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1. PANEL DATA

�We have panel data when we observe a group of individuals (e.g., households,
�rms, countries) over several periods of time.

Data = (xit : i = 1; 2; :::; N ; t 2 f1; 2; :::; Tg)

xit : K � 1 vector of observed variables

i : subindex for individuals
t : subindex for time

N = # of individuals
Ti = # of periods of time the individual i is observed



� Balanced Panels: When Ti = T for every i:

� Unbalanced Panels: When Ti can be di¤erent each i.

� Unbalanced panels can be such that individuals have di¤erent starting periods.

i = 1 ` �� ������ a

i = 2 ` � ��� a

i = 3 ` �� ������ a

i = 4 ` �� ������� ������ a

� Extension to more than 2 dimensions, e.g., �rms over space and time; big
data.



� Remark 1:

- We consider panels with large N and Ti relatively small (asymptotics as
N !1). This is typically the case in micro-panels of households, individuals,
or �rms.

- For static panel data models (i.e., strictly exogenous regressors) all the results
that we present in these notes apply to the reverse case with N small and T
large (but swapping T and N in the asymptotic formulas).

� Remark 2:

- A panel dataset is much more than a sequence of cross-sections over time. In
a sequence of cross-sections we do not observe the same individuals over time.
In panel data, we follow individuals for several periods of time.

- This important feature makes it possible to control for (potentially endoge-
nous) unobserved individual heterogeneity.



� Panel data (PD) have several advantages relative to cross-sectional (CS) and
time-series (TS) data to control for spurious correlations due to omitted
/ unobservable variables.

� Two sources of sample variation (time and cross-sectional) we can control for
the potential endogeneity bias induced by unobservables that vary only over time
but not over individuals (aggregate time e¤ects) or that vary over individuals
but are constant over time (time-invariant individual e¤ects).



� Example 1. Production function

� CS data from N �rms producing the same product. Consider the Cobb-
Douglas production in logarithms:

yi = �0 + �1 li + �2 ki + "i

� "i represents the amount of unobserved inputs, e.g., manager ability, land
quality, rainfall, etc.

� Unobserved inputs can be correlated with labor and capital: we expect
cov(li; "i) > 0 and cov(ki; "i) > 0.

� OLS estimation will provide inconsistent estimates of �1 and �2.



� Example 1 (cont.)

� Suppose that we have PD such that:

yit = �0 + �1 lit + �2 kit + "it

And we assume that:

"it = �i + 
t + uit

where:

� �i represents time-invariant unobserved inputs, e.g., quality of land;

� 
t common shocks for all the �rms;

� uit is a �rm-speci�c productivity shock.



� Example 1 (cont.)

� Under some conditions we can use PD to control for endogeneity bias gener-
ated by the unobservables �i and 
t.

� The model in �rst di¤erences is:

�yit = �1 �lit + �2 �kit +�
t +�uit

� If regressors are not correlated with �uit (e.g., rainfall), the OLS estimator
of the equation in �rst di¤erences is consistent.

� Using PD we can also obtain instruments [exploit Granger causality] for the
consistent estimation of the model even when (�lit; �kit) are correlated with
�uit.



� Example 2 (Dynamic labor demand).

� Sargent (JPE, 1978) estimates the following dynamic model of labor demand
(Euler equation) for a representative �rm.

�Lt = �0 + �1 �Lt�1 + �2 Wt + �3
Yt

Lt
+ 
t + ut

where:

� �Lt is employment change; Wt is the wage rate; Yt is output;

� ut is an expectational error orthogonal to information at t or before;

� 
t is a component of the marginal pro�t unobserved to the researcher
but observable to the �rm;



� Example 2 (cont.)

� The error term in this model is: "t � 
t+ut. While ut is not correlated
with the regressors, the error 
t could be. OLS estimation will be inconsistent.

� Suppose we have �rm level PD fLit;Wit; Yitg. And suppose that we assume
that

"it = �i + 
t + uit

where uit is not serially correlated.

� The Euler equation in di¤erences:

�2Lit = �1 �
2Lit�1 + �2 �Wit + �3 �

Yit
Lit

+�
t +�uit

We can estimate consistently �0s using an IV/GMM method.



An General PD Model

� Consider the model:

yit = f (xit; "it, �)

where:

f (:) is a known function;

� is a vector of unknown parameters.

xit is a vector of observable explanatory variables;

"it is unobservable;

� A standard speci�cation of the unobservable is:

"it = �i + 
t + uit



INCIDENTAL PARAMETERS PROBLEM

� In PD model with an error structure "it = �i + 
t + uit, we can treat ��s
and 
�s as parameters to estimate.

� We can include as explanatory variables (N � 1) individual dummies associ-
ated to ��s and (T � 1) time dummies associated to 
�s.

� The number of parameters ��s increases at the same rate as N as N !1.
We cannot estimate these parameters consistently.

� Inconsistency of our estimator of ��s may contaminate / bias our estimation
of the parameters of interest �.



INCIDENTAL PARAMETERS PROBLEM [more generally]

� Given a model with vector of parameters � and a random sample with size
n, we say that the model has an incidental parameters problem if:

As n!1, we have that dim(�)!1

� Neyman and Scott (Econometrica, 1948) show that in general, there is not
a consistent estimator of the whole vector �.

� Suppose that � = (�; �), such that as n!1,

dim(�)!1, but dim(�) = K for any value of n

Can we obtain a consistent estimator of � despite our estimation of � will be
always inconsistent?



Two relevant classi�cations of PD Models

� There are two classi�cations of PD models that have important implications
on the properties of di¤erent estimators (e.g., �xed e¤ects estimators).

� (A) Classi�cation according to the additivity of the unobservables:

Additive separable unobservable: yit = h (xit; �) + "it

Non additive separable unobservable: e.g., yit = maxfx0it � + "it ; 0g

� (B) Classi�cation according to Static and Dynamic PD models.



Additive vs. Nonadditive Unobservables

� The Incidental Parameters Problem has a very di¤erent nature depending on
whether unobservables are additive or non-additive models.

� The properties of some estimators are very di¤erent in linear and in nonlinear
PD models. For instance, the �xed-e¤ects or within-groups estimator is con-
sistent in static linear PD models but it is inconsistent in most nonlinear static
PD models.



Static and Dynamic Panel Data Models

� The classi�cation Static vs Dynamic PD models depends on the relationship
between the observable variables fxitg and the transitory shock fuitg.

� In a static model regressors are "strictly exogenous" in the sense that do
not include lagged endogenous variables:

E (uit xit+s) = 0 for any s 2 f:::;�2;�1; 0;+1;+2; ::::g

� Dynamic models include predetermined or lagged endogenous variables.
For instance, yit�1 is included in xit. In these models, xit+1 includes yit, and
therefore

E (uit xit+1) 6= 0



� The properties of some estimators are very di¤erent in static and dynamic
PD models. Estimators which are consistent and e¢ cient in static models, are
not even consistent in dynamic models.



2. STATIC PANEL DATA MODELS

� Consider the model:

yit = x
0
it � + "it

where: xit is a K � 1 of regressors. "it is the error term.

� Most PD models assume the following structure for the error term:

"it = �i + 
t + uit


t is a common aggregate e¤ect;

�i represents persistent unobserved heterogeneity is called "individual
e¤ect" or "unobserved heterogeneity"

uit is called "transitory shock" or "time-variant unobservable", ...



Time dummies

� We can incorporate parameters 
 = f
1; 
2; :::; 
Tg using time dummies.

� Let D(s)t be the time-dummy for period s such that:

D
(s)
it = 1 if t = s; and D

(s)
it = 0 if t 6= s

� Then,


t =
TP
s=1

D
(s)
it 
s = [D

(1)
it ; :::; D

(T )
it ] 
 = D0it 


� Therefore, the model:

yit = [xit ;Dit]
0
"
�



#
+ �i + uit



Time dummies (cont.)

� For notational simplicity, unless state otherwise, I represent the model as:

yit = x0it � + �i + uit

But it should be understood that xit includes the time-dummy variables, and
� includes the time-e¤ect parameters 
.

� This notation applies to large N and T small. In this case, 
 and � are not
subject to the incidental parameters problem [in cotrast to �].

� When T is large and N is small we can include individual dummies in xit.
In that case, � and � are not subject to the incidental parameters problem [in
cotrast to 
].



More notation ...

� We can see a PD model as a system of T equations (an eq. for t = 1, for
t = 2, ...) such that we have a CS of N observations for each of these T
equations.

yi1 = x0i1 � + �i + ui1
yi2 = x0i2 � + �i + ui2... ...
yiT = x0iT � + �i + uiT

� We can represent this system in vector form as:

Yi = Xi � + 1 �i +Ui

where:

Yi and Ui are T � 1 vectors; and 1 is a T � 1 vector of 10s;

Xi is T �K matrix.



� For unbalanced panels we can use a similar notation.

� Let dit 2 f0; 1g be the indicator of the event "individual i is observed in the
cross-section at period t". Then:

Yi = Xi � + di �i +Ui

where:

Yi =
T � 1

26664
di1 yi1
di2 yi2...
diT yiT

37775 ; Xi =
T � K

266664
di1 x

0
i1

di2 x
0
i2...

diT x
0
1T

377775 ; di =
T � 1

26664
di1
di2
...
diT

37775
The expressions of the di¤erent estimators we will see below apply to this
de�nition of Yi, Xi, and di.



� Assumption: Strict exogeneity (Static Model)

E[xit uis] = 0 for any (t; s) 2 f1; : : : ; Tg

� Comment: This assumption does not hold for models where the set of
regressors includes predetermined endogenous variables:.e.g., yi;t�1; yi;t�2:

� For instance, suppose that yi;t�1 � xit. The model establishes that yi;t�1
depends on ui;t�1. Therefore, it is clear that:

E[xit ui;t�1] 6= 0



FIXED EFFECTS vs RANDOM EFFECTS

� One of the most important issues in the estimation of panel data models is
endogeneity due to correlation between the regressors and the individual e¤ect.

