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Topics of the course

Objectives of the course

This course deals with empirical studies of firms’innovation.

We will cover state-of-the-art structural models and econometric
methods to measure:

1. The productivity effects of innovations.
2. Consumer valuation of product innovations.
3. Value of patents.
4. Dynamic strategic behavior in firms’innovation.

We will examine data through the eyes of three classes of structural
models which are workhorses in empirical industrial organization:

- production functions;
- demand of differentiated products;
- dynamic games
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Lecture 1: Innovation and productivity growth: Production
functions

Lecture 1: Innovation and productivity growth: Production
functions

1. What Determines Productivity?

2. Review of Production Function estimation

3. Measuring the productivity effects of R&D
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What Determines Productivity?
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1. What determines productivity?
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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What Determines Productivity?

Total Factor Productivity (TFP)

Production function:

Yit = Ait F (Kit , Lit ,Mit )

Ait is denoted Total Factor Productivity (TFP).

It is a factor-neutral shifter that captures variations in output not
explained by observable inputs.

TFP is a residual.
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What Determines Productivity?

Large and persistent differences in TFP across firms

Ubiquitous, even within narrowly defined industries and products.

Large: 90th to 10th percentile TFP ratios:
A90th
A10th

- U.S. manufacturing, average within 4-digit SIC industries = 1.92
(Syverson, 2004)
- Denmark: average = 3.75 (Fox and Smeets, 2011)
- China or India, average > 5 (Hsieh & Klenow, 2009).

Persistent:
- AR(1) of log-TFP with annual frequency: autoregressive coeffi cients
between 0.6 to 0.8.

It matters: Higher productivity producers are more likely to survive.
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What Determines Productivity?

Why firms differ in their productivity levels?

What supports such large productivity differences in equilibrium?

Can producers control the factors that influence productivity or are
they purely external effects of the environment?

If firms can partly control their TFP, what type of choices increase it?
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What Determines Productivity?

Why dispersion is possible in equilibrium?

Let the profit of a firm be:

πi = R(qi ,Ai , d)− C (qi ,Ai ,w)− F

R(qi ,Ai , d) = Revenue function. d = State of the industry
C (qi ,Ai ,w) = Cost function. w = Input prices. F = fixed costs.

Key condition: either R(.) is strictly concave in qi , or C (.) is strictly
convex in qi . [The variable profit function is strictly concave].

Example: Perfect competition [or Bertrand competition with
homogeneous product]. R = P qi is linear in qi . We need C (.) to
be strictly convex. i.e., DRS in variable inputs.

Example: Cournot competition or Bertrand competition with
differentiated product. R is strictly concave in qi (downward
sloping demand). So we can have either CRS or DRS.
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What Determines Productivity?

Why dispersion is possible in equilibrium? [2]

Equilibrium can be described by two types of conditions.

At the intensive margin, optimal q∗i = q
∗[Ai , d ,w ] is such that:

MRi ≡
∂R(qi ,Ai , d)

∂qi
=

∂C (qi ,Ai ,w)
∂qi

≡ MCi

At the extensive margin, a firm is active in the market iff:

R(q∗[Ai , d ,w ],Ai , d)− C (q∗[Ai , d ,w ],Ai ,w)− F ≥ 0

If variable profit is strictly concave, this equilibrium can support firms
with different TFPs, Ai .

It is not optimal for the firm with highest TFP to provide all the
output in the industry.

Firms with different TFPs (above a certain threshold value) operate
in the same market.
Victor Aguirregabiria () Production functions September 3, 2018 9 / 98



What Determines Productivity?

How can a firm affect its TFP?

(HR) Managerial Practices. (Bloom & Van Reenen, 2007; Ichniowski
and Shaw, 2003)

Learning-by-Doing (Benkard, 2000).

Organizational structure (vertical integration vs outsourcing).

Higher-Quality (Labor and Capital) inputs.

Adoption of new (IT) technologies.(Brynjolfsson et al., 2008).

Investment in R&D. Long literature linking R&D investment and
productivity.

Innovation. Many firms undertake both process and product
innovation without formally reporting R&D spending.
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What Determines Productivity?

Innovation, R&D, and TFP

Multiple studies show evidence that R&D and innovation are very
(the most?) important factors to explain firm heterogeneity in TFP
level and growth.

As usual, the main diffi culty in these studies comes from separating
causation from correlation.

For the rest of this lecture, we review models, methods, and datasets
in different empirical applications dealing with the causal effect of
R&D and innovations on TFP.
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What Determines Productivity?

Innovation, R&D, and TFP [2]

But still we will have to address the question "why firms have
different propensities to innovate / invest in R&D?", e.g.,
managerial talent, competition, spillovers, ...

What factors determine how large innovative activity will be?

Can we predict whether product or process innovation will dominate,
based on market features?
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Review of Production Function estimation
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2. Review of Production Function
estimation

– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Review of Production Function estimation

Outline

1. Introduction

2. Econometric issues

2.1. Measurement problems
2.2. Endogeneity: Simultaneity; Measurement error;

Endogenous exit

3. Identification Assumptions and Estimation Methods

3.1. IV using input prices.

3.2. First order conditions for non-dynamic inputs.

3.3. Panel Data methods.

3.4. Olley and Pakes (1996) & Levinshon and Petrin (2003)

3.5. Ackerberg-Caves-Frazer (2015) critique
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Review of Production Function estimation

Main References

Olley & Pakes (1996) was a break-through.

Levinshon & Petrin (2003) also very influential

Ackerberg, Caves & Frazer (2015) on identification issues and
interpretation in OP & LP.

