NX
n=1

`n (yn; �)

where `n (yn; �) is the contribution of observation n to the log-likelihood.

`n (yn; �) =
LX
!=1

�! log f! (yn; �!)

� Maximization of this function w.r.t. � is a computationally complex task,
i.e., many local maxima.



MLE ESTIMATION: EM ALGORITHM

� The EM (Expectation-Maximization) algorithm is an iterative method for the
maximization of the MLE in �nite mixture models. It is a very robust method
in the sense that, under very mild conditions, each iteration improves the LF.

� To describe the EM algorithm an its properties, it is convenient to obtain an
alternative description of the log-likelihood function.

� First, for arbitrary parameters �, de�ne the posterior probabilities �post!;n (�),
such that:

�post!;n (�) � P (!jyn; �) =
�! f! (yn;�!)PL

!0=1 �!0 f!0 (yn;�!0)



MLE ESTIMATION: EM ALGORITHM [2]

� Second, note that P (!n; ynj�) = P (!njyn; �) P (ynj�). Therefore,

`n (yn; �) � logP (ynj�) = logP (!n; ynj�)� log �post!;n (�)

� Integrating the RHS over the posterior distribution f�post!;n (�) : ! = 1; 2; :::; Lg,
we get:

`n (yn; �) =

0@ LX
!=1

�
post
!;n (�) logP (!; ynj�)

1A

�

0@ LX
!=1

�
post
!;n (�) log �

post
!;n (�)

1A



MLE ESTIMATION: EM ALGORITHM [3]

� And the log-likelihood function can be written as:

` (�) =

0@ NX
n=1

LX
!=1

�
post
!;n (�) [log �! + log f! (yn; �!)]

1A

�

0@ NX
n=1

LX
!=1

�
post
!;n (�) log �

post
!;n (�)

1A



MLE ESTIMATION: EM ALGORITHM [4]

� Then, we can write the log-likelihood function as:

` (�) = Q
�
�; �post (�)

�
�R

�
�post (�)

�
with

Q
�
�; �post (�)

�
=

NX
n=1

LX
!=1

�
post
!;n (�) [log �! + log f! (yn; �!)]

R
�
�post (�)

�
=

NX
n=1

LX
!=1

�
post
!;n (�) log �

post
!;n (�)

� Keeping the posterior probabilities f�post!;n g constant at arbitrary values, we
have the Pseudo-Likelihood function:

Q
�
�; �post

�
=

NX
n=1

LX
!=1

�post!;n [log �! + log f! (yn; �!)]



MLE ESTIMATION: EM ALGORITHM [5]

� Given initial values b�0, and iteration of the EM algorithm makes two di¤erent
steps in order to obtain new values b�1.
(1) Expectation Step: Computes the posterior probabilities

�
post;0
!;n = �

post
!;n

�b�0� for every ! and n.
(2)Maximization Step: Maximization of the pseudo log-likelihoodQ

�
�; �post;0

�
with respect to �, keeping �post;0 �xed.



EM ALGORITHM: Expectation Step

� Given initial values b�0, we construct the posterior mixing probabilities �post!;n

for any ! and any observation n in the sample:

�post!;n =
b�0! f! �yn; b�0!�PL

!0=1 b�0!0 f!0
�
yn; b�0!0�



EM ALGORITHM: Maximization Step w.r.t. �

� Taking the posterior probabilities f�post!;n g �xed, we maximizeQ
�
�; �post

�
=PN

n=1
PL
!=1 �

post
!;n [log �! + log f! (yn; �!)] with respect to �.

� It is straightforward to show that the vector b�1 that maximizes Q ��; �post�
with respect to � is:

b�1! = 1

N

NX
n=1

�post!;n =
1

N

NX
n=1

b�0! f! �yn; b�0!�PL
!0=1 b�0!0 f!0

�
yn; b�0!0�



EM ALGORITHM: Maximization Step w.r.t. �

� Taking the posterior probabilities f�post!;n g �xed, we maximizeQ
�
�; �post

�
=PN

n=1
PL
!=1 �

post
!;n [log �! + log f! (yn; �!)] with respect to �.

� For every value !, the new value b�1! solves the likelihood equations:
NX
n=1

�post!;n

@ log f!

�
yn; b�1!�

@�!
= 0

� In many applications, this type-speci�c log-likelihood is easy to maximize
(e.g., it is globally concave).



EM ALGORITHM: Example 1 (Mixture of Normals)

� Suppose that Y is a FM of L normal random variables with di¤erent means
and known unit variance. We want to estimate � and � = (�1; �2; :::; �L).

Q
�
�; �post

�
=

NX
n=1

LX
!=1

�post!;n [log �! + log � (yn � �!)]

� Expectation Step:

�post!;n =
b�0! � �yn � b�0!�PL

!0=1 b�0!0 � �yn � b�0!0�



EM ALGORITHM: Example 1 [cont]

� Maximization Step:

b�1! =
1

N

NX
n=1

�
post
!;n

b�1! =

PN
n=1 �

post
!;n ynPN

n=1 �
post
!;n



EM ALGORITHM: Example 2 (T Bernoullis, Mixture of i.i.d. Bernoullis)

� Suppose that Y = (Y1; Y2; :::; YT ) is a vector of binary variables, Yt 2
f0; 1g. Conditional on !, these T variables are i:i; d: Bernoulli with probability
�!.

P (yn) =
LX
!=1

�! [�!]
T 1n [1� �!]T�T

1
n

with T 1n =
PT
t=1 ytn.

