
ECONOMETRICS II (ECO 2401S)
University of Toronto. Department of Economics. Winter 2015

Instructor: Victor Aguirregabiria

FINAL EXAM. Monday, April 13, 2015. From 9:00am-12:00pm (3 hours)

INSTRUCTIONS:
- This is a closed-book exam.
- No study aids, including calculators, are allowed.
- Please, answer all the questions.

TOTAL MARKS = 100

PROBLEM 1 (25 points). Consider N firms that start their operation in an industry
at the same period t = 1. Let qit represent the logarithm of output for firm i at period
t. The researcher proposes the following model for the dynamics of log-output. At
the first period in the firm’s lifetime, t = 1, log-output is,

qi1 = γ1 + αi + ui1,

and at any period t ≥ 2, the model is:

qit = β qi,t−1 + γt + αi + uit

where: γt is a parameter (time fixed-effect) that is common to all the firms at period
t; αi is a firm-specific fixed effect that represents persistent heterogeneity between
firms’productivity, with E(αi) = 0 and V (αi) = σ2α; uit is a productivity shock that
is independently distributed over firms and over time, and independent of αi, with
E(uit) = 0 and V (uit) = σ2u; and β ∈ (0, 1) is a parameter that captures structural state
dependence in productivity, e.g., learning-by-doing.

Suppose that a researcher has a panel dataset of firms’log-output, where N is large
and the sample covers only the first three periods in the firms’ lifetime: t = 1, 2, 3.
Assume that there is not attrition (i.e., no firm’s exit from the sample) such that the
researcher has a balanced panel of N firms over three periods of time.

(a) [5 points] In the equation in levels at t = 3, consider an IV estimator of β where
qi,t−1 is instrumented using ∆qi,t−1. Write the expression of this IV estimator.

ANSWER: The regression equation is: qi3 = β qi2 + γ3 + αi + ui3. The IV estimator of β is:

β̂ =

∑N
i=1 ∆qi2 (qi3 − q3)∑N
i=1 ∆qi2 (qi2 − q2)

(b) [10 points] Obtain the limit in probability of this IV estimator as N goes to
infinity. Obtain the expression of this "plim" as a function of β, σ2α, and σ2u. Is this
estimator consistent? Why/Why not? Explain the result.
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ANSWER: By the LLN, the limit in probability of the IV estimator is:

p lim
N→∞

β̂ =
E ([∆qi2 − E(∆qi2)] [qi3 − E(qi3)])

E ([∆qi2 − E(∆qi2)] [qi2 − E(qi2)])

= β +
E ([∆qi2 − E(∆qi2)] [αi + ui3])

E ([∆qi2 − E(∆qi2)] [qi2 − E(qi2)])

To obtain these covariances, first note that:

q1 − E(q1) = α+ u1
q2 − E(q2) = (1 + β)α+ u2 + βu1
∆q2 − E(∆q2) = βα+ u2 + (β − 1)u1

Therefore,

E ([∆q2 − E(∆q2)] [α+ u3]) = E ([βα+ u2 + (β − 1)u1] [α+ u3]) = β σ2α

And:

E ([∆q2 − E(∆q2)] [q2 − E(q2)]) = E ([βα+ u2 + (β − 1)u1] [(1 + β)α+ u2 + βu1])

= β(1 + β) σ2α + [1 + β(β − 1)] σ2u

Such that,

p lim
N→∞

β̂ = β +
β σ2α

E ([∆q2 − E(∆q2)] [q2 − E(q2)])

= β +
β σ2α

β(1 + β) σ2α + [1 + β(β − 1)] σ2u

The estimator is inconsistent. This is because the instrument ∆qi2 depends on the individual effect
αi. Note that this instrument is the same as in the Blundell-Bond (BB) estimator of dynamic
panel data models. However, in this model the BB instrument is not valid because the equation at
periods t = 1, 2, 3 do not satisfy the stationarity condition that implies that ∆qit does not depend
on the fixed effect.