E (xit �i) 6= 0

� There are two main approaches to control for this endogeneity problem:

(1) the Fixed e¤ects approach;

(2) the Correlated Random E¤ects approach.



Fixed e¤ects (FE) models / methods

� This approach does not impose any restriction on the joint distribution
of (xi1;xi2; :::;xiT ) and �i.

� CDF (�i j xi1;xi2; :::;xiT ) is completely unrestricted. In this sense,
the FE model is nonparametric with respect the distribution CDF (�i j xi).

� Typically, �xed e¤ects methods are based on some transformation of the
model that eliminates the individual e¤ects, or that make them redundant in a
conditional likelihood function.



Correlated Random E¤ects (CRE) models / methods

� The CRE model imposes some restrictions on the distribution CDF (�i j
xi1;xi2; :::;xiT ).

� The stronger restriction is that �i is independent of (xi1;xi2; :::;xiT ) and
iid(0; �2�). Some textbooks de�ne RE in this restrictive way.

� However, there are more general RE models. For instance, Chamberlain�s
CRE model:

�i = �0 + x
0
i1 �1 + :::+ x

0
iT �T + ei

where ei is independent of (xi1;xi2; :::;xiT ). Based on this assumption, we
estimate the parameters � and �0s. It is a parametric approach because it
depends on a parametric assumption on the distribution of fxi1; xi2; :::; xiTg
and �i.



� Relative advantages and limitations of FE and CRE models

(a) FE is more robust because it does not depend on additional assumptions.
If the assumption of the CRE is not correct the CRE estimator may be incon-
sistent.

(b) The FE transformation may eliminate sample variability of the regressors
that is exogenous and useful to estimate the model. Therefore, the FE estimator
may be less precise or e¢ cient than the CRE estimator (provided the CRE
assumption is consistent).

(c) For some models (e.g., some nonlinear dynamic models) there is not a
consistent FE method.

Chamberlain (ECMA, 2010 on dynamic probit models).



ESTIMATION WHEN E[xit �i] = 0

� We start with the simpler case in which the individual e¤ect is not correlated
with the regressors.

� In this model, the OLS estimator in the equation in levels is consistent:

�̂OLS =

0@ NX
i=1

TX
t=1

xit x
0
it

1A�10@ NX
i=1

TX
t=1

xit yit

1A

=

0@ NX
i=1

X0iXi

1A�10@ NX
i=1

X0iYi

1A

This estimator is also called the Pooled OLS estimator because we pool
together all the observations as if we had pure cross-sectional data.



GLS ESTIMATOR WHEN E[xit �i] = 0 (cont.)

� The pooled OLS estimator is not e¢ cient because the error term "it is serially
correlated:

E
�
"it "i;t�j

�
= E

�
[�i + uit]

h
�i + ui;t�j

i�
= E

�
�2i

�
= �2�

� The asymptotically e¢ cient estimator is the GLS.

� To obtain the e¢ cient GLS estimator of � it is convenient to write the model
in matrix form:

Y = X � + "



GLS ESTIMATOR WHEN E[xit �i] = 0 (cont.)

where:

Y =
NT � 1

26664
Y1
Y2
...
YN

37775 ; X =
NT � K

26664
X1
X2
...
XN

37775 ; " =
NT � 1

26664
"1
"2
...
"N

37775

� Let V" be the variance matrix of ". We know that the GLS estimator can
be de�ned as the OLS estimator of the following transformed model:�

V
�1=2
" Y

�
=
�
V
�1=2
" X

�
� +

�
V
�1=2
" "

�
We now derive the expressions of V", V

�1=2
" , and of the transformed variables

V
�1=2
" Y and V�1=2" X.



GLS ESTIMATOR WHEN E[xit �i] = 0 (cont.)

� We have

V" = E[" "0] = E

26664
"1"

0
1
"1"

0
2 : : : "1"

0
N

"2"
0
2 : : : "1"

0
N. . . ...

"N"
0
N

37775

� If "i is homocedastic over i and E["i"0j] = 0 for i 6= j,

V" =

26666664

 0 : : : 0
0 
 : : : 0
...
...

0
...

. . .
...
0

0 0 


37777775 = IN 



where 
 is the T � T matrix E["i"0i].



� GLS and FGLS when u is not i.i.d. V" = IN 

 where for any
individual i the variance-covariance matrix


 = E

266664
"2
i1
"i1"i2 : : : "i1"iT
"2
i2

: : : "i2"iT
. . . ...

"2
iT

377775
is an unrestricted.

� The GLS estimator is equivalent to the OLS estimator of the transformed
model:

(IN 

�1=2)Y = (IN 

�1=2)X � + "�

� This FGLS estimator can be obtained without any restriction on the structure
of the variance matrix 
.



� Let b"i = (b"i1; b"i2; :::; b"iT )0 be the vector of OLS residuals for individual i.
Then, a consistent estimator of 
 is:

b
 =
1

N

PN
i=1 b"i b"0i

The FGLS estimator uses this estimator of 
.



ESTIMATION WHEN E[xit �i] 6= 0

� Now, the Pooled OLS estimator is inconsistent because E[xit (�i+uit)] 6= 0:

� We now examine the following estimators:

(a) OLS in �rst di¤erences

(b) Within-groups (Fixed E¤ects) estimator

(c) Least squares dummy variables estimator

(d) Chamberlain�s CRE



(a) OLS in �rst-di¤erences.

� The OLS-FD estimator is a FE estimator based on a �rst-di¤erencing trans-
formation of the model:

�yit = �x
0
it � +�uit

where � represents a �rst time di¤erence, e.g., �yit = yit � yi;t�1.

� Strict exogeneity of xit implies that E[�xit �uit] = 0:

E[�xit�uit] = E [xituit]� E
h
xitui;t�1

i
� E

h
xi;t�1uit

i
+ E

h
xi;t�1ui;t�1

i
= 0+ 0+ 0+ 0

� Therefore, OLS in FD is a consistent estimator.

�̂FD =

 
NP
i=1

TP
t=2

�xit �x
0
it

!�1 NP
i=1

TP
t=2

�xit �yit

!



� The estimator is not e¢ cient (unless uit is a random walk), but we can de�ne
a FGLS-FD estimator.



(b) Within-Groups (or FE) estimator

� In general, Fixed E¤ect estimators of � are based either on a transformation
of the model or on some su¢ cient statistic that eliminates the "incidental" or
"nuisance" parameters f�ig.

� The WG estimator is a FE estimator based on the WG transformation of the
model:

(yit � �yi) = (xit � xi)0� + (uit � ui)

� The WG estimator is just the OLS estimator of the WG transformation.

�̂WG =

 
NP
i=1

TP
t=1
(xit � xi)(xit � xi)0

!�1 NP
i=1

TP
t=1
(xit � xi)(yit � �yi)

!



Consistency of WG estimator in Static-Linear PD

� This estimator is consistent if there is not perfect collinearity in (xit � xi)
and E ((xit � xi) (uit � �ui)) = 0.

� Note that:
E ((xit � xi) (uit � �ui)) = E [xituit]� E [xit�ui] �E [xiuit] +E [xi�ui]

= 0+ 0+ 0+ 0

Strict exogeneity of the regressors imply that all these expectations are zero
and therefore the WG estimator is consistent.

� However, the estimator of �i is not consistent for �xed T :

p lim
N�!1

c�i =
1

T

TP
t=1

�
yit � x0it

�
p lim
N�!1

b��� = 1

T

TP
t=1

�
yit � x0it�

�

= �i + �ui 6= �i



(c) Least squares dummy variables (LSDV) estimator. Suppose that we
treat the individual e¤ects f �1; �2; :::; �Ng as parameters to be estimated
together with �.

� We can write the model in vector form as:

Y = X � +D �+U = (X ... D)

 
�
�

!
+U

� D is a NT �N matrix of dummy variables, one for each individual.

� The i � th column of matrix D contains the observations of the dummy
variable for individual i, i.e., 1 if the observation belongs to i and 0 otherwise.

� � is the vector of "parameters" (�1; �2; :::; �N)0.



LSDV estimator (cont.)

� The LSDV is simply the OLS estimator of
 
�
�

!
in this model:

 b�LSDVb�LSDV
!
=

h
(X ... D)0(X ... D)

i�1 h
(X ... D)0Y

i

=

"
X0X X0D
D0X D0D

#�1 "
X0Y
D0Y

#

� This way of implementing this estimator can computationally demanding if
we the panel contains many individuals. We nee to keep in memory and to
invert a matrix (N +K)� (N +K)

� e.g., panel from the CPS with N = 120; 000 individuals ...



LSDV estimator (cont.)

� Fortunately, we can obtain the LSDV estimator without having to invert
"directly" (or by "brute force") this matrix. We can use properties of partitioned
matrix together with the particular structure of the matrices D0D and D0X.

� By Frish-Waugh Theorem, the OLS estimator of � can be written:

b�LSDV = h
X0 MD X

i�1 h
X0 MD Y

i
whereMD is the idempotent matrix:

MD = INT �D(D0D)�1D0

= (IN 
 IT )�
1

T

�
IN 
 110

�
= IN 


�
IT �

1

T
110

�



LSDV estimator (cont.)