� We want to estimate � and � = (�1; �2; :::; �L).

Q
�
�; �post

�
=

NX
n=1

LX
!=1

�post!;n

h
log �! + T

1
n log �! +

�
T � T 1n

�
log [1� �!]

i



EM ALGORITHM: Example 2 [cont]

� Expectation Step:

�post!;n =
b�0! �b�0!�T 1n �

1� b�0!�T�T 1n
PL
!0=1 b�0!0

�b�0!0�T 1n �
1� b�0!0�T�T 1n

� Maximization Step:

b�1! =
1

N

NX
n=1

�
post
!;n

b�1! =

PN
n=1 �

post
!;n

"
T 1n
T

#
PN
n=1 �

post
!;n



EM ALGORITHM: Example 3 (T Multinom., Mixture of i.i.d. Multinom.)

� Suppose that Y = (Y1; Y2; :::; YT ) is a vector of multinomial variables,
Yt 2 f0; 1; :::; Jg. Conditional on !, these T variables are i:i; d: multinomial
with vector of probabilities �! = (�!;1; �!;2; :::; �!;J).

P (yn) =
LX
!=1

�!
h
�!;1

iT 1n ::: h�!;JiT Jn h
1�PJ

j=1 �!;j
iT�PJ

j=1 T
j
n

with T jn =
PT
t=1 1fytn = jg.

� We want to estimate � and � = (�!;j : ! = 1; 2; :::; L; j = 1; 2; :::; J).

Q
�
�; �post

�
=

NX
n=1

LX
!=1

�post!;n

24log �! + JX
j=0

T jn log �!;j

35



EM ALGORITHM: Example 3 [cont.]

� Expectation Step:

�post!;n =
b�0! �b�0!;0�T 0n �b�0!;1�T 1n ::: �b�0!;J�T Jn

PL
!0=1 b�0!0

�b�0!0;0�T 0n �b�0!0;1�T 1n ::: �b�0!0;J�T Jn

� Maximization Step:

b�1! =
1

N

NX
n=1

�
post
!;n

b�j! =

PN
n=1 �

post
!;n

24T jn
T

35
PN
n=1 �

post
!;n



EXERCISE:

� Consider a FM for Y = (Y1; Y2; Y3), with Yt 2 f0; 1; 2g, and with ! 2
f1; 2g. Conditional on !, the three variables (Y1; Y2; Y3) are i:i:d: multinomial
distributed with parameters �!;0, �!;1, �!;2. The values of the parameters
are:

�1 = 0:2; �!=1;0 = 0:1; �!=1;1 = 0:3; �!=1;2 = 0:6;

�2 = 0:8; �!=2;0 = 0:5; �!=1;1 = 0:4; �!=1;2 = 0:1;

�Write program code that generatesN = 1000 observations yn = (y1n; y2n; y3n)
from this distribution.

� Write program code that implements the EM-algorithm for these (simulated)
and obtain estimates of the parameters of the model (�; �!;j).



EM ALGORITHM: Monotonicity and Convergence

� Let f�(k) : k � 0g be the sequence of parameters generated by the EM
algorithm given an arbitrary initial value �(0).

� In the original paper that proposed the EM algorithm, Dempster, Laird, and
Rubin (JRSS, 1977) showed that [by construction] the likelihood function is
monotonically increasing in this sequence:

`
�
�(k+1)

�
� `

�
�(k)

�
for any k � 0

� In a compact parameter space �, this property implies that the sequence
f�(k) : k � 0g converges to some value �� 2 �.



EM ALGORITHM: Monotonicity and Convergence [2]

� Wu (AS, 1983) shows that if the likelihood is continuous in �, then the limit
value �� is a local maximum.

� Convergence to the global maximum requires stronger conditions.
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3. IDENTIFICATION OF NPFM MODELS: Basics [1]

�We have implicitly assumed that the vector of parameters � is point identi�ed,
i.e., there is a unique value � 2 � that maximizes the likelihood function.

� This is not necessarily the case. There are many simple examples where the
model is not identi�ed.

� We concentrate on the identi�cation of NPFM models where Y is discrete.

� More speci�cally: Y = (Y1; Y2; :::; YT ) with Yt 2 f1; 2; :::; Jg, such that
Y 2 f1; 2; :::; JgT and can take JT values.

� For discrete Y, the NP speci�cation of the type-speci�c probability functions
f! (Y) implies an unrestricted multinomial distribution: f! (y) = �!;y.



IDENTIFICATION: Basics [2]

� Without further assumptions this model is not identi�ed. To see this,
note that the model can be described in terms of the following restrictions: for
any y 2 f1; 2; :::; JgT

P (y) =
LX
!=1

�! f! (y;�!)

� The number of restrictions is JT � 1, while the number of free parameters
is L � 1 (from �0!s) and L

h
JT � 1

i
. The order condition for identi�cation

requires:

JT � 1 � L� 1 + L
h
JT � 1

i
It is clear that this condition never holds for any L � 2.

� We need some to impose some restrictions on f! (y;�!).



IDENTIFICATION: Basics [3]

� We will consider identi�cation of NPFM models under four di¤erent types of
assumptions. Let Y = (Y1; Y2; :::; YT )

[1] Conditional i.i.d.

f! (y;�!) =
TY
t=1

p! (yt;�!) =
TY
t=1

JY
j=1

h
�!;j

i1fyt=jg

[2] Conditional independence

f! (y;�!) =
TY
t=1

p!;t
�
yt;�!;t

�
=

TY
t=1

JY
j=1

h
�!;t;j

i1fyt=jg



IDENTIFICATION: Basics [4]

[3] Conditional homogeneous Markov

f! (y;�!) = p!(y1)
TY
t=2

p! (yt j yt�1;�!)