(c) [10 points] Suppose that the panel dataset still covers three time periods but
the three sample periods are {t− 2, t− 1, t} with t→∞, i.e., sample observations occur
many time periods after the N firms started to operate in this industry. Again, assume
that the panel is balanced. Consider the IV estimator of β where qi,t−1 is instrumented
using ∆qi,t−1. Does this change in the starting period of the sample have any influence
on the consistency of this IV estimator of β ? Why/Why not? Explain.

ANSWER: The estimator has the same definition, and by the LLN we still have that:

p lim
N→∞

β̂ =
E ([∆qt−1 − E(∆qt−1)] [qt − E(qt)])

E ([∆qt−1 − E(∆qt−1)] [qt−1 − E(qt−1)])

= β +
E ([∆qt−1 − E(∆qt−1)] [α+ ut])

E ([∆qt−1 − E(∆qt−1)] [qt−1 − E(qt−1)])

However, now we have that, when t→∞,

qt − E(qt) =
α

1− β + ut + β ut−1 + β2 ut−2 + ...
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such that ∆qt−1 − E(∆qt−1) does not depend on α and depends only on the transitory shocks at
t− 1 and before. Therefore,

E ([∆qt−1 − E(∆qt−1)] [α+ ut]) = 0

and p limN→∞ β̂ = β. For t → ∞, the initial conditions of the stochastic process of qt do not
matter, Blundell-Bond stationarity conditions hold, and the estimator is consistent.

PROBLEM 2 (25 points). Consider the binary choice model Y = 1{Z+β X−ε ≤ 0},
where ε is independently distributed of (Z,X) with CDF F (.) that is continuously
differentiable over the real line. The explanatory variable Z has support over the
whole real line, while the explanatory variable X is binary with support {0, 1}.

(a) [10 points] Describe the Smooth Maximum Score Estimator of the parameter
β.

ANSWER: The SMSE is defined as the value of β that maximizes the Smooth score function.
That is:

β̂ = arg max
β

S(β) =
n∑
i=1

(2yi − 1) Φ

(
zi + β xi

bn

)
where Φ(.) is a continuously differentiable CDF (e.g., the CDF of the standard normal), and bn > 0
is a bandwidth parameter.

(b) [15 points] Suppose that β is known (or consistently estimated). Provide a
constructive proof of the identification of the distribution function F (ε0) at any value
ε0 in the real line.

ANSWER: Define the Conditional Choice Probability (CCP) function, P (z0, x0) ≡ Pr(Y =
1|Z = z,X = x). Given the random sample (yi, xi, zi : i = 1, 2, ...n) this CCP is nonparametrically
identified, i.e., can be estimated consistently without a parametric assumption on the CDF F .
Then, we can treat this CCP function as known (identified) to the researcher for any value of
(z0, x0). According to the model, we have that:

P (z0, x0) = Pr (ε ≤ z0 + β x0) = F (z0 + β x0)

Let ε0 ∈ R be an arbitrary value of ε in the real line. Given this value ε0, and given x0, we can
construct the following value of Z, that we define as z∗(ε0, x0):

z∗(ε0, x0) ≡ ε0 − β x0

Note that z∗(ε0, x0) is known to the researcher because β is known (i.e., it has been estimated
consistently in a first step). Also, note that by construction:

z∗(ε0, x0) + β x0 = ε0

Therefore,
F (ε0) = F (z∗(ε0, x0) + β x0) = P (z∗(ε0, x0), x0)

Since P (., .) and z∗(., .) are known, it is clear that F (ε0) is identified. Note that we can repeat this
procedure for any value ε0 ∈ R, such that we can nonparametrically identify the CDF F (.) over all
its support.
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PROBLEM 3 (25 points). Consider a random coeffi cients multinomial choice model
with J+1 choice alternatives {0, 1, ..., J}. The utility of alternative choice j for individual
n is Ujn = Zj βn+ εjn, where: Zj is a 1×K vector of observable attributes of alternative
j; βn is a K × 1 vector of random coeffi cients that is i.i.d. over individuals with a
normal distribution N(β,Ω), and Ω is a diagonal matrix with elements {σ21, σ22, ..., σ2K};
and εjn is an unobservable that is i.i.d. over n and over j with an extreme value
type 1 distribution. The researcher observes product attributes {Z1, Z2, ..., ZJ} and
a random sample of N individuals with their optimal choices {yn : i = 1, 2, ..., N} with
yn ∈ {0, 1, ..., J}. We are interested in using this sample to estimate the vector of
parameters θ = {β,Ω}. The main challenge in estimation of this model comes from the
solution of the multiple integration problem associated to the computation of choice
probabilities. The researcher uses Monte Carlo simulation to deal with this problem.