� When we pre-multiply Y and X byMD, these variables are tramsformed in
deviations with respect to individual means: MD Y = Y� andMD X = X�:

y�it = yit � �yi ; x�it = xit � xi
and �yi = T�1

Pt
t=1 yit and xi = T

�1Pt
t=1 xit.

� Since MD is an idempotent matrix, we can write:

b�LSDV = h
X�0 X�

i�1 h
X�0 Y�

i

� Therefore, the least squares dummy variables estimator of � is EQUIV-
ALENT to the OLS estimator of the transformed model:

(yit � �yi) = (xit � xi)0� + "�it



LSDV estimator (cont.)

� The LSDV and the Within-Groups are the numerically equivalent (i.e.,
the same estimator). The WG approach is the e¢ cient algorithm, from a
computational point of view, of obtaining the LSDV.

� It is simple to show that the estimator of �i is:

\�i;LSDV = T
�1

TX
t=1

�
yit � x0it �̂

�



Is the LSDV estimator consistent? Incidental parameters problem

� In general, the LSDV is NOT consistent as N !1 and T is �xed.

� The reason is the incidental parameters problem: the number of parameters
in � grow at the same rate as N , and we have only T observations for each
�i. Therefore, \�LSDV is NOT consistent.

� In general, the inconsistency of \�LSDV a¤ects the estimation of � and implies
that \�

LSDV
is also inconsistent.

� However, we show below that in STATIC & LINEAR PD models, \�
LSDV

is
consistent.

� In general, the consistency property of \�
LSDV

does NOT extend to dynamic
PD models and to nonlinear PD models.



� Remark: It is interesting that we can get a consistent estimator of � despite
our estimator of � is inconsistent as N goes to in�nity and T is �xed. In the
LSDV estimator we try to control for the endogeneity of the unobservables �i by
introducing individual dummies. However, the parameter estimates associated
with these dummies are asymptotically biased (as N goes to in�nity and T is
�xed) such that these dummies are not fully capturing the individual e¤ects �i.
Then, how is it possible that we get a consistent estimator of �?

� The answer is that the estimator of �i, though inconsistent, is such that the
estimation error (�̂i� �i) is not correlated with the regressors when these are
strictly exogenous. Notice that asymptotically �̂i is equal to �i+�ui. Therefore,
the estimation error �̂i� �i is equal to �ui. When the regressors are strictly
exogenous this estimation error is not correlated with xit.

�When the transitory shock uit is i.i.d., the WG estimator is also asymptotically
e¢ cient. WHY?



ROBUST STANDARD ERRORS

� Consider the static linear PD model:

eyit = exit � + ~"it
eyit, exit, ~"it are transformations of the original variables yit, xit, "it.
� This representation includes as particular cases:

- Model in levels: eyit = yit
- Model in FD: eyit = �yit
- Within Groups: eyit = yit � �yi

- Balestra-Nerlove: eyit = yit � ��yi



ROBUST STANDARD ERRORS (cont.)

� In vector form: fY i = fXi � + e"i
(T � 1) (T �K) (K � 1) (T � 1)

� The OLS estimator in this transformed model is:

b� =  
NP
i=1

fX 0
i
fXi

!�1 NP
i=1

fXi
fY i
!

Depending on the transformation, the estimator can be the Pooled-OLS, the
WG, the OLS-FD, the FGLS, ...

� Under the assumption that the vectors e"i are independent over individuals,
the variance matrix of this estimator is:

V(b�) =  
NP
i=1

fX 0
i
fXi

!�1 NP
i=1

fX 0
i E

he"i e"0i j fXi

i fXi

! 
NP
i=1

fX 0
i
fXi

!�1



ROBUST STANDARD ERRORS (cont.)

� Therefore, the panel-robust (or clustered over individuals) estimator of V(b�)
is:

cV(b�) =  
NP
i=1

fX 0
i
fXi

!�1 NP
i=1

fX 0
i b"i b"0i fXi

! 
NP
i=1

fX 0
i
fXi

!�1
where b"i = fY i � fXi

b�.
� Note that cov(uit; uis) and var(uit) are completely unrestricted to vary over
i, t, s. Observations within individual i are correlated in an unrestricted way.

� These standard errors are denoted Clustered-over individuals Standard
Errors.

� With panel data, it is very important to correct standard errors for serial
correlation.



ROBUST STANDARD ERRORS: And Example (Labor Supply)

� We have a sample of 532 males in US over 10 years: 1979-1988 (from Ziliak,
JBES 1997). The labor supply equation is:

logHit = � logWit + �i + uit

Hit represents the individual�s annual hours of work

Wit represents the individual�s after-tax hourly wage

� We are interested in the estimation of the elasticity parameter �. Using
cross-sectional data, estimates of � are very small. We are concerned with
cov(Wit; �i) 6= 0.



And Example (Labor Supply) [Cont.]

� cov(Wit; �i) > 0 [upward biased in �] taste for working positively correlated
with wages.

� cov(Wit; �i) < 0 [downward biased in �] omitted sources of wealth and
nonlabor income (with negative e¤ect on hours) can be positively correlated
with wage.

� Main results:

- Substantial downward bias in � because cov(Wit; �i) 6= 0;

- Very important to use robust s.e.;

- Substantial loss of precision in FE estimation



� Estimates

Labor Supply
Dependent variable: log(Annual Hours of Work)

Parameter Pool OLS Within FD FGLS

� 0.083 0.168 0.109 0.120

Robust s.e. (0.030) (0.085) (0.084) (0.052)
Default s.e. (0.009) (0.020) (0.021) (0.014)

�� 0.181

�u 0.232

� 0.624 0.586

Number Obs. 5,320 5,320 4,788 5,320



Some issues with FE estimators in static PD models

� Under the strict exogeneity assumption, FE estimators are consistent and
robust because the consistency does not depend on any assumption of the joint
distribution of �i and x.

� However, there are two relevant issues with FE estimators:

(a) Variance of FE cab be substantially larger than Pooled-OLS;

(b) FE estimator may exacerbate measurement error bias.



(a) Variance of FE can be substantially larger than Pooled-OLS

� We can decompose the variance of the variables yit and xit in the sum of
Within Groups and Between Groups variance:

NP
i=1

TiP
t=1
(xit � x)2 =

NP
i=1

TiP
t=1
([xit � xi] + [xi � x])2

=
NP
i=1

TiP
t=1
(xit � xi)2 +

NP
i=1

Ti(xi � x)2

SSTOTAL SSWG + SSBG

� Tyypically, in micro-level datasets of individuals or �rms, most of the vari-
ability is BG: individuals are very heterogeneous and this heterogeneity is very
persistent over time:

SSBG >> SSWG



(a) Variance of FE can be substantially larger than Pooled-OLS

� Note that for in the Pooled OLS estimator we are using SSTOTAL of the
regressors, and this typically implies a very small variance.

� In contrast, in the WG estimator (and similarly in the OLS-FD) we exploit
only the SSWG of the regressors. Typcally, this represents a small fraction of
SSTOTAL.

� Therefore, Var(WG) >>> Var(Pooled-OLS).



(b) FE estimator may exacerbate measurement error bias

� When regressors are measured with error the WG estimator still eliminates
the bias associated with the individual e¤ect �i, but it may amplify the bias
associated with the measurement error.

� To illustrate this, consider the following simple model:

yit = � x�it + �i + uit

where x�it satis�es the strict exogeneity assumption, but it is correlated with
�i, cov(x�it; �i) = 
 > 0.

� There researcher does not observe the "true" regressor x�it but the variable
xit that is measured with error:

xit = x�it + eit



(b) FE estimator may exacerbate measurement error bias

� The model in levels is:

yit = � xit + "it

where "it = �i+uit��eit. The asymptotic bias of the OLS estimator of this
equation is:

Bias(OLS) =
cov(x; ")

var(xit)
=


 � � �2e
SSTOTAL=NT

� The model in WG transformation is:

(yit � �yi) = � (xit � �xi) + ("it � �"i)
where ("it� �"i) = (uit� �eit)� (�ui� ��ei). The asymptotic bias of the WG
estimator of this equation is:

Bias(WG) =
cov((xit � �xi)("it � �"i))

var((xit � �xi))
=

�� �2e
SSWG=NT



WG AND MEASUREMENT ERROR (cont.)

Bias(OLS) =

 � � �2e

SSTOTAL=NT

Bias(WG) =
�� �2e

SSWG=NT

� Remark 1: The sign of the bias may go from positive to negative.

� Remark 2: If most of the variability in x is cross-sectional (i.e., SSTOTAL >>
SSWG), then the absolute value of the bias can be larger with the WG.



Remarks

� Given these issues, it is clear that there is a "price" the researcher should pay
for the robustness of the FE estimator.

� In this context, it is useful to have:

(a) A test of the null hypothesis E(xit �i) = 0. We do not want
to get rid of the BG variation of the regressots if this variation is not
correlated with �i. [Hausman test]

(b) An estimator that allows for E(xit �i) 6= 0 but does not elim-
inate the whole BG variability of the regressors (trades-o¤ robustness
for e¢ ciency) [Chamberlain RE estimator].



HAUSMAN TEST OF ENDOGENOUS INDIVIDUAL EFFECTS

� H0 : E (xit �i) = 0 and H1 : E (xit �i) 6= 0

� Let �̂FGLS be the optimal (FGLS) estimator under the assumption that
E (xit �i) = 0.