Blundell & Bond (2000) dynamic panel data approach to PF

Bond & Soderbom (2005) interesting insights on identification.
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Review of Production Function estimation Introduction

Introduction

Production functions (PF) are important elements in economics.

Estimation of PFs plays a key role in empirical questions such as:

- Productivity and its growth: measurement, heterogeneity
(dispersion).
- Missallocation of inputs. How allocation of capital and

labor relates to TFP.
- Estimation of Marginal Productivity of inputs; Estimation of

Marginal Costs.
- Technological change over time or across industries. Capital

intensity. Skill labor intensity.
- Evaluating the effects of adopting new technologies
- Measuring learning-by-doing.
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Review of Production Function estimation Measurement and Econometric Issues

Measurement and Econometric Issues

(1) Measurement errors: M.e. in output (e.g., deflated
revenue but not output); M.e. in capital; differences in quality of
labor.

(2) Specification: Functional form: Cobb-Douglas, CES,
Translog, Leontief, NP? Constant vs Random coeffi cients?

(3) Simultaneity: Observed inputs may be correlated with
unobserved inputs or productivity shocks (e.g., TFP, managerial
ability, capacity utilization, quality of land). This correlation
introduces biases in some estimators.

(4) Multicollinearity: Some inputs may be highly
correlated if they are highly complementary.

(5) Endogenous Exit/Selection: Firm exit from the
sample is not exogenous. Endogenous exit can introduce selection
bias in estimation of PF parameters.
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Review of Production Function estimation Measurement and Econometric Issues

Measurement and Econometric Issues (2)

First, we focus on Endogeneity problems and different solutions
that have been proposed to deal with these problems.

We discuss these issues in the context of a simple Cobb-Douglas
PF. Some arguments and results can be extended to more general
specifications of the PF.

Second, we will study other issues:
- Distinguishing Quantity-TFP and Revenue-TFP
- Multiproduct firms
- More flexible functional forms
- Heterogeneous PF parameters
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Review of Production Function estimation Model and Data

Model and Data

Panel data of N firms over T periods with information on output,
labor, and capital (in logs):

{ yit , `it , kit : i = 1, 2, ...,N ; t = 1, 2, ...T }

We are interested in the estimation of the Cobb-Douglas PF (in logs)
[Simple extensions: other inputs; different technologies]:

yit = βL `it + βK kit +ωit + eit

ωit = unobserved inputs (for the econometrician) which are
known to the firm when it decides K and L (e.g., managerial
ability, quality of land, different technologies).

eit = measurement error in output or shock affecting output that
is unknown to the firm when it decides K and L.
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Review of Production Function estimation Simultaneity problem

Simultaneity problem

Marshack and Andrews (Ectca, 1944) presented one of the first
descriptions of the simultaneity problem when estimating PF.

yit = βL `it + βK kit +ωit + eit

If ωit is known to the firm when he decides (kit , `it ), the observed
inputs are correlated with the unobserved ωit and the OLS estimators
of βL and βK are biased.
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Review of Production Function estimation Measurement error in inputs

Measurement error in inputs

Inputs, and especially capital, can be measured with error.

Perpetual inventory method: depreciation and initial value of capital
stock are diffi cult to measure: kobsit = kit + ekit .

Measurement error: attenuation bias in estimated coeffi cients.

Absolute bias increases with the noise-to-signal ratio
Var(ekit )
Var(kobsit )

.

Noise-to-signal ratio for capital can be substantially larger than in

first differences than in levels:
Var(∆ekit )
Var(∆kobsit )

>>>
Var(ekit )
Var(kobsit )

. OLS in

first-differences often generates very small (or even negative) capital
coeffi cients (e.g., Griliches and Hausman, 1986, JoE).

Victor Aguirregabiria () Production functions September 3, 2018 21 / 98



Review of Production Function estimation Endogenous Exit

Endogenous Exit

Firms panel datasets are unbalanced, with significant amount of exits.

We estimate the PF under selection:

yit = βL `it + βK kit +ωit + eit if dit = 1

where dit is the indicator of the event "firm i is active in the market
at period t".

Surviving firms are not randomly chosen, e.g., they are more
productivity and use more capital and labor than exiting firms.
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Review of Production Function estimation Endogenous Exit

Endogenous Exit (2)

The optimal exit/stay decision is:

dit = 1 { V (kit ,ωit ) ≥ 0 }
V (kit ,ωit ) is the value of the firm. Strictly increasing in kit and ωit .

Since V (kit ,ωit ) is strictly increasing in the two arguments, there is a
cut-off value of productivity, ω∗ (kit ), such that:

dit = 1 { ωit ≥ ω∗ (kit ) }
and the threshold function ω∗ is strictly decreasing in capital.

Exit introduces correlation between error term of the PF and kit :

E (ωit | kit , dit = 1) = E (ωit | kit ,ωit ≥ ω∗ (kit ))

= λ (kit )

where λ (kit ) is decreasing in kit .
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Review of Production Function estimation Endogenous Exit

Endogenous Exit (3)

λ (kit ) is the selection term. The PF can be written as:

yit = βL `it + βK kit + λ (kit ) + ω̃it + eit

where ω̃it ≡ {ωit | dit = 1} − λ (kit ) that, by construction, is
mean-independent of kit .

Ignoring the selection term λ (kit ) introduces bias in our estimates of
the PF parameters.

kit is negatively correlated with the selection term λ (kit ), and the
selection problem tends to bias downward the estimate of the capital
coeffi cient.
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Review of Production Function estimation Estimation Methods

Estimation Methods: Input prices as IVs

If input prices rit are observable, and under the assumption that
cov (ωit , rit ) = 0, we can use them as instruments.