(a) [5 points] Propose a simulator of the choice probability Pj(θ) ≡ Pr(Y = j|θ). Show
that your simulator is asymptotically unbiased, and it is consistent as the number of
Monte Carlo simulations, R, goes to infinity.

ANSWER:
[Description of the CCP] We can write, βn = β + Ω1/2 vn, where vn = (v1n, v2n, ..., vKn)′ is a

K × 1 vector of independent standard normals. By definition of the choice probability, we have
that:

Pj(θ) =

∫ exp
{
Zj β +

∑K
k=1 σkZkjvk

}
∑J

i=0 exp
{
Zi β +

∑K
k=1 σkZkivk

} K∏
k=1

φ(vk)dvk

where φ(.) is the PDF of the standard normal. It is convenient to represent this expression in a
compact form as:

Pj(θ) = Ev [Λj(v)]

where Ev[.] represents the expectation over the distribution of vn, and hj(v) is the logit probability
inside this integral.

[Description of the simulator] We approximate this K-dimensional integral by using Monte
Carlo simulation. Let {vkr : k = 1, 2, ...,K; r = 1, 2, ..., R} be R ∗ K independent random draws
from a standard normal distribution. The simulator of Pj(θ) is defined as:

P̃Rj (θ) =
1

R

R∑
r=1

Λj(vr) =
1

R

R∑
r=1

exp
{
Zj β +

∑K
k=1 σkZkjvkr

}
∑J

i=0 exp
{
Zi β +

∑K
k=1 σkZkivkr

}
That is, we replace the population expectation Ev [.] with the "empirical" expectation 1

R

∑R
r=1(.).

[Asymptotically unbiased and consistent simulator] MATHIEU: NOTE THAT THE CLAIM IS
THAT IT IS ASYMPTOTICALLY UNBIASED, NOT UNBIASED FOR FINITE R. IT WOULD
BE GOOD TO MENTION THIS DURING THE EXAM BECAUSE IT IS NOT CLEAR IN THE
ENUNCIATE.

It is clear that by LLN:

p lim
R→∞

P̃Rj (θ) = p lim
R→∞

1

R

R∑
r=1

= Ev [Λj(vr)] = Pj(θ)

Also, by CLT:

√
R
(
P̃Rj (θ)− Pj(θ)

)
=

1√
R

R∑
r=1

[Λj(vr)− Pj(θ)]→d N(0, ) (0, V ar [Λj(v)])
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(b) [10 points] Propose a Simulated Method of Moments (SMM) estimator of θ.
Describe the implementation of this estimator.

ANSWER: The SMM is defined as the value of θ that solves the sample moment conditions:

1

N

N∑
n=1

J∑
j=0

Wj(Z)
[
1{yn = j} − P̃Rjn(θ)

]
= 0

where Wj(Z) are vectors of functions of Z ′js with the same dimension as the vector of parameters
θ, i.e., 2K × 1. To implement this estimator, we start drawing N ∗ R ∗ K independent random
draws from the standard normal that we use to construct the simulator P̃Rjn(θ). At each iteration
in the search for the SMM estimator, we use always these same random draws. This means that
during the implementation of the estimator, the simulators P̃Rjn(θ) are deterministic functions of θ.
This is important for the numerical and statistical properties of the estimator. Then, we can use a
Newton’s method to solve for the solution of this system of equations.

(c) [10 points] Show that this SMM estimator is consistent as N goes to infinity
and R is fixed.

ANSWER: The SMM θ̂N,R satisfies the conditions:

1

N

N∑
n=1

J∑
j=0

Wj(Z)
[
1{yn = j} − P̃Rjn(θ̂N,R)

]
= 0

For arbitrary θ, we can write the simulator as, P̃Rjn(θ) = Pj(θ)+e
R
jn(θ), where eRjn(θ) is the simulation

error. By the properties of the simulator, described in point (a), and by the fact that we calculate
an independent simulator for each observation n, we have that, for N going to infinity and fixed R
is fixed.