� Under [H0 : E (xit �i) = 0] )
(
�̂FGLS is consistent and e¢ cient
�̂WG is consistent (but not e¢ cient)

� Under [H1 : E (xit �i) 6= 0] )
(
�̂FGLS is inconsistent
�̂WG is still consistent



HAUSMAN TEST OF ENDOGENOUS INDIVIDUAL EFFECTS

� Therefore, under H0 : plim (�̂FGLS � �̂WG) = 0 and it is possible to
prove that:

H = (�̂FGLS � �̂WG)
0[V ar(�̂FGLS � �̂WG)]

�1(�̂FGLS � �̂WG) �a �2K

� And, under H1 : plim (�̂FGLS � �̂WG) 6= 0 and H �
a
noncentral �2

� Note that the covariance between an e¢ cient estimator and an ine¢ cient
estimator is equal to the variance of the e¢ cient estimator:

Cov(�̂eff ; �̂ineff) = V ar(�̂eff)

� Therefore,

H = (�̂FGLS � �̂WG)
0[V ar(�̂WG)� V ar(�̂FGLS)]�1(�̂FGLS � �̂WG)



HAUSMAN TEST OF ENDOGENOUS INDIVIDUAL EFFECTS

� This is a very useful test in PD econometrics.

� However, note that the potential problem of not enough time-variability in
the regressors appears also here and a¤ects the power of this test.

� If x�s do not have enough time variability then V ar(�̂WG) is "large" relative
to V ar(�̂FGLS) such that, and therefore the statistic H can be small even
when k �̂WG � �̂FGLS k is quite large.

� In other words, if there is not enough time variability in x the test may have
low power and we may not be able to reject the H0 even if it is false



CHAMBERLAIN�S CORRELATED RANDOM EFFECTS ESTIMATOR

� Consider the PD model

yit = x
0
it � + �i + uit

� Our main concern is the correlation between �i and the regressors x.

� Suppose that we make the following assumption about the joint distribution
of �i and x:

�i = x
0
i1 �1 + :::+ x

0
iT �T + ei

where ei is independent of xi � (xi1;xi2; :::;xiT ).

ei ? xi



CHAMBERLAIN�S CORRELATED RANDOM EFFECTS ESTIMATOR

� Based on this assumption, we have:

yit = x0i1 �1 + :::+ x
0
i1 [�t + �] + :::x

0
iT �T + ei + uit

= [x0i1 , x
0
i2 , :::, x

0
it, :::, x

0
iT ]

2666666664

�1
�2
...

�t + �
...
�T

3777777775
+ ei + uit

= x0i �t + u
�
it

where x0i � (x0i1;x0i2; :::;x0iT ) is 1�KT vector of regressors, �t is a KT � 1
vector of parameters, and u�it = ei + uit.



CHAMBERLAIN�S CORRELATED RANDOM EFFECTS ESTIMATOR

� Then, we have a system of T equations with the same regressors but di¤erent
dependent variables and parameters (a SURE):

yi1 = x0i �1 + u
�
i1

yi2 = x0i �2 + u
�
i2... ...

yiT = x0i �T + u
�
iT

� We can estimate each of these T equations separately by OLS (or by FGLS
to account for the serial correlation in u�it) to obtain consistent estimates of
the parameters

� But we want to estimate �, not ��s.



CHAMBERLAIN�S CORRELATED RANDOM EFFECTS ESTIMATOR

� Note that we can represent the relationship between ��s and ��s and � as a
linear regression-like equation:

� �

26664
�1
�2
...
�T

37775 =
26664
IK IK 0 ::: 0
IK 0 IK ::: 0
... ... ... ...
IK 0 0 ::: IK

37775
26666664
�
�1
�2
...
�T

37777775
or in a compact form:

� = A

"
�
�

#

where A is a T 2K � (T + 1)K matrix of 00s and 1�s.



CHAMBERLAIN�S CORRELATED RANDOM EFFECTS ESTIMATOR

� Given the estimate of c�, we can obtain a consistency estimator of ��s and
� as:

" b�b�
#
=
�
A0A

��1
A0 c�

� We can use the estimated variance of c�, i.e., cV(c�), to obtain a more
e¢ cient estimator (the Optimal Minimum Distance estimator):" b�b�

#
=
�
A0 cV(c�)�1 A��1 �A0 cV(c�)�1 c��

This estimator is asymptotically e¢ cient under the assumptions of the Corre-
lated RE model.



CHAMBERLAIN�S CORRELATED RANDOM EFFECTS ESTIMATOR

� A very interesting property of the CRE model/estimator is that we can include
time-invariant regressors.

� Consider the model:

yit = �1 xit + �2 zi + �i + uit

� Under the CRE assumption:

�i = �
x
1 xi1 + :::+ �

x
T xiT + �

z zi + ei

� It is simple to show that we can estimate/identify the parameter �2 + �z.



Hausman tests of endogenous heterogeneity using Correlated RE

� Suppose that the SSWG variation in the data is small such that the WG
estimator is imprecise and the Hausman test of endogenous heterogeneity based
on



b�WG � b�FGLS


 has very little power.

� We can use the correlated RE estimator to construct a more powerful test.

H = (�̂FGLS� �̂CRE)0[V ar(�̂CRE)�V ar(�̂FGLS)]�1(�̂FGLS� �̂CRE)

� Of course, we need to assume that CRE estimator is always consistent under
the null and under the alternative.

� Note that under the null, the FGLS is more e¢ cient than the CRE because
it imposes the (correct) restrictions � = 0.



APPLICATION: Crime in Norway

�We have data on crime for 53 districts and 2 years (1972 and 1978) in Norway.
We are interested in the estimation of the following model:

log(crimeit) = �0 + �1 dum78t + � avgpsolvit + �i + uit

crimeit is the crime rate in district i at year t;

dumt is the dummy for year 1978;

avgpsolvit is the percentage of crimes which were solved in district i during
the previous two-years.

� We are particularly interested in the estimation of the deterrence e¤ect of
solving crimes (i.e., parameter �).



� OLS in levels

OLS in levels
Dependent variable: log(crime)

Standard errors robust of heterocedasticity
Regressor Estimate Std. error

constant 4.182 0.193
dummy 78 -0.056 0.088
avgpsolv -0.036 0.004

Number obs. 106
R-square 0.47

� According to these estimates, police�s resolution of crimes has a very signi�-
cant deterrence e¤ect. If the proportion of solved cases increases in 1 percentage
point, the crime rate decreases 3.6%. This e¤ect is statistically signi�cant.



� However, the consistency of this OLS estimator is based on the assumption
that E(avgpsolvit* �i) = 0.

� Suppose that it is easier to solve crimes in communities where citizens have
a low propensity to criminal activities. For instance, good citizens can be more
collaborative with police in the solution of crimes. If that is the case, we have
that E(avgpsolvit* �i) < 0 and the OLS estimator of � will be downward
biased.

� Therefore, the OLS may be a asymp. biased estimator of the causal e¤ect of
avgpsolv on crime.



� Within-groups estimator

Within-Groups
Dependent variable: log(crime)

Standard errors robust of heterocedasticity
Regressor Estimate Std. error

constant 3.316 0.231
dummy 78 0.099 0.062
avgpsolv -0.017 0.005

Number obs. 106
R-square (within) 0.408

R-square (all) 0.436
�̂� 0.471
�̂u 0.244

� The deterrence e¤ect is still signi�cantly di¤erent to zero, but much smaller in
magnitude. Though we should make a formal test, it seems that �i is correlated



with the regressors. There may be unobserved district characteristics (i.e., �i)
which have a positive e¤ect on crime and are negatively correlated with the
percentage of cases solved. That is, there are "good districts" (i.e., low �i)
where crime is low and most crimes are easy to solve, and "bad districts" (i.e.,
high �i) where crime is high and crimes are more di¢ cult to solve. If we do not
control for these unobserved district characteristics, we get a downward bias
estimate of �, i.e., an estimate of the deterrence e¤ect that is partly spurious.



FGLS estimator

FGLS Estimates
Dependent variable: log(crime)

Regressor Estimate Std. error
constant 3.799 0.186

dummy 78 0.013 0.013
avgpsolv -0.027 0.004

Number obs. 106
R-square (within) 0.384

R-square (all) 0.468
�̂� 0.371
�̂u 0.244

This FGLS estimate of � is between the OLS and the WG. Still, it seems that �i
is correlated with the regressors and OLS overestimates the deterrence e¤ect.



Hausman test of the null hypothesis that the regressors are not corre-
lated with �i.

� The Hausman statistic is equal to 14:85. Under the null hypothesis that
E( �iXi) = 0 it is distributed as Chi-square with 2 degrees of freedom (i.e.,
number of regressors, other than the constant term).

� The p-value of the test is 0:0006, which means that we can clearly reject the
null hypothesis under the typical choice of signi�cance level (e.g., 5%, 1%) and
even with much smaller signi�cance levels.



Which estimate of � do you �nd more reasonable?

� There is clear evidence that the unobserved district e¤ect �i is correlated
with the regressors.

� Therefore, both the OLS and the Balestra-Nerlove estimators are inconsistent.
The most reasonable estimator in this context seems the Within-Groups.



3. DYNAMIC PANEL DATA MODELS

3.1. INTRODUCTION

� Dynamic models: lagged values the variables (dependent and/or explana-
tory) have a causal e¤ect on the current value of the dependent variable.

� Multiple sources of dynamics: adjustment costs, irreversibilities, habits,
storability, etc.

� Short-run and long-run responses are di¤erent.

� The assumption of strict exogeneity of the regressors does not hold.This
has very important implications on the properties of estimators.



� Example 1: Firms�dynamic labor demand. Consider the dynamic labor
demand equation (Sargent, JPE 1978; Arellano and Bond, REStud 1991):

nit = �0 + �1 ni;t�1 + �2 wit + �3 yit + 
t + �i + uit

n = ln(Employment); w = ln(Wage); and y = ln(Output); 
t represents
aggregate shocks, and �i represents �rm speci�c and time invariant factors
that a¤ect productivity and or input prices and which are unobservable to the
econometrician. The unobservable uit represents idiosyncratic shocks. The
parameter �1 is associated with labor adjustment costs.