This approach has several limitations/problems:

(a) Input prices are not always observable.

(b) If there is only one competitive input market in the
population under study, there is not any cross-sectional variation
in r . Time-series variation is not enough for identification.

(c) When input prices have cross-sectional variation, it could be
because inputs markets are not competitive and firms with higher
productivity pay higher prices, i.e., cov (ωit , rit ) 6= 0, making
input prices not a valid instrument.
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Review of Production Function estimation Estimation Methods

First order conditions for flexible inputs

Suppose that labor is a perfectly flexible input and the firm is a
price-taker in output and labor markets. Then, F.O.C. imply:

Pit
∂Yit
∂Lit

= Wit

For the Cobb-Douglas PF, this condition becomes:

βL =
Wit Lit
Pit Yit

i.e., βL is identified by the wage bill-to-revenue ratio.

In fact, this condition rejects this simple version of the model.
Substantial sample variation in W it Lit

Pit Yit
. Either βL,it , or unobserved

heterogeneity in cost of labor, or other assumptions do not hold.

We will come back to this approach in Gandhi—Navarro-Rivers (2013).
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Review of Production Function estimation Estimation Methods

Panel Data: Fixed Effects [Mundlak, 1966]

Suppose that we have firm level panel data with information on
output, capital and labor:

yit = βL `it + βK kit +ωit

The Fixed Effects estimator (i.e., its consistency) is based on the
following assumptions:

(FE − 1) ωit = ηi + δt +ω∗it
(FE − 2) var (`it − `i ) and var (kit − k̄i ) are > 0
(FE − 3) ω∗it is not serially correlated
(FE − 4) ω∗it is NOT known to the firm when

it chooses inputs at period t

ηi is interpreted as managerial ability, or a different technology that is
constant over time.

ω∗it represents weather or any other random, unpredictable shock.
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Review of Production Function estimation Estimation Methods

Panel Data: Fixed Effects (2)

Under assumptions (PD-1) to (PD-4), the Fixed Effects estimator is
consistent, i.e., OLS in the equation:

(yit − ȳi ) = βL (`it − `i ) + βK (kit − k̄i ) + (ωit − ω̄i )

Consistency of the FE (with fixed T ) requires the regressors
xit = (`it , kit ) to be strictly exogenous. That is, for any (t, s):

cov (xit ,ω∗is ) = cov (xit , eis ) = 0

Otherwise, the FE-transformed regressors (`it − `i ) and (kit − k̄i )
would be correlated with the error (ωit − ω̄i ).

This is why Assumptions (FE-3) and (FE-4) are necessary for the
consistency of the OLS estimator.

In most applications, these are very restrictive conditions.

Victor Aguirregabiria () Production functions September 3, 2018 28 / 98



Review of Production Function estimation Estimation Methods

Dynamic Panel Data

We can relax the assumption of strictly exogenous regressors, and
estimate the PF using GMM in the equation in first differences
(Arellano and Bond, 1993).

∆yit = βL ∆`it + βK ∆kit + ∆δt + ∆ω∗it

We replace Assumption FE-4 with DPD-4

(DPD − 4) Labor and capital are dynamic inputs:
`it = fL(`i ,t−1, ki ,t−1,ωit ) and kit = fK (`i ,t−1, ki ,t−1,ωit )

Under these assumptions {`i ,t−j , ki ,t−j , yi ,t−j : j ≥ 2} are valid and
useful instruments in the equation in first differences.
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Review of Production Function estimation Estimation Methods

Dynamic Panel Data (2)

Moment conditions for the GMM estimation of βL, βK , and ∆δt :

E (`i ,t−j ∆ω∗it ) = 0 for t = 3, ...,T ; and j ≤ t − 2

E (ki ,t−j ∆ω∗it ) = 0 for t = 3, ...,T ; and j ≤ t − 2

E (yi ,t−j ∆ω∗it ) = 0 for t = 3, ...,T ; and j ≤ t − 2
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Review of Production Function estimation Estimation Methods

Dynamic Panel Data (3)

Limitations of this approach:

(a) It provides downward biased and imprecise estimates of βL
and βK (see Blundell and Bond, 1999, 2001). Overidentifying
restrictions are typically rejected.

(b) The i.i.d. assumption on ω∗it is typically rejected:
{xi ,t−2, yi ,t−2} are not valid instruments.
(c) Weak instruments problem: Arellano-Bond GMM estimator
suffers of this problem in dynamic models where regressors in
first differences are weakly autocorrelated.

(d) First difference transformation also eliminates the
cross-sectional variation and it is subject to the problem of
measurement error in inputs.
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Review of Production Function estimation Estimation Methods

Blundell and Bond (2001)

BB propose two important extensions to the previous approach.

First, ω∗it follows an AR(1) process: ω∗it = ρ ω∗it−1 + uit . The PF
equation can be represented in semi-first differences as:

(yit − ρ yit−1) = βL (`it − ρ `it−1)+ βK (kit − ρ kit−1)+ η∗i + δ∗t +uit

Second, the estimator is based not only on moment conditions in first
differences (Arellano-Bond) but also on moment conditions in levels
(Blundell-Bond).

