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Introduction

Overview

1) Conditional maximum likelihood estimator for structural parameters:

@ One way to deal with incidental parameter problem in linear or non-linear panel data models
is to use the conditional maximum likelihood method.

@ Review of Sufficient Statistics with example on static binary choice panel data model.

o Conditional likelihood approach may be a lucky coincidence (Chamberlain (2010): only
Logit model for discrete choice!).

@ CMLE for dynamic (lagged choice dependence) discrete choice model without forward
looking (Binary choice and multinomial choice).

@ CMLE for discrete choice models accounting for duration dependence. (Chamberlain 1985,
Frederiksen et al, 2007).
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Introduction

Overview

2) Partial identification results:

@ Honoré and Tamer (2006): initial condition problem: p(yio; X;,w;) is not nonparametrically
identified — characterize bounds.

@ Chernozhukov et al (2003): Even in the logit model where we have point identification
through CMLE for the structural parameters, marginal effects are not point identified unless
stronger assumptions imposed.

3) Bias correction approach: look for estimators that have smaller biases as opposed to no bias
at all.

@ Modified conditional likelihood approach: Cox and Reid (1987).

4) Efficiency perspective: do we lose any information in using the conditional maximum

likelihood approach?
P(yi; B,wi) = P(yilS(¥:),8) P(S(yi); B,wi)-

conditional likelihood

Ply;; B) = / Pyi; B,w)dF () = P(yilS(y), B) / P(S(y;): B.w)dF (w)

@ What do we think of the full MLE (8, F(w)) versus 3 = argmax y_; log P(y;|S(yi), B)-

o Is 3 asymptotically equivalent to 8.7 (ie. is Bc is semiparametrically efficient?).

Victor Aguirregabiria and Jiaying Gu Sufficient Statistics for DDC-UH



Introduction

Sufficient Statistics

©

Definition: Let {V,P = {Py,0 € ©}} be a parametric model, the statistic S is sufficient for
0 if the conditional distribution of Y given S does not depend on 6.

@ Factorization Theorem: A necessary and sufficient condition for S to be a sufficient statistic
is that the density factorizes

f(y;0) = AW)Y(S(y): 0) =y | S(Y)=S(y)) (S(y),0)

@ Sufficient statistic is not unique, consider iid sample Y1, Y2,..., Y, ~ N(O,cr2).
o S1(Y)=(Y1,Y2,...,Yn)
° S (Y) =, Y-+ Yim)
o Sy(Y)=(Y2+ Y3+ -+ Y2 Y2 4+ Y3
o S4(Y)=3; Y2 (minimum sufficient)
o Partial sufficiency: suppose 8 = (o, 8) € A X B, two cases of factorization for S being

sufficient for o (nuisance):
Q f(y;0)=Ff(y ]| S(Y)=S5(),B) L(S(y);a): a and B are likelihood orthogonal
Q f(y;0) = fly [ S(Y) = S(x), B) 2(S(y): e, B)

© using f; for estimation of 3 leads to fully efficient estimator.
@ using fi for estimation of 8 may or may not be fully efficient (in what sense?)
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Introduction

Example: static binary choice panel data model

® Model: y; = 1{x; B + w; + €;x > 0}, where €;t|w;, x;; are iid, P(e;r < a) = exp(2)

1+exp(a)
@ Earliest example (Rasch 1961): Each individual i is given T items for test, y; = {0,1}
(incorrect, correct), x; is dummy of item t, hence B8 = (1, ..., 87) measures item

difficulty, we have

exp(wi — Bt)

P(yie = 1;wi, Be) = —f — P
(it wi, Bt) 1+ exp(w; — Br)

@ Individual Likelihood for y; = {yi1,...,yiT }:

. ) = " N =T17 - N\ exp(wi 3o Yie— 30 YieBt)
Li(B, wi) = Pyii B,wi) = Ie= Flyie By wi) = G Sa0)
@ Minimum Sufficient statistics for w; is: S(y;) = >_, yir (total score of individual).
@ Factorization: L;(8,w;) = P(yilS(yi), B,wr)P(Si; B,wi)

o Conditional maximum likelihood estimator B := argmax > ilog P(yilS(yi), B).
BeB

@ Remark: If S is not minimum sufficient, it could contain information about 3.
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Introduction

Example: static binary choice panel data model

@ Suppose T =2, and 3, =0, so f; = § is difficulty level of test item 1 relative to test item
2.