� In this model, it is clear that ni;t�1 is not strictly exogenous with respect to
uit. It is not correlated wit uit or with future values of u, but by construction
ni;t�1 depends on ui;t�1; ui;t�2; :::



� Parameter �1 has important economic implications. Short-run elasticity =
�2 : Long-run elasticity =

�2
1� �1

.



� Example 2. [Cont]

� Employment has a strong positive serial correlation (after controlling for wages
and output). Two possible explanations.

� (A) Structural state dependence. Labor adjustment costs.

� (B) Persistent unobserved heterogeneity. �i represents �rm heterogeneity
in the steady-state optimal level of employment (due to productivity, other labor
costs). �i generates positive serial correlation in employment.

� The two explanations have very di¤erent economic implications (e.g., LR
elasticity).



� Example 2 (Investment in R&D): Consider the following dynamic model
for �rm�s investment in R&D:

RDit = �0 + �1 RDit�1 + "it

RDit is the �rm investment during a year, and RDit�1 is the same �rm
investment at previous year.

� The term �1 RDit�1 captures the fact that previous investment in R&D
increases the marginal pro�t (e.g., reduces the marginal cost) of investment
today, e.g., know-how.

� OLS estimation of this equation typically provides a positive, large, and sig-
ni�cant estimate of the parameter �1.



� Two possible explanations for the OLS estimate of �1.

(A) Structural state dependence. Previous investment in R&D causes an
increase in the marginal pro�t of investment today.

(B) Persistent unobserved heterogeneity. "it represents �rm heterogeneity
in the pro�tability of investment in R&D. If "it is persistent over time, then
�rms with higher values of "it tend to have also higher past levels of R&D:
cov(RDit�1; "it) > 0. OLS estimation will provide an upward biased estimate
of �1.



� Example 3: AR(1) Panel Data Model. It is the simplest example of
dynamic PD model.

yit = � yi;t�1 + �i + uit

� For the moment, we maintain assumption uit � iid over (i; t) (0; �2u):

� We will use this model as a benchmark. We will derive simple analytical
expressions for the asymptotic bias and variance of di¤erent estimators of � in
this model.

� These expressions will help us to understand the problems and merits of
di¤erent estimators.



� Solving backwards, we have that

yit = �i(1 + � + �
2 + :::) + uit + �ui;t�1 + �

2ui;t�2 + :::

� If � 6= 0 :

(1) The regressor yi;t�1 is correlated with �i: OLS is never consistent.

(2) The regressor yi;t�1 is correlated with ui;t�1; ui;t�2; :::; and therefore it
is not strictly exogenous.

� Point (2) has important implications on the properties of di¤erent estimators.
More speci�cally, for dynamic PD models the WG estimator and the OLS
estimator in �rst di¤erences are not consistent



3.2. INCONSISTENCY OF OLS-FD

� Consider the model in FD:

�yit = � �yi;t�1 +�uit

� OLS estimation of this equation is consistent if Cov(�yi;t�1;�uit) = 0:

� However,

Cov(4yi;t�1;4uit) =
= E(yt�1ut)| {z }�E(yt�1ut�1)| {z }�E(yt�2ut)| {z }+E(yt�2ut�1)| {z }
= 0 � �2u 0 0

= ��2u 6= 0



� Exercise: Show that V ar(4yi;t�1) =
2�2u
1 + �

.

� Therefore

p lim
N!1

b�OLS�FD = � +
Cov(4yi;t�1;4uit)
V ar(4yi;t�1)

=
� � 1
2

� And the bias is �(1+�)2 . It is clear that the bias of this estimator can be
very large. For instance, when the true � is +0:5 the estimator converges in
probability to �0:25.

� Note that the bias does not depend on T . Therefore, the bias does not go
to zero as T goes to in�nity. The bias of the OLS-FD is as bad for T = 3

as for T = 500.



 

 



� Remark 1: What if uit is serially correlated?

� Suppose uit � AR(1):

uit = � uit�1 + ait

with ait not serially correlated and j�j < 1.

� Then, it is possible to show that [Good Exercise!]

Bias
�
�̂OLS�FD

�
=
Cov(4yi;t�1;4uit)
V ar(4yi;t�1)

=
�
1 + �

2

�
(�� 1)

� For � = 1, �̂OLS�FD is consistent. For j�j < 1, �̂OLS�FD is downward
biased.



� Remark 2: Bias reduction

� If uit is not serially correlated, we have that b�OLS�FD !p
� � 1
2

� This provides a very simple approach to correct for the bias and obtain a
consistent estimator of �.

� De�ne the estimator:

�̂
�
= 2 �̂OLS�FD + 1

For this model, �̂
�
is consistent and asymptotically normal (and very simple to

calculate).

� Can we generalize this approach to more general DPD models?



� Remark 2: Bias reduction (2)

� In general, the models that we have in empirical applications include more
explanatory variables (not only yit�1) and the error term uit may be serially
correlated, e.g., when uit is AR(1), the bias correction depends on � that is
unknown.

� In that model, we do not have a simple expression for the bias (it depends
on the joint stochastic process of the exogenous regressors) and on unknown
parameters in the stochastic process for uit (e.g., see the previous example for
the bias when uit follows an AR(1)).

� Still in the absence of better methods (e.g., in dynamic nonlinear PD models),
bias reduction techniques can be useful.



3.3. INCONSISTENCY OF WG

� Consider the WG transformed equation:

(yit � �yi) = �
�
yi;t�1 � �yi(�1)

�
+ (uit � �ui)

� The WG estimator is consistent if Cov((yi;t�1 � �yi); (uit � ui)) = 0:

However, this covariance is

Cov((yi;t�1 � �yi); (uit � ui))

= E(yi;t�1; uit)| {z }�E(yi;t�1; �ui)| {z }�E(�yi; uit)| {z }+E(�yi; �ui)| {z }
= 0 6= 0 6= 0 6= 0

< 0



� Nickell (Econometrica, 1981) derived the expression for the asymptotic bias
of the WG estimator in an AR(1) panel data model (for �xed T ):

bias
�
�̂WG

�
=

�
�
1� �2

�
h(T; �)

(T � 1)� 2� h(T; �)
where:

h(T; �) =
1

1� �

 
1� 1� �T

T (1� �)

!

(1) For j�j < 1, it is always negative.

(2) It increases in absolute when � goes to one.

(3) It decreases with T and becomes zero as T goes to in�nity.

(4) If � is not small, the bias can be important even for T greater than 20.



 

 



� Remark: WG is consistent as T!1

� In contrast to the case of the OLS-FD, the bias of the WG estimator declines
monotonically with T . Why?

� As we have seen, WG is numerically equivalent to LSDV. In the LSDV, we
use T observations to estimate each individual e¤ect. As T increases, the bias
in the estimates of the individual e¤ects becomes smaller and this contributes
to reduce the bias of �.

� In contrast, the bias of the OLS-FD comes from Cov(4yi;t�1;4uit) 6= 0,
and this source is not a¤ected by T!1.



� Remark: Bias reduction

� Again, we have obtained an expression: plim�̂WG = p(�; T ), where the
function p(:) is known, and it strictly monotonic in �, and therefore it is in-
vertible.

� De�ne the estimator:

�̂
�
= p�1(�̂WG; T )

where p�1(:) is the inverse function. By the continuous function theorem, �̂
�

is consistent and asymptotically normal.

� Again, a practical problem with this approach is that when we generalize the
DPD model, the expression of p(�; T ) becomes complicated and depends on
many unknown parameters.



3.4. ANDERSON-HSIAO ESTIMATOR (JoE, 1982)

� Consider the equation in FD:

�yit = � �yi;t�1 +�uit

� Suppose that uit is iid. Then,

(a) 4uit is NOT correlated with yi;t�2; yi;t�3; :::.

(b) If � 6= 0; then 4yi;t�1 is correlated with yi;t�2; yi;t�3; :::

� Therefore, under these conditions, we can use yit�2 (and also further lags of
y) as an instrument for �yi;t�1 in the equation in FD.



ANDERSON-HSIAO ESTIMATOR (cont)

� For the AR(1)-PD model without other regressors, the Anderson-Hsiao esti-
mator is de�ned as:

�̂AH =

TX
t=3

24 NX
i=1

yi;t�2 �yit

35
TX
t=3

24 NX
i=1

yi;t�2 �yi;t�1

35
Notice that we need T � 3 to implement this estimator.

� In the AR(1)-PD model that includes also exogenous regressors, Anderson-
Hsiao estimator is an IV estimator in the equation in FD where the FD of the
lagged endogenous variable is instrumented with yit�2.



� Asymptotic Properties of Anderson-Hsiao Estimator

� To derive this asymptotic variance, notice that:

p
N
�
�̂AH � �

�
=

TP
t=3

"
1

N

NP
i=1

yi;t�2 �yi;t�1

#�1 TP
t=3

"
1p
N

NP
i=1

yi;t�2 �uit

#
As N !1,

1

N

NP
i=1

yi;t�2 �yi;t�1 !p E (yt�2 �yt�1)

1p
N

NP
i=1

yi;t�2 �uit !d N
�
0; V ar

�
yi;t�2 �uit

��
By Mann-Wald Theorem, as N !1,

p
N
�
�̂AH � �

�
!d N (0; VAH)

with VAH =

PT
t=3 V ar (yt�2 �ut)hPT
t=3E (yt�2 �yt�1)

i2



� Asymptotic Variance Anderson-Hsiao Estimator

� Excercise: Show that E (yt�2 �yt�1) =
��2u
1 + �

and V ar (yt�2 �uit) =

2�2u V ar (yt).