Under a stationarity condition, for j ≥ 1 :

E (∆`it−j [η∗i + uit ]) = 0

E (∆kit−j [η∗i + uit ]) = 0

E (∆yit−j [η∗i + uit ]) = 0
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Review of Production Function estimation Estimation Methods

Blundell and Bond (2001)

In the equation in levels, (`it−j , kit−j , yit−j ) for j ≥ 1 are valid
instruments:

(yit − ρ yit−1) = βL (`it − ρ `it−1) + βK (kit − ρ kit−1) + η∗i + uit

In the equation in first differences, (`it−j , kit−j , yit−j ) for j ≥ 2 are
valid instruments:

(∆yit − ρ ∆yit−1) = βL (∆`it − ρ ∆`it−1)+ βK (∆kit − ρ ∆kit−1)+∆uit

Victor Aguirregabiria () Production functions September 3, 2018 33 / 98



Review of Production Function estimation Estimation Methods

Blundell and Bond (2001): Results

509 manufacturing firms; 1982-89
Parameter OLS-Levels WG AB-GMM SYS-GMM

βL 0.538 0.488 0.515 0.479
(0.025) (0.030) (0.099) (0.098)

βK 0.266 0.199 0.225 0.492
(0.032) (0.033) (0.126) (0.074)

ρ 0.964 0.512 0.448 0.565
(0.006) (0.022) (0.073) (0.078)

Sargan (p-value) - - 0.073 0.032
m2 - - -0.69 -0.35

Constant RS (p-v) 0.000 0.000 0.006 0.641
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Review of Production Function estimation Estimation Methods

Bond and Soderbom (2005) Monte Carlo experiments

Bond and Soderbom perform Monte Carlo experiments to study the
actual identification power of ACs.

They consider both deterministic and stochastic ACs. They simulate
data from this model and estimate the PF using Blundell and Bond
GMM method.

(a) With deterministic ACs identification is weak when: (1) ACs are
too low; or (2) ACs are too high; or (3) ACs of the two inputs are two
similar (collinearity).

With stochastic ACs identification results improve considerably.
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Review of Production Function estimation Estimation Methods

Control Function Methods

Olley & Pakes (1996; OP) and Levinsohn & Petrin (2003; LP) are
control function methods.

Instead of looking for instruments for K and L, we look for observable
variables that can "control for" (or proxy) unobserved TFP.

The control variables should come from a model of firm behavior.

Note: Both OP and LP assume that labor is perfectly flexible input.
This assumption is completely innocuous for their results. To
emphasize this point, I present here versions of OP and LP that treat
labor as a potentially dynamic input.
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Review of Production Function estimation Estimation Methods

Olley and Pakes (OP)

Consider the following model of simultaneous equations:

(PF ) yit = βL `it + βK kit +ωit + eit

(LD) `it = fL (`i ,t−1, kit ,ωit , rit )

(ID) iit = fK (`i ,t−1, kit ,ωit , rit )

(LD) & (ID): firms’optimal labor and investment given state
variables (`i ,t−1, kit ,ωit , rit ); rit = input prices.

OP consider the following assumptions:

(OP − 1) fK (`i ,t−1, kit ,ωit , rit ) is invertible in ωit

(OP − 2) No cross-sectional variation in rit : rit = rt .
(OP − 3) ωit follows a first order Markov process.
(OP − 4) kit is decided at t − 1: kit = (1− δ)ki ,t−1 + ii ,t−1
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Review of Production Function estimation Estimation Methods

Olley and Pakes (2)

OP method deals both with the simultaneity problem and with the
selection problem due to endogenous exit.

It doesn’t deal with potential measurement error in inputs.

OP method proceeds in two stages.

First stage: estimates βL [Assumptions (OP-1) and (OP-2) are key];
and the second stage estimates βK [Assumptions (OP-3) and
(OP-4) are key].
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Review of Production Function estimation Estimation Methods

Olley and Pakes First Stage

Assumptions (OP-1) and (OP-2) imply that the investment equation
is invertible in ωit :

ωit = f −1K (`i ,t−1, kit , iit , rt )

Solving this equation in the PF we have:

yit = βL `it + βK kit + f
−1
K (`i ,t−1, kit , iit , rt ) + eit

= βL `it + φt (`i ,t−1, kit , iit ) + eit

This is a partially linear model. Parameter βL and functions φ1(.),
..., φT (.) can be estimated using semiparametric methods.

A possible method is Robinson’s method (1988). OP use an n− th
order polynomial to approximate the φt functions.
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Review of Production Function estimation Estimation Methods

Olley and Pakes First Stage

This first stage is a "Control Function" method: instead of
instrumenting the endogenous regressors, we include additional
regressors that capture the endogenous part of the error term.

We are controlling for endogeneity by including (`i ,t−1, kit , iit ) as
"proxies" of ωit .

Key assumptions for the identification of βL:

(a) Invertibility of fK (`i ,t−1, kit ,ωit , rt ) w.r.t ωit .

(b) rit = rt , i.e., no cross-sectional variability in unobservables,
other than ωit , affecting investment.

(c) Given (`i ,t−1, kit , iit , rt ), labor `it still has sample variability.

Assumption (c) is key, and it is the base for Ackerberg-Caves-Frazer
criticism/extension of Olley-Pakes approach.
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Review of Production Function estimation Estimation Methods

Olley and Pakes First Stage

Example (with lparametric linear investment func.):

(PF ) yit = βL `it + βK kit +ωit + eit

(Inverse ID) ωit = γ1 iit + γ2 `i ,t−1 + γ3 kit + γ4 rit

Then,

yit = βL `it + (βK + γ3) kit + γ1 iit + γ2 `i ,t−1 + (γ4rit + eit )

Note that `it is correlated with rit . Therefore, we need rit = rt and
include time dummies to control for rt in order to have consistency of
the OLS estimator in this regression.