= p!(y1)
TY
t=2

JY
j=1

h
�!;j(yt�1)

i1fyt=jg

[4] Conditional non-homogeneous Markov

f! (y;�!) = p!;1(y1)
TY
t=2

p!;t
�
yt j yt�1;�!;t

�

= p!;1(y1)
TY
t=2

JY
j=1

h
�!;j;t(yt�1)

i1fyt=jg



IDENTIFICATION: Basics [5]

� The previous discussion implicitly assumes that the researcher knows the true
number of mixtures L. This is quite uncommon.

� We will study the identi�cation L and present identi�cation results and tests
for a lower bound on L.



IDENTIFICATION: EM Algorithm when the model is not identi�ed

� When a model is not identi�ed, standard gradient search algorithms that
maximize the likelihood function ` (�) (e.g., Newton methods, BHHH) do
never converge and eventually reach points where a matrix is singular, e.g.,
the Hessian matrix or the matrix of the outer-product of the scores.

� "Unfortunately", this is not the case when using the EM algorithm. The
EM algorithm will converge to a point even if the model is not identi�ed. In
fact, it will converge very quickly.

� Of course, the convergence point depends on the initial value �(0). Di¤erent
initial values will return di¤erent convergence points for the EM algorithm.

� Therefore, one needs to be very careful when using the EM algorithm. The
research needs to verify �rst that identi�cation conditions hold.



EM Algorithm when the model is not identi�ed Example

� Y 2 f0; 1g is a single Bernoulli random variable (T = 1). There is only
one free probability in the distribution of Y, i.e., P (y = 1). The sample is
fyn : n = 1; 2; :::; Ng. Model:

P (yn = 1) =
LX
!=1

�! [�!]
yn [1� �!]1�yn

The vector of model parameters is � = (�;�) = (�!; �! : ! = 1; 2; :::; L).

� It is clear that the model is not identi�ed for any L � 2, i.e., 1 restriction
and 2L� 1 parameters.



EM Algorithm when the model is not identi�ed Example

� However, given an arbitrary initial value �0, the EM algorithm always con-
verges in one iteration to the following estimates of �! and �!: [Exercise:
Prove this]

b�! =
N0
N

24 �0!(1� �0!)PL
!0=1 �

0
!0(1� �

0
!0)

35+ N1
N

24 �0!�
0
!PL

!0=1 �
0
!0�

0
!0

35

b�! =

24 �0!�
0
!PL

!0=1 �
0
!0�

0
!0

35N124 �0!(1� �0!)PL
!0=1 �

0
!0(1� �

0
!0)

35N0 +
24 �0!�

0
!PL

!0=1 �
0
!0�

0
!0

35N1

� Note that these estimates depend on the initial values. Note also that the
posterior probabilities f�post!;n g remain at their initial values.



4. IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE

� We start with a model where the T variables (Y1; Y2; :::; YT ) are i.i.d. con-
ditional on !. Later we relax the assumption of identical distribution.

� We follow Bonhomme, Jochmans, and Robin (JRRS, 2016) but concentrate
on a model with discrete variables Yt. They present results for both discrete
and continuous observable variables.

� Model:

P (y1; y2; :::; yT ) =
LX
!=1

�! f! (y1) f! (y2) ::: f! (yT )

where yt 2 f1; 2; :::; Jg. L is known [more on this below].

� We have a sample fy1n; y2n; :::; yTn : n = 1; 2; :::; Ng with N !1, and
we are interested in the estimation of f�!g and f! (y) for any ! and y.



IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE [2]

� First, it is important to note that the joint distribution P (Y1; Y2; :::; YT )
is fully nonparametrically identi�ed from the sample fy1n; y2n; :::; yTn : n =
1; 2; :::; Ng, i.e., it can be consistently estimated without imposing any restric-
tion. We treat P (:) as known to the researcher.

� De�ne the J � L matrix.

F � [f1; f2; :::; fL] =

26664
f1 (1) f2 (1) � � � fL (1)
f1 (2) f2 (2) � � � fL (2)
... ... ...

f1 (J) f2 (J) � � � fL (J)

37775

ASSUMPTION 1: Matrix F is full column rank. [Note that this assumption
implies that L � J).



� We show below that Assumption 1:

(1) is easily testable from the data;

(2) is a necessary and (with T � 3) su¢ cient condition for identi�cation.



IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE [2]

� Suppose that T � 3. Let (t1, t2, t3) be the indexes of three of the T
variables (any 3 of the T variables). For arbitrary y 2 f1; 2; :::; Jg, de�ne the
J � J matrix:

A(y) �
h
aij(y)

i
=
h
Pr
�
yt1 = i ; yt2 = j j yt3 = y

�i
� The model implies that (with p(y) � Pr(yt = 1)):

aij(y) =
LX
!=1

Pr (!jym3 = y) Pr (ym1 = i ; ym2 = j j !; ym3 = y)

=
LX
!=1

�!
1

p(y)
f! (i) f! (j) f! (y)

=
h
f1 (i) � � � fL (i)

i
diag [�!] diag

�
f!(y)
p(y)

� 26664
f1 (j)
f2 (j)
...

fL (j)

37775



IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE [3]

� And in matrix form, we have that:

A(y) = F �1=2 D(y) �1=2 F0

(J � J) (J � L) (L� L) (L� L) (L� L) (L� J)

where � =diag [�!], and D(y) = diag
�
f!(y)
p(y)

�
.