1

N

N∑
n=1

eRjn(θ)→p 0, uniformly in θ

Therefore, we have that:

1

N

N∑
n=1

J∑
j=0

Wj(Z)
[
1{yn = j} − P̃Rjn(θ)

]

=
1

N

N∑
n=1

J∑
j=0

Wj(Z) [1{yn = j} − Pj(θ)] +
1

N

N∑
n=1

eRjn(θ)

The first term converges in probability and uniformly in θ to E(
∑J

j=0Wj(Z) [1{yn = j} − Pj(θ)]),
and the second term converges in probability and uniformly in θ to zero. Therefore:

1

N

N∑
n=1

J∑
j=0

Wj(Z)
[
1{yn = j} − P̃Rjn(θ)

]
→ pE

 J∑
j=0

Wj(Z) 1 [{yn = j} − Pj(θ)]


, uniformly in θ
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Given the identification assumption that θ0 uniquely solves the system E
(∑J

j=0Wj(Z) 1 [{yn = j} − Pj(θ)]
)

=

0, we have that θ̂N,R is consistent as N goes to infinity and R is fixed.

PROBLEM 4 (25 points). Consider a Treatment Effects model with potential
outcomes (Y0, Y1), treatment dummy D ∈ {0, 1}, and outcome variable Y , such that
Y = (1 − D) Y0 + D Y1. Let Z ∈ {0, 1} be a random variable that represents whether
the individual is eligible to treatment. This Z variable comes from a randomized
experiment such that: (1) Z is independent of potential outcomes (Y0, Y1); and (2) Z is
correlated with treatment, i.e., Pr(D = 1|Z = 1) > Pr(D = 1|Z = 0). The researcher has a
random sample of N individuals with information on {yi, di, zi : i = 1, 2, ..., N}. The main
parameter of interest is the Average Treatment Effect defined as ATE ≡ E (Y1 − Y0).

(a) [5 points] Based on this model, show that we can write a simple linear regression
equation of Y on D where the slope parameter is the ATE. What is the structure of
the error term in this regression? Is the error term correlated with D? Explain.

ANSWER: We can write Y0 = µ0 + U0 and Y1 = µ1 + U1, where µ0 ≡ E(Y0) and µ1 ≡ E(Y1)
such that by construction E(U0) = E(U1) = 1. Also, note that, by definition, ATE = µ1 − µ0.
Using these definitions, we have that:

Y = (1−D) Y0 +D Y1 = Y = (1−D) (µ0 + U0) +D (µ1 + U1)

= µ0 + (µ1 − µ0) D + U0 + (U1 − U0) D

= α+ β D + e

where α = µ0, β = µ1 − µ0 = ATE, and e = U0 + (U1 − U0) D. Without further assumptions,
the unobservable component of the potential outcomes, U0 and U1, can be correlated with the
treatment dummy D and this implies correlation between the error term e and the regressor D.
We can derive Cov(D, e) and show that it is not zero. Alternatively, we have that no correlation
between e and D requires that E(e|D = 0) = E(e|D = 1). We can show that this condition does
not hold. We have that:

E(e|D = 0) = E(U0 +D(U1 − U0) | D = 0) = E(U0|D = 0)

And
E(e|D = 1) = E(U0 +D(U1 − U0) | D = 1) = E(U1|D = 1)

Without further assumptions, we have that U0 and U1 can depend on treatment D, such that
E(U0|D = 0) 6= E(U1|D = 1). Therefore, without further assumptions, D and e can be correlated.

(b) [10 points] Consider the IV estimation of the regression model in (a) where
the treatment dummy D is instrumented using the eligibility dummy Z. Present the
expression for this IV estimator. Derive the limit in probability of this IV estimator
under conditions (1) and (2), and show that it is an inconsistent estimator of the ATE.