Note also that to identify `it with enough precision we need not high
collinearity between this variable and (kit , iit , `i ,t−1).
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Review of Production Function estimation Estimation Methods

Olley and Pakes Second Stage

Estimation of βK . It is based on the other two assumptions:

(OP − 3) ωit follows a first order Markov process.
(OP − 4) kit is decided at t − 1: kit = (1− δ)ki ,t−1 + ii ,t−1

Since ωit is first order Markov, we can write:

ωit = E [ωit | ωi ,t−1] + ξ it = h (ωi ,t−1) + ξ it

where ξ it is an innovation which is mean independent of any
information at t − 1 or before. And h(.) is some unknown function.

φit is identified from 1st step; and φit = βK kit +ωit . Then,

φit = βK kit + h
(
φi ,t−1 − βK ki ,t−1

)
+ ξ it
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Review of Production Function estimation Estimation Methods

Olley and Pakes Second Stage

We estimate h(.) and βK by applying recursively the same type of
semiparametric method as in the first stage of OP.

φit = βK kit + h
(
φi ,t−1 − βK ki ,t−1

)
+ ξ it

Suppose that we consider a quadratic function for h(.): i.e.,
h(ω) = π1ω+ π2ω

2. Then:

φit = βK kit +π1
(
φi ,t−1 − βK ki ,t−1

)
+π2

(
φi ,t−1 − βK ki ,t−1

)2
+ ξ it

It is clear that βK , π1 and π2 are identified in this equation.
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Review of Production Function estimation Estimation Methods

Olley and Pakes Second Stage

Time-to build is a key assumption for the consistency of this method.
If investment at period t is productive, then the equation becomes:

φit = βK ki ,t+1 + h
(
φi ,t−1 − βK kit

)
+ ξ it

ki ,t+1 depends on investment at period t and therefore it is correlated
with the innovation ξ it .
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Review of Production Function estimation Estimation Methods

OP: Empirical Application

US Telecom. equipment industry: 1974-1987.

Technological change and deregulation.
- Elimination of barriers to entry;
- Antitrust decisions against AT&T: The Consent Decree
(implemented in 1984) —> divestiture of AT&T.
- Substantial entry/exit of plants.

Data: US Census of manufacturers.
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Review of Production Function estimation Estimation Methods

OP: Empirical Application
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OP: Empirical Application

Going from OLS balanced panel to OLS full sample almost doubles
βK and reduces βL by 20%. [Importance of endogenous exit].

Controlling for simultaneity further increases βK and reduces βL.
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OP: Empirical Application
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Levinshon & Petrin (2003)

The main difference with OP method is that LP use the demand
function for intermediate inputs instead of the investment equation to
invert out unobserved productivity.

Two main motivations:
- Investment can be responsive to more persistent shocks in TFP;
materials is responsive to every shock in TFP.
- In some datasets Zero Investment accounts for a large fraction of
the data. At iit = 0 (corner solution / extensive margin) there is not
invertibility between iit and ωit . Problems: loss of effi ciency; missing
estimates of TFP for many observations.
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Levinshon & Petrin (2003)

They consider a Cobb-Douglas production function in terms of labor,
capital, and intermediate inputs (materials):

yit = βL `it + βK kit + βM mit +ωit + eit

Investment equation is replaced with demand for materials:

mit = fM (`i ,t−1, kit ,ωit , rit )

Assumption LP-1: fM (`i ,t−1, kit ,ωit , rit ) is invertible in ωit .

They maintain OP-2 [No other unobservables; rit = rt ], OP-3
[Markov TFP], and OP-4 [Time-to-build].
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Levinshon & Petrin: First Step

Least squares estimation of parameter βL and the nonparametric
functions {φt (.) : t = 1, 2, ...,T} in regression equation:

yit = βL `it + φt (`i ,t−1, kit ,mit ) + eit

φt (`i ,t−1, kit ,mit ) = βK kit + βMmit + f
−1
M (`i ,t−1, kit ,mit , rt ) and

f −1M is the inverse function of fM with respect to ωit .
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Levinshon & Petrin: Second Step

The second step is also similar to OP’s second step but in the model
with the intermediate input.

φit is estimated in 1st step; and φit = βK kit + βM mit +ωit . Then,

φit = βK kit + βM mit + h
(
φi ,t−1 − βK ki ,t−1 − βM mi ,t−1

)
+ ξ it

Important difference with OP: In this second step E (mit ξ it ) 6= 0, i.e.,
materials mit is endogenous.

LP propose two approaches:
- "unrestricted method": instrument mit with its lagged values

[see GNR (2013) criticism];
- "restricted method": under statis input, price-taking: βM =

Cost of materials/Revenue.
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LP: Empirical application

Plant-level data from 8 different Chilean manufacturing industries:
1979-1985 [Pinochet period].
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LP: Empirical Application. Var input shares

Victor Aguirregabiria () Production functions September 3, 2018 54 / 98



Review of Production Function estimation Estimation Methods

LP: Empirical Application: Zeroes
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LP: Empirical Application: Zeroes
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Ackerberg-Caves-Frazer critique

Their criticism applies both to OP and LP. Here we present it in the
context of OP.

Main point:

[1] If OP (or LP) assumptions are correct, then conditional on
(kit , iit ) in OP [or (kit ,mit ) in LP] there should not be any cross-sectional
variation left in `it . Perfect collinearity between `it and φt (kit , iit ).

[2] In the data, we find that conditional on (kit , iit ) [or to (kit ,mit ),
or even to (`i ,t−1, kit ,mit )] there is still cross-sectional variation left in `it .
This should be because the assumptions of the model do not hold.