® S(yin,y2) =1{0,1,2}.
Q P(}/ll’}/l2|yd + Y2 = 0; :87‘*;/) =1
Q Plyinyilyn +ye=18,w)=Hya =1,y = 0}% +Hyin =0,y =
U freo=h)
Q P(yir,yilyin +yi2 = 2; B,wi) =1
@ Conditional MLE: 8. = arﬁgm;xzie, {yn1 =1,y =0}In m +1{yn =0,y =
1}1 12'1(:2%) = log i?l) é% where | = {i:yjq + yin =1}
o If #{0,1} > #{1,0}, then Bc > 0 (test item 1 more difficult).
© CMLE f, is root-n consistent under suitable regularity conditions [Anderson (1970)].

o Usual MLE regularity conditions.
o w; could not take a sequence of too extreme values such that P(y;; + yi» = 1) vanishes

as n — o0.
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Introduction

Example: static binary choice panel data model

@ Inference can be conducted in the usual way, asymptotic variance is inverse of Fisher
information.

_ exp(3) ) 1 - o L o
° L=>3 i wln Trew(®) T (1-—w)ln TTep(A) with w; = 1{y;1 =0,y = 1}.
2L _ exp(3) _ exp(B) ;
55 = — et (a2 Bl 51 = 5 Pi i with
P; = E[1{yi1 + yi2 = 1}{w;, B].
@ Since we do not have a consistent estimator for w;, it seems hard to construct consistent
estimator for the asymptotic variance.

1 [_ 321_] = exp(B) exp(8)

@ However, o5 Tren(A)2 N Z 1{yi + yi» = 1} converges to mP almost

surely by LLN.
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Introduction

Identification

@ Not all discrete choice model obtains the root-n consistent CMLE.

@ For static binary choice model, Chamberlain (2010) shows that only the logistic model has
identification.

@ Consider model P(y;: = 1|x;,w;) = F(w;i + xitBo), for given x, 3, w;, the parametric model
represents a vector ina K —1 (K = 2T) dimensional space, if T = 2, it is a 3 dimensional
unit simplex.

P(0,0]x,w)
p(x, B,w) = | P(0,1|x,w)
P(1,0|x,w)

@ lIdentification: f3g is identified if there doesn't exist 3’ # [y along with distribution F’(w]|x)
and Fo(wl|x), such that [ p(x, Bo,w)dFo(w|x) = [ p(x, 8", w)dF’ (w|x).

Victor Aguirregabiria and Jiaying Gu Sufficient Statistics for DDC-UH



Introduction

Identification: geometry

@ Fix x and 3, as w changes, the model p(x, 3,w) defines a set of points in the 3-d unit
simplex
Ces = {q €% : Jw such that ¢ = p(x, B,w)}
@ If F is continuous, then C,z traces out a continuous curve in the 3-d unit simplex.
© The observed data frequency p(x, 8) = [ p(x, 8,w)dF(w|x) lives in the convex hull of

HXB = COCXB.
@ Identification fails if the observed data frequency lies in two different convex hull H,g, and
Hygr.

@ Plot the vector p(x, 8,w) with x; =2,x =3, =0,w € [-20, 20].

P10
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Introduction

Identification: geometry

@ Chamberlain shows that a necessary condition that we have identification of 3 is when C,z

lies on a hyperplane of dimension K — 2. (i.e. Vw, ZJKJII ¢ipj(x, Bo,w) = co).

@ This can only be true if F is the logistic CDF.

@ Below | am plotting the regression plane of regressing P10 against P00 and P01, residual is
zero, perfect fit!

P10
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Introduction

Identification: geometry

@ Change S to 0.75 (black).

P10
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Introduction

Identification: geometry

@ Change 8 to 1.5 (blue).

P10

uirregabiria and Jiaying Gu Sufficient Statistics for DDC-UH



Introduction

Identification: geometry

@ For Logit model, in fact % = exp((xi1 — xi2)B).

0.25
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Identification failure: Probit model

©

Consider P(yi = 1|xj,w;) = ®(w; + xiz3): probit model.