� The matrix in the LHS is identi�ed. The matrices in the RHS depend of
parameters �! and f! (y) that we want to identify.

� De�ne J � J matrix A � E [A(y)] = PJ
y=0 p(y) A(y).

LEMMA: Matrix F has full column rank if and only if rank(A) = L.

� We will see how this result provides a direct test of identi�cation.



IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE [4]

� Proof of Lemma:

� By de�nition, A = F �� F0, where �� is the diagonal matrix

�� = �1=2diag

"
E
 
f! (y)

p(y)

!#
�1=2

� Since �� is a diagonal matrix with elements di¤erent than zero, and A = F

�� F0, we have that the rank(A) is equal to the number of linearly indepen-
dent columns of F, such that rank(A) � L. And in particular, rank(A) = L
if and only if rank(F) = L.



IDENTIFICATION UNDER CONDITIONAL INDEPENDENCE [5]

THEOREM: Under Assumption 1 (that implies L � J) and T � 3, all the
parameters of the model f�!g and ff!(y)g are point identi�ed.

� Proof of Theorem: The proof proceeds in three steps: (1) identi�cation
of diagonal matrix D(y); (2) identi�cation of f!(y); and (3) identi�cation of
�!. The proof is constructive, and as we will see later it provides a simple
sequential estimator.

� [1] Identi�cation of diagonal matrix D(y).

- Since A is a square (J � J), symmetric, and real matrix, it admits an
eigenvalue decomposition: A = V � V0.



[1] Identi�cation of diagonal matrix D(y). [cont.]

� Since rank(A) = L � J , only L of the eigenvalues in the diagonal matrix
� are di¤erent to zero. Therefore, A = VL �L V

0
L, where �L is the L� L

diagonal matrix with non-zero eigenvalues, and VL is the J � L matrix of
eigenvectors such that V0LVL = IL.

� De�ne the L� J matrixW = �
�1=2
L V0L. So far, all the matrix decompo-

sitions are based on matrix A. So it is clear that matrixW is identi�ed.

� MatrixW has a useful property. For any value of y 2 f0; 1; :::; Jg, we have
that:

W A(y)W0 =
�
�
�1=2
L V0L

� h
F �1=2 D(y) �1=2 F0

i �
VL �

�1=2
L

�
= U D(y) U0

with U � ��1=2L V0L F �
1=2.



[1] Identi�cation of diagonal matrix D(y). [cont.]

� It is straightforward to verify that matrix U is such that, UU0 = IL. There-
fore, the expression W A(y) W0 = U D(y) U0 means that U D(y) U0 is
the eigenvalue-eigenvector decomposition of matrixW A(y)W0.

- Since matrix W A(y) W0 is identi�ed, this implies that diagonal matrix is
also identi�ed.

- Note that the identi�cation of the elements ofU andD(y) is up-to-relabelling
of the !0s because any permutation of the columns of U and D(y) is a valid
eigenvalue-eigenvector decomposition of matrixW A(y)W0.



[2] Identi�cation of f! (y).

� Remember that: D(y) = diag

�
f!(y)
p(y)

�
. Therefore, if d!(y) is the ! � th

element in the main diagonal of matrix D(y), we have that:

f! (y) = E [d!(y) 1fyt = yg]

and f! (y) is identi�ed. In other words, given d!(y) we can obtain a consistent
estimator of f! (y) as:

bf! (y) = 1

NT

NX
n=1

TX
t=1

d!(ynt) 1fynt = yg



� [3] Identi�cation of �!.

� The model implies that,

p(y) =
LX
!=1

�! f! (y)

� And in vector form:
p = F �

where p is the J�1 vector of unconditional probabilities (p(y) : y = 1; 2; :::; J)0,
and � is the L� 1 vector of probability mixtures.

� Since F is full column rank, we have that (F0F) is non-singular and � can
be uniquely identi�ed as:

� =
�
F0F

��1 �
F0p

�



5. ESTIMATION METHODS

� The previous proof of identi�cation is constructive and it suggests the follow-
ing sequential estimation procedure:

Step 1: Method of moments (frequency) estimation of the matrices A and
A(y);

Step 2: Estimation (construction) of matrixW using an eigenvalue-eigenvector
decomposition of matrix A;

Step 3: Estimation (construction) of matricesU andD(y) using an eigenvalue-
eigenvector decomposition of matrixW A(y)W0;

Step 4: Method of moments estimation of f! (y) from the elements of diagonal
matrix D(y);

Step 5: Least squares estimation of � as
�
F0F

��1 �F0p�.



ESTIMATION [2]

� This estimator is consistent and asymptotically normal (root-N when variables
are discrete). It is also straightforward from a computational point of view
(e.g., no problems of multiple local maxima or no convergence). But it is not
asymptotically e¢ cient. Also, the construction of valid asymptotic standard
errors for this 5-step estimator using delta method is cumbersome. Bootstrap
methods can be applied.

� Asymptotic e¢ ciency can be achieved by applying 1-iteration of the BHHH
method in maximization of the (nonparametric) likelihood function and using
the consistent but ine¢ cient estimator as the initial value. This one-step-
e¢ cient approach provides also correct asymptotic standard errors.