Identification may be spurious; estimation can be inconsistent ...
unless there are alternative assumptions that explain/allow for the not
perfect collinearity between `it and φt (kit , iit ) and imply consistency
of these control function methods.
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Ackerberg-Caves-Frazer critique

The state variables of the firm’s problem are (kit , iit , rt ), then the
firm’s labor demand is:

`it = fL (kit ,ωit , rt )

And given that ωit = f −1K (kit , iit , rt ), we have that:

`it = fL
(
kit , f −1K (kit , iit , rt ), rt

)
= G (kit , iit , rt )

Therefore, for (kit , iit , rt ) fixed, current labor `it should not have any
sample variability.

That is, if the assumptions in OP model hold, then there should be a
deterministic relationship between `it and φt (kit , iit ) and it should not
be possible to identify βL in the first step.Victor Aguirregabiria () Production functions September 3, 2018 58 / 98
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Ackerberg-Caves-Frazer critique (2)

In the data, we observe that there is not perfect collinearity between
`it and φt (kit , iit ). Two possible explanations:

[1] Unobservable rit 6= rt that enter in the demand of both labor and
investment ⇒ OP and LP are inconsistent estimation methods.

[2] Unobservable rit 6= rt that enter in the demand of labor but NOT
in the investment decision ⇒ OP and LP are consistent estimation
methods.

ACF consider arguments/assumptions that can generate scenario [2]
and save OP / LP methods.

The also propose an alternative method.
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ACF: Saving OP & LP

Consider the model:

(PF ) yit = βL `it + βK kit +ωit + eit

(LD) `it = fL
(
`i ,t−1, kit ,ωit , rLit

)
(ID) iit = fK

(
`i ,t−1, kit ,ωit , rKit

)
where:

(OP − 1) fK
(
`i ,t−1, kit ,ωit , rKit

)
is invertible in ωit

(OP − 2) No cross-sectional variation in rKit : r
K
it = r

K
t .

(OP − 3) ωit follows a first order Markov process.
(OP − 4) kit is decided at t − 1: kit = (1− δ)ki ,t−1 + ii ,t−1

(ACF − 1) var(rLit | t, iit , `i ,t−1, kit ) > 0
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ACF: Saving OP & LP

(ACF − 1) var(rLit | t, iit , `i ,t−1, kit ) > 0

Some economic assumptions that generate (OP-2) and (ACF-1):

* Idiosyncratic shock in the price of labor that is i.i.d. over time
occurs after the investment decision.
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ACF: A new method. Quasi-fixed inputs

Consider a CD-PF with labor and capital as only inputs. Suppose
that OP assumptions hold such that `it is perfectly collinear with
φt (`i ,t−1, kit , iit ).

If both capital and labor are quasi-fixed inputs, then it is possible to
use a control function method in the spirit of OP or LP to
identify/estimate βL and βK .

Or in other words, this model has moment conditions that identify βL
and βK (Wooldridge, EL 2009).
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ACF: A new method. Quasi-fixed inputs

In the first step we have:

yit = βL `it + φt (`i ,t−1, kit , iit ) + eit

= βL gt (`i ,t−1, kit , iit ) + φt (`i ,t−1, kit , iit ) + eit

= ψt (`i ,t−1, kit , iit ) + eit

In this first step, we estimate ψt (`i ,t−1, kit , iit ) nonparametrically.
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ACF: A new method. Quasi-fixed inputs

In the second step, given ψit , and taking into account that ψit = βL
`it + βK kit +ωit , and ωit = h (ωi ,t−1) + ξ it , we have that:

ψit = βL `it + βK kit + h (ψit − βL `it−1 + βK kit−1) + ξ it

In this second step, `it is correlated with ξ it , but (kit ,ψit , `it−1, kit−1)
are not, and (`it−2,kit−2) can be used to instrument `it .

This approach is in the same spirit as the Dynamic Panel Data
(DPD) methods of Arellano-Bond and Blundell-Bond.
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Other identifying conditions: Quasi-fixed inputs [4]

This approach cannot be applied if some inputs (e.g., materials) are
perfectly flexible.

The PF coeffi cient parameter of the flexible inputs cannot be
identified from the moment conditions in the second step.

Victor Aguirregabiria () Production functions September 3, 2018 65 / 98



Review of Production Function estimation Estimation Methods

Other identifying conditions: F.O.C. for flexible inputs

Klette & Grilliches (1996), Doraszelski & Jaumandreu (2013), and
Gandhi, Navarro, & Rivers (2013) propose combining conditions from
the PF with conditions from the demand of variable inputs.

This approach requires the price of the variable input to be observable
to the researcher, though this price may not have cross-sectional
variation across firms.

Note that in the LP method, the function that relates mit with the
state variables is just the condition "VMP of materials equal to price
of materials". The parameters in this condition are the same as in the
PF. This approach takes these restrictions into account.
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Other identifying conditions: F.O.C. flexible inputs [2]

For the CD-PF, with materials as flexible input, we have that:

(PF ) yit = βL `it + βK kit + βM mit +ωit + eit

(FOC ) pt − pMt = ln(βM ) + βL `it + βK kit + (βM − 1)mit +ωit

The difference between these two equations is:

ln(sMit ) = ln(βM ) + eit

where sMit ≡
PMt Mit

PtYit
is the ratio between material expenditures and

revenue.