ANSWER: By definition, this IV estimator is:

β̂ =

∑n
i=1(zi − z)yi∑n
i=1(zi − z)di
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By the LLN, β̂ converges in probability to
Cov(Z, Y )

Cov(Z,D)
. Since Y = α + β D + e, we have that β̂

converges in probability to β +
Cov(Z, e)

Cov(Z,D)
= ATE +

Cov(Z, e)

Cov(Z,D)
. We now derive Cov(Z, e). Note

that,
Cov(Z, e) = (1− PZ) E(e|D = 0) + PZ E(e|D = 1)

where PZ = Pr(Z = 1). Define PD(z) = Pr(D = 1|Z = z). Then,

E(e|Z = 0) = E(U0 +D(U1 − U0) | Z = 0)

= PD(0) E(U1 − U0|D = 1)

And,

E(e|Z = 1) = E(U0 +D(U1 − U0) | Z = 1)

= PD(1) E(U1 − U0|D = 1)

Therefore,

Cov(Z, e) = (1− PZ) PD(0) E(U1 − U0|D = 1) + PZ PD(1) E(U1 − U0|D = 1)

= [(1− PZ) PD(0) + PZ PD(1)] E(U1 − U0|D = 1)

That is equal to zero if and only if E(U1 − U0|D = 1). Therefore, this is an inconsistent estimator
of the ATE.

(c) [10 points] Let D0 and D1 be the binary variables that represent the potential
treatment of an individual when she is not eligible to treatment (Z = 0) and when
she is eligible (Z = 1). By definition, D = (1 − Z) D0 + Z D1. Suppose that for every
individual, we have that: (3) D1 ≥ D0. Show that under conditions (1) to (3), the IV
estimator converges in probability to the Local Average Treatment Effect parameter
defined as LATE ≡ E (Y1 − Y0 | D1 > D0).

ANSWER: First, we rewrite the IV estimator using its representation as the Wald estimator.

β̂ =
y1 − y0
d1 − d0

where y1 and d1 are the sample means of Y and D, respectively, for the subsample of observations
with Z = 1, and similarly, y0 and d0 are the sample means of Y and D for the subsample of observa-

tions with Z = 0. By the LLN, β̂ converges in probability to
E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
. Now, we

show that, under assumptions (1) to (3), this expression is equal to LATE ≡ E (Y1 − Y0 | D1 > D0).
Note that Y = Y0 +D (Y1 − Y0), and D = D0 +Z (D1 −D0). Therefore,

E(Y |Z = 1) = E(Y0 +D1(Y1 − Y0) |Z = 1)

(by independence of Z with (Y0, Y1, D0, D1)) = E(Y0 +D1(Y1 − Y0) )

And

E(Y |Z = 0) = E(Y0 +D1(Y1 − Y0) |Z = 0)

(by independence of Z with (Y0, Y1, D0, D1)) = E(Y0 +D0(Y1 − Y0) )
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Therefore, the numerator of the PLIM of IV is:

Numerator of PLIM of IV = E(Y0 +D1(Y1 − Y0) )− E(Y0 +D0(Y1 − Y0) )

= E((D1 −D0) (Y1 − Y0) )

By the monotonicity assumption, (D1 −D0) can be only 0 or 1. Therefore,

Numerator of PLIM of IV = Pr(D1 −D0 > 0) E(Y1 − Y0 | D1 −D0 > 0)

Similarly, for the denominator of the PLIM of IV we have that:

E(D|Z = 1) = E(D0 + Z(D1 −D0) |Z = 1)

(by independence of Z with (D0, D1)) = E(D1)

And
E(D|Z = 0) = E(D0 + Z(D1 −D0) |Z = 0)

(by independence of Z with (D0, D1)) = E(D0)

The denominator of the PLIM of IV is:

Denominator of PLIM of IV = E(D1 −D0)

Again, by the monotonicity assumption, (D1 − D0) can be only 0 or 1, such that E(D1 − D0) =
Pr(D1 −D0 > 0). Therefore,

PLIM of IV =
Pr(D1 −D0 > 0) E(Y1 − Y0 | D1 −D0 > 0)

Pr(D1 −D0 > 0)

= E(Y1 − Y0 | D1 −D0 > 0) = LATE
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