6. IDENTIFICATION AND TESTS OF THE NUMBER OF MIX-
TURES

� Kasahara and H., and K. Shimotsu (JRSS, 2014)

� Kasahara and Shimotsu (JASA, 2015)



7. IDENTIFICATION UNDER MARKOV STRUCTURE

� Kasahara and Shimotsu (ECMA, 2009)



8. IDENTIFICATION USING EXCLUSION RESTRICTIONS

� The previous identi�cation results are based on the assumption of indepen-
dence between the T variables (Y1; Y2; :::; YT ) once we condition on the un-
observed type ! and possibly on observable exogenous variables X.

� All the NP identi�cation results using this conditional independence approach
require T � 3, regardless the number of points in the support of Yt.

� This is a very negative result because there are many interesting applications
with T = 2 (two endogenous variables) where we can easily reject the null
hypothesis of no unobserved heterogeneity, but we cannot identify a NPFM
model using only the conditional independence assumption.



IDENTIFICATION USING EXCLUSION RESTRICTIONS [2]

� Henry, Kitamura, and Salanie (QE, 2014) propose an alternative approach
to identify NPFM. Their approach is based on an exclusion restriction.

� Let Y be a scalar endogenous variable (T = 1) and letX and Z be observable
exogenous variables. Consider the NPFM model:

P (Y j X;Z) =
LX
!=1

Pr (! j X;Z) Pr (Y j !;X;Z)

=
LX
!=1

�! (X;Z) f! (Y j X;Z)

For notational simplicity, I will omit variable X (it does not play an important
role) such that all the results can be interpreted as conditional on a particular
value of X (i.e., X is discrete).



IDENTIFICATION USING EXCLUSION RESTRICTIONS [3]

� Model: P (Y j Z) =
LX
!=1

�! (Z) f! (Y j Z)

ASSUMPTION [Exclusion Restriction]: f! (Y j Z) = f! (Y )

ASSUMPTION [Relevance]: There are values z0 and z1 in the support of
Z such that �! (z1) 6= �! (z0)

� Variable Z enters in the mixing distribution �! but not in the component
distributions f!. Similarly as with IV models, the identi�cation strength of
these assumptions depends on the strength of the dependence of �! (Z) on Z.



EXCLUSION RESTRICTION. Example 1. Misclassi�cation Model

� The researcher is interested in the relationship between variables Y and !
where ! 2 f1; 2; :::; Lg is a categorical variable: Pr(Y j!).

� However, ! is not observable, or is observable with error. The researcher
observes the categorical variable Z 2 f1; 2; :::; jZjg that is a noisy measure of
!, i.e., there are misclasi�cations when using Z instead of !.

� In this model, Pr (Y j !;Z) = Pr (Y j !), i.e., given the correct category
!, the noisy category Z becomes redundant. [Exclusion Restriction].

� Pr (! j Z) depends on Z, i.e., Z is not complete noise and it contains some
information about !. [Relevance].



EXCLUSION RESTRICTION. Example 2. Demand Model

� Consider the following demand model using individual level data in a single
market:

Y = d (X;!; ")

Y = Quantity purchased of the product by a consumer;

X = Vector of exogenous consumer characteristics a¤ecting demand: e.g.,
income, wealth, education, age, gender, etc.

! = Unobserved consumer characteristics that can be correlated with X (en-
dogenous unobservable)

" = Unobserved consumer characteristics independent of (X;!)

� The researcher is interested in the estimation of Pr (Y jX;!).



EXCLUSION RESTRICTION. Example 2. Demand Model

� Suppose that the researcher can classify consumers in di¤erent groups, e.g.,
according to their geographic location / region. Let Z be the observable
variable that represents the geographic location of the consumer.

� [Exclusion Restriction]. Pr (Y j X;Z; !) = Pr (Y j X;!), i.e., given (X;!)
a consumer�s location is redundant to explain her demand. A single common
market without transportation costs.

� [Relevance]. Pr (! j X;Z) depends on Z. After controlling for X, the
unobservable ! a di¤erent probability distribution across locations.



EXCLUSION RESTRICTION. Example 3. Local Market Competition

� Game of oligopoly competition in a local market, e.g., game of market entry.
Sample of M local markets. Model:

Y = g (X;!; ")

Y = Number of active �rms in the local market;

X = Vector of exogenous market characteristics: e.g., population, income,
input prices, etc.

! = Unobserved market characteristics that can be correlated with X (endoge-
nous unobservable)

" = Unobserved consumer characteristics independent of (X;!)

� The researcher is interested in the estimation of Pr (Y jX;!).



EXCLUSION RESTRICTION. Example 3. Local Market Competition

� Let Zm be the average value of X in local markets nearby market m.

� [Exclusion Restriction]. Pr (Y j X;Z; !) = Pr (Y j X;!), i.e., competi-
tion is independent across markets; given market characteristics (X;!) the
characteristics of other nearby markets Z are irrelevant.

� [Relevance]. Pr (! j X;Z) depends on Z. If ! is spatially correlated
(cov(!m; !m0) 6= 0) and and ! is correlated with X (cov(!m0; Zm0) 6= 0),
then Z = Xm0 may contain information about !m (cov(!m; Xm0) 6= 0).



Henry, Kitamura, and Salanie (HKS)

� Consider the model: P (Y j Z) =
LX
!=1

�! (Z) f! (Y )

� They show that the parameters of the model, f�! (Z) ; f! (Y j Z)g are
identi�ed up to L(L � 1) constants. These unknown constants belong to
a compact space, and this implies that f�! (Z) ; f! (Y j Z)g are partially
identi�ed. HKS derive the sharp bounds of the identi�ed set.