We also have

©

P(0,0|x,w)
p(x, B,w) = | P(0,1]x,w)
P(1,0|x,w)

©

Plot the regression residual of P10 regress on P00 and P01, with xj; = 2,xj2 = 3
Left: 8 =0, Middle: 8 = 0.75, Right: 8 = 1.5.

©

myImqastesiduals
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Generalize this idea: Bonhomme (2011)

@ The idea is to find a moment condition for 3 that does not depend on w;.
o Let [Lg «F](y) = [ p(x,B,w)dF(w): maps distribution function F to the data frequency.
@ Suppose we can find a function ¢(+, x, 3) such that for every F(w):

/y oy, % B)[Ls xFI(y)dy =0

@ Then we have the moment condition which doesnt depend on w:
Elp(yi, xi Bo)lxi = x] =[5, (v, x, Bo)[Lgy,xFol(¥)dy = 0.
@ In the Chamberlain example, it boils down to find for all x and w:

> ey, x B)P(yi = ylx,w, 8) = 0.

ye{0,1}7

@ which leads to

S 1D v =stely, x, B)exp(d_ yexeB) =0
yE{O,l}T t t
if T=2, the solution for ¢ is
e(y =(0,0),x,8) = oy =(1,1),x,8) =0
‘P(y = (17 0)7X7 B) eXP(X[1ﬁ) + Cp(y = (07 1)7X7ﬁ) eXp(Xi2/8) =0
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Dynamic binary choice model

Econometrics Model: y;; = 1{0y; :—1 + w; + vjz > 0}
@ Recall the example of a firm's entry-exit (1-0) decision without forward looking behavior
(myopic).
@ Endogenous state variable x;; = y; ;1.

© Uir(y) = u(y, xit, wi) + €it(y) = wi(y) + B(y, yie—1) + €ie(y), with unobservable €;¢(0), eir(1)
iid over (i,t),

© Dynamics is captured by B(y, yie—1) = 1{y # yie—1}8(y, yit—1)-

o Observed decision yir = 1{wi(1) — wi(0) + B(L, x¢) — B(0, xic) + €ie(1) — €i(0) > O},

o Since B(1,yir—1) — B(0, yie—1) = B(1,0)(1 — yie—1) — B(0, L)yje—1 =
B(1,0) + yie—1(=B(1,0) — 5(0,1)).

0 Let w; = wi(1) — w;(0) + B(1,0) and vis = €;r(1) — €;(0) and 8 = —5(1,0) — 5(0,1) gives
the econometrics model, and 6 is the sunk cost of a firm (cost of entry and cost of exit).

@ Chamberlain (1985) shows the CMLE of 6 is root-n consistent.
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Chamberlain (1985): CMLE for dynamic binary choice logit model

@ Suppose €j¢(y) follows extreme value Type | distribution, and suppose T = 3, then
o Individual likelihood for y; = {yio, ¥i1, Yi2, ¥i3 }:
Li(6,w;)
el tvia+yis)wi g8 iy vieie—1
1+ e(GYIo+wi))(1 + e(9m+w/‘))(1 + e(9yf2+wi))
_ _P(yiol0, wi)
1+ ee}/io+wi)

= P(yiol0, wi)

elvittyi)wi
x ((1+ eg+‘*’¢‘)2)1{)/i1+)’i2:2}((1 + eftwi)(1 + ewi))l{Yf1+Yi2:1}((1 + ewf)Q)l{yner,'z:O}
x @Vi3wi

N i VieYie—1

@ Minimum Sufficient Statistics for w;: S(y;) = {vio, yi1 + Vi, Vi3 }-
Q P(yilyio,yir +yi2 =0,y3: 0, w;) = 1.
Q P(yilyio,yin +yi2 = 2,y3:0,w;) = 1.