Victor Aguirregabiria () Production functions September 3, 2018 67 / 98



Review of Production Function estimation Estimation Methods

Other identifying conditions: F.O.C. flexible inputs [3]

The parameter(s) of the flexible inputs are identified from the
expensiture-share equations.

The parameter(s) of the quasi-fixed inputs are identified using the
dynamic conditions described above.

Gandhi, Navarro, & Rivers (2013) show that this approach can be
extended in two important way:
- To a nonparametric specification of the production function:
yit = f (`it , kit ,mit ) +ωit + eit .
- To a model with monopolistic competition (instead of perfect
competition) with and isoelastic product demand.
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Other identifying conditions: F.O.C. flexible inputs [4]

This approach relies on two strong assumptions.

There is not any bias or missing parameter in the MC of the flexible
input. Suppose that MCMt = PMt τ, then our estimate of βM will
actually estimate βM τ.

In its current version, this method cannot incorporate oligopoly
competition in the product market, only a limited form of
monopolistic competition.
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3. Measuring the productivity effects
of R&D
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Measuring the returns to R&D investment

Investment in R&D and innovation is expensive. Investors (e.g., firms,
policy makers) are interested in measuring its returns, private and
social.

Process R&D: Directed towards invention of new methods of
production.

Product R&D: Directed towards creation of new and improved
goods.

Both can increase the firm’s TFP.

It can have also spillover effects in other firms: competition
spillovers, and/or knowledge spillovers.

Victor Aguirregabiria () Production functions September 3, 2018 71 / 98



Measuring the productivity effects of R&D Knowledge capital model

Knowledge capital model (Grilliches, 1979)

Most studies measuring returns to R&D are based on the estimation
production function, i.e., effect of R&D on TFP.

Cobb-Douglas in logs:

yit = βL `it + βK kit + βM mit + βR k
R
it +ωit + eit

kit = log of stock of physical capital;
kRit = log of stock of knowledge capital

A major diffi culty is the measurement of the stock of knowledge
capital.
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Measurement of knowledge capital

We observe firms’R&D expenses, Rit . How to construct KRit ?

Perpetual inventory method. Given {Rit : t = 1, 2, ...Ti}, the
transition rule:

KRit = (1− δR ) K
R
i ,t−1 + Rit

and values for δR and Ki0 we can construct {KRit : t = 1, 2, ...Ti}.

How to choose δR and Ki0?

It is very diffi cult to know the true value of the rate of technological
obsolescence, δR : it can be endogenous, vary across industries and
firms, ...
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Measurement of knowledge capital (2)

Different studies using patent renewal data (Pakes and Schankerman,
1984; Pakes, 1986) or Tobin’s Q model (Hall, 2005) estimate
depreciation rates ranging between 10% and 35%.

Different authors (e.g., Grilliches and Mairesse, 1984) have performed
sensitivity analysis on the estimates of βR for different value of δR .

They report small differences, if any, in the estimate of βR when δR
varies between 8% and 25%.
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Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

Doraszelski & Jaumandreu (REStud, 2013)

In their model, TFP and Knowledge capital (KC) are unobservables to
the researcher.

They follow a stochastic process that is endogenous and depends on
(observable) R&D investments.

The model accounts for uncertainty and heterogeneity across firms
in the link between R&D and TFP.

It takes into account that the outcome of R&D investments is subject
to a high degree of uncertainty.

For the estimation of the structural parameters in PF and stochastic
process of KC, they exploit first order conditions for variable inputs.
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Model

The PF (in logs) is:

yit = βL `it + βK kit + βM mit +ωit + eit

log-TFP ωit follows a stochastic process with transition probability:

p (ωit+1 | ωit , rit )

where rit is log-R&D expenditure.

Every period t a firm chooses static inputs (`it ,mit ) and investment
in physical capital and R&D (iit , rit ) to maximize its value.

V (sit ) = max
iit ,rit

{
π(sit )− c (1)(iit )− c (2)(rit ) + ρE [V (sit+1)|sit , iit , rit ]

}
with sit = (kit ,ωit , input prices [wit ], demand shifters [dit ]).
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: TFP stochastic process

The Markov structure of log-TFP implies:

ωit = E [ωit | ωit−1, rit−1] + ξ it = g (ωit−1, rit−1) + ξ it

where E [ξ it | ωit−1, rit−1] = 0.

The productivity innovation ξ it captures to sources of uncertainty for
the firm:
- the naturally linked to the evolution of TFP;
- the uncertainty inherent to R&D (e.g., chance of discovery, degree
of applicability, success in implementation).
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Marginal Revenue (Market Power)

D&J identification approach exploits marginal conditions (MR = MC)
for variable inputs. This requires an assumption about
competition/market power.

They assume:

MRit = Pit

(
1− 1

η(pit , dit )

)
where η(pit , dit ) is price elasticity of demand for firm i , i.e.,
monopolisitc competition.
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Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: VMP of labor = wage

This marginal condition of optimality for labor provides a closed-form
expression for labor demand.

Solving for log-TFP in the labor demand equation, we get:

ωit = λ− βK kit + (1− βL − βM ) `it + (1− βM ) (wit − pit )

+βM (pMit − pit )− ln
(
1− 1

η(pit , dit )

)
We represent the RHS as h(xit , β), such that ωit = h(xit , β), with:

xit = (kit , `it , wit , pMit , pit , dit )
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Estimation

Combining the PF equation with the stochastic process for TFP, and
the marginal condition for optima labor, we have the equation:

yit = βL `it + βK kit + βM mit + g [h(xit−1, β), rit−1] + ξ it + eit

And form the marginal condition for labor we have:

h(xit , β) = g [h(xit−1, β), rit−1] + ξ it

The "parameters" in this system of equations are: βL, βK , βM , g(.),
and η(.).