� Under some additional conditions, the model can be point-identi�ed.

� Here I illustrate these results for the case with L = 2 types or components.



Henry, Kitamura, and Salanie (HKS) [2]

� Consider the NPFM model with L = 2:

P (Y j Z) = [1� � (Z)] f0 (Y ) + � (Z) f1 (Y )

where Y and Z are scalar variables, and for simplicity suppose that they have
discrete support.

� The model parameters are f� (z) : z 2 Zg and ff0 (y) ; f1 (y) : y 2 Yg.
# Parameters = jZj+ 2(jYj � 1).

� Restrictions: # free probs in P (Y j Z) = (jYj � 1) jZj.

� Order condition for point identi�cation: jYj � 3 and jZj � 2(jYj�1)=(jYj�
2).



Henry, Kitamura, and Salanie (HKS) [3]

� Consider y 2 Y (we show identi�cation pointwise in y). Let z0, z1 2 Z be
such that � (z0) 6= � (z1). For convenience, let z0 and z1 be z0 = argminz2Z
P (y j z) and z1 = argmaxz2Z P (y j z), such that P (y j z1)�P (y j z0) >
0 and it takes its maximum value.

� The model (and exclusion restriction) implies that:

P (y j z1)� P (y j z0) = [� (z1)� � (z0)] [f1 (y)� f0 (y)]

� And for any z 2 Z,

r (z) � P (y j z)� P (y j z0)
P (y j z1)� P (y j z0)

=
� (z)� � (z0)
� (z1)� � (z0)

Note that for any z 2 Z, r (z) 2 [0; 1] with r (z0) = 0 and r (z1) = 1.



Henry, Kitamura, and Salanie (HKS) [4]

� Test of Exclusion Restriction + # Components (L) assumptions.

� Suppose that jYj� 3 such that there are two values y; y0 2 Y. Let r (y; z)
and r

�
y0; z

�
be the probability ratios associated with y and y0, respectively.

� The model implies that:

r (y; z)�r
�
y0; z

�
� P (y j z)� P (y j z0)
P (y j z1)� P (y j z0)

� P
�
y0 j z

�
� P

�
y0 j z0

�
P (y0 j z1)� P (y0 j z0)

= 0

Since is NP identi�ed, we can construct a [Chi-square] test of this restriction.



Henry, Kitamura, and Salanie (HKS) [5]

� De�ne the unknown constants: � � � (z0) and � � � (z1)� � (z0). Since
r (z) = [� (z)� � (z0)] =� (z1)� � (z0), we have that:

� (z) = �+ � r (z)

� And it is straightforward to show that:

f0 (y) = P (y j z0)�
�

�
[P (y j z)� P (y j z0)]

f1 (y) = P (y j z0) +
1� �
�

[P (y j z)� P (y j z0)]

So all the model parameters, f� (z) : z 2 Zg and ff0 (y) ; f1 (y) : y 2 Yg,
are identi�ed from the data up to two constants, � and �.



Henry, Kitamura, and Salanie (HKS) [6]

� To obtain sharp bounds on the model parameters, we need to take into
account that the model imposes also restrictions on the parameters � and �.

� Without loss of generality, we can make � > 0 (choosing the sign of � is like
labelling the unobserved types; i.e., ! = 1 is the type with a probability that
increases when z goes from z0 to z1).

� HKS show that the model implies the following sharp bounds on (�,�):
1

1� �sup
� ��

�
� rinf

rsup � 1� �
�

� 1

1� �inf



where

rinf � infz2Z�fz0;z1g r(z)

rsup � supz2Z�fz0;z1g r(z)

�inf � infy2Y
P (yjz1)
P (yjz0)

�sup � supy2Y
P (yjz1)
P (yjz0)

.

� Using these sharp bounds on (�,�) and the expression that relate the model
paramaters with the data and (�,�), we can obtain sharp bounds on the model
parameters, f� (z) : z 2 Zg and ff0 (y) ; f1 (y) : y 2 Yg.



Point Identi�cation: Example. "Identi�cation to in�nity"

� Since � (z) = � + � r (z), we can test the monotonicity of function � (z)
by testing the monotonicity of the identi�ed function r (z).

� Suppose that � (z) is a monotonic function.

ASSUMPTION: There are values z�L and z
�
H in Z such that � (z) = 0 for

any z � z�L and � (z) = 1 for any z � z�H . [For instance, z
�
L = z0 and

z�H = z1].

Under this assumption, all the parameters of the model are point identi�ed.



9. APPLICATION TO GAMES

� Aguirregabiria and Mira (2015): �Identi�cation of Games of Incomplete
Information with Multiple Equilibria and Unobserved Heterogeneity�.

� This paper deals with the identi�cation, estimation and counterfactuals in
empirical games of incomplete/asymmetric information when there are three
sources of unobservables for the researcher:

1: Payo¤-Relevant variables, common knowledge to players (PR);

2: Payo¤-Relevant variables, players�private information (PI);

3: Non-Payo¤-Relevant or "Sunspot" variables, common knowl-
edge to players (SS);

� Previous studies have considered: only [PI]; or [PI] and [PR]; or [PI] and
[SS]; but not the three together.



EXAMPLE (Based on Todd & Wolpin�s "Estimating a Coordination
Game within the Classroom")

� In a class, students and teacher choose their respective levels of e¤ort. Each
student has preferences on her own end-of-the-year knowledge. The teacher
cares about the aggregate end-of-the-year knowledge of all the students.