� Given these expressions, we have that the variance of the limiting distribution
is:

VAH =

(T � 2) 2�2u

 
�2�

(1� �)2
+

�2u
1� �2

!
h
(T � 2) �u (1 + �)�1

i2

=
2

(T � 2)

 
1 + �

1� �

! 
1 +

 
1 + �

1� �

!
�2�
�2u

!



� Asymptotic Variance AH Estimator [Cont]

� Comment 1: The variance increases more than exponentially with �. It can
be pretty large if � is close to 1.

� For � = 1, the variance is in�nite, i.e., the instrument yi;t�2 is not correlated
with �yi;t�1.



 



� Comment 2: The variance also increases with �2�=�2u. Typically, in many
PD models with household or �rm level data, the variance of the individual
e¤ect is large relative to the variance of the transitory shock. Therefore, the
AH estimator can be quite imprecise.

� Example: Suppose that:

� = 0:6 ; ��=�u = 6 ; N (T � 2) = 3600

You can verify that for this example sd
�
�̂AH

�
= 0:567, and the 95% con�-

dence interval for � is:

95% CI for � = [�0:511 ; + 1:711]

That basically does not provide any information about the true value of �.



� Comment 3: There are several reasons for the ine¢ ciency of this estimator.

First, it does not exploit all the moment conditions that the model implies.

Relatedly, for every instrument that we include (i.e., yit�2, yit�3, ...) we lose
a complete cross-section of data.

The Arellano-Bond GMM estimator deals with these problems.

Second, even if we exploit all the moment conditions and all the data in an
e¢ cient way, lagged levels y can be weakly correlated with current �y when �
is close to one. The Arellano-Bover and the Blundell-Bond estimators deal
with this second problem.



� Comment 4: The consistency of the AH estimator depends crucially on the
assumption of no-serial correlation of uit. For instance, if uit follows an AR
process, AH is inconsistent.

� In contrast, if uit follows a random walk, OLS-FD is consistent and it does
not su¤er of "weak instruments" problem.

� This motivates two important questions:

(a) Can we test for serial correlation in uit? [YES]

(b) Can we extend AH idea to serially correlated uit? [YES]



Extension of AH-IV estimator to AR(1) transitory shock

� Suppose that uit = � ui;t�1 + ait, where ait is not serially correlated.

� We can take quasi-�rst-di¤ernces:

yit � � yi;t�1 = � yit�1 � �� yi;t�2 + �i(1� �) + uit � � ui;t�1
Or

yit = (� + �) yi;t�1 + (���) yi;t�2 + �i(1� �) + ait

� This equation in �rst di¤erences is:

�yit = (� + �) �yi;t�1 + (���) �yi;t�2 + ait

� Note that E(yt�2 at�2) = 0 and E(�yt�2 at�2) = 0; �yi;t�1 depends
on yi;t�2; and yt�2 and �yt�2 are not collinear. Consistent IV estimator of
�1 � � + � and �1 � ���.



3.5. ARELLANO-BOND GMM (RESTUD, 1991)

� The AH estimator is based on the moment condition:

E
 
TP
t=3

yi;t�2 �uit

!
= E

 
TP
t=3

yi;t�2(�yit � � �yi;t�1)
!
= 0

The estimator pools together T � 2 cross-sections.

� But the model implies other moment conditions which are not exploited by
the AH estimator.

� Let�s represent the model in FD as a system of linear equations, one for each
time period.8>>><>>>:

Equation for t = 3 : �yi3 = � �yi2 +�ui3
Equation for t = 4 : �yi4 = � �yi3 +�ui4

... ...
Equation for t = T : �yiT = � �yiT�1 +�uiT



� If fuitg is iid, we have the following moment conditions:

For t = 3 : E[yi14 ui3] = 0

For t = 4 :
E[yi14 ui4] = 0
E[yi24 ui4] = 0

For t = 5 :
E[yi14 ui5] = 0
E[yi24 ui5] = 0
E[yi34 ui5] = 0

� The total number of moment conditions is:

q � 1 + 2 + :::+ (T � 2) = (T � 2)(T � 1)
2



� We can represent these q moment conditions in vector form as:

E

26664
yi14 ui3
yi14 ui4
yi24 ui4
: : :

37775 = E
h
Zi
�
4Yi � � 4Yi(�1)

�i

where 4Yi and 4Yi(�1) are (T � 2)� 1 vectors

4Yi = (4yi3, 4 yi4, ..., 4 yiT )
0

and Zi is the q � (T � 2) matrix of instruments.



� And Zi is the q � (T � 2) matrix of instruments:

Zi =

26666666666666666666666664

yi1 0 0 ::: 0
0 yi1 0 ::: 0
... ... ... ...
0 0 0 yi1

0 yi2 0 ::: 0
0 0 yi2 ::: 0
... ... ... ...
0 0 0 yi2

... ... ... ...

0 0 0 yiT�2

37777777777777777777777775



� To understand the structure of the q � (T � 2) matrix of instruments Zi,
note that:

- Each row of Zi represents an instrument (moment condition) for one of
the T � 2 equations;

- For an instrument (moment condition) in equation t, we set equal to
zero all the elements of that row except the element corresponding to period t.

- For instance, row
h
yi1 0 0 ::: 0

i
represents yi1 as instrument in

the �rst equation, t = 3.

- Row
h
0 0 yi1 ::: 0

i
represents yi1 as instrument in the third equa-

tion, t = 5.

- Row
h
0 yi2 0 ::: 0

i
represents yi2 as instrument in the second

equation, t = 4.



� LetmN(�) be the q�1 vector of sample moment conditions, i.e., the sample
counterpart of E

h
Zi
�
4Yi � � 4Yi(�1)

�i

mN(�) = N�1
NX
i=1

Zi
�
4Yi � � 4Yi(�1)

�
Note that we use the T�2 cross-sections to construct these moment conditions.

� The Arellano-Bond GMM estimator is:

�̂AB = argmin
f�g

mN(�)
0 
̂�1 mN(�)

where 
̂ is a consistent estimator of the optimal weighting matrix, 
 =

E
�
Zi �Ui �U

0
i Zi

�
, with �Ui = (�ui3;�ui4; :::;�uiT )

0.



� Deriving the �rst order conditions and solving for �̂AB we get:

�̂AB =

0@ NX
i=1

Zi �Yi(�1)

1A0 
̂�1
0@ NX
i=1

Zi �Yi

1A
0@ NX
i=1

Zi �Yi(�1)

1A0 
̂�1
0@ NX
i=1

Zi �Yi(�1)

1A



� This estimator is obtained in two steps.

� In the �rst stage, we choose the weighting matrix under the assumption that
uit is iid over time. Under this assumption 
 = �2u E

�
Zi H Z0i

�
where H is

the (T � 2)� (T � 2) matrix with 20s in the main diagonal, �10s in the two
sub-main diagonals, and zeros otherwise.

H =

26666664
2 �1 ::: 0 0
�1 2 ::: 0 0
::: ::: ::: :::
0 0 ::: 2 �1
0 0 ::: �1 2

37777775



� Then, the �rst stage GMM estimator is:

�̂
(1)
AB =

0@ NX
i=1

Zi �Yi(�1)

1A00@ NX
i=1

Zi H Z0i

1A�10@ NX
i=1

Zi �Yi

1A
0@ NX
i=1

Zi �Yi(�1)

1A00@ NX
i=1

Zi H Z0i

1A�10@ NX
i=1

Zi �Yi(�1)

1A



� In the second stage GMM estimator, given �̂(1)AB we can get the residuals

�ûit = �yit � �̂
(1)
AB �yi;t�1. And we can use these residuals to obtain a

consistent estimator of 
 that is robust to heterocedasticity.


̂ = N�1
NX
i=1

Zi �
cUi �cU0i Z0i

where �cUi = (�ûi3;�ûi4; :::;�ûiT )0.
� Finally, the two-stage GMM estimator is:

�̂
(2)
AB =

0@ NX
i=1

Zi �Yi(�1)

1A00@ NX
i=1

Zi �
cUi �cU0i Z0i

1A�10@ NX
i=1

Zi �Yi

1A
0@ NX
i=1

Zi �Yi(�1)

1A00@ NX
i=1

Zi �
cUi �cU0i Z0i

1A�10@ NX
i=1

Zi �Yi(�1)

1A
� We can generalize this estimator to any PD model with predetermined ex-
planatory variables.



� We can generalize this estimator to any PD model with predetermined
explanatory variables.

� Consider the model in vector form:

Yi = Xi � + �i +Ui

� Let Zi be the matrix of instruments construncted in the way described above,
such that:

E [Zi (4Yi �Xi �)] = 0



� The two-stage GMM estimator of � is:

�̂
(2)
AB =

264
0@ NX
i=1

Zi �Xi

1A00@ NX
i=1

Zi �
cUi �cU0i Z0i

1A�10@ NX
i=1

Zi �Yi

1A
375
�1

264
0@ NX
i=1

Zi �Xi

1A00@ NX
i=1

Zi �
cUi �cU0i Z0i

1A�10@ NX
i=1

Zi �Xi

1A
375



EXAMPLE. Employment equation: Arellano & Bond (REStud, 91)

� Panel of 140 quoted manufacturing �rms in UK. 611 observations (max
Ti = 6; average Ti = 4:3). Dynamic employment equation (in logs):

nit = �1 ni;t�1 + �2 wit + �3 kit + �4 qit + 
t + �i + uit

� GMM estimation of

�nit = �1 �ni;t�1 + �2 �wit + �3 �kit + �4 �qit + 
t + �i + uit

using moment conditions:

fni1; wi1; ki1; qi1g in eq. at t = 3; 4; 5; 6

fni2; wi2; ki2; qi2g in eq. at t = 4; 5; 6

fni3; wi3; ki3; qi3g in eq. at t = 5; 6



EXAMPLE. Employment equation [Cont.]