Q P(yilyio,yir +¥i2 =L yi3i0,wi) = H{yn = L, yin = 0}%}% + Yy =

— 1
0,yiz =1} 1+exp(8(yio—Yi3))

5 — #{1,1,0,0}+#{0,0,1,1} o —
o CMLE B¢ = log (W) (Minimum T =3).
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General T: CMLE for dynamic binary choice logit model

@ For general T > 3, minimum sufficient statistic S(y;) = {yio, Zz—:_ll Yits YiT }-

exp(0 2121 YitYit—1)

@ Conditional likelihood function: P(y; | Si,w;,0) = Sacs, 00 ST dde D) where
T-1 T-1
B = {(do, d,...,dr) €{0,1}7 i do = yio, dr = yir, Yy de =) }/it}/it—l}
t=1 t=1
@ Disadvantage: no other observables other than y;;_1.
@ Honoré and Kyriazidou (2000) considers y;z = 1{0yit—1 + xit3 + w; + vir > 0} where x;; are

exogenous random variables.
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Honoré and Kyriazidou (2000), T = 3

@ Individual likelihood for y; = {yio, yi1, Y2, i3} given x; = {x1, .

L XiT
Li(6,w;)

elVit+yintyia)wi gb i vieYie—1+8 X Yiexit
(1 + e(@yiotxin B+wi))(1 4 elOyintxi2B+wi))(1 + el6yiz+xi3f+wi))
Xi2=Xi3 P(yio|xi, 0, wj)
T (1 + eioPxinBtwi)

= P(yiolxi, 0,w;)

elvittyi)wi

((1+ e9+><i2ﬁ+wf)2)1{Yi1+y,'2=2}((1 + e9+><123+wi)(1 + ewi))l{yf1+y,'2=1}((1 + ewf)2)1{yl'1+y,'2:
% @Yi3wi

« 0 i1 VieYie—1+B T viexie

@ Minimum Sufficient Statistics is still S; = {yio, yi1 + Yi2, it}
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Honoré and Kyriazidou (2000), T = 3

@ Conditional log Likelihood:

) - . - exp((xi1 —xi2) B+0(yio —¥i3))”iL
iy +yi2 = 1}1{xi2 — xi3 = O} log ( 1+eXP(1(Xf1ixi2)/3+g(y,'oiy,‘3) )

@ If all x; are discrete random variable and P(xj2 = x;3) > 0, then the CMLE (Ec,éc) is
root-n consistent.

@ If x; are continuous random variables, modify the conditional log likelihood with a kernel
weights.

o Xi2 — Xi3 exp((xi1 — Xi2)B + 0(yio — yiz) )™
Z My + iz = 1}K( hn ) o8 <1 + exp((xi1 — xi2) B8 + 0(yio — )/f3))

i

@ But apparently, age is not allowed as a regressor using this strategy.

o Kernel bandwidth h, — 0 as n — oo and K(v) — 0 as ||v|| — oo.

@ The resulting kernel type CMLE converges to Normal at the rate \/nhX where k is column
dimension of x.

Victor Aguirregabiria and Jiaying Gu Sufficient Statistics for DDC-UH



Honoré and Kyriazidou (2000), General T > 3

@ For general T, in order for {y,-o,zz—:_ll Yit, yiT } to be minimum sufficient statistics, we
would have to require xj = xj3 = ... x;T, this implies the rate of convergence be

\/nhs,Ti_Q)k which is too slow!

@ Honoré and Kyriazidou (2000) suggests a pair-wise approach to maintain \/nh rate:
identification of (6, 3) is based on sequences of histories such that y;s + yi = 1 for
1<t<s<T-1.

@ Consider

o A={yjo =do,-,Yit-1 = de—1,¥it = L, Yit41 = de1, -, Yis—1 =
ds—1,Yis = 0, Yis+1 = dst1, ..., ¥ = d7}.

o B={yjo=do,...,¥it-1=de—1,Yit = 0, ¥it41 = des1,-- -, Yis—1 =
ds—1,Yis = 1, Yisy1 = dst1, .-, ¥T = d7}

e (05 —xs)8400d: 1~ 1) 00611 —cs 1)1 {s—¢>1) )
® P(Alxi,wi, AU B, Xjty1 = Xis41) =

1+exp ((Xit_xis)5+0(dt71_ds+l)+6(dt+l_dsfl)l{s_t>1})
independent of w;
@ Conditional likelihood:

Z Z l{yfs+y;t=1}K(w>
n

i 1<t<s<T—1
Yi
exp ((xic = xis)B + 0(di—1 — ds41) + 0(des1 — de-1)1s — £ > 1})”"

1+ exp ((Xit — Xis)B + 0(de—1 — dst1) + 0(diy1 — ds1)1{s — t > 1}) )
Victor Aguirregabiria and Jiaying Gu
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Introduction

Extension to multinomial choice with dynamics

Only covariate: y;;_1

— _ exp(witfi)
Si_o exp(win )

@ Magnac (2000) shows that minimum sufficient statistics for w; is
S = {y,-o,y,-r,z:tT:_l1 1{y; = k},Vk} (initial and termination state, and numbers of
occurances of all states during period 1 to T —1.)