� A production function determines end-of-the-year knowledge of a student:
it depends on student�s own e¤ort, e¤ort of her peers, teacher�s e¤ort, and
exogenous characteristics.

� PR unobs: Class, school, teacher, and student characteristics that are known
by the players but not to the researcher.

� PI unobs: Some student�s and teacher�s skills may be private info.

� SS unobs: Coordination game with multiple equilibria. Classes with the
same PR (human capital) characteristics may select di¤erent equilibria.



WHY IS IT IMPORTANT TO ALLOW FOR PR and SS UNOBS. ?

[1] Ignoring one type of heterogeneity typically implies that we over-estimate
the contribution of the other.

� Example: In Todd and Wolpin, similar schools (in terms of observable
inputs) have di¤erent outcomes mainly because they have di¤erent PR unob-
servables (e.g., cost of e¤ort); or mainly because they have selected a di¤erent
equilibrium.

[2] Counterfactuals: The two types of unobservables (PR and SS) enter di¤er-
ently in the model. They can generate very counterfactual policy experiments.



CONTRIBUTIONS OF THE PAPER

� We study identi�cation when the three sources of unobservables may be
present and in a fully nonparametric model for payo¤s, equilibrium selection
mechanism, and distribution of PR and SS unobservables.

� Speci�c contributions. IDENTIFICATION:

1: Under standard exclusion conditions for the estimation of games,
we show that the payo¤ function, and the distributions of PR and SS
unobserved heterogeneity are NP identi�ed.

2: Test of the hypothesis of "No PR unobservables" (it does not
require "all" the exclusion restrictions);



DISCRETE GAMES OF INCOMPLETE INFORMATION

� N players indexed by i. Each player has to choose an action, ai, from a
discrete set A = f0; 1; :::; Jg. to maximize his expected payo¤.

� The payo¤ function of player i is:

�i = �i(ai;a�i;x; !) + "i(ai)

� a�i 2 AN�1 is a vector with choices of players other than i;

� x 2 X and ! 2 
 are exogenous characteristics, common
knowledge for all players. x is observable to the researcher, and ! is
the Payo¤-Relevant (PR) unobservable;

� "i = f"i(ai) : ai 2 Ag are private information variables for
player i, and are unobservable to the researcher.



BAYESIAN NASH EQUILIBRIUM

� A Bayesian Nash equilibrium (BNE) is a set of strategy functions f�i(x; !; "i) :
i = 1; 2; :::; Ng such that any player maximizes his expected payo¤ given the
strategies of the others:

�i(x; !; "i) = arg max
ai2A

E"�i ( �i(ai; ��i(x; !; "�i); x; !) ) + "i(ai)

� It will be convenient to represent players�strategies and BNE using Condi-
tional Choice Probability (CCPs) functions:

Pi (ai j x; !) �
Z
1 f�i(x; !; "i) = aig dGi("i)

� In this class of models, existence of at least a BNE is guaranteed. There may
be multiple equilibria.



MULTIPLE EQUILIBRIA

� For some values of (x; !) the model has multiple equilibria. Let �(x; !) be
the set of equilibria associated with (x; !).

� We assume that �(x; !) is a discrete and �nite set (see Doraszelski and
Escobar, 2010) for regularity conditions that imply this property.

� Each equilibria belongs to a particular "type" such that a marginal pertur-
bation in the payo¤ function implies also a small variation in the equilibrium
probabilities within the same type.

� We index equilibrium types by � 2 f1; 2; :::g.



DATA, DGP, AND IDENTIFICATION

� The researcher observes T realizations of the game; e.g., T markets.

Data = f a1; a2t; :::; aNt, xt : t = 1; 2; :::; T g

� DGP.

(A) (xt; !t) � i:i:d: draws from CDF Fx;!. Support of !t is
discrete (�nite mixture);

(B) The equilibrium type selected in observation t, � t, is a random
draw from a probability distribution �(� jxt; !t);

(C) at � (a1; a2t; :::; aNt) is a random draw from a multinomial
distribution such that:

Pr(at j xt; !t; � t) =
NQ
i=1

Pi(ait j xt; !t; � t)



IDENTIFICATION PROBLEM

� Let Q(ajx) be the probability distribution of observed players�actions con-
ditional on observed exogenous variables: Q(ajx) � Pr(at = a j xt = x).

� Under mild regularity conditions, Q(:j:) is identi�ed from our data.

� According to the model and DGP:

Q(ajx) = P
!2


P
�2�(x;!)

F!(!jx) �(� jx; !)
"
NQ
i=1

Pi(ait j xt; !t; � t;�)
#
(1)

� The model is (point) identi�ed if given Q there is a unique value f�, F!,
�g that solves the system of equations (1).



IDENTIFICATION QUESTIONS

� We focus on three main identi�cation questions:

1: Su¢ cient conditions for point identi�cation of f�, F!, �g;

2: Test of the null hypothesis of No PR unobservables;

3: Test of the null hypothesis of No SS unobservables;

� With a nonparametric speci�cation of the model, is it possible to reject the
hypothesis of "No SS unobservables" and conclude that we need "multiple
equilibria" to explain the data?



THREE-STEPS IDENTIFICATION APPROACH

� Most of our identi�cation results are based on a three-step approach.

� Let � � g(!; �) be a scalar discrete random variable that represents all the
unobserved heterogeneity, both PR and SS. � does not distinguish the source
of this heterogeneity.