� Note that the regressors (wit; kit; yit) are also endogenous in the equations
in levels and in �rst-di¤erences.

E [�wit �uit] 6= 0, E [�kit �uit] 6= 0, E [�qit �uit] 6= 0

� The AB-GMM can deal also with this endogeneity.

� fwit�2; kit�2; qit�2g are valid instruments for f�wit;�kit;�qitg because:

- Not correlated with �uit (if uit not serially correlated)

- Correlated with f�wit;�kit;�qitg because they capture the serial cor-
relation in these variables because shocks other than uit, and because potential
dynamics in these variables.



Employment equation: Arellano & Bond (REStud, 91). Tables 4 and 5

140 �rms and 611 observations
Dependent variable: ln(employment)

Regressor OLS-Levels WG AH AB-1step AB-2step

ln(emp) [t� 1] 1.045 0.734 2.308 0.686 0.629
(0.051) (0.058) (1.055) (0.145) (0.090)

ln(wage) [t] -0.524 -0.557 -0.810 -0.608 -0.526
(0.172) (0.155) (0.283) (0.178) (0.054)

ln(wage) [t� 1] 0.477 0.326 1.422 0.393 0.311
(0.169) (0.143) (0.851) (0.168) (0.094)

Sargan (d.o.f.) 65.8 (25) 31.4 (25)
m2 -0.516 -0.434



SPECIFICATION TESTS IN DPD MODELS

� Consistency of the previous Arellano-Bond (or for that matter Anderson-
Hsiao) estimator is based on the assumption that uit is not serially correlated.

� Serial correlation in uit implies that yit�2 is no longer a valid instrument in
equation in FD.

� We would like to test for this assumption.

� Two important speci�cation tests:

(a) Hansen-Sargan test of over-identifying restrictions

(b) Test of second order correlation in �uit



(a) Test of over-identifying restrictions (Hansen-Sargan):

H0 : E (Zi �Ui) = 0 (q restrictions)

� The model is based on the q restrictions E (Zi �Ui) = 0. In principle, we
would like to impose all these restrictions in the estimation of �.

mN(
b�) = NX

i=1

Zi
h
�Yi ��Xi b�i = 0

� However, if q > K, there not exists a value of b� that solves this system.
Therefore, we de�ne b� as the value that minimizes a quadratic form, or equiv-
alently that solves the K equations:

@mN(�̂)
0

@�

̂�1 mN(�̂) = 0



Hansen-Sargan Test (cont)

� That is, by construction, b� satis�es the conditions:0@ NX
i=1

Zi �Xi

1A0 
̂�1
0@ NX
i=1

Zi
h
�Yi ��Xi b�i

1A = 0

� However, this is compatible with having that:




mN(b�)


 =







NX
i=1

Zi
h
�Yi ��Xi b�i







 >>>>> 0

� The Hansen-Sargan test is concerned with whether



mN(b�)


 is signi�cantly

greater than zero.



Hansen-Sargan Test (cont)

� Under H0 : E (Zi �Ui) = 0, we have that



mN(b�)


!p 0 and

HS � N mN(�̂)
0 
̂�1 mN(�̂) �d �2q�K

If �i � Zi �cUi, note that:
HS =

0@ 1p
N

NX
i=1

�i

1A V ar (�i)
�1

0@ 1p
N

NX
i=1

�i

1A

� Under the alternative hypothesis H1 : E (Zi �Ui) 6= 0, we have that


mN(b�)


!p c > 0, and

HS � mN(�̂)
0 
̂�1 mN(�̂) �d non central �2q�K with noncentrality c



Example: Employment equation. Arellano & Bond (REStud, 91)

Statistic AB-1step AB-2step

Sargan (d.o.f.) 65.8 (25) 31.4 (25)

� Why 25 degrees of freedom?

40 momemt restrictions:

fni1; wi1; ki1; qi1g in eq. at t = 3; 4; 5; 6 [16]

fni2; wi2; ki2; qi2g in eq. at t = 4; 5; 6 [12]



fni3; wi3; ki3; qi3g in eq. at t = 5; 6 [8]

and E(�uit) = 0 t = 3; 4; 5; 6 [4]

� Parameters: 4 time dummies (4 parameters); model with two lags of all the
variables (11 parameters); Total of 15 parameters.



Testing for serial correlation in uit

� Our set of moment conditions has been obtained under the assumption that
uit � iid. If this error term is autocorrelated, some of the moment conditions
are not valid and the GMM estimator will be inconsistent. Therefore, it is
important to test this assumption.

� Given our estimator �̂, we can not get consistent residuals for uit, i.e., the
residual in levels is a residual for �i+uit. And we cannot estimate consistently
�i.

� However, we can get residuals for 4uit. Our test of serial correlation will
test the serial correlation of 4uit.



Testing for serial correlation in uit (cont)

� Note that if uit is not serially correlated:

E (4uit 4 uit�1) = ��2u(t) < 0

E
�
4uit 4 uit�j

�
= 0 for any lag j � 2

� Therefore, we can (indirectly) test for no-serial correlation in uit by testing
for zero second-order (or higher) serial correlation in 4uit.

� Testing for serial correlation of order 1 in 4uit is also useful. If we �nd that
E (4uit 4 uit�1) = 0, then OLS-FD is consistent.



Arellano-Bond test 2nd order correlation in 4uit

� Let r2t � E (4uit 4 uit�2) be the auto-covariance of order 2 at period t
of f4uitg. Its sample counterpart is:

r̂2t =
1

N

NX
i=1

4buit4 buit�2
� We can obtain r̂2t for any t 2 f5; 6; :::; Tg. Note: To test for second order
serial correlation in 4uit we need a panel with at least T = 5 periods.

� Let r2 �
TX
t=5

r2t, and let br2 be its sample counterpart. Arellano & Bond

(1991) derive the expression for the the asymptotic variance V ar(br2).
� Then, under H0: r2 = 0.

cm2 � br2
se(br2) �a N(0; 1)



Arellano-Bond test j-th order correlation in 4uit

� Let rjt be the auto-covariance of order j at period t of f4uitg: i.e., rjt �
E
�
4uit 4 uit�j

�
. And its sample counterpart:

r̂jt =
1

N

NX
i=1

4buit4 buit�j
� We can obtain r̂jt for any t 2 f3 + j; 6; :::; Tg.

� Let rj �
TX

t=3+j

rtj, and let brj be its sample counterpart.
� Then, under H0: rj = 0.

cmj � brj
se(brj) �a N(0; 1)



What if we reject null hypothesis r2 = 0?

� If uit follows a MA(1): uit = ait � � ait�1,

� Then we have that yi;t�3 is a valid instrument, i.e., E(yi;t�3 �uit) = 0.

� Of course, these instruments can be weak, i.e., corr(yi;t�3 �yi;t�1) could
be close to zero.



What if we reject null hypothesis r2 = 0? [Cont]

� If uit follows an AR(1) process, uit = � uit�1 + ait,

� We can transform the model yit = � yit�1 + x0it� + �i + uit, to get:

�yit = (�+ �)�yit�1 + (��)�yit�2 +�x0it � +�x0it�1(���) + �ait

� Note that E (�yit�2 �ait) = 0, and for �yit�1 we can use yit�2 and
yit�3 as instruments.

� Separate identi�cation of � and � could be di¢ cult due to collinearity and
weak instruments.



Test of Individual E¤ects in DPD models

� It is a di¤erential Hansen-Sargan test of overidentifying restrictions based
on two sets of comment conditions: (1) the Arellano-Bond moment conditions
in �rst di¤erences; (2) the OLS moment conditions in the equation in levels,
which are valid only if there is not individual heterogeneity.

� The test statistics is:

D = N
hcm0ALL 
̂�1ALL cmALLi�N hcm0AB 
̂�1AB cmABi

Under the null, D �d �2K

� Though, typically we will reject the null, this idea can be useful to design
a test for individual-speci�c time trends, i.e., heterogeneity in the equation in
�rst di¤erences.



� Weak Instruments Problem in Arellano-Bonnd Estimator

� Even if we use all the moment conditions of the model and use the optimal
GMM estimator, at the end of the day we are instrumenting4yit�1 with lagged
values of fyit�j : j � 2g.

� Therefore, if corr(4yit�1; yi;t�j) is small, the optimal GMM estimator
will still give us imprecise estimates of the parameters, i.e., weak instruments
problem. Under weak instruments, the GMM estimator can be seriously biased
in small samples.

� This is an important problem in some empirical applications of dynamic PD
models.



� The solution to this potential problem should necessarily come from incorpo-
rating additional structure/assumptions into the model

� Several approaches have been proposed to deal with this problem:

(1) Exploit stationarity assumptions: Arellano and Bover (JoE, 1995)
and Blundell and Bond (JoE, 1998).

(2) Assumptions on the joint distribution of �i and xi: Chamberlain�s
Correlated Random E¤ects.

(3) LIML estimation: Alonso-Borrego and Arellano (JBES, 1999).