® P(yit = Kklyit—1 = j,wi,0)

@ Conditional likelihood function:
oo (3205, (1 1=k e =710 ))
Saes, o0 ( Tu 5 ( STy M=k Lg% 1=}
B = {d=(do,....dr) €{0,.... J}T.do = yio, d7 = yi7, 5[ 1{de = k} =
S0 Uy = K,k
Extension to include exogenous covariates xj;; (Honoré and Kyriazidou (2000))

P(yilSi,wi, 0) = )) independent of w; where

exp(Xit Bk +wik+6k)

® P(yit = Klyit—1 = j,wi,0) =

T o exP(hie Brtwint0jn)
@ Same pair-wise approach as binary choice case: identification via CMLE requires
Xkit+1 = Xkis+1 for k =10,...,J.
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Duration dependence (Frederiksen et al 2007)

@ Single spell data with Grouped fixed effect: groups indexed by i and individuals within
groups are indexed by j = 1,...,J;. Number of groups goes to co relative to group size and
time periods t =1,...,

@ yjir = {0,1} (unemployed-employed). Let Tj; be the time period in which unemployment
spell ends.

yjie = Hds;, +wi + vjie 2 0for t =1,..., T}
where Sji; = Sjip + t.
© We observe {yjit, Tji} for i=1,...,nand j=1,...,J.
@ Suppose J; = 2 for all i, the likelihood function for {yii1,..., y1iTy;s Y2i1,- - - Y2iTy } IS

Tyi—1

( H 1 ) eXp((s-‘;un, +wi)
w1 L+ exp(ls;y, +wi)/ 1+ exp(ds,;r . + wi)
Thi—1 exp(észn_y + wj)

1
51:[1 1+ exp(ds,, + wi)) 1+ exp(ds,;p,, + wi)

exp(2wi) exp(ds;;r,  + 05,7,
T12, (1 + exp(ds,,, + wi)) T122 (1 + exp(ds,,, + wi))
Sufficient statistics is (Ty;, T2;) with no further reduction, hence no CMLE for 6.

@ No SS # No identification or root-n consistent estimator.
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Duration dependence (Frederiksen et al 2007)

@ lIdentification comes from comparing two events:

o A={Tyj=1t1,Ty; >t} and B={Ty; > t1, To; = ta}; WLOG t1 < to.

o P(AJAUB) = ;21— with

a1 = Py (v1iy, = 1, ¥2it;, = 0| {y1is = 0, y2is = 0}s<t;)
X Pty (y2it, = 0 | {y1is = O}s<ty, y1iy = 1, {y2is = O}s<ty)
= F(0y+5,, +wi)(1 = F(0ty4s,; +wi))(1 — F(0tyts,, + wi))
ay = Py (v1i; = 0,¥2it;, = 0| {y1is = 0, y2is = 0}s<t,)
X Pty (yaity, = 1 | {y1is = O}s<ty, {¥2is = O}s<ty)
= (1= F(0t+5,; +wi))(1 = F(Ot45,, +wi))F(0p 45, + wi)

exp(8t) 451 —Otr+5,1)
Lhexp(Sey +51;) —Otp+5p1)

o If F is logistic distribution function, P(A|[AU B) =

@ Extremum estimator (root-n consistent):

T T
exp(0t;+5,:, — O3+ 5511)
¢ = argmax YTy =t1, Toi > tr}lo ! :
‘ ¢ Z tlzzl tzzzl e l Hlog 1+ eXp(6f1+51i1 - 6t2+52i1)

1
14 exp(dt, 15, — Ot+551)

+1{T1i > ta, Ty = ta} log
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Duration dependence (Chamberlain 1985)

@ If there is no duration dependence, then the choice prior to y;;_1 should have no effect on
the probability of the choice yj;.