� Let H(�jx) be the PDF of �, i.e., H(�jx) = F!(!jx) �(� jx; !)



STEP 1. NP identi�cation of H(�jx) and CCPs Pi(aijx; �) that satisfy
restrictions:

Q(a1,a2,:::,aN j x) =
X
�

H(�jx)
"
NQ
i=1

Pi(ai j x; �)
#

� We use results from the literature of identi�cation of NPFM based on
conditional independence restrictions.



STEP 2. Given the CCPs fPi(aijx; �)g and the distribution of "i, it is
possible to obtain the di¤erential-expected-payo¤ function e�Pi (ai;x; �).
� e�Pi (ai;x; �) is the expected value for player i of choosing alternative ai minus
the expected value of choosing alternative 0. By de�nition:

e�Pi (ai;x; �) �X
a�i

 Q
j 6=i

Pj(ajjx; �)
!
[�i(ai;a�i;x; !)� �i(0;a�i;x; !)]

� Given this equation and the identi�ed e�Pi and fPjg, we study the identi�ca-
tion of the payo¤ �i.

�We use exclusion restrictions that are standard for the identi�cation of games.



STEP 3. Given the identi�ed payo¤s �i and the distribution H(�jx), we
study the identi�cation of the distributions F!(!jx) and �(� jx; !).

� Testing the null hypothesis of "No PR heterogeneity" does not require steps
2 and 3, but only step 1.

� This three-step approach does not come without loss of generality. Su¢ cient
conditions of identi�cation in step 1 can be �too demanding�. We have examples
of NP identi�ed models that do not satisfy identi�cation in step 1.



IDENTIFICATION IN STEP 1

� Point-wise identi�cation (for every value x) of the NP �nite mixture model:

Q(a1,a2,:::,aN j x) =
X
�

H(�jx)
"
NQ
i=1

Pi(ai j x; �)
#

� Identi�cation is based on the independence between players�actions once we
condition on (x; �).

� We exploit results by Hall and Zhou (2003), Hall, Neeman, Pakyari, and
Elmore (2005), and Kasahara and Shimotsu (2010).



IDENTIFICATION IN STEP 1 (II)

� Let L� is the number of "branches" that we can identify in this NP �nite
mixture.

PROPOSITION 1. Suppose that: (a) N > 3; (b) L� 6 (J + 1)int[(N�1)=2];
(c) PYj(� = 1), PYj(� = 2), ..., PYj(� = L�) are linearly independent. Then,
the distribution H and players�CCPs Pi�s are uniquely identi�ed, up to label
swapping. �

� We cannot identify games with two players.

� With N > 3 we can identify up to (J + 1)int[(N�1)=2] market types.



IDENTIFICATION IN STEP 2 (two players)

� In a binary choice game with two players, i and j, the equation in the second
step is:

e�Pi (x; �) � �i(x; !) + �i(x; !) Pj(x; �)
where:

�i(x; !) � �i(1; 0;x; !)

�i(x; !) � �i(1; 1;x; !)� �i(1; 0;x; !)

� We know e�Pi (x; �) and Pj(x; �) for every (x; �), and we want to identify
�i(:; :) and �i(:; :). This is "as if" we were regressing e�Pi (x; �) on Pj(x; �).



IDENTIFICATION IN STEP 2 [2]

� From the �rst step, we do not know if � is PR or SS unobserved heterogeneity.
The worst case scenario for identi�cation in the second step is that all the
unobservables are PR:

e�Pi (x; �) � �i(x; �) + �i(x; �) Pj(x; �)
� Then, the "parameters" �i(x; �) and �i(x; �) have the same dimension
(sources of variation) as the known function e�Pi (x; �) and Pj(x; �) and iden-
ti�cation is not possible without additional restriction.

� This identi�cation problem appears even without unobserved heterogeneity:

e�Pi (x) � �i(x) + �i(x) Pj(x)



IDENTIFICATION IN STEP 2 [3]

ASSUMPTION [Exclusion Restriction]. x = fxc; zi; zjg where zi; zj 2 Z
and the set Z is discrete with at least J + 1 points, and

�i(ai;a�i;x; !) = �i(ai;a�i;x
c; zi; !)

[Relevance] And there are z0i 6= z1i such that Pj(xc; zj; z0i ; �) 6= Pj(xc; zj; z1i ; �).

PROPOSITION 3. Under the Exclusion Restriction + Relevance assumptions,
the payo¤ functions �i are identi�ed. �



IDENTIFICATION IN STEP 3

� Let�i(x) be the matrix with dimension J(J+1)N�1 � L� that contains all
the payo¤s f�i(ai;a�i;x; �)g for a given value of x. Each column corresponds
to a value of � and it contains the payo¤s �i(ai;a�i;x; �) for every value of
(ai;a�i) with ai > 0.

� If two values of � represent the same value of !, then the corresponding
columns in the matrix �i(x) should be equal.

� Therefore, the number of distinct columns in the payo¤ matrix �i(x) should
be equal to L!. That is, we can identify the number of mixtures L! as:

L!(x) = Number of distinct columns in �i(x)

PROPOSITION 5. Under the conditions of Propositions 1 and 3, the one-to-one
mapping � = g(!; �) and the probability distributions of the unobservables,
F!(!jx) and �(� jx; !), are nonparametrically identi�ed. �



TEST OF HYPOTHESIS "NO PR UNOBSERVABLES"

�



TEST OF HYPOTHESIS "NO SS UNOBSERVABLES"