3.6. ARELLANO-BOVER (JoE 1995) - BLUNDELL-BOND (JoE 1998)

� Consider the PD model

yit = � yi;t�1 + xit � + 
t + �i + uit

� Suppose that j�j < 1, and that at some period t� � 0 in the past (that can
be individual speci�c), the process fyitg visited his individual-speci�c mean,

yit� = �y;i � E (yit j i)

� Stationarity implies that:

�y;i = � �y;i + �x;i � + E(
t) + �i
and

�y;i =
�i + �x;i � + E(
t)

1� �



� Under this stationarity assumption, we have that, one period after t�:

yi;t�+1 = � �y;i + xi;t�+1 � + 
t�+1 + �i + ui;t�+1

= �y;i � (1� �)�y;i + xi;t�+1 � + 
t�+1 + �i + ui;t�+1

= �y;i � (1� �)
"
�i + �x;i � + E(
t)

1� �

#
+ xi;t�+1 � + 
t�+1 + �i + ui;t�+1

= �y;i +
h
xi;t�+1 � �x;i

i
� +

h

t�+1 � E(
t)

i
+ ui;t�+1

� And for any t > t�, we have that:

yit = �y;i +
t�t�X
j=0

�j
nh
xi;t�j � �x;i

i
� +

h

t�j � E(
t)

i
+ ui;t�j

o



� Given

yit = �y;i +
t�t�X
j=0

�j
nh
xi;t�j � �x;i

i
� +

h

t�j � E(
t)

i
+ ui;t�j

o

� We have that:

�yit =
t�t�X
j=0

�j
n
�xi;t�j� +�
t�j +�ui;t�j

o

� �yit does NOT dependent of �i !!!



� This property implies that there are valid instruments for the equation in
levels.

yit = � yi;t�1 + xit � + 
t + �i + uit

� If uit is not serially correlated, then 4yi;t�1, 4yi;t�2, ... are not correlated
with (�i + uit).

� For instance, in the simple AR(1) PD model, yit = � yi;t�1 + �i + uit,
we can estimate the equation in levels by IV using �yi;t�1 as instrument of
yi;t�1.



� This IV estimator is:

�̂ =

NX
i=1

TX
t=3

�yi;t�1 yit

NX
i=1

TX
t=3

�yi;t�1 yi;t�1

where we instrument yi;t�1 with �yi;t�1 in the equation in levels.

� This IV estimator does not su¤er of weak instruments as � ! 1.

� Note: The ABover and BB estimators are GMM estimators more e¢ cient
that this IV estimator. But it is convenient to look at the properties of this IV
to understand why ABover and BB solve the weak instruments problem.



� This IV estimator (IV version of Blundell and Bond) does not su¤er
of a weak instruments problem when � ! 1.

� To see the di¤erence between this IV estimator and the IV in AH, consider
the auxiliary �rst-step estimations for the two IV estimators.

� For AH estimator, we instrument �yi;t�1 with yi;t�2. In the �rst step of
this IV (2SLS) estimator, the auxiliary regression is:

�yit = �0 + � yi;t�1 + eit
And the OLS estimator of � is such that (Exercise):

p lim b�OLS = cov
�
�yit ; yi;t�1

�
var

�
yi;t�1

� =

�
�2u=�

2
�

�
(1� �)2

1 + � +
�
�2u=�

2
�

�
(1� �)

That goes to zero as � goes to one. Weak instruments problem!



� This IV estimator (IV version of Blundell and Bond) does not su¤er
of a weak instruments problem when � ! 1. [Cont.]

� For BB estimator, we instrument yi;t�1 with �yi;t�1. In the �rst step of
this IV (2SLS) estimator, the auxiliary regression is:

yit = �0 + � �yit + rit

And the OLS estimator of � is such that (Exercise):

p lim �̂OLS =
cov (yit ; �yit)

var (�yit)
=

1

2 (1 + �)

which does not go to zero as � goes to one.



Asymptotic Variance of IV version of Blundell and Bond

� As we did in the case of the Anderson-Hsiao estimator, it is interesting to
obtain the variance of this estimator in terms of the model parameters. Notice
that:

p
N
�
�̂ � �

�
=

N�1=2
PN
i=1�yi;t�1 (�i + uit)

N�1
PN
i=1�yi;t�1 yi;t�1

!d

N
�
0; V ar

�
�yi;t�1 (�i + uit)

��
E
�
�yi;t�1 yi;t�1

�

� Therefore,

V ar
�
�̂
�
=

1

N (T � 2)
V ar

�
�yi;t�1 (�i + uit)

�
E
�
�yi;t�1 yi;t�1

�2



� Given that:

V ar
�
�yi;t�1 (�i + uit)

�
= 2�2u

�
�2u + �

2
�

�
= (1 + �),

E
�
�yi;t�1 yi;t�1

�
= �2u= (1 + �),

we have that:

V ar
�
�̂
�
=

1

N (T � 2)
2�2u

�
�2u + �

2
�

�
= (1 + �)

�4u= (1 + �)
2

=
1

N (T � 2)
2 (1 + �)

 
1 +

�2�
�2u

!

� In contrast with the AH and AB estimators, the variance of this estimator
does not goes to in�nity as � goes to one.



Example: Comparing of AH-IV and BB-IV

� Take the sample numerical example that we considered above for the AH
estimator.

� = 0:6 ; ��=�u = 6 ; N (T � 2) = 3600

� For AH-IV estimator, we have:

sd
�
�̂AH

�
= 0:567 and 95% CI for � = [�0:51 ; + 1:71]

� For BB-IV estimator, we have:

sd
�
�̂BB�IV

�
= 0:18 and 95% CI for � = [0:25 ; 0:95]

that is a much narrower CI.



GMM estimation with the two sets of moment conditions (AB mc�s and
BB mc�s)

System GMM

� The stationarity restrictions implies the following moment conditions:

For: t = 3; 4; :::; T
s = 2; 3:::; t� 1 E (4yis [yit � � yit�1]) = 0

These are (T � 2)(T � 1)=2 moment conditions.

� The AB moment conditions are:
For: t = 3; 4; :::; T

s = 1; 2:::; t� 2 E (yis [4yit � � 4 yit�1]) = 0

These are (T � 2)(T � 1)=2 moment conditions.



GMM estimation with the two sets of moment conditions (AB mc�s and
BB mc�s)

System GMM

� Blundell and Bond propose a GMM estimator that combines these moment
conditions with the AB moment conditions. Their Monte Carlo experiments
show that this estimator has smaller �nite sample variance and bias than the
GMM based on AB moment conditions.



The xtabond and xtabond2 commands in STATA

� xtabond2 is more complete and general than xtabond

� Syntax:
xtabond2 depvar x1 x2 ... xK,

gmm(z1 ::: zq lag(lmin lmax ))

iv(v1 ::: vq), twostep robust nolevel

�With the option "nolevel" only Arellano-Bond moment conditions are used.

� Without the option "nolevel" the system GMM is implemented, i.e., both
Arellano-Bond and Blundell-Bond moment conditions are used.



Blundell and Bond (Econometric Reviews, 2000) "GMM ESTIMATION
WITH PERSISTENT PANEL DATA: AN APPLICATION TO PRODUC-
TION FUNCTIONS"

� Estimation of Cobb-Douglas Production function:

yit = �n nit + �k kit + �i + 
t + uit

y � ln(Output); n � ln(Employment); k � ln(Capital). The unobserv-
ables �i and uit represent �rms�productivity di¤erences which are permanent
and transitory, respectively.

� Input demands depend on �rms�productivity, �i and uit, on input prices,
wit, but also on the level of inputs at previous period (i.e., adjustment costs).

nit = fl
�
ni;t�1; ki;t�1; �i; uit; wit

�
kit = fk

�
ni;t�1; ki;t�1; �i; uit; wit

�



� It is clear that regressors are not strictly exogenous because current inputs
depend on current and lagged values of the transitory shock u. Therefore, OLS
in levels, OLS in FD and WG estimators are inconsistent.



� Empirical applications of PF that attempt to control for unobserved hetero-
geneity and simultaneity by using Arellanor-Bond GMM estimators which take
have tended to produce unsatisfactory results in this context: i.e., very low
estimates of parameters (and returns to scale) and quite imprecise.

� Blundell and Bond argue that these problems are related to the weak corre-
lations that exist between the current growth rates of capital and employment
and the lagged levels of these variables: weak instruments problem in the model
in �rst di¤erences.

� They propose using the system estimator: AB + BB instruments.

� They also �nd serial correlation in the transitory shock uit [m2 test clearly
rejects uit is not serially correlated]. Therefore, they consider an AR(1) process:
uit = � ui;t�1 + ait



� Model in quasi-�rst di¤erences:

yit = � yit�1 + �n nit + (���n)nit�1 + �k kit + (���k)kit�1

+(1� �)�i + (
t � �
t�1) + ait

�yit�1, �yit�2, �nit�1, �nit�2, �kit�1, and �kit�2 are valid intruments
in this equation [BB].

� Model in quasi-�rst + �rst di¤erences:

�yit = � �yit�1 + �n �nit + (���n)�nit�1 + �k �kit + (���k)�kit�1

+(�
t � ��
t�1) + �ait

yit�2, yit�3, nit�2, nit�3, kit�2, and kit�3 are valid intruments in this equa-
tion [BB].



Production Function: Blundell & Bond (ER 2000). Tables 3

509 manufacturing �rms; 1982-89

Parameter OLS-Levels WG AB-GMM SYS-GMM

�n 0.538 0.488 0.515 0.479
(0.025) (0.030) (0.099) (0.098)

�k 0.266 0.199 0.225 0.492
(0.032) (0.033) (0.126) (0.074)

� 0.964 0.512 0.448 0.565
(0.006) (0.022) (0.073) (0.078)

Sargan (p-value) - - 0.073 0.032
m2 - - -0.69 -0.35

Constant RS (p-v) 0.000 0.000 0.006 0.641



THANKS TO ALL THE STUDENTSWHO HAVE GREATELY CONTRIBUTED
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