o Chamberlain (1985) proposes to test Hp : 72 = 0 from the following model

exp(wi + Y1iYit—1 + Y2Yit—2)
14 exp(wi + Y1iYit—1 + V2Yit—2)

P(yic = 1lyit—1,Yit—2) =

o Sufficient statistics for (wj, 711): Si = {¥i0s ¥its Sopep” Yits Sty Vit Yit—1, YiT—1, YiT }-
@ Conditional likelihood function:
-
eXP(72 thz y:'ty:'t—Z)
T
ZdeB,- exp(72 thz drde_2)

with B; = {d = {db, ..., d7} : do = yio, dy = yin, 3 57 de = [ 2 yie, [ 5 ey =
ZtT:EI YieYie—1,dT-1 = yit—1,dT = YiT}

P(yilSi, wi, 11i,72) =

@ Requires at least T = 5.
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Duration dependence (Chamberlain 1985)

o A; ={1,0,1,0,0,0}, A, = {1,0,0,1,0,0}: P(A1|A1UA) = %
e B ={0,1,0,1,1,1}, B, = {0,1,1,0,1,1}: P(B1|B1 U B;) = H%'j(;)z)
° G1=1{1,1,0,1,1,0}, G = {1,1,1,0,1,0}: P(G|GLUG) = 15077
D1 ={0,0,1,0,0,1},D> = {0,0,0,1,0,1}: P(D1|D1U D2) = g
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Duration dependence (AGL, 2018wp)

Recall the example of firm's entry-exit (1,0) decision without forward looking behavior.
Endogenous state variable xji; = {yit—1, dir} where djzy1 = 1{yir = yir—1}dir + 1.

Uie(y) = wi(y) + By, Yie—1, dit) + €ie(y)

Structural parameter B(y, yie—1, dit) = H{y = Yie—1}Ba(y, dit) + 1{y # yie—1}By (¥, Yie—1)-
Suppose Bq4(y,d) = Bq(y,d*) for d > d* = 2 for both y =0, 1.

o
o
o
o
o
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Duration dependence (AGL, 2018wp)

@ Optimal decision rule

Yit = 1{ wi(1) — w;(0) + B(L, yir—1, dit) — B(0, yir—1, dit) + €ir(1) — €:(0) > 0 }

B, yit—1, dit) = Yie—1Ba(1, dir) + (1 — yie—1)By(1,0)
= Yit—1Yit—2Bd(1,2) + yir—1(1 = ¥ie—2)Ba(1,1) + (1 — yir—1)By(1,0)
B0, yir—1,dit) = (1 = yie—1)(1 = yit—2)B4(0,2) + (1 = yir—1)yit—284(0,1) + yie—18,(0,1)

@ Combine terms, we have

Yit = 1{ wi + Yie—1Yie—2(Bd(1,2) = Ba(1,1)) + Yie—2(1 — yir—1)(Ba(0,2) — B4(0, 1))
+yie-1(Ba(1,1) + Ba(0,2) = B,(1,0) — 5,(0, 1)) + cic > 0}
with w; = w;(1) — wi(0) 4 By(1,0) — Ba(0,2) and €;x = €;it(1) — €;(0).
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Duration dependence (AGL, 2018wp)

yie =1 @i+ vie i 2(8a(1,2) = Ba(1,1)) + vie2(1 = vie 1)(Ba(0,2) — By(0,1)
+vie-1(Ba(1,1) + Ba(0,2) = By(1,0) = B,(0,1)) + eic > 0}

0 If 64 = B84(0,2) — Ba4(0,1) = B4(1,2) — B4(1,1), then
Yie = 1{wi + Yie—204 + Yie—1 (Ba(1,1) + Ba(0,2) — By(1,0) — By(0,1)) +eir > 0}

not — identified

Two lags dynamic binary choice model: d4 is identified.

@ If no duration dependence for zero choice, 34(0,2) = 34(0,1) =0, and
04 = Ba(1,2) — Ba(1,1), then

Vit = 1{wi + Yit—1Yie—20d + Yie—1(Ba(1,1) — By(1,0) — By (0,1)) + €jr > 0}

Cumulative lag: both §; and (34(1,1) — B8y(1,0) — 8,(0, 1)) are identified.

@ AGL provides a generalization of the Chamberlain results which allows more general
identification of duration dependence.
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