The unobservables ξ it and eit is mean independent of any observable
variable at period t − 1 or before.

Therefore, xit−1 and rit−1 are exogenous w.r.t. ξ it + eit . Capital stock
kit is also exogenous because time-to-build. But we need to
instrument `it and mit .
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Identification

To see that the parameters of the model are identified, it is convenient
to consider a simplified version with: βK = βM = 1/η(.) = 0 and
g [ωt−1, rt−1] = ρω ωt−1 + ρr rt−1. Them we have:

yit = βL `it + ρω [(1− βL) `it−1 + wit−1 − pit−1] + ρr rit−1 + ξ it + eit

Using as instruments Zit = (yit−1, `it−1, wit−1 − pit−1, rit−1),
moment conditions E [Zit (ξ it + eit )] = 0 identify βL, ρω, ρr .

Given the identification of these parameters, we know
ωit = h(xit , β) = (1− βL)`it + (wit − pit ). The model implies, that:

ξ it = h(xit , β)− ρω h(xit , β)− ρr rit−1

such that ξ it is identified, and so its variance Var(ξ it ) that represents
uncertainty in the link between R&D and TFP.
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Identification (2)

The instrument wit−1 − pit−1 plays a very important role in the
identification of the model.

Without variation in lagged (real) input prices the model is NOT
identified.

But note that the model does not use contemporaneous input prices
as instruments because they can be correlated with the innovation ξ it .
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Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Data

Panel of Spanish manufacturing firms (N = 1, 870). Annual data for
period 1990− 1999 (max Ti = 10).

10 industries (SIC 2-digits).

Period of rapid growth in output and physical capital, coupled with
stagnant employment.

R&D intensity = R&D expenditure / Sales. Average among all
firms is 0.6% (smaller than in France, Germany, or UK, > 2%).

R&D intensity among performers (column 13) is between 1% and
3.5%.
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Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

Victor Aguirregabiria () Production functions September 3, 2018 84 / 98



Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Production Function Estimates

Comparing GMM and OLS estimates, correcting for endogeneity has
the expected implications, e.g., βL and βM decline, and βK . increases.

There are not big differences in the β estimates across industries.

Test of OIR from instruments: Cannot be rejected at 5% level.

Test of parameter restrictions (in the two equations): Rejected at 5%
level only in 2 out of 10 industries.

Victor Aguirregabiria () Production functions September 3, 2018 85 / 98



Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Production Function Estimates
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Stochastic Process for TFP

The model where TFP is exogenous (doesn’t depend on R&D) is
clearly rejected.

Models with linear effects or without complementarity between ωt−1
and rt−1 are rejected.

Var(e) is approx. equal to Var(ω) in most industries.

Var(ξ)/Var(ω) is between 30% and 75%. Very significant
uncertainty of the effect of R&D on TFP.

Significant differences across industries.
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Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Stochastic Process for TFP
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Testing the standard Knowledge Capital model

Testing three versions of the Knowledge capital model

Basic model: ωit + eit = βR k
R
it + eit . Rejected for all industries.

Hall & Hayashi (1989) and Klette (1996) KC model.
KRit =

[
KRit−1

]σ [
1+ RRit−1

]1−σ
exp{ξ it}. Using D&J notation:

ωit = σ ωit−1 + (1− σ) rit−1 + ξ it

Rejected at 5% in 8 industries, and at 7% in all industries.

Model with: βR k
R
it +ωit + eit , and ωit with exogenous Markov

process. Rejected at 5% in 2 industries, and at 10% in 6 industries.
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Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Testing the standard Knowledge Capital model
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: R&D and TFP (Counterfactuals)

Distribution of TFP with R&D stochastically dominates distribution
without R&D.

Differences in means are between 3% and 5% for all industries and
firm sizes, except for small firms in industries with low observed R&D
intensity.
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Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: R&D and TFP (Counterfactuals)
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Elasticities of TFP w.r.t. R&D and lagged TFP

Elasticity w.r.t. R&D:
- Considerable variation between and within industries.
- Average is 0.015.

Degree of persistence:
- Considerable between and within industries.
- Non-performers have a higher degree of persistence than performers.
- Persistence is negatively related to the degree of uncertainty
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Elasticities of TFP w.r.t. R&D
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Elasticities of TFP w.r.t. lagged TFP
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: TFP persistence and Uncertainty (industry)
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

D&J: Summary of results

They model TFP growth as the consequence of R&D expenditures
with uncertain outcomes.

Results show that this model can explain better the relationship
between TFP and R&D than standard Knowledge Capital models
without uncertainty and nonlinearity.

R&D is a major determinant of the differences in TFP across firms
and of their evolution.

They also find that firm-level uncertainty in the outcome of R&D is
considerable.

Their estimates suggest that engaging in R&D roughly doubles the
degree of uncertainty in the evolution of a producer’s TFP.
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Measuring the productivity effects of R&D
Extending Knowledge Capital model: Doraszelski & Jaumandreu

(REStud, 2013)

Aw, Roberts, and Xu (AER, 2011)

They highlight the bidirectional causality between R&D and
productivity in the context of Taiwanese electronics exporters.

They find that firms that select into exporting tend to already be
more productive than their domestic counterparts, but the decision to
export is often accompanied by large R&D investments.

These investments raise exporters’productivity levels further in turn,
highlighting both selection and causal effects tying productivity to
R&D.

Exporters are more willing to innovate on the margin because they
can spread the potential gains of productivity growth across a larger
market